
Automatic Network Generation for System-on-Chip
Communication Design

Dongwan Shin, Andreas Gerstlauer, Rainer Dömer and Daniel D. Gajski
Center for Embedded Computer Systems

University of California Irvine
CA 92697 USA

{dongwans, gerstl, doemer, gajski}@cecs.uci.edu

ABSTRACT
With growing system complexities, system-level communi-
cation design is becoming increasingly important and ad-
vanced, network-oriented communication architectures be-
come necessary. In this paper, we extend previous work
on automatic communication refinement to support non-
traditional, network-oriented architectures beyond a single
bus. From an abstract description of the desired communi-
cation channels, the refinement tools automatically gener-
ate executable models and implementations of the system
communication at various levels of abstraction. Experimen-
tal results show that significant productivity gains can be
achieved, demonstrating the effectiveness of the approach
for rapid, early communication design space exploration.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: CAD

General Terms
Design, Alogithms

Keywords
System level design, communication synthesis

1. INTRODUCTION
With the ever increasing complexities and sizes of system

level designs, system-level communication is becoming an in-
creasingly dominant factor, e.g. in terms of overall latencies.
As the number and types of components on a chip increases,
traditional, single-bus structures are not sufficient anymore
and new, network-based communication architectures are
needed. In order to explore the communication design space,
designers use models which are evaluated through simula-
tion. Typically, these models are handwritten, which is a
tedious and error-prone process. Furthermore, to achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

required accuracies, models are written at low levels of ab-
straction with resulting slow simulation performance. To-
gether, this severly limits the amount of design space that
can be explored in a reasonable time-to-market.

In this paper, we propose a communication design pro-
cess that can automatically generate models and implemen-
tations of system communication through refinement from
an abstract description of the partitioned system processing
architecture. The automatic refinement tools can produce
communication models at various levels of abstraction in or-
der to trade off simulation accuracy and speed. In previous
work [2], we presented automatic communication refinement
for simple, single-bus based architectures. In this paper, we
extend this approach to support complex, non-traditional
architectures with communication over a heterogeneous net-
work of busses or other communication media. We introduce
an additional network refinement tool that automatically
generates the necessary implementation of upper network
protocol layers for bridging and routing of end-to-end com-
munication over a network of point-to-point links.

The rest of the paper is organized as follows: in the re-
mainder of this section, we introduce the overall design flow
followed by a brief overview of related work. Section 2 then
shows the inputs and outputs of the network design task and
Section 3 will present the details of the network refinement
process. Finally, experimental results are shown in Section 4
and the paper concludes with a summary in Section 5.

1.1 Communication Design Flow
Figure 1 shows the refinement-based communication de-

sign flow [8] which is divided into two tasks: network de-
sign and link design. During the network design, the topol-
ogy of communication architecture is defined and abstract
message passing channels between system components are
mapped into communication between adjacent communica-
tion stations (e.g. processing elements and communication
elements) of the system architecture. The network topology
of communication stations connected by logical link channels
is defined, bridges and other communication elements are al-
located as necessary and abstract message passing channels
are routed over sets of logical link channels. The result of the
network design step is a refined link model of the system.
The link model represents the topology of communication
architecture where components and additional communica-
tion stations communicate via logical link channels.

Network design is followed by link design [15] where logi-
cal link channels between adjacent stations are then grouped

255

GUI

Link design

Network design

Architecturemodel

Linkmodel

Network
protocol

database

Media
protocol

database

DMA

B2

CPU

B3

SRAM

v1

C2

C3

HW

B1
C1

B1 B2

SRAM

L2

MCtrl

DMACPU

C1

v1

C2

v1

C2

C3C3

L1
A

T
1 L1B

B2

HW

C1

CPUBus

CPU

B2

DMA

B3

SRAM

A
rb

it
er

MCtrl

SRAMBus

Interrupts

T
1

SlaveBus

HW

B1

C1 v1C2 C3 v1C2 C3

C1

bus allocation
protocol selection

connectivity
channel mapping

address mapping
interrupt mapping

arbitration

Communication models
(pin-accurate or

transaction-level)

Figure 1: Communication design flow.

and implemented over an actual communication medium
(e.g. system busses) where each group of links can be imple-
mented separately. Logical links are grouped, a communi-
cation medium with associated protocol is selected for each
group, types of stations connected to each medium are de-
fined and media parameters like addresses and interrupts
are assigned to each logical link.

