
bens offer a very convincing demonstra t ion of a formal development in their  article using a theorem 

prover as an assistant. A formal development, in this case, is the derivation of an implementat ion from 

a formal specification through a number  of formally proven steps. It  is only practical, as we well know, 

if there is a tool to check that the formal chain is not broken and to provide some guidance. The 

authors consider VDM developments and the corresponding proof obligations for each development 

step, mainly  data 'verification and operation decomposition. The case s tudy is a robot controller and 

the tool used is the B theorem prover. The VDM development was expressed as a set of  B rules; the 

tool was then able to automatical ly generate the proof obligations (and to prove some of them 

automatically).  • What is especially interesting in this case s tudy is that the formalization in B of the 

VDM development is independent  of the case study and can be reused for other  problems. Another  

interesting by-product is the possibility of reusing parts of proven formal developments. It  turned out 

that B alone is not sufficient and that more expertise on VDM development would allow more guidance 

in the development.  However, the authors demonstrate  that supporting formal development is now 

feasible, even if it is not yet as easy as it must  be some day for widespread use. • Wileden, Wolf, 

Rosenblatt and Tarr propose a solution for an old, yet important ,  problem in software development 

and reuse: the interoperabili ty of components developed in different languages and/or running  on dif- 

ferent machines. The i r  article presents a guided tour  of various existing approaches for making  

heterogeneous software components communicate. The authors then present their own approach, which 

is based on the notion of abstract data  types. It  looks quite natural  since the notion of informat ion 

hiding is relevant here. Thus, the proposed method provides a way to allow interoperabil i ty at the 

specification level. A notat ion for describing abstract data types and language bindings of such types 

is provided. A prototype is described which allows type definit ion, language bindings, and provides 

a l ibrary of most common datatypes. It  is clear that this approach will be of high interest for the next 

generation of development environments  since many  different types of objects, manipula ted  via dif- 

ferent languages, must be managed in a convenient  and transparent  way. • The  experience reported 

by Prieto-Dfaz discusses the implementa t ion  of a classification scheme for r e u s e u a  topic of strong 

current  interest. The method he describes is a reuse program based on a l ibrary of reusable software 

assets. In  addit ion to the conclusions the author  draws from this practical application (i.e., the impor- 

tance of domain  analysis), we believe it represents two addit ional  lessons of importance. It  represents 

a strong (yet incomplete) case s tudy of the transfer of  an idea from universi ty research through refine- 

ment  by an industrial  research lab to application in a product ion environment .  The experience also 

points up the ever-present, but  easily overlooked, truth that human  and organizational issues are often 

at least as important  as technical issues in the successful application of new techniques to software 

engineering. • In  conclusion, we hope the articles in this special issue help to continue and expand 

the al l- important  communica t ion  that takes place at conferences like ICSE. By presenting a sample 

of that communicat ion  within  the software-engineering communi ty  to a broader  audience, it is our 

fervent hope that professionals from other disciplines will join in the conversation. Only through broad, 

diverse and substantive communica t ion  can we hope to improve the software-engineering process. 

Peter  A. Freeman,  Dean, College of Computing, Georgia Institute of Technology 

Marle-Claude Gaudel, Professor, LRI- Universltg de Paris-Sud 
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[ • a l - t i m e  systems are playing an increasingly vital 

role in today's society. Such systems include manu- 

facturing, control, transportation, aerospace, robotics and 

military systems. No longer are real-time systems limited 

to low-level control functions. They are now being asked 

to monitor and control complex, hierarchial systems in 

dynamic, sometimes hazardous, environments [7, 13]. 

Furthermore, some real-time systems such as the Mars 

Rover [2] are being asked to operate with little to no 

human  interaction. Other  large real-time systems are 

required to operate in environments that are not fully 

characterized [2]. The lack of information and the uncer- 

tainty of the environment requires the use of problem- 

solving techniques. To make things more difficult, real- 

addressed. In typical real-time systems design, applica- 

tions are created and worst-case times are calculated. 

Real-time scheduling is mostly based on worst-case execu- 

tion times of the tasks in the system. The fundamental 

problem with problem-solving tasks for real-time applica- 

tions is that the worst-case execution time is often 

unknown or orders of magnitude larger than the average 

case execution time. This results in systems which are 

either not schedulable or have very low utilization. Fur- 

thermore, if the execution time variance of the problem- 

solving tasks is not constrained, these tasks cannot be 

integrated into conventional real-time systems since the 

variance is likely to affect the predictability of the conven- 

tional real-time tasks. -g- The execution time variance of 

time systems tend to be critical in nature 

where the impact of failures can have 

serious consequences. ~ Current re- 

search in real-time artificial intel- 

ligence (AI) is driven by a need to 

make knowledge-based systems 

function in real time [12], and a need 

to integrate knowledge-based ap- 

proaches to handle non-linearities and 

problem-solving behavior in cont 

systems [3, 11, 17, 22]. Some of the early 

attempts to build such systems resulted in coincidentally 

real-time systems, which were difficult to analyze and 

predict [12]. At the other extreme, rule-based systems have 

been subject to exhaustive testing to guarantee they would 

be able to meet deadlines. Response time analysis is in 

general undecidable, and is PSPACE-hard in the case 

where all the variables have finite domains [18], making 

this technique infeasible for even moderate-sized 

systems. -II- We believe execution time variance is the 

pr imary problem in providing performance guarantees 

for real-time problem-solving systems. Previous research 

in real-time scheduling has addressed some of the issues 

in integrating tasks with stochastic execution times into 

real-time systems [5]. However, the problem of taming 

the variance of problem-solving tasks has not been 

I / 

problem-solving tasks manifests itself at two 

levels: the methodology level and the 

problem-solving architecture level. To 

improve predictability, it is necessary 

to tackle the variance at both these 

levels. We present an approach 

which integrates problem-solving 

methodology and architectural prim- 

itives to reduce the variance at both 

levels. We have designed and imple- 

_ _nted an architecture, Concurrent  Real- 

Time OPS5 (CROPS5) [201, illustrating these principles. 

