
bens offer a very convincing demonstra t ion of a formal development in their article using a theorem

prover as an assistant. A formal development, in this case, is the derivation of an implementat ion from

a formal specification through a number of formally proven steps. It is only practical, as we well know,

if there is a tool to check that the formal chain is not broken and to provide some guidance. The

authors consider VDM developments and the corresponding proof obligations for each development

step, mainly data 'verification and operation decomposition. The case s tudy is a robot controller and

the tool used is the B theorem prover. The VDM development was expressed as a set of B rules; the

tool was then able to automatical ly generate the proof obligations (and to prove some of them

automatically). • What is especially interesting in this case s tudy is that the formalization in B of the

VDM development is independent of the case study and can be reused for other problems. Another

interesting by-product is the possibility of reusing parts of proven formal developments. It turned out

that B alone is not sufficient and that more expertise on VDM development would allow more guidance

in the development. However, the authors demonstrate that supporting formal development is now

feasible, even if it is not yet as easy as it must be some day for widespread use. • Wileden, Wolf,

Rosenblatt and Tarr propose a solution for an old, yet important , problem in software development

and reuse: the interoperabili ty of components developed in different languages and/or running on dif-

ferent machines. The i r article presents a guided tour of various existing approaches for making

heterogeneous software components communicate. The authors then present their own approach, which

is based on the notion of abstract data types. It looks quite natural since the notion of informat ion

hiding is relevant here. Thus, the proposed method provides a way to allow interoperabil i ty at the

specification level. A notat ion for describing abstract data types and language bindings of such types

is provided. A prototype is described which allows type definit ion, language bindings, and provides

a l ibrary of most common datatypes. It is clear that this approach will be of high interest for the next

generation of development environments since many different types of objects, manipula ted via dif-

ferent languages, must be managed in a convenient and transparent way. • The experience reported

by Prieto-Dfaz discusses the implementa t ion of a classification scheme for r e u s e u a topic of strong

current interest. The method he describes is a reuse program based on a l ibrary of reusable software

assets. In addit ion to the conclusions the author draws from this practical application (i.e., the impor-

tance of domain analysis), we believe it represents two addit ional lessons of importance. It represents

a strong (yet incomplete) case s tudy of the transfer of an idea from universi ty research through refine-

ment by an industrial research lab to application in a product ion environment . The experience also

points up the ever-present, but easily overlooked, truth that human and organizational issues are often

at least as important as technical issues in the successful application of new techniques to software

engineering. • In conclusion, we hope the articles in this special issue help to continue and expand

the al l- important communica t ion that takes place at conferences like ICSE. By presenting a sample

of that communicat ion within the software-engineering communi ty to a broader audience, it is our

fervent hope that professionals from other disciplines will join in the conversation. Only through broad,

diverse and substantive communica t ion can we hope to improve the software-engineering process.

Peter A. Freeman, Dean, College of Computing, Georgia Institute of Technology

Marle-Claude Gaudel, Professor, LRI- Universltg de Paris-Sud

COMMUNICATIONS OF THE ACM/May 1991/Vol.34, No.5 ~ 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F108515.108531&domain=pdf&date_stamp=1991-08-01

[• a l - t i m e systems are playing an increasingly vital

role in today's society. Such systems include manu-

facturing, control, transportation, aerospace, robotics and

military systems. No longer are real-time systems limited

to low-level control functions. They are now being asked

to monitor and control complex, hierarchial systems in

dynamic, sometimes hazardous, environments [7, 13].

Furthermore, some real-time systems such as the Mars

Rover [2] are being asked to operate with little to no

human interaction. Other large real-time systems are

required to operate in environments that are not fully

characterized [2]. The lack of information and the uncer-

tainty of the environment requires the use of problem-

solving techniques. To make things more difficult, real-

addressed. In typical real-time systems design, applica-

tions are created and worst-case times are calculated.