As a result of the communication design process, commu-
nication models such as pin-accurate models and transaction-
level models of a system are generated. The final pin-accurate
model is a fully structural model where components are
connected via pins and wires and communicate in a cycle-
accurate manner based on media protocol timing specifica-
tions.

1.2 Related Work
Recently, transaction-level modeling (TLM) [6, 10] has

been proposed for modeling and exploration of SoC commu-
nication. TLM proposals, however, focus on modeling and
simulation only. By themselves, they do not provide solu-
tions for generating such models. Historically, a lot of work
has focussed on automating the decision making process [16,
7, 13, 11] for communication design without, however, pro-
viding corresponding design models or a path to implemen-
tation. There are several approaches dealing with automatic
generation [4] and refinement of communication [12, 5] but
these approaches are usually limited to specific target archi-
tecture templates or narrow input model semantics. Benini
et al. [3] proposed the Network on Chip (NoC) approach
which partitions the communication along OSI layers. While
the OSI layering also builds the basis for our approach, they
do not provide an actual automatic generation of such lay-
ers.

2. NETWORK DESIGN
The network design task consists of implementations for

upper layers of the protocol stack, namely presentation, ses-
sion, transport, and network layers [8]. The presentation
layer is responsible for data formatting. It converts abstract
data types in the application to blocks of ordered bytes as
defined by the canonical byte layout requirements of the
lower layers.

The session layer implements end-to-end synchronization
to provide synchronous communication as required between
system components in the application. Furthermore, it is
responsible for multiplexing messages of different channels
into a number of end-to-end sequential message streams.

The transport layer splits messages into smaller packets
(e.g. to reduce required intermediate buffer sizes) and imple-
ments end-to-end flow control and error correction to guar-
antee reliable transmission.

Finally, the network layer is responsible for routing and
multiplexing of end-to-end paths over individual point-to-
point logical links. As part of the network layer, additional
communication stations are introduced as necessary, e.g. to
bridge two different bus systems.

Network refinement takes three inputs: an architecture
model, design decisions and a network protocol database.
With these inputs, the network refinement tool produces an
output link model that reflects the topology of communica-
tion architecture of the system.

2.1 Input Architecture Model
The architecture model is the starting point for commu-

nication design. In the architecture model, system com-
ponents communicate via message-passing channels. The
communication design process gradually implements these
channels and generates a new model for each layer of com-
munication functionality inserted.

The architecture model follows certain pre-specified se-
mantics. It reflects the intended architecture of the system
with respect to the components that are present in the de-
sign. Each component executes a specific behavior in paral-
lel with other components. Communication inside a compo-
nent takes place through local memory of that component,
and is thus not a concern for communication design. Inter-
component communication is end-to-end and takes place
through abstract channels that support send and receive
methods.

For data object communicated between system compo-
nents, the model contains corresponding typed message-passing
channels. Communication between components can be mod-
eled via three schemes: two-way blocking, one-way blocking
and non-blocking communication. In the paper, we will look
at refinement of two-way blocking communication because it
is used for unbuffered data transfers and can be implemented
directly over standard bus-based communication protocols.
The other two mechanisms can be implemented easily once
we have support for two-way blocking communication.

Figure 2 shows an example of the architecture model.
During partitioning, the application has been mapped onto a
typical system architecture consisting of a processor (PE2),
a custom hardware (PE1), an IP (IP1) and a system mem-
ory (M1). Inside PE2, tasks are dynamically scheduled
under the control of an operating system model [9] that
sits in an additional operating system shell of the proces-
sor (PE2 OS).