Using this architecture, we demonstrate that problem- 

solving and real-time tasks can coexist within a readily 

analyzable framework, that hard deadlines can be 

guaranteed for critical problem-solving tasks, that soft 

deadlines for other problem-solving tasks can be provided 

so "best-effort" solutions are guaranteed within timing 

constraints. "If" We begin by discussing the sources of 

execution time variance and methods to deal with them. 

We then develop the requirements of a real-time problem- 

solving architecture, providing not only the mechanisms 

to tackle the variance, but also the functionality required 

for integration into real-time environments. Later, we 

examine these issues in the context of CROPS5.  An air- 

craft collision avoidance system is used as an example of 
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how problem-solving tasks can coex- 
ist with conventional real-t ime tasks 
on a common comput ing  platform 
whi l e  m a i n t a i n i n g  g u a r a n t e e d  
response t ime performance for the 
conventional real-time tasks. We cur- 
ren t ly  have i m p l e m e n t a t i o n s  of  
C R O P S 5  running  on two real-time 
opera t ing  systems, ARTS [30] and 
C H I M E R A  II [24], and are in the 
process of port ing it to Real-Time 
Mach  [29]. 

Execution-Time Variance: 
The Sources 
We now examine the fundamenta l  
differences between conventional 
real-t ime tasks and problem-solving 
tasks, and discuss how these differ-  
ences affect the execution time var- 
iance of  these tasks. 

First, let us consider the execu- 
tion time variance of  conventional 
real-time tasks. Typical real-time 
signal-processing algorithms have 
little to no variance associated with 
their  execution times because, re- 
gardless of  the complexity and size 
of  most signal-processing algo- 
ri thms (eg., FFTs, filters), there  are 
generally no data dependencies  
which can cause the execution times 
to vary. The  input  data is simply 
processed in a uniform, determinis-  
tic fashion. On the other  hand,  con- 
t rol-oriented real-time tasks often 
have data dependencies .  As the sys- 
tem to be control led increases in 
complexity, the number  of  data 
dependencies  will probably in- 
crease, resulting in an increased 
variance in the execution time of  
real-time tasks. 

Next, let us consider the execu- 
tion time variance of  problem solv- 
ing. According to the Problem- 
Space hypothesis advocated by 
Newel] and Simon [19], all goal- 
or iented symbolic activity occurs in 
a problem space. Search in a prob-  
lem space is posited to be a com- 
pletely general  model  of  intelli- 
gence. Search is thus fundamenta l  
to all problem-solving processes. 

Figure 1 illustrates a cont inuum 
between tasks in a knowledge-poor  
domain  and tasks in a knowledge- 

rich domain.  On the far right, 
knowledge-rich tasks are fully char- 
acterized, and there exists an ex- 
plicit a lgori thm that t ransforms a 
given set of  inputs to an appropr i -  
ate output .  The re  is no notion of  
search or  backtracking at this end 
of  the spectrum. Any variations in 
execution time are associated solely 
with data dependencies ,  as is the 
case for conventional real-time 
tasks. 

As one moves to the left, ei ther 
the task characteristics or  their  in- 
teractions with the environment  are 
not completely known. Heuristics 
are now required to search the state 
space for an appropr ia te  result. At 
the far left, there  is no knowledge 
to direct the search; this results in a 
blind search. In this case, one 
would expect  to have a large vari- 
ance in execution time. To illus- 
trate, let us consider a simple search 
tree of  arity a, depth  d, The  total 
number  of  nodes in the tree is given 
by (a d -  1 ) ( a - 1 ) .  In  a simplistic 
sense, the worst-case and average- 
case execution times can be charac- 
terized by: 

Worst-Case Execution Time -- 
K(a a - 1 ) ( a -  1) 

Average-Case Execution Time = 
KV(d) 

where K is the average time to ex- 
pand and evaluate a single node 
and V(d) is the mult ipl ier  for the 
number  of  nodes examined in the 
average case. Assuming d = 10, a = 
3, V(d) = 30, the ratio of  the aver- 
age case to the worst case is 
30:29524 (~  1: 1000). 

Given the large variance in the 
execution time of  problem-solving 
tasks, and the fact that the worst- 
case execution time is ei ther too 
large or  unknown, tradit ional  
methods for the design of  real-time 
systems cannot  be directly appl ied 

to problem-solving tasks. An at- 
tempt  to blindly apply these tech- 
niques will result in systems which 
are ei ther not schedulable or  are 
grossly underuti l ized.  For  this sim- 
ple example,  the worst-case execu- 
tion time is almost 1,000 times 
longer than the average case. A sys- 
tem designed with the worst-case 
estimate of  execution time will have 
a schedulable utilization of  <0.001 

Most problem-solving falls mid- 
way between the two extremes 
shown in Figure 1. As one moves 
back to the right, increasing knowl- 
edge may be appl ied to reduce the 
variance due to search. 

Search is manifested in the two 
levels of  problem solving: the 
knowledge retrieval level and the 
knowledge application (problem 
space) level. Several methods exist 
for implement ing  both these levels. 
We will use the problem space ap- 
proach ment ioned earl ier  as a basis 
for developing our  arguments .  
Even though the principles are il- 
lustrated in this context,  they have 
wide applicability. 

A problem space can be charac- 
terized by a set of  states and a col- 
lection of  operators  that map  states 
to states. A problem instance con- 
sists of  a problem space, an initial 
state and a set of  goal states. Prob- 
lem solving can thus be viewed as 
f inding the sequence of  operat ions 
that map the initial state to the goal 
state. When more than one opera-  
tor is applicable at a state, and there 
is insufficient information to select 
between the operators ,  search is 
required.  A search in which exactly 
one opera tor  is applicable to each 
state is often called an algori thm, 
cor responding  to the far r ight  of  
Figure 1. 

At each state, selection of  the 
next opera to r  constitutes knowl- 
edge retrieval. Applicat ion of  this 
knowledge controls the process of  
moving from state to state. The  
problem space search discussed 
here is at the knowledge application 
level. In addit ion,  knowledge re- 
trieval involves searching the avail- 
able body of  knowledge for knowl- 
edge that is applicable in the 
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current  state. This is referred to as 
search in the knowledge space [27]. 