Real-time scheduling is mostly based on worst-case execu-

tion times of the tasks in the system. The fundamental

problem with problem-solving tasks for real-time applica-

tions is that the worst-case execution time is often

unknown or orders of magnitude larger than the average

case execution time. This results in systems which are

either not schedulable or have very low utilization. Fur-

thermore, if the execution time variance of the problem-

solving tasks is not constrained, these tasks cannot be

integrated into conventional real-time systems since the

variance is likely to affect the predictability of the conven-

tional real-time tasks. -g- The execution time variance of

time systems tend to be critical in nature

where the impact of failures can have

serious consequences. ~ Current re-

search in real-time artificial intel-

ligence (AI) is driven by a need to

make knowledge-based systems

function in real time [12], and a need

to integrate knowledge-based ap-

proaches to handle non-linearities and

problem-solving behavior in cont

systems [3, 11, 17, 22]. Some of the early

attempts to build such systems resulted in coincidentally

real-time systems, which were difficult to analyze and

predict [12]. At the other extreme, rule-based systems have

been subject to exhaustive testing to guarantee they would

be able to meet deadlines. Response time analysis is in

general undecidable, and is PSPACE-hard in the case

where all the variables have finite domains [18], making

this technique infeasible for even moderate-sized

systems. -II- We believe execution time variance is the

pr imary problem in providing performance guarantees

for real-time problem-solving systems. Previous research

in real-time scheduling has addressed some of the issues

in integrating tasks with stochastic execution times into

real-time systems [5]. However, the problem of taming

the variance of problem-solving tasks has not been

I /

problem-solving tasks manifests itself at two

levels: the methodology level and the

problem-solving architecture level. To

improve predictability, it is necessary

to tackle the variance at both these

levels. We present an approach

which integrates problem-solving

methodology and architectural prim-

itives to reduce the variance at both

levels. We have designed and imple-

_ _nted an architecture, Concurrent Real-

Time OPS5 (CROPS5) [201, illustrating these principles.

Using this architecture, we demonstrate that problem-

solving and real-time tasks can coexist within a readily

analyzable framework, that hard deadlines can be

guaranteed for critical problem-solving tasks, that soft

deadlines for other problem-solving tasks can be provided

so "best-effort" solutions are guaranteed within timing

constraints. "If" We begin by discussing the sources of

execution time variance and methods to deal with them.

We then develop the requirements of a real-time problem-

solving architecture, providing not only the mechanisms

to tackle the variance, but also the functionality required

for integration into real-time environments. Later, we

examine these issues in the context of CROPS5. An air-

craft collision avoidance system is used as an example of

COMMUNICATIONS OF THE ACM/August 1991/Voi.34, No.8 81

how problem-solving tasks can coex-
ist with conventional real-t ime tasks
on a common comput ing platform
whi l e m a i n t a i n i n g g u a r a n t e e d
response t ime performance for the
conventional real-time tasks. We cur-
ren t ly have i m p l e m e n t a t i o n s of
C R O P S 5 running on two real-time
opera t ing systems, ARTS [30] and
C H I M E R A II [24], and are in the
process of port ing it to Real-Time
Mach [29].

Execution-Time Variance:
The Sources
We now examine the fundamenta l
differences between conventional
real-t ime tasks and problem-solving
tasks, and discuss how these differ-
ences affect the execution time var-
iance of these tasks.

First, let us consider the execu-
tion time variance of conventional
real-time tasks. Typical real-time
signal-processing algorithms have
little to no variance associated with
their execution times because, re-
gardless of the complexity and size
of most signal-processing algo-
ri thms (eg., FFTs, filters), there are
generally no data dependencies
which can cause the execution times
to vary. The input data is simply
processed in a uniform, determinis-
tic fashion. On the other hand, con-
t rol-oriented real-time tasks often
have data dependencies . As the sys-
tem to be control led increases in
complexity, the number of data
dependencies will probably in-
crease, resulting in an increased
variance in the execution time of
real-time tasks.

Next, let us consider the execu-
tion time variance of problem solv-
ing. According to the Problem-
Space hypothesis advocated by
Newel] and Simon [19], all goal-
or iented symbolic activity occurs in
a problem space. Search in a prob-
lem space is posited to be a com-
pletely general model of intelli-
gence. Search is thus fundamenta l
to all problem-solving processes.

Figure 1 illustrates a cont inuum
between tasks in a knowledge-poor
domain and tasks in a knowledge-

rich domain. On the far right,
knowledge-rich tasks are fully char-
acterized, and there exists an ex-
plicit a lgori thm that t ransforms a
given set of inputs to an appropr i -
ate output . The re is no notion of
search or backtracking at this end
of the spectrum. Any variations in
execution time are associated solely
with data dependencies , as is the
case for conventional real-time
tasks.

As one moves to the left, ei ther
the task characteristics or their in-
teractions with the environment are
not completely known. Heuristics
are now required to search the state
space for an appropr ia te result. At
the far left, there is no knowledge
to direct the search; this results in a
blind search. In this case, one
would expect to have a large vari-
ance in execution time. To illus-
trate, let us consider a simple search
tree of arity a, depth d, The total
number of nodes in the tree is given
by (a d - 1) (a - 1) . In a simplistic
sense, the worst-case and average-
case execution times can be charac-
terized by:

Worst-Case Execution Time --
K(a a - 1) (a - 1)

Average-Case Execution Time =
KV(d)

where K is the average time to ex-
pand and evaluate a single node
and V(d) is the mult ipl ier for the
number of nodes examined in the
average case. Assuming d = 10, a =
3, V(d) = 30, the ratio of the aver-
age case to the worst case is
30:29524 (~ 1: 1000).