In the architecture model, the shared memory compo-
nent is modeled as a special behavior with interfaces. The
memory behavior encapsulates all variables mapped into the
shared memory component. At its interface, the memory be-
havior provides two methods for each variable to read and
write the value of the variable from/to memory.

256

IP1M1

B2
.
.

c2

c1

Mem

v1
v3

PE2_OS

B3

OS Model

PE1

B1

Figure 2: Input architecture model.

PE1

IP1

PE2

IP_TX

IP1Bus

Bus2Bus1
TX

M1

M1Ctrl

M1Bus

Figure 3: Connectivity definition for Figure 2.

2.2 Design Decisions
During network design, design decisions include allocation

of system busses, protocol selection, selection of communi-
cation elements, connectivity definition between components
and busses, mapping of abstract communication to busses,
and byte layout of system memories. Based on these deci-
sions, the network refinement maps the application channels
onto logical links, synthesizes the implementations of the
communication elements and finally generates the resulting
link model.

For example, for the implementation of the previously in-
troduced architecture Figure 2 we made the following de-
sign decisions: three busses (Bus1 for PE1, Bus2 for PE2,
IP1Bus for IP1 and M1Bus for M1) are allocated and the
connectivity is defined as shown in Figure 3.

2.3 Network Protocol Database
The network protocol database contains a set of communi-

cation elements (CEs) such as transducers and bridges. The
database contains models of bridges and transducers that
include attributes like name, type and associated bus proto-
cols. Models of the CEs in the database are empty templates
that are void of any functionality and will be synthesized by
the refinement tools.

2.4 Output Link Model
The link model is an intermediate model of the design

process between network and link design. The link model
reflects the network topology of the communication architec-
ture where components communicate via logical link chan-
nels which implement message-passing semantics.

For each application channel between components, up-
per layers of the protocol stack such as presentation, ses-
sion, transport and network layers are inlined into the cor-
responding components. In the link model, end-to-end chan-
nels have been replaced with point-to-point logic link chan-
nels between components that will later be physically imple-
mented via directly connected bus wires. In the link model,
communication elements are inserted from the network pro-
tocol database and synthesized for bridging different busses.

M1Ctrl

TX

IP_TX
MAC

intprotocol

IP1M1_LK

B2

PE2_OS

B3

OS Model

PE1

B1

L1 L2

Mem

char[512]

Figure 4: Output link model.

Figure 4 shows an example of a link model generated from
the initial architecture model example (Figure 2) using the
network design decisions in (Figure 3). Inside each compo-
nent, implementations of the presentation layer are inserted.
For instance, the corresponding implementations of applica-
tion channels (c1, c2, IP1 and M1) are inlined into the
behavior of the corresponding system components. A trans-
ducer (TX) is introduced to perform protocol translation
between Bus1 and Bus2. The communication between PE1
and PE2 is routed over logical link channels, L1 and L2 via
TX.

Also, a system memory (M1), which has its own inter-
face protocol (M1Bus), has been connected to Bus1 and
therefore, a bridge (M1Ctrl) for protocol translation be-
tween them is necessary. The memory component model
has been refined down to an accurate representation of the
byte layout. All variables stored inside the memory are re-
placed with and grouped into a single array of bytes.

For an IP component (IP1), the transducer for the IP
(IP TX) is introduced, and the the IP transducer contains
protocol stacks with implementations of media access and
protocol layers for communication with the IP.

3. NETWORK REFINEMENT
Network refinement refines the input architecture model

into a link model that reflects the network topology of a
system. Network refinement implements the functionality
of presentation, session, transport and network layers.

PE1

Application

Layer1

Layern-1

Channeln

PE2

Application

Layer1

Layern-1

CEn+1 n+1

(a) before inlining

PE1

Application

Layer1

Layern

Channeln+1

Layern-1

PE2

Application

Layer1

Layern

Layern-1

CE

Channeln+1

(b) after inlining

Figure 5: Inlining of protocol stack.