There is a fundamental  differ- 
ence between search in the problem 
space and search in the knowledge 
space. At the problem space level, 
the intent is to select the best possi- 
ble opera tor  applicable to the cur- 
rent  state. On the other  hand,  at the 
knowledge retrieval level, the intent 
is to retrieve all knowledge that will 
influence the selection of  the oper-  
ator. Therefore ,  knowledge is avail- 
able to prune  and control the 
search in the problem space, but no 
comparable  knowledge is available 
to restrict the search in the knowl- 
edge space. 
Reducing Variance 
The  only way to reduce the vari- 
ance at the problem space level is to 
reduce the number  of  states 
searched. The re  are two ways to 
achiew. ~ this goal as shown in the left 
half  of  Figure 2. 

The  first technique is to prune the 
search space. This involves looking 
earlier at the states that are more 
likely to lie along the solution path. 
This corresponds to the classical 
"best-first search" technique. The  
best-first search technique uses 
heuristics to achieve the pruning  of  
the search space. The  better  the 
heuristic, the lower the variance. 

The  second technique is abstrac- 
tion. This involves creating an ab- 
stract problem space whose states 
are less detai led than those in the 
original problem space. A single 
state in the abstract problem space 
corresponds to multiple states in 
the original problem space. Search 
in the abstract space provides guid- 
ance for search in the original 
problem space, thereby reducing 
the variance. For  example,  in plan- 
ning a route  from Pittsburgh to 
New York, one can work at the ab- 
stractions of  interstate highways, 
major roads,  or  smaller roads. De- 
termining the entry and exit points 
at the abstraction of  interstate high- 
ways constrains the number  of  
roads examined at the lower levels. 

We will present  a sample applica- 
tion illustrating these techniques 
later. 

N Z•OGE.BhStg 
At the Knowledge Retrieval Level 
The  amount  of  processing required 
in the knowledge retrieval phase 
depends  on the amount  of  knowl- 
edge in the system, the size of  the 
state (data), and the amount  of  data 
each piece of  knowledge is potenti- 
ally applicable to. The  variance of  
the knowledge retrieval phase can 
be reduced by the techniques illus- 
t rated in the r ight  half  of  Figure 2: 

Partitioning the Knowledge Space. 
This allows us to avoid searching 
sections of  the knowledge space 
that contains knowledge which is a 
priori known to not be applicable to 
part icular  pieces of  data. 
Partitioning the data. Many pieces of  
knowledge express relations, de- 
sired or  otherwise, between multi- 
ple pieces of  data. Parti t ioning the 
data allows us to avoid considering 
sets of  data which are apriori known 
not to belong to that relation. 
Restricting expressiveness. Highly 
expressive knowledge representa-  
tions allow a large number  of  rela- 
tions to be represented.  When a 
part  of  the state changes, a large 
number  of  potential  relations with 
the rest of  the state have to be 
checked. Representat ion for- 
malisms which restrict expressive- 
ness a priori restrict the number  of  
relations that need to be checked 
dur ing  every state change. 

Next, we will present  a problem- 
solving architecture which not only 
controls execution time variance at 
the knowledge retrieval phase, but  
also provides architectural mecha- 
nisms to suppor t  a range of  
problem-solving methodologies to 
reduce the variance at the problem 
space level. 

CROPS5: An Architecture for 
Real-Time Problem Solving 

We contend that the function of  an 

integrated real-time problem solv- 
ing architecture, as shown in Figure 
2 is to provide mechanisms to parti- 
tion, o rde r  and prune  the search 
space; predictable low-variance primi- 
tives for problem solving; and fea- 
tures which facilitate easy integra- 
tion into real-time opera t ing  
environments.  These  three catego- 
ries represent  the mechanisms and 
features required for implement ing  
the variance reduction methods.  

We have designed a real- 
time problem-solving architecture,  
CROPS5, in accordance with the 
broad requirements  we have out- 
lined. It is based on the product ion 
system model  [9], and borrows 
heavily from OPS5 for its syntax 
and semantics. 

An OPS5 product ion system is 
composed of  a set of  if-then produc-  
tions (rules) that constitute the pro- 
duction memory and a set of  data 
items, called the working memory. 
The  execution of  an OPS5 p rogram 
can be characterized by a cycle 
which has three phases: match, re- 
solve, and act. Several efficient 
match algorithms have been de- 
signed for product ion systems. The  
best-known match algori thm is Rete 
[8]. The  Rete algori thm performs 
matching using a special kind of  
data-flow network compiled from 
the left-hand side (the if  part) of  
productions.  This data-flow net- 
work passes items called tokens 
across the arcs between its nodes. 
Tokens are partial instantiations of  
productions.  The  basic computa-  
tional step in the algori thm is to 
de termine  if the current  set of  par-  
tial instantiations (tokens) can be 
extended by matching more work- 
ing memory elements against the 
productions involved. Checking 
whether  a single token can be thus 
extended is the smallest logical unit  
of  computat ion in the algori thm 
and is re fer red  to as token-processing 
time. This time is typically on the 
o rde r  of  200-300  machine instruc- 
tions. 

There  have been several efforts 
to use OPS5 or  OPS5-1ike lan- 
guages for real-time AI [6,23]. 
However,  there  are several charac- 
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teristics of  OPS5 that limit its utility 
for real-time applications. Some of  
these include the following: 

• Current  OPS5 systems can be in- 
te r rupted  only at rule-fir ing 
boundaries.  The  time per iod be- 
tween successive rule-firings is, 
on the average, large and has a 
high variance. As a result, the re- 
sponsiveness and predictability of  
these systems is severely im- 
pacted. 

* OPS5 systems consist of  a single 
problem-solving stream, whereas 
real-time applications typically 
require multiple streams to be 
active simultaneously. While it is 
possible to simulate multiple 
streams within OPS5 by using a 
special data item as context iden- 
tifier, switching between these 
streams is extremely expensive 
and has unpredictable processing 
requirements.  

In addition, OPS5 does not have 
an interface to the external  envi- 
ronments,  and its pat tern-matching 
time is unpredictable due  to the 
expressive power of  the language 
and the incremental  nature  of  the 
match algorithm. 