Given the large variance in the
execution time of problem-solving
tasks, and the fact that the worst-
case execution time is ei ther too
large or unknown, tradit ional
methods for the design of real-time
systems cannot be directly appl ied

to problem-solving tasks. An at-
tempt to blindly apply these tech-
niques will result in systems which
are ei ther not schedulable or are
grossly underuti l ized. For this sim-
ple example, the worst-case execu-
tion time is almost 1,000 times
longer than the average case. A sys-
tem designed with the worst-case
estimate of execution time will have
a schedulable utilization of <0.001

Most problem-solving falls mid-
way between the two extremes
shown in Figure 1. As one moves
back to the right, increasing knowl-
edge may be appl ied to reduce the
variance due to search.

Search is manifested in the two
levels of problem solving: the
knowledge retrieval level and the
knowledge application (problem
space) level. Several methods exist
for implement ing both these levels.
We will use the problem space ap-
proach ment ioned earl ier as a basis
for developing our arguments .
Even though the principles are il-
lustrated in this context, they have
wide applicability.

A problem space can be charac-
terized by a set of states and a col-
lection of operators that map states
to states. A problem instance con-
sists of a problem space, an initial
state and a set of goal states. Prob-
lem solving can thus be viewed as
f inding the sequence of operat ions
that map the initial state to the goal
state. When more than one opera-
tor is applicable at a state, and there
is insufficient information to select
between the operators , search is
required. A search in which exactly
one opera tor is applicable to each
state is often called an algori thm,
cor responding to the far r ight of
Figure 1.

At each state, selection of the
next opera to r constitutes knowl-
edge retrieval. Applicat ion of this
knowledge controls the process of
moving from state to state. The
problem space search discussed
here is at the knowledge application
level. In addit ion, knowledge re-
trieval involves searching the avail-
able body of knowledge for knowl-
edge that is applicable in the

8 ~ August 1991/Vol.34, No.8/COMMUNICATIONS OF THE AGM

~E

'3

Knowledge-Poor
Domain

Knowledge-Rich
Domain

Blind Search Heuristic Search
(backtracking)

Initial
State

Final
State

Problem Space

Problem-Solving Algorithum
(no backtracking)

Initial
S

Final
• • State

Problem Space
F I G U R E 1,

The Search Spectrum

Reducing Variance]

• ~

~" Probi,;m-Spaco) ~.~Kn°wi°dge'Retrieval~Level J Level
~%...

~ Prur=ing I ~Abstraction 1 r Partitioning the "~
~, Knowledge Space.,)

I Restricting
Expressiveness I

C Data Partitioning

F I G U R E 2

Reducing Execution Time Variance of AI Tasks

OF

THERE IS NO NOTION

SEARCH OR BACKTRACKING

END OF THE SPECTRUM

AT THIS

COMMUNICATIONS OF THE ACM/August 1991/Vol.34, No.8 8 3

current state. This is referred to as
search in the knowledge space [27].

There is a fundamental differ-
ence between search in the problem
space and search in the knowledge
space. At the problem space level,
the intent is to select the best possi-
ble opera tor applicable to the cur-
rent state. On the other hand, at the
knowledge retrieval level, the intent
is to retrieve all knowledge that will
influence the selection of the oper-
ator. Therefore , knowledge is avail-
able to prune and control the
search in the problem space, but no
comparable knowledge is available
to restrict the search in the knowl-
edge space.
Reducing Variance
The only way to reduce the vari-
ance at the problem space level is to
reduce the number of states
searched. The re are two ways to
achiew. ~ this goal as shown in the left
half of Figure 2.

The first technique is to prune the
search space. This involves looking
earlier at the states that are more
likely to lie along the solution path.
This corresponds to the classical
"best-first search" technique. The
best-first search technique uses
heuristics to achieve the pruning of
the search space. The better the
heuristic, the lower the variance.

The second technique is abstrac-
tion. This involves creating an ab-
stract problem space whose states
are less detai led than those in the
original problem space. A single
state in the abstract problem space
corresponds to multiple states in
the original problem space. Search
in the abstract space provides guid-
ance for search in the original
problem space, thereby reducing
the variance. For example, in plan-
ning a route from Pittsburgh to
New York, one can work at the ab-
stractions of interstate highways,
major roads, or smaller roads. De-
termining the entry and exit points
at the abstraction of interstate high-
ways constrains the number of
roads examined at the lower levels.

We will present a sample applica-
tion illustrating these techniques
later.

N Z•OGE.BhStg
At the Knowledge Retrieval Level
The amount of processing required
in the knowledge retrieval phase
depends on the amount of knowl-
edge in the system, the size of the
state (data), and the amount of data
each piece of knowledge is potenti-
ally applicable to. The variance of
the knowledge retrieval phase can
be reduced by the techniques illus-
t rated in the r ight half of Figure 2:

Partitioning the Knowledge Space.
This allows us to avoid searching
sections of the knowledge space
that contains knowledge which is a
priori known to not be applicable to
part icular pieces of data.
Partitioning the data. Many pieces of
knowledge express relations, de-
sired or otherwise, between multi-
ple pieces of data. Parti t ioning the
data allows us to avoid considering
sets of data which are apriori known
not to belong to that relation.
Restricting expressiveness. Highly
expressive knowledge representa-
tions allow a large number of rela-
tions to be represented. When a
part of the state changes, a large
number of potential relations with
the rest of the state have to be
checked. Representat ion for-
malisms which restrict expressive-
ness a priori restrict the number of
relations that need to be checked
dur ing every state change.