With each step in the design flow, an additional layer of
communication functionality is inlined into the PEs of the
design model. By replacing the communication between PEs
with channels and communication elements that model the
transaction semantics at the interface of the next lower layer,
a new system model at the next lower level of abstraction
is generated. Then, model refinement is performed through
channel inlining of protocol stacks as shown in Figure 5 Note
that as part of network refinement, layers may be merged for
cross-optimizations. Furthermore, during synthesis, tools

257

A1

B1

C1

A2

B2

C2

cA

cB

cC

PE1 PE2

(a) Before merging.

A1

B1

C1

A2

B2

C2

cAB

cC

PE1 PE2

(b) After merging.

Figure 6: An example for channel merging.

will optimize and customize layers depending on the specific
requirements of the application and the target architecture,
e.g. to eliminate unnecessary functionality or to adjust hard-
ware resource parameters.

The refinement process can be divided into four main
steps corresponding to the previously introduced layering:
data formatting (presentation layer), channel merging (ses-
sion layer), flow control and error correction (transport layer),
and communication element synthesis (network layer).

3.1 Presentation Layer: Data Formatting
The presentation layer converts abstract data types in

the application to blocks of ordered types as defined by the
canonical byte layout requirements of the lower layers. For
example, the presentation layer takes care of component-
specific data type conversions and endianess (byte order)
issues.

In the link model, models of components contain presen-
tation layer implementations in the form of adapter channels
that provide the services (interface) of the presentation layer
to the application on one side, while connecting and calling
network layer methods on the other side. The presentation
layer performs data formatting for every message data type
found in the application (primitive/complex data type to
void pointer type conversion).

The presentation layers inside components accessing a global,
shared memory are responsible for converting variables in
the application into size and offset for shared memory ac-
cesses. For a memory component, all variables stored inside
the memory are replaced with and grouped into a single
array of bytes. The memory component is modeled as a
channel which provides methods (read/write) to access each
variable by providing the offset of the variable in the mem-
ory.

3.2 Session Layer: Channel Merging
The session layer is responsible for multiplexing of differ-

ent channels into a number of end-to-end sequential message
streams. If communication channels are guaranteed to be ac-
cessed sequentially over time and transaction are guaranteed
to never overlap, they can be merged during network refine-
ment. In other words, sequential transactions are merged
over single stream as much as possible in order to reduce
the number of logical link channels in the system. Chan-
nel merging is implemented through static connectivity, i.e.
if channels are merged, they are multiplexed by connecting
their presentation layers to the same lower transport layer
instance.

In the example of Figure 6(a), three double handshake
channels are used for message passing between three com-
ponents. They are all mapped onto one bus. On PE1, A1
is followed by a parallel composition of B1 and C1 while

on PE2, A2 is followed by B2 and C2. Channel cB and
cC can not be shared, because the execution order between
B1 and C1 is not known in advance. If we shared cB and
cC, then B1 would potentially receive data from C1 which
was intended for C1. However, we can safely share cA and
cB because we know that A1 is always executed first with-
out causing any deadlock and violation of the data transfer
sequence. By doing this, we can eliminate one channel.

Then, our problem is to determine how to group chan-
nels. Based on the observation from the example, we con-
clude that two channels can be merged if three conditions
are met: (a) two channels must be assigned to same bus, (b)
two channels send data from the same source component to
the same destination component, (c) both sending and re-
ceiving behaviors of both channels execute sequentially. If
two channels satisfy the aforementioned conditions, then we
say that they are compatible, otherwise they conflict with
each other.

Our channel merging algorithm is based on the conflict
analysis as follows: The first step is to build the conflict
graph for all channels by checking the conditions. In the
conflict graph, vertices represent the channels and edges rep-
resent the conflict between them. The second step is then to
color the conflict graph with the minimum number of colors
under the requirement that two vertices on the same edge
can not have the same color. Graph coloring is known to
be NP-complete and heuristics can be used when graphs are
large. For our implementation, we used greedy graph color-
ing algorithm. After coloring, the channels with the same
color are merged into one channel.