CROPS5 Mechanisms 
The  design of  CROPS5 attempts to 
remove these limitations by explic- 
itly addressing each of  these prob- 
lems. CROPS5 is based on 
CParaOPS5 [1], a parallel imple- 
mentat ion of  OPS5 developed at 
Carnegie Mellon University. 
CROPS5 consists of  an OPS5 to C 
compiler  and a run-t ime library in 
C. It is significantly faster than 
Lisp-based versions of  OPS5, and 
does not suffer from the unpredict-  
ability of  the garbage collection 
mechanism in Lisp. The  suppor t  of  
match parallelism in CParaOPS5 
allows CROPS5 to be easily ex- 
tended to run on parallel proces- 
sors for enhanced performance.  

Figure 4 shows the architecture 
of  CROPS5 as a task in a real-time 
system. CROPS5 is shown to coexist 
on a common comput ing platform 

"~ l ' t ' l " ~ ' . ,  i l t l  ) ) ) 1  qr I , , ' ~  " " ~ ~ .  -.b. 
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with other  hard real-time tasks like 
engine control and life suppor t  sys- 
tems control. We address the issue 
of  integration in greater  detail 
later. First, we discuss the mecha- 
nisms provided by CROPS5 to effi- 
ciently partit ion, o rder  and prune  
the search space. These mecha- 
nisms correspond to those in the 
leftmost branch of  Figure 3. 

Concurrent Prioritized Streams. As 
opposed to the single problem- 
solving stream in OPS5, CROPS5 
[20] supports  multiple problem- 
solving streams. Individual  streams 
have disjoint sets of  productions 
(and hence disjoint Rete nets). Each 
stream has a private working mem- 
ory. The  system uses a global work- 
ing memory to communicate be- 
tween streams. The  mechanism of  
multiple streams facilitates knowl- 
edge base part i t ioning and data 
part i t ioning to reduce variance. 

Associated with each stream is a 
stack of  tokens that are yet to be 
matched and a buffer  of  working 
memory elements yet to be pro- 
cessed. A stream can therefore  be 
characterized by a (Rete net, token- 
queue, working-memory-buffer)  
tuple. Fast and predictable switch- 
ing between streams is achieved by 
switching between pointers to the 
corresponding tuples. 

Knowledge-Based Scheduling and Con- 
text Switching. CROPS5 provides a 
dispatcher  for the streams. The  
unit of  time is the time to process a 
single token. Token counters keep 
track of  the relative time spent in 
processing each stream, and can be 
used to implement  a variety of  
user-defined scheduling policies. 
Preemptability. While current  OPS5 
systems allow preempt ion  only 
after all match processing is com- 
pleted, CROPS5 allows preempt ion  

of  the match process at token- 
processing boundaries.  This ability 
to in ter rupt  the match at fine- 
grained intervals not only improves 
the responsiveness of  CROPS5, but 
also provides a mechanism to guard 
against excessive data rates and 
runaway match processing. 

These mechanisms allow the user to 
partit ion, o rder  and prune  the 
search space. 

predictable Primitives 
CROPS5 also improves the predict- 
ability of  some of  the basic 
problem-solving primitives indi- 
cated in the middle branch of  Fig- 
ure 3. 

Earlier, we identif ied context 
switching and the points of  
preemptabil i ty  as having a large 
variance in OPS5. The  CROPS5 
primitives for context switching 
and preempt ion  have much lower 
variance. Experiments  were con- 
ducted with CROPS5 running  
under  the CHIMERA II real-time 
operat ing system [25] on a VME- 
based Ironics IV3220 single-board 
computer  with a 68020 CPU run- 
ning at 20 MHz. Experimental  re- 
sults show that the variance de- 
creases significantly. The  rationale 
for this decrease involves the fol- 
lowing factors: 

Predictable Contex t  Switching. 
CROPS5 reduces the variance of  
context switching by providing an 
architectural mechanism to switch 
streams. To per form a context 
switch in conventional OPS5, the 
old context e lement  had to be de- 
leted, and the new context element  
inserted into the working memory.  
This results in a f lurry of  match ac- 
tivity. The  minimum time required 
for replacing the context element  is 
a function of  the sum of  the num- 
ber  of  productions in the two con- 
texts. The  context switch time is 
thus highly dependen t  on the par- 
tial state of  the match and the un- 
certainty in the environment ,  and is 
on the o rde r  of  the time required 
for a match-resolve-act cycle. The  
numbers  presented next are an 
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order  of  magnitude measure of  the 
time required for a context switch. 
Notice that the variance in context- 
switching time is on the order of  
thousands of  microseconds. In con- 
trast, context switching in CROPS5 
is two orders of  magnitude faster 
and more predictable. Since each 
stream has its own Rete network, 
the new stream can immediately 
begin processing its data without 
having to spend significant time 
performing bookkeeping on the 
state of  the match algorithm. 

- -Sample  range in OPS5 context 
switch time: 1800 /xseconds- 
4300 /xseconds 

- -CROPS5 Dispatcher Statistics: 
* Context Switch to a different 

stream: 55/xseconds 
* Continue processing same 

stream: 9/xseconds 

Predictable Preemption Points. Con- 
text switching can be done only at 
preemption points. Since preemp- 
tion in conventional OPS5 systems 
is at the rule-firing boundary, there 
is a large variance in the points of  
preemption. CROPS5 reduces the 
variance in the points of  preemp- 
tion by reducing the granularity of  
preemption from the match- 
processing level to the token- 
processing level. Associated with 
the reduction in granularity is an 
order of  magnitude decrease in 
variations and an equivalent in- 
crease in responsiveness. 

- -Sample  range in OPS5 preemp- 
tion points: 1800/xseconds-4300 
/xseconds 

- - C R O P S 5  Granularity of preemp- 
tion: 

*Average token firing time: 134 
/xseconds 

The predictability of  the points of  
preemption, and the context switch 
time allows us to estimate a priori 
the time required to react to differ- 
ent events. 