Next, we will present a problem-
solving architecture which not only
controls execution time variance at
the knowledge retrieval phase, but
also provides architectural mecha-
nisms to suppor t a range of
problem-solving methodologies to
reduce the variance at the problem
space level.

CROPS5: An Architecture for
Real-Time Problem Solving

We contend that the function of an

integrated real-time problem solv-
ing architecture, as shown in Figure
2 is to provide mechanisms to parti-
tion, o rde r and prune the search
space; predictable low-variance primi-
tives for problem solving; and fea-
tures which facilitate easy integra-
tion into real-time opera t ing
environments. These three catego-
ries represent the mechanisms and
features required for implement ing
the variance reduction methods.

We have designed a real-
time problem-solving architecture,
CROPS5, in accordance with the
broad requirements we have out-
lined. It is based on the product ion
system model [9], and borrows
heavily from OPS5 for its syntax
and semantics.

An OPS5 product ion system is
composed of a set of if-then produc-
tions (rules) that constitute the pro-
duction memory and a set of data
items, called the working memory.
The execution of an OPS5 p rogram
can be characterized by a cycle
which has three phases: match, re-
solve, and act. Several efficient
match algorithms have been de-
signed for product ion systems. The
best-known match algori thm is Rete
[8]. The Rete algori thm performs
matching using a special kind of
data-flow network compiled from
the left-hand side (the if part) of
productions. This data-flow net-
work passes items called tokens
across the arcs between its nodes.
Tokens are partial instantiations of
productions. The basic computa-
tional step in the algori thm is to
de termine if the current set of par-
tial instantiations (tokens) can be
extended by matching more work-
ing memory elements against the
productions involved. Checking
whether a single token can be thus
extended is the smallest logical unit
of computat ion in the algori thm
and is re fer red to as token-processing
time. This time is typically on the
o rde r of 200-300 machine instruc-
tions.

There have been several efforts
to use OPS5 or OPS5-1ike lan-
guages for real-time AI [6,23].
However, there are several charac-

4 August 1991/Vo1.34, No.8/COMMUNICATION$ OF THE ACM

teristics of OPS5 that limit its utility
for real-time applications. Some of
these include the following:

• Current OPS5 systems can be in-
te r rupted only at rule-fir ing
boundaries. The time per iod be-
tween successive rule-firings is,
on the average, large and has a
high variance. As a result, the re-
sponsiveness and predictability of
these systems is severely im-
pacted.

* OPS5 systems consist of a single
problem-solving stream, whereas
real-time applications typically
require multiple streams to be
active simultaneously. While it is
possible to simulate multiple
streams within OPS5 by using a
special data item as context iden-
tifier, switching between these
streams is extremely expensive
and has unpredictable processing
requirements.

In addition, OPS5 does not have
an interface to the external envi-
ronments, and its pat tern-matching
time is unpredictable due to the
expressive power of the language
and the incremental nature of the
match algorithm.

CROPS5 Mechanisms
The design of CROPS5 attempts to
remove these limitations by explic-
itly addressing each of these prob-
lems. CROPS5 is based on
CParaOPS5 [1], a parallel imple-
mentat ion of OPS5 developed at
Carnegie Mellon University.
CROPS5 consists of an OPS5 to C
compiler and a run-t ime library in
C. It is significantly faster than
Lisp-based versions of OPS5, and
does not suffer from the unpredict-
ability of the garbage collection
mechanism in Lisp. The suppor t of
match parallelism in CParaOPS5
allows CROPS5 to be easily ex-
tended to run on parallel proces-
sors for enhanced performance.

Figure 4 shows the architecture
of CROPS5 as a task in a real-time
system. CROPS5 is shown to coexist
on a common comput ing platform

"~ l ' t ' l " ~ ' . , i l t l))) 1 qr I , , ' ~ " " ~ ~ . -.b.

-z4/,,,."~ ¢ • v ~ . , , ~

tOGE-Bt~S~.~ ~ "

with other hard real-time tasks like
engine control and life suppor t sys-
tems control. We address the issue
of integration in greater detail
later. First, we discuss the mecha-
nisms provided by CROPS5 to effi-
ciently partit ion, o rder and prune
the search space. These mecha-
nisms correspond to those in the
leftmost branch of Figure 3.