Note that merging of channels in the link model implies
sharing of bus addresses and CPU interrupts. Therefore, if
the application framework defined through the architecture
model describes a sequential relationship of communication
channels, the application programmer generally can not con-
vert the sequential code into parallel tasks later. The oppo-
site case, however, holds true, i.e. parallel specification tasks
can be serialized at any time without affecting correctness.
The initial specification should therefore in general already
expose all the required application task parallelism.

3.3 Transport Layer: Flow Control
The transport layer is responsible for packeting of mes-

sages. It splits messages into smaller packets to reduced re-
quired buffer sizes. Depending on the links and stations in
lower layers, the transport layer implements end-to-end flow
control and error correction to guarantee reliable transmis-
sion. However, in cases where underlying medium is guar-
anteed to be error-free (e.g. standard bus-based communi-
cation), error correction and flow control are not required.
Therefore, in these cases transport layers are simplified.

3.4 Network Layer: CE Synthesis
The network layer is responsible for routing and multi-

plexing of end-to-end paths over individual point-to-point
logical links. As part of the network layer, additional com-
munication stations such as bridges and transducers are in-
troduced as necessary, e.g. to bridge two different bus sys-
tems. The communication stations split the system of con-
nected system components in the architecture model into
several bus sub-systems. If a communication element is al-
located from the communication element database, its func-
tionality is not implemented yet. Model refinement will gen-

258

bus1.send(req);

bus1.send(mesg);

S0

S1 ack = bus1.recv();

S2

req = bus2.recv();

mesg = bus2.recv();

S0

S1 bus.send(ack);

S2

mesg=bus1.receive();
bus2.send(mesg);S0

PE1 Transducer PE2

packetization:
size of (data) /
size of (mesg) packetization:

size of (data) /
size of (mesg)

mesg=bus2.receive();
bus1.send(mesg);S0

1

2

34

5

6

Figure 7: State machine of transducer (network).

erate functionality of the communication element, based on
its type and types of channels communicated over it.

Assuming reliable stations and logical links, routing SoCs
is usually done statically, i.e. all packets of a channel take
the same fixed, pre-determined path through the system. In
standard bus-based communication, dynamic routing is not
required, therefore, network layers are simplified.

3.4.1 Bridges
Bridges in general are CEs that transparently connect one

bus to another. Bridge implementations are taken out of
the network protocol database where the database has to
contain specific bridge component for every two busses that
the user should be able to bridge during network design.

A bridge in the database has exactly two bus interfaces/ports.
A bridge is always slave on one bus and master on the other.
It transparently transforms and implements every matching
transaction on its slave side by performing a corresponding
transaction on its master side. Basically, the bridge maps
the address and interrupt space of the master side bus into
the slave side bus where the bridge in the database specifies
the range of addresses mapped.

A bridge does not buffer a complete transaction but rather
blocks the transaction on its slave side until the shadow
transaction on its master side is complete. Therefore, a
bridge preserves semantics (e.g. synchronization) inherent in
the bus protocols. As such, a bridge is a CE that only covers
conversions at the protocol level and that is transparent to
higher communication layers.

One type of bridge is a memory controller which bridges
processor and memory busses. The memory controller model
exports an interface that matches the memory interface which
provides read and write methods as shown in Figure 4. The
interface of the memory controller is connected to the PE
on one side and to the memory on the other side. Inside
its interface methods, the memory controller invokes the in-
terface methods of the memory to read/write data. The
memory controller model serves as a basis for link design
and it implements the identity function at the high level of
abstraction.

3.4.2 Transducers
In cases where simple bus bridges are not sufficient, trans-

ducer CEs are allocated out of the network protocol database
during network design in order to connect incompatible bus
protocols. In general, transducers can connect any two bus
protocols and they can be master or slave on either side. In
contrast to a bridge, transducers internally buffer each in-
dividual bus transactions/transfer received on one side be-

fore performing the equivalent transaction on the other side.
Note that transducers contain separate buffers for each di-
rection of each channel, i.e. buffers are not shared, avoiding
potential deadlocks.