Predictable Match. Preemption 
points and context switching are 
not the only sources of  variance. 
Matclh processing is another. Dif- 
ferent techniques have been ex- 

u#4 ,. , 
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plored to bound the match process- 
ing to make it predictable [28]. 
These techniques have relied on 
restricting the expressive power of  
the language to eliminate match 
combinatorics. Of  these techniques, 
the unique attribute formalism [28] 
appears promising. This formalism 
can be adopted in CROPS5 by re- 
stricting the types of  productions 
written, and can be used to provide 
polynomially bounded match times 
for CROPS5 applications. 

Integrating CROPSS into 
Real-Time SVstems 
CROPS5 was designed for embed- 
ded real-time applications. Our  
approach allows CROPS5 to coexist 
with other real-time tasks on a com- 
mon computing platform. Using 
operating system primitives, 
CROPS5 can run at any priority 
level while still guaranteeing dead- 
lines of  other tasks in the system. 
The integration features referred 
to in the rightmost branch of  Fig- 
ure 3 are addressed as follows: 

Encapsulation within an AI Server. To 
guarantee temporal isolation be- 
tween conventional real-time tasks 
and problem-solving tasks, we en- 
capsulate all problem solving within 
an AI Server. We borrow the Server 

abstraction directly from the real- 
time scheduling community 
[24,26]. Servers have previously 
been developed to provide highly 
responsive aperiodic performance 
in periodic, hard deadline environ- 
ments. 

We utilize this approach to create 
an AI Server which is a bandwidth- 
limited task whose schedulability 
impact can be explicitly evaluated 
and guaranteed I. The  AI Server 
differs from the Deferrable Server 

[Schedulabi l i ty  o f  a sys tem is the  level o f  re-  
source  uti l ization a t ta inable  be fo re  a dead l ine  
is missed .  

[26] and the Sporadic Server [24] in 
that it services both periodic and 
aperiodic tasks and has a different 
replenishment policy [20]. Given a 
set of  conventional real-time tasks 
with deadlines, one can apply 
scheduling analytical techniques to 
determine the maximum possible 
capacity of  the AI Server at any pri- 
ority level. This technique is illus- 
trated later, using an application 
example. 
Responsiveness and Preemptability. 
The CROPS5 production system 
was specifically designed to be pre- 
emptive and priority driven. At the 
integrated-system level, the 
preemptability of  the AI Server 
which encapsulates the CROPS5 
system is identical to the 
preemptability of  any other real- 
time task. Thus the schedulability 
analysis of  the real-time task set, 
including the AI Server, can be 
performed in a uniform way. 
CROPS5 also provides a high de- 
gree of  preemptability of  problem 
solving, by allowing the problem- 
solving stream to be interrupted at 
the token-processing granularity. 
The  fine granularity of  preemption 
provides a high degree of  respon- 
siveness to the environment. 
Environment Interface. The interface 
to the external world is through a 
Data Handler. The Data Handler 
accepts input from the other tasks 
in the system. This allows CROPS5 
to run in embedded applications 
which process sensor data. 
Integration with Conventional Systems: 
CROPS5 supports mechanisms to 
facilitate easy integration between 
the rule-based component  and ex- 
isting procedural software. A 
C-language interface is provided 
from the right-hand sides of  pro- 
ductions, allowing external C func- 
tions to access and modify internal 
working memory elements of  the pro- 
duction system. 

CROPS5 is portable, and runs on 
most Unix and Mach machines. 
CROPS5 also runs on the ARTS 
[30] and CHIMERA II [25] real- 
time operating systems and is cur- 
rently being ported to Real-Time 
Mach [29]. 
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Application Example: 
The Collision Avoidance 
System 
Two systems have been imple- 
mented, using this architecture: an 
aircraft collision avoidance system 
and a dynamic factory-scheduling 
system [10]. We use the Collision 
Avoidance application as an illus- 
tration of  how the techniques to 
reduce execution time variance 
improve the predictability of  the 
system. The Collision Avoidance 
application has been in use as an 
experimental benchmark over the 
past few months. In this section, we 
describe how this system is imple- 
mented and substantiate our claims 
with e'cperimental results. 

Specifically, we will demonstrate 
the use of  CROPS5 mechanisms to 
partition, order and prune the 
search space. We will compare the 
CROPS5-based implementation 
with an implementation using con- 
ventional OPS5, and show how the 
variance has been reduced. The  
application will be analyzed to de- 
termine the evolution of  the system 
in response to changing data rates. 
We will demonstrate a best effort 
solution strategy with predictable 
breakdown points. We will also 
demonstrate that problem-solving 
processes can be successfully inte- 
grated with conventional hard real- 
time tasks on a common computing 
platform, while guaranteeing dead- 
lines of  all real-time tasks. 

Application Background 
The Collision Avoidance System 
(CAS) consists of  an airplane re- 
ceiver that listens to the signals 
emitted by radar transponders on 
other planes in response to interro- 
gation signals from the host plane, 
By interpreting the transponder 
return, measuring the time delay of  
the ]response, and checking the 
angle the reply is coining from, the 
system can determine the altitude, 
distance and bearing of  nearby 
transponder-equipped aircraft. 
While displaying the raw informa- 
tion is informative, it still must be 
processed to determine evasive 
action. Given the extremely limited 

",'I.[9GE.BAS~ w.. 
response time requirement (< 10 
secs.), any decision aid in this situa- 
tion would be extremely beneficial. 
The CAS provides decision support 
capability to the pilot by generating 
advice to climb, dive, or turn right 
or left to avoid potential threats. 

We implemented this application 
using the problem space search 
technique discussed earlier. In this 
case, the problem space is defined 
by the dimensions along which ad- 
vice needs to be generated, and the 
number  and orientation of  the tar- 
get planes around the host plane. 
The solution space is the set of  final 
advice recommendations to the 
pilot. 

The  nature of  the application 
imposes specific real-time perfor- 
mance and resource requirements 
[20]. Due to limited footprint space 
on modern aircraft, it is desirable 
for the collision avoidance system to 
coexist with conventional real-time 
tasks on the same computing plat- 
form. The  collision avoidance sys- 
tem must also share communication 
networks and system resources with 
other real-time tasks, without caus- 
ing them to miss their deadlines. 