Concurrent Prioritized Streams. As
opposed to the single problem-
solving stream in OPS5, CROPS5
[20] supports multiple problem-
solving streams. Individual streams
have disjoint sets of productions
(and hence disjoint Rete nets). Each
stream has a private working mem-
ory. The system uses a global work-
ing memory to communicate be-
tween streams. The mechanism of
multiple streams facilitates knowl-
edge base part i t ioning and data
part i t ioning to reduce variance.

Associated with each stream is a
stack of tokens that are yet to be
matched and a buffer of working
memory elements yet to be pro-
cessed. A stream can therefore be
characterized by a (Rete net, token-
queue, working-memory-buffer)
tuple. Fast and predictable switch-
ing between streams is achieved by
switching between pointers to the
corresponding tuples.

Knowledge-Based Scheduling and Con-
text Switching. CROPS5 provides a
dispatcher for the streams. The
unit of time is the time to process a
single token. Token counters keep
track of the relative time spent in
processing each stream, and can be
used to implement a variety of
user-defined scheduling policies.
Preemptability. While current OPS5
systems allow preempt ion only
after all match processing is com-
pleted, CROPS5 allows preempt ion

of the match process at token-
processing boundaries. This ability
to in ter rupt the match at fine-
grained intervals not only improves
the responsiveness of CROPS5, but
also provides a mechanism to guard
against excessive data rates and
runaway match processing.

These mechanisms allow the user to
partit ion, o rder and prune the
search space.

predictable Primitives
CROPS5 also improves the predict-
ability of some of the basic
problem-solving primitives indi-
cated in the middle branch of Fig-
ure 3.

Earlier, we identif ied context
switching and the points of
preemptabil i ty as having a large
variance in OPS5. The CROPS5
primitives for context switching
and preempt ion have much lower
variance. Experiments were con-
ducted with CROPS5 running
under the CHIMERA II real-time
operat ing system [25] on a VME-
based Ironics IV3220 single-board
computer with a 68020 CPU run-
ning at 20 MHz. Experimental re-
sults show that the variance de-
creases significantly. The rationale
for this decrease involves the fol-
lowing factors:

Predictable Contex t Switching.
CROPS5 reduces the variance of
context switching by providing an
architectural mechanism to switch
streams. To per form a context
switch in conventional OPS5, the
old context e lement had to be de-
leted, and the new context element
inserted into the working memory.
This results in a f lurry of match ac-
tivity. The minimum time required
for replacing the context element is
a function of the sum of the num-
ber of productions in the two con-
texts. The context switch time is
thus highly dependen t on the par-
tial state of the match and the un-
certainty in the environment , and is
on the o rde r of the time required
for a match-resolve-act cycle. The
numbers presented next are an

•OMMUNICATIONS OF THE ACM/August 1991/Vol.34, No.8 8 S

order of magnitude measure of the
time required for a context switch.
Notice that the variance in context-
switching time is on the order of
thousands of microseconds. In con-
trast, context switching in CROPS5
is two orders of magnitude faster
and more predictable. Since each
stream has its own Rete network,
the new stream can immediately
begin processing its data without
having to spend significant time
performing bookkeeping on the
state of the match algorithm.

- -Sample range in OPS5 context
switch time: 1800 /xseconds-
4300 /xseconds

- -CROPS5 Dispatcher Statistics:
* Context Switch to a different

stream: 55/xseconds
* Continue processing same

stream: 9/xseconds

Predictable Preemption Points. Con-
text switching can be done only at
preemption points. Since preemp-
tion in conventional OPS5 systems
is at the rule-firing boundary, there
is a large variance in the points of
preemption. CROPS5 reduces the
variance in the points of preemp-
tion by reducing the granularity of
preemption from the match-
processing level to the token-
processing level. Associated with
the reduction in granularity is an
order of magnitude decrease in
variations and an equivalent in-
crease in responsiveness.

- -Sample range in OPS5 preemp-
tion points: 1800/xseconds-4300
/xseconds

- - C R O P S 5 Granularity of preemp-
tion:

*Average token firing time: 134
/xseconds

The predictability of the points of
preemption, and the context switch
time allows us to estimate a priori
the time required to react to differ-
ent events.

Predictable Match. Preemption
points and context switching are
not the only sources of variance.
Matclh processing is another. Dif-
ferent techniques have been ex-

u#4 ,. ,

LF 6f.gASt
plored to bound the match process-
ing to make it predictable [28].
These techniques have relied on
restricting the expressive power of
the language to eliminate match
combinatorics. Of these techniques,
the unique attribute formalism [28]
appears promising. This formalism
can be adopted in CROPS5 by re-
stricting the types of productions
written, and can be used to provide
polynomially bounded match times
for CROPS5 applications.