Transducers take part in high-level point-to-point commu-
nication protocols. As such, a transducer does not preserve
synchronicity but rather decouples end-to-end channels into
two point-to-point channels each. Since memory transfers
can not be decoupled, memory interface transactions can
not be mapped and implemented over a transducer. In case
of two-way blocking double handshake communication over
a transducer, network refinement will automatically insert
necessary protocol implementations into the PE endpoints in
order to restore synchronicity lost over the transducer by ex-
changing additional ready and acknowledge packets (req/ack
in Figure 7) such that end-to-end double handshake seman-
tics are preserved as shown in Figure 7. In order to resolve
deadlock in case the buffers in the transducer are full which
causes a cycle wait, we use separate buffers for each channel,
which means buffers are not shared in the transactions.

4. EXPERIMENTAL RESULTS
Based on the described methodology and algorithms, we

developed a network refinement tool, which is integrated in
our SoC design environment [1]. We applied the tool to
four examples: a JPEG decoder (JPEG), a GSM Vocoder
(Vocoder), a mobile phone baseband platform (Baseband)
and a MP3 Decoder (MP3). The Baseband example is com-
posed of JPEG decoder and GSM Vocoder running in par-
allel.

Different architectures using Motorola DSP56600 proces-
sors (DSP), Motorola ColdFire processors (CF) and custom
hardwares blocks (HW) were generated and various bus ar-
chitectures (DSP Bus, CF Bus and simple handshake bus)
were tested. Table 1 shows the design characteristics (num-
ber of message passing channels and the total traffic) and
the design decisions made during network design. In this
table, channel mapping from application channels to link
channels is done by automatic the network refinement tool
which implements the channel grouping as shown in Sec-
tion 3.2. In the Baseband example, the Bridge is used to
connect two busses, DSP bus and CF bus. In the MP3 de-
coder example, the ColdFire processor communicates with
four dedicated hardware units over its bus whereas the hard-
ware units communicate with each other through four sep-
arate handshake busses. Table 1 also shows the results of
network refinement. Model complexities are given in terms
of code size (using Lines of Code (LOC) as a metric) and
number of channels in the design. The number of channels
are reduced during refinement based on channel grouping
(as shown in the fifth and sixth columns) which turns out to
reduce the number of lines of code significantly in the JPEG
and Vocoder examples. Results show significant differences
in complexity between input and generated output models
due to extra implementation detail added between abstrac-
tion levels. To quantify the actual refinement effort, the
number of modified lines is calculated as the sum of lines in-
serted and lines deleted whereas code coming from database
models is excluded. We assume that a person can mod-
ify 10 LOC/hour. Thus, manual refinement would require
several weeks for reasonably complex designs. Automatic
refinement, on the other hand, completes in the order of
seconds. Results show that a productivity gain of around

259

Table 1: Experimental results for network refinement.

Traffic Medium Channels Lines of Code Tool Human
Gain

Examples (bytes) (masters/slaves) Arch Link Arch Link Mod. (sec) (hr)

JPEG A1 7560 DSP Bus (DSP/HW) 7 1 2940 2969 133 0.08 13.3 798

Vocoder

A1 46944 DSP Bus (DSP/HW) 12 1 10972 10980 170 0.27 17.0 1020
A2 56724 DSP Bus (DSP/(2 HWs)) 22 2 11386 11415 223 0.34 22.3 1338
A3 76284 DSP Bus (DSP/(3 HWs)) 42 3 11263 12276 559 0.43 55.9 3354

A4 57160
DSP1 Bus (DSP1, HW1),

29 2 13986 14033 369 0.45 36.9 1107
DSP2 Bus (DSP2/HW2)

Baseband A1 1113801
DSP Bus (DSP/5 HWs),

32 13 19754 20227 1195 0.75 119.5 3385
CF Bus (CF/(MEM,IP))

MP3 A1 103289
CF Bus (CF/5 HWs)

65 10 33794 33905 1181 0.92 111.1 952
4 Handshake Buses (5 HWs)

0

0.04

0.08

0.12

0.16

0.2

A1 A2 A3 A4
architectures (vocoder)

co
m

m
u

n
ic

at
io

n
 d

el
ay

 (
m

s)

0

5

10

15

20

25

A1 A2 A3 A4

architectures (vocoder)

sy
st

em
 d

el
ay

 (
m

s)

Figure 8: Exploration results (Vocoder).