Demonstration of Variance 
Reduction 
As a first step to solving this prob- 
lem, we partition the overall func- 
tionality among a number  of  real- 
time tasks at the system level. The  
basic tasks are the reading of  radar 
sensors, the knowledge-based pro- 
cessing of  the information, and the 
display of  the advice generated. 
The knowledge-based processing 
of  the information is done using 
both CROPS5 and OPS5. 

We implemented the collision 
avoidance application in three dif- 
ferent systems to illustrate the re- 
duction in problem-solving vari- 
ance--OPS5 without context 
elements; OPS5 with context ele- 

ments; and CROPS5. 
In the OPS5 implementation 

without context elements, a single 
program handled advice genera- 
tion for all planes. This program 
had the following limitations: 

• No preemptability. Once the pro- 
gram starts execution, it stops 
only after advice for all planes is 
generated. 

• Unpredictable match processing. 
Since multiple data elements can 
match the condition elements of  
rules, data-dependent combina- 
torics result. 

This approach and program- 
ming style are not suited to most 
real-time applications. A real-time 
system has to be aware of  the possi- 
ble limitations in time. It must 
order  its computations so the most 
important  ones are done frst .  The  
nonpreemptability and large exe- 
cution time variance of  the conven- 
tional OPS5 implementation makes 
it difficult to provide performance 
guarantees for the CAS. We used 
the variance-reduction techniques 
discussed previously and the mech- 
anisms provided by CROPS5 to 
reduce the execution time variance 
of  this application at both the prob- 
lem space level and the knowledge 
retrieval level. 

Problem Space Level 
Pruning: In this application, parti- 
tioning is done so that each stream 
handles the processing for a single 
plane. Ordering of  the search is 
done by prioritizing the streams 
based on the degree of  the per- 
ceived threat. Figure 5 illustrates 
our problem-solving strategy. In 
our application, all streams calcu- 
late their own priorities at the be- 
ginning of  every data cycle. This 
priority is passed to the dispatcher. 
Advice generation is ordered, start- 
ing with the highest-priority threat. 
Streams handling planes moving 
away from the host plane are set to 
the lowest priority. This solution 
strategy is a best effort strategy, in 
that if time runs out before all 
planes are processed, the system 
would have considered the highest 
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priority threats and generated 
some partial  advice [41. 
Akstraction. For this problem, advice 
generation can occur at multiple 
levels of  abstraction, each with 
varying amounts  of  detail [ 15]. The  
limiting cases of  advice generat ion 
are characterized next, with other  
situations lying in between. On one 
hand, if a collision were imminent,  
advice is generated to immediately 
swerve to avoid the threat. On the 
other  hand, if more time were 
available, factors such as weather, 
the range of  available operat ing al- 
titudes, and the expected intentions 
of  the threat  are taken into account 

<'FOGE. B AS~.~ ": 
number  of  streams. 
Restricting Expressiveness. Since we 
could make the match predictable 
by data part i t ioning only, we did 
not consider restricting the expres- 
siveness of  the language to bound 
the match time. 

q G U R E  S 

Problem-Solving Strategy 

input  data, while the OPS5-based 
system is not similarly immune even 
though it uses context elements. In 
this exper iment ,  we see that in gen- 
erat ing advice for one plane, OPS5 
takes 222 ms (545 tokens) when 
there is one plane, vs. 274 ms (789 
tokens) when there are five. 
CROPS5, on the other  hand, varies 
only between 148 ms and 154 ms 
(310 tokens-318  tokens). While 
both execution times and token 
numbers  are presented,  the token 
numbers  are not affected by the 
limitations of  the time measure- 
ment  process. The  net variation is 
244 tokens in OPS5 vs. only 8 to- 

before advice is generated.  

Knowledge Retrieval Level 
Knowledge Base Partitioning. Since 
the knowledge base for this applica- 
tion is relatively small, we did not 
parti t ion it. 
Data Partitioning. The  CAS uses 
data part i t ioning to ensure the pre- 
dictability of  the match process. In  
this application, we parti t ion the 
data so that each stream looks only 
at the data associated with one 
plane. This ensures that at most, 
one working memory element  
matches any given condition ele- 
ment  in the Rete net of  the produc-  
tions, thereby eliminating match 
combinatorics. The  t rade-off  for 
limiting the match combinatorics is 
an increase in the number  of  
streams (increased memory  space). 
The  relatively small size of  the Rete 
net per  stream allowed us to repli- 
cate streams without incurr ing too 
much memory cost. The  maximum 
number  of  planes that can be con- 

s i d e r e d  is limited by the maximum 

Our  problem-solving strategy 
was to parti t ion and o rde r  the com- 
putat ion to reduce the execution 
time variance of  the application. A 
number  of  experiments  were con- 
ducted to measure the perfor-  
mance of  the application. We pres- 
ent some of  these results to 
illustrate the reduction in variance. 

In  Table 1, we compare the per- 
formance of  the OPS5 implementa-  
tion using context elements, and 
the CROPS5 implementat ion using 
streams. To factor out dependen-  
cies due to p rogramming  style and 
implementat ion,  all OPS5 problem 
solving was p rog rammed  using 
CROPS5--which  is upward com- 
patible with OPS5. 

This exper iment  was conducted 
to determine  the variation in the 
time taken to generate  advice for 
one plane, as a function of  the 
input  data. We see that CROPS5 
does better in two respects: predict-  
ability and efficiency. 

The  CROPS5-based system is 
relatively immune to changes in 

kens in CROPS5. This demon-  
strates an o rde r  of  magni tude 
improvement  in CROPS5 predicta- 
bility. 

Table 2 isolates the context 
switch performance of  OPS5 and 
CROPS5 at each of  the data points. 
Notice that CROPS5 context/ 
stream switching is constant in this 
application, unlike OPS5. The  to- 
kens processed for the OPS5 con- 
text switch increase in a regular  
fashion since the code to process a 
plane is the same across all contexts. 
The  context switch processing is 
typically unpredictable in OPS5, 
while remaining constant in 
CROPS5. 