Integrating CROPSS into
Real-Time SVstems
CROPS5 was designed for embed-
ded real-time applications. Our
approach allows CROPS5 to coexist
with other real-time tasks on a com-
mon computing platform. Using
operating system primitives,
CROPS5 can run at any priority
level while still guaranteeing dead-
lines of other tasks in the system.
The integration features referred
to in the rightmost branch of Fig-
ure 3 are addressed as follows:

Encapsulation within an AI Server. To
guarantee temporal isolation be-
tween conventional real-time tasks
and problem-solving tasks, we en-
capsulate all problem solving within
an AI Server. We borrow the Server

abstraction directly from the real-
time scheduling community
[24,26]. Servers have previously
been developed to provide highly
responsive aperiodic performance
in periodic, hard deadline environ-
ments.

We utilize this approach to create
an AI Server which is a bandwidth-
limited task whose schedulability
impact can be explicitly evaluated
and guaranteed I. The AI Server
differs from the Deferrable Server

[Schedulabi l i ty o f a sys tem is the level o f re-
source uti l ization a t ta inable be fo re a dead l ine
is missed .

[26] and the Sporadic Server [24] in
that it services both periodic and
aperiodic tasks and has a different
replenishment policy [20]. Given a
set of conventional real-time tasks
with deadlines, one can apply
scheduling analytical techniques to
determine the maximum possible
capacity of the AI Server at any pri-
ority level. This technique is illus-
trated later, using an application
example.
Responsiveness and Preemptability.
The CROPS5 production system
was specifically designed to be pre-
emptive and priority driven. At the
integrated-system level, the
preemptability of the AI Server
which encapsulates the CROPS5
system is identical to the
preemptability of any other real-
time task. Thus the schedulability
analysis of the real-time task set,
including the AI Server, can be
performed in a uniform way.
CROPS5 also provides a high de-
gree of preemptability of problem
solving, by allowing the problem-
solving stream to be interrupted at
the token-processing granularity.
The fine granularity of preemption
provides a high degree of respon-
siveness to the environment.
Environment Interface. The interface
to the external world is through a
Data Handler. The Data Handler
accepts input from the other tasks
in the system. This allows CROPS5
to run in embedded applications
which process sensor data.
Integration with Conventional Systems:
CROPS5 supports mechanisms to
facilitate easy integration between
the rule-based component and ex-
isting procedural software. A
C-language interface is provided
from the right-hand sides of pro-
ductions, allowing external C func-
tions to access and modify internal
working memory elements of the pro-
duction system.

CROPS5 is portable, and runs on
most Unix and Mach machines.
CROPS5 also runs on the ARTS
[30] and CHIMERA II [25] real-
time operating systems and is cur-
rently being ported to Real-Time
Mach [29].

8 6 August 1991/Vol,34, No.8/COMMUNICATIONS OF THE ACM

T t ' <

== ==

li::ii~ii~ti~iip~un~:~iandiiiil Jiiiiiiiiiiiiiiiiiiiii i Eiv slif iiiii;iiiiiiiii;iiiiiiiJ J!iiiiiiii;iiiiiiiiiliiiii~i!~e~ii~fi~e::iiiili!ii!iiiiiiiili;iii]
== == ==

• Prioritized * Predictable
Stream s P reem ption

Points
• Knowledge-

Based
Scheduler

• Preemptability

• Context
Swapping

• Predictable
Context
Switching

• Predictable Match
• Restricting

Expressiveness

• Sensor Interface

• Responsiveness
• Fine Granularity

Premption
• Fast Context

Switching

• Encapsulation

: I G U R E 3

capabilities Required of Real-Time Problem-Solving Architectures

i " ! (Ro:, lTime OS . j

: I G U R E 4

CROPS5 In a Real-Time Environment

COMMUNICATIONS OF THE ACM/August 1991/Vo1.34, No.8 8 7

Application Example:
The Collision Avoidance
System
Two systems have been imple-
mented, using this architecture: an
aircraft collision avoidance system
and a dynamic factory-scheduling
system [10]. We use the Collision
Avoidance application as an illus-
tration of how the techniques to
reduce execution time variance
improve the predictability of the
system. The Collision Avoidance
application has been in use as an
experimental benchmark over the
past few months. In this section, we
describe how this system is imple-
mented and substantiate our claims
with e'cperimental results.

Specifically, we will demonstrate
the use of CROPS5 mechanisms to
partition, order and prune the
search space. We will compare the
CROPS5-based implementation
with an implementation using con-
ventional OPS5, and show how the
variance has been reduced. The
application will be analyzed to de-
termine the evolution of the system
in response to changing data rates.
We will demonstrate a best effort
solution strategy with predictable
breakdown points. We will also
demonstrate that problem-solving
processes can be successfully inte-
grated with conventional hard real-
time tasks on a common computing
platform, while guaranteeing dead-
lines of all real-time tasks.