1000 times can be expected using the presented approach
and automatic model refinement.

Figure 8 shows the results of exploration of the design
space for the vocoder example. We used 4 different archi-
tecture for vocoder as shown in Table 1 and measured the
communication delay and whole system delay of each ar-
chitecture. As shown in Figure 8, as the number of system
components increases with each architecture, the overall per-
formance of the system is improved while communication
delays increase. Given the design decisions made by the
user, it took less than 1 hour to obtain 4 different commu-
nication models from an executable specification model by
architecture exploration [14] and communication design.

5. CONCLUSIONS
In this paper, we presented a methodology, algorithms

and tools to automatically generate models and implemen-
tations of advanced, network-oriented SoC communication
designs from a partitioned virtual architecture model of a
system. On top of previous work and existing tools for au-
tomated link design, a network design process implements
end-to-end communication semantics between system com-
ponents which is mapped into point-to-point communication
between communication stations of a network architecture.
A corresponding network refinement tool has been devel-
oped and integrated into our SoC design environment. Us-
ing industrial-strength examples, the feasibility and bene-
fits of the approach have been demonstrated. Automating
the tedious and error-prone process of refining a high-level,
abstract description of the design into an actual implemen-
tation results in significant gains in designer productivity,
thus enabling rapid, early exploration of the communication
design space. Future work includes extending network de-
sign to implement error correction, flow control and dynamic
routing for unreliable and long-latency underlying media.
Furthermore, we plan to add algorithms for automated de-
sign making and optimization in order to provide fully auto-

mated network and communication synthesis for extensive
communication design space exploration.

6. REFERENCES
[1] S. Abdi, et al. System-on-Chip Environment (SCE

Version 2.2.0 beta): Tutorial. Technical Report
CECS-TR-03-41, University of California, Irvine, 2003.

[2] S. Abdi, et al. Automatic communication refinement
in system-level design. In Proc. of DAC, 2003.

[3] L. Benini, et al. Networks on chips: A new SoC
paradigm. IEEE Computer, 2002.

[4] I. Bolsens, et al. Hardware/Software co-design of the
digital telecommunication systems. Proc. of IEEE,
1997.

[5] W. O. Cesario, et al. Component-baed design
approach for multicore SoCs. In Proc. of DAC, 2002.

[6] M. Coppola, et al. IPSIM: SystemC 3.0 enhancements
for communication refinement. In Proc. of DATE,
2003.

[7] M. Gasteier, et al. Generation of interconnect
topologies for communication synthesis. In Proc. of
DATE, 1998.

[8] A. Gerstlauer, et al. System-level communication
modeling for Network-on-Chip synthesis. In Proc. of
ASPDAC, 2005.

[9] A. Gerstlauer, et al. RTOS modeling for system level
design. In Proc. of DATE, 2003.

[10] T. Grötker, et al. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[11] K. Lahiri, et al. Efficient exploration of the SoC
communication architecture design space. In Proc. of
ICCAD, 2000.

[12] D. Lyonnard, et al. Automatic generation of
application-specific architectures for heterogeneous
multiprocessor System-on-Chip. In Proc. of DAC,
2001.

[13] R. B. Ortega, et al. Communication synthesis for
distributed embedded systems. In Proc. of ICCAD,
1998.

[14] J. Peng, et al. Automatic model refinement for fast
architecture exploration. In Proc. of ASPDAC, 2002.

[15] D. Shin, et al. Automatic generation of
communication architectures. In A. Rettberg, et al.,
editors, From Specification to Embedded Systems
Application, 2005. Springer.

[16] T.-Y. Yen, et al. Communication synthesis for
distributed embedded systems. In Proc. of ICCAD,
1995.

260

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