Moreover,  we find that CROPS5 
primitives speeded up the applica- 
tion over that of  OPS5 by a factor of  
about 2. This is due to the elimina- 
t ion  of  r edundan t  processing. 

We now discuss how the CROPS5 
implementat ion can be analyzed 
and integrated into a hard real-time 
system so that performance guar- 
antees can be provided.  
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Compar ison of  OPS5 and CROPS5 Per fo rmance  

Time Taken Tokens 
Number Number (msec.) Processed 

of Number Advice 
Planes Prlorltlzed Gen. OPS5 CROPS5 OPS5 CROPS5 

1 1 1 222 148 545 310 
2 1 1 233 153 606 312 
3 1 1 248 152 669 314 
4 1 1 262 154 730 316 
5 1 1 274 152 789 318 

Contex t  Swi tch  Per fo rmance  

Tokens Processed 
Number of Number Number 

Planes Priorltlzed Advice Gen. OPS5 CROPS5 

1 1 1 77 2 
2 1 1 87 2 
3 1 1 97 2 
4 1 1 107 2 
5 1 1 117 2 

Execut ion  Character is t ics  of  t h e  Real-Time Task Set 

Rate 
Run-Time Period Monotonic 

Periodic Task msec. reset. Utilization Priority 

Engine Control 6.00 50.00 0,120% 1 
Sensor Monitoring 36.00 2 5 0 . 0 0  0,144% 2 
AI Task CAIs 1000.00 UAJs 3 
Display & User Int. 100 .00  1200 .00  0.083% 4 
Life Support 120.00 1500 .00  0.080% 5 

Total 0.427 + UALs% 

Compar ison of  Pred ic ted  vs. Measured  Per fo rmance  

Number of Number Number Predicted Measured 
Planes Prlorltlzed Advice Gen. Time (msec.) Time (msec.) 

5 5 1 421 380 
5 5 2 498 445 
5 5 3 574 517 
5 5 4 650 583 
5 5 5 726 660 

Demonst ra t ion  o f  System 
Analyzabi l i ty  
To demonstrate the ability of  the 
problem-solving architecture to 
coexist with hard real-time tasks on 
a common computing platform, we 
consider the experimental task set 
shown in Table 3. This is the same 
task set illustrated in Figure 4. In 
addition to the radar sensor moni- 
toring and display interface tasks 
required for the collision avoidance 
application, we have added two 
critical additional tasks with widely 
different responsiveness require- 
men ts - -an  engine control task with 
a very short period of  50 ms, and a 
Life Support  Systems task with a 
relatively long period 1500 ms. 

AI Server Capacity 
Previously, we introduced our  inte- 
grated, real-time problem-solving 
architecture and provided a quali- 
tative discussion on how one c a n  

jointly schedule conventional real- 
time tasks and CROPS5 using an AI 
Server. Here, we will demonstrate, 
via the Collision Avoidance applica- 
tion example, how to assign priority 
to the AI Server and how to solve 
for its maximum capacity consistent 
with the RT tasks' scheduling re- 
quirements. 

In general, the priority assigned 
to the AI server is a function of  its 
response time requirements. In the 
Collision Avoidance application, 
the AI processing requirements a r e  

periodic with a period, TAIs, of 1000 
ms. Since the conventional RT tasks 
are also periodic with periods sum- 
marized in Table 3, the Rate Mono- 
tonic scheduling algorithm [16] c a n  

readily be applied to evaluate the 
schedulability of  the task set. The  
Rate Monotonic algorithm has been 
proven to the optimal fixed-priority 
scheduling algorithm for periodic 
tasks. Using this algorithm, the 
tasks are priority ordered by their 
ra tes-- the  shorter their period, the 
higher their priority. Note that as- 
signment of  priorities is based 
solely upon response time require- 
ments and does not consider the 
relative semantic importance of  the 
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tasks. When the schedulability of  
the entire task set cannot be guar-  
anteed,  the relative semantic im- 
portance of  the tasks comes into 
play. In such a case semantic-based 
load shedding is appropr ia te .  
Otherwise, the highest schedulable 
utilization is achieved by assigning 
priorities solely on response time 
requirements.  

Given the maximum run time, 
Ci, and period, Ti of  each of  the 
conventional real-time tasks, we 
now solve for the maximum capac- 
ity of  the AI Server task, Ca(~ which 
will not violate the response time 
requirements  of  the lower-priority 
Display and Life Suppor t  System 
tasks. A tight schedulability bound 
can be calculated by an exact-case 
analysis consistent with the rate- 
monotonic algori thm [14]. This 
bound expressed as: 

Vi,  1 <-- i<--n ,  

i 1 [ I T k ]  ~ 
rain E Cj ~ k  L Tj j - (1) 

R i = 

(k, hi1 -< k 

(k, 1) E R i 

takes explicit account of  the actual 
task sets' per iod ratios and run 
times. Equation 1 yields a maxi- 
mum Cats of  516 ms which corre- 
sponds to a maximum utilization of  
the AI Server of  Uals = C A I s / T A I  s = 

0.516 or  51.6%. Adding  this to the 
utilization of  the other  real-time 
tasks, we get a total schedulable uti- 
lization of  94.3%. The  following 
section provides an analytical treat- 
ment  to answer whether the AI 
Server capacity is sufficient to meet 
the response time requirement  of  
the Collision Avoidance applica- 
tion. 

Application Analysis 
To analyze the application, we use 
the following equation: 

Cat = n[tp~.(s) + 2t~,,] 
+ m[ttw(d) + 2tsw] + mtg~,,(d, m) 

where 

m 

tegs) 

tsw 
tl~,(d) 

t~,(d, n) 

maximum number  of  
planes looked at and pri- 
oritized; 
maximum number  of  
planes for which advice is 
generated;  
worst-case priori ty calcu- 
lation time for a stream, 
which is a function of  the 
prioritization strategy s. In  
our  example,  we use an 
algorithmic evaluation 
strategy to calculate the 
priori ty of  the plane; 
stream-switch overhead;  
worst-case execution time 
in generat ing advice for 
each plane, and is a func- 
tion of  the number  of  
dimensions d considered. 
In our  example,  we calcu- 
late advice along two di- 
mensions, namely, alti- 
tude and turn; 
worst-case execution time 
to resolve advice conflicts 
at a global level, and is a 
function of  the number  of  
dimensions d and planes n 
considered. 