Application Background
The Collision Avoidance System
(CAS) consists of an airplane re-
ceiver that listens to the signals
emitted by radar transponders on
other planes in response to interro-
gation signals from the host plane,
By interpreting the transponder
return, measuring the time delay of
the]response, and checking the
angle the reply is coining from, the
system can determine the altitude,
distance and bearing of nearby
transponder-equipped aircraft.
While displaying the raw informa-
tion is informative, it still must be
processed to determine evasive
action. Given the extremely limited

",'I.[9GE.BAS~ w..
response time requirement (< 10
secs.), any decision aid in this situa-
tion would be extremely beneficial.
The CAS provides decision support
capability to the pilot by generating
advice to climb, dive, or turn right
or left to avoid potential threats.

We implemented this application
using the problem space search
technique discussed earlier. In this
case, the problem space is defined
by the dimensions along which ad-
vice needs to be generated, and the
number and orientation of the tar-
get planes around the host plane.
The solution space is the set of final
advice recommendations to the
pilot.

The nature of the application
imposes specific real-time perfor-
mance and resource requirements
[20]. Due to limited footprint space
on modern aircraft, it is desirable
for the collision avoidance system to
coexist with conventional real-time
tasks on the same computing plat-
form. The collision avoidance sys-
tem must also share communication
networks and system resources with
other real-time tasks, without caus-
ing them to miss their deadlines.

Demonstration of Variance
Reduction
As a first step to solving this prob-
lem, we partition the overall func-
tionality among a number of real-
time tasks at the system level. The
basic tasks are the reading of radar
sensors, the knowledge-based pro-
cessing of the information, and the
display of the advice generated.
The knowledge-based processing
of the information is done using
both CROPS5 and OPS5.

We implemented the collision
avoidance application in three dif-
ferent systems to illustrate the re-
duction in problem-solving vari-
ance--OPS5 without context
elements; OPS5 with context ele-

ments; and CROPS5.
In the OPS5 implementation

without context elements, a single
program handled advice genera-
tion for all planes. This program
had the following limitations:

• No preemptability. Once the pro-
gram starts execution, it stops
only after advice for all planes is
generated.

• Unpredictable match processing.
Since multiple data elements can
match the condition elements of
rules, data-dependent combina-
torics result.

This approach and program-
ming style are not suited to most
real-time applications. A real-time
system has to be aware of the possi-
ble limitations in time. It must
order its computations so the most
important ones are done frst . The
nonpreemptability and large exe-
cution time variance of the conven-
tional OPS5 implementation makes
it difficult to provide performance
guarantees for the CAS. We used
the variance-reduction techniques
discussed previously and the mech-
anisms provided by CROPS5 to
reduce the execution time variance
of this application at both the prob-
lem space level and the knowledge
retrieval level.

Problem Space Level
Pruning: In this application, parti-
tioning is done so that each stream
handles the processing for a single
plane. Ordering of the search is
done by prioritizing the streams
based on the degree of the per-
ceived threat. Figure 5 illustrates
our problem-solving strategy. In
our application, all streams calcu-
late their own priorities at the be-
ginning of every data cycle. This
priority is passed to the dispatcher.
Advice generation is ordered, start-
ing with the highest-priority threat.
Streams handling planes moving
away from the host plane are set to
the lowest priority. This solution
strategy is a best effort strategy, in
that if time runs out before all
planes are processed, the system
would have considered the highest

8 8 August 1991/Vol.34, No.8/OOMMUNIOATIONS OF THE AOM

priority threats and generated
some partial advice [41.
Akstraction. For this problem, advice
generation can occur at multiple
levels of abstraction, each with
varying amounts of detail [15]. The
limiting cases of advice generat ion
are characterized next, with other
situations lying in between. On one
hand, if a collision were imminent,
advice is generated to immediately
swerve to avoid the threat. On the
other hand, if more time were
available, factors such as weather,
the range of available operat ing al-
titudes, and the expected intentions
of the threat are taken into account

<'FOGE. B AS~.~ ":
number of streams.
Restricting Expressiveness. Since we
could make the match predictable
by data part i t ioning only, we did
not consider restricting the expres-
siveness of the language to bound
the match time.

q G U R E S

Problem-Solving Strategy

input data, while the OPS5-based
system is not similarly immune even
though it uses context elements. In
this exper iment , we see that in gen-
erat ing advice for one plane, OPS5
takes 222 ms (545 tokens) when
there is one plane, vs. 274 ms (789
tokens) when there are five.
CROPS5, on the other hand, varies
only between 148 ms and 154 ms
(310 tokens-318 tokens). While
both execution times and token
numbers are presented, the token
numbers are not affected by the
limitations of the time measure-
ment process. The net variation is
244 tokens in OPS5 vs. only 8 to-

before advice is generated.