Given the number  of  planes 
(n-5), the worst-case computat ion 
requirement  would be to generate  
advice for all planes (n = 5). From 
Table 4, the predicted value o f  Caz 
is 726ms, using the fastest problem- 
solving strategy available. The  
server capacity Caz~ is 516 ms. Thus 
this application cannot generate 
advice for all planes. The  largest 
predicted time (Caz=498  ms), 
which is less than the server capac- 
ity is the level of  guarantee.  In  this 
case, we can guarantee at least five 
planes will be looked at, and advice 
generated for the two highest- 
priority planes. 

To verify the validity of  our  pre- 
dictions, we ran exper iments  to de- 
termine the execution times. The  
results compar ing  our  predicted 
per formance  and the actual perfor-  
mance are summarized in Table 4. 
The  effectiveness of  the techniques 
to reduce variance, and the rela- 
tively small size of  the application 
have allowed us to make useful pre- 
dictions about the performance of  
the system. 

Predictable "Best Effort" Evolution 
In real-world situations, the appli- 
cation can sometimes be subjected 
to overloads beyond the design lim- 
its. Even though the design re- 
quirements dictate that there  will be 
less than five planes in the vicinity 
at any given time, the system must 
degrade  gracefully in cases where 
this requirement  is exceeded. I f  this 
happens,  the application must con- 
tinue to priorit ize and generate 
advice starting from the highest- 
priority plane, until time runs out. 
We should note that regardless of  
the strategies available, a minimum 
amount  of  execution time is needed 
before a useful result can be gener-  
ated. This min imum time is deter- 
mined by using the fastest problem- 
solving strategies available. I f  the 
minimum time is greater  than the 
server capacity, the system breaks. 
From an engineer ing perspective, it 
is useful to be able to predict  the 
breakdown points of  the system. 

I f  the number  of  planes, n, 
crosses a threshold,  the system 
spends all the time classifying the 
data that it has no time remaining 
to generate  useful advice. In our  
example,  the limiting case of  the 
system is reached when it has jus t  
enough time to calculate advice for 
the highest-priori ty plane. Assum- 
ing the worst-case advice calcula- 
tion time for a single plane, and a 
zero global-advice conflict resolu- 
tion time (since advice is generated 
for only one plane), we estimate: 

nbreakdow n 

Caz~ -- [tlw(d) + 2t~w] 
(2) 

[t&.(s) + 2tsw) 

Notice that the number  of planes 
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proce.,~sed in the limiting case is a 
function of  the available computa-  
tion bandwidth,  CA1 s, Substituting 
values of  the variables in equation 
(2), the system breakdown point  is 
computed  to be f l b r e a k d o w  n = 7 
planes. With seven planes, we can 
now generate  advice only for the 
highest-priori ty threat.  I f  the num- 
ber  of  planes goes beyond seven, 
the system will not have enough 
computat ion bandwidth to gener- 
ate any advice. This provides a de- 
sign margin of  two planes over and 
above the design requi rement  of  
five planes. This analysis allows us 
to a priori predict  the effect of  
changing the number  of  planes and 
computat ional  bandwidth on the 
performance of  the application. 

Summary 
In this article, we argued that large 
execution time variance is the pri- 
mary problem in providing practi- 
cal per formance  guarantees for in- 
tegrated,  real-time problem-solving 
systems. We showed that this vari- 
ance is due to search which is inher-  
ent  to problem-solving tasks. 
Search occurs at two levels in a 
problem-solving t a sk - - the  problem 
space level and the knowledge re- 
trieval level. To reduce the execu- 
tion time variance, it is necessary to 
reduce the extent  of  search at both 
these levels. At the problem space 
level., the search can be reduced by 
the ;application of  problem-specific 
knowledge, whereas at the knowl- 
edge retrieval level, no problem- 
specific knowledge is available. At 
this level, the search must be re- 
duced by knowledge-lean methods 
like knowledge and data part i t ion- 
ing, and reducing the expressive- 
ness of  the knowledge representa-  
tion formalism. 

To evaluate the effectiveness of  
the~,;e techniques, we implemented  
CROPS5, a real-time problem- 
solving architecture. CROPS5 pro- 
vides predictable primitives at the 
knowledge retrieval level and sup- 
ports problem-specific strategies 
that reduce variance at the problem 
space level, In addit ion,  CROPS5 
has been designed to be easily inte- 

v i .  i D r ~  w 

grable into conventional real-time 
systems. Implementat ions  of  
CROPS5 currently run on two real- 
time operat ing systems. CROPS5 
has been used to develop a proto- 
type aircraft  collision avoidance sys- 
tem and a dynamic factory-schedul- 
ing system. 

We used the collision avoidance 
system as a benchmark  to compare  
CROPS5 with OPS5. Results show 
that the variance o f  the real-time 
problem-solving primitives in 
CROPS5 is significantly lower. Spe- 
cifically, the variance in context 
switching is reduced  by two orders  
of  magni tude,  and the variance in 
p reempt ion  points is reduced  by an 
o rde r  of  magnitude.  Fur thermore ,  
these primitives allowed us to elimi- 
nate r edundan t  computat ion,  re- 
sulting in a speedup of  a factor of  
about 2. We achieved predictable 
match processing in this application 
by part i t ioning data across mult iple 
streams. Overall,  we were able to 
predict  application execution times 
to within 10% of  actual measured 
values in an integrated real-time 
environment .  The  AI server was 
successful in ensuring that conven- 
tional real-time tasks on the same 
comput ing pla t form cont inued to 
meet their  deadlines even after the 
CAS application was in t roduced 
into the system. 

Using these techniques, we were 
able to demonst ra te  that it is feasi- 
ble to reduce problem-solving vari- 
ance and thereby provide practical 
per formance  guarantees  for time- 
constrained problem-solving tasks 
in integrated real-time environ- 
ments, while maintaining all per- 
formance guarantees for the con- 
ventional real-time tasks. 
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