Knowledge Retrieval Level
Knowledge Base Partitioning. Since
the knowledge base for this applica-
tion is relatively small, we did not
parti t ion it.
Data Partitioning. The CAS uses
data part i t ioning to ensure the pre-
dictability of the match process. In
this application, we parti t ion the
data so that each stream looks only
at the data associated with one
plane. This ensures that at most,
one working memory element
matches any given condition ele-
ment in the Rete net of the produc-
tions, thereby eliminating match
combinatorics. The t rade-off for
limiting the match combinatorics is
an increase in the number of
streams (increased memory space).
The relatively small size of the Rete
net per stream allowed us to repli-
cate streams without incurr ing too
much memory cost. The maximum
number of planes that can be con-

s i d e r e d is limited by the maximum

Our problem-solving strategy
was to parti t ion and o rde r the com-
putat ion to reduce the execution
time variance of the application. A
number of experiments were con-
ducted to measure the perfor-
mance of the application. We pres-
ent some of these results to
illustrate the reduction in variance.

In Table 1, we compare the per-
formance of the OPS5 implementa-
tion using context elements, and
the CROPS5 implementat ion using
streams. To factor out dependen-
cies due to p rogramming style and
implementat ion, all OPS5 problem
solving was p rog rammed using
CROPS5--which is upward com-
patible with OPS5.

This exper iment was conducted
to determine the variation in the
time taken to generate advice for
one plane, as a function of the
input data. We see that CROPS5
does better in two respects: predict-
ability and efficiency.

The CROPS5-based system is
relatively immune to changes in

kens in CROPS5. This demon-
strates an o rde r of magni tude
improvement in CROPS5 predicta-
bility.

Table 2 isolates the context
switch performance of OPS5 and
CROPS5 at each of the data points.
Notice that CROPS5 context/
stream switching is constant in this
application, unlike OPS5. The to-
kens processed for the OPS5 con-
text switch increase in a regular
fashion since the code to process a
plane is the same across all contexts.
The context switch processing is
typically unpredictable in OPS5,
while remaining constant in
CROPS5.

Moreover, we find that CROPS5
primitives speeded up the applica-
tion over that of OPS5 by a factor of
about 2. This is due to the elimina-
t ion of r edundan t processing.

We now discuss how the CROPS5
implementat ion can be analyzed
and integrated into a hard real-time
system so that performance guar-
antees can be provided.

COMMUNICATIONS OF THE ACM/August 1991/Vo1,34, No.8 8 9

Compar ison of OPS5 and CROPS5 Per fo rmance

Time Taken Tokens
Number Number (msec.) Processed

of Number Advice
Planes Prlorltlzed Gen. OPS5 CROPS5 OPS5 CROPS5

1 1 1 222 148 545 310
2 1 1 233 153 606 312
3 1 1 248 152 669 314
4 1 1 262 154 730 316
5 1 1 274 152 789 318

Contex t Swi tch Per fo rmance

Tokens Processed
Number of Number Number

Planes Priorltlzed Advice Gen. OPS5 CROPS5

1 1 1 77 2
2 1 1 87 2
3 1 1 97 2
4 1 1 107 2
5 1 1 117 2

Execut ion Character is t ics of t h e Real-Time Task Set

Rate
Run-Time Period Monotonic

Periodic Task msec. reset. Utilization Priority

Engine Control 6.00 50.00 0,120% 1
Sensor Monitoring 36.00 2 5 0 . 0 0 0,144% 2
AI Task CAIs 1000.00 UAJs 3
Display & User Int. 100 .00 1200 .00 0.083% 4
Life Support 120.00 1500 .00 0.080% 5

Total 0.427 + UALs%

Compar ison of Pred ic ted vs. Measured Per fo rmance

Number of Number Number Predicted Measured
Planes Prlorltlzed Advice Gen. Time (msec.) Time (msec.)

5 5 1 421 380
5 5 2 498 445
5 5 3 574 517
5 5 4 650 583
5 5 5 726 660

Demonst ra t ion o f System
Analyzabi l i ty
To demonstrate the ability of the
problem-solving architecture to
coexist with hard real-time tasks on
a common computing platform, we
consider the experimental task set
shown in Table 3. This is the same
task set illustrated in Figure 4. In
addition to the radar sensor moni-
toring and display interface tasks
required for the collision avoidance
application, we have added two
critical additional tasks with widely
different responsiveness require-
men ts - -an engine control task with
a very short period of 50 ms, and a
Life Support Systems task with a
relatively long period 1500 ms.

AI Server Capacity
Previously, we introduced our inte-
grated, real-time problem-solving
architecture and provided a quali-
tative discussion on how one c a n

jointly schedule conventional real-
time tasks and CROPS5 using an AI
Server. Here, we will demonstrate,
via the Collision Avoidance applica-
tion example, how to assign priority
to the AI Server and how to solve
for its maximum capacity consistent
with the RT tasks' scheduling re-
quirements.

In general, the priority assigned
to the AI server is a function of its
response time requirements. In the
Collision Avoidance application,
the AI processing requirements a r e

periodic with a period, TAIs, of 1000
ms. Since the conventional RT tasks
are also periodic with periods sum-
marized in Table 3, the Rate Mono-
tonic scheduling algorithm [16] c a n

readily be applied to evaluate the
schedulability of the task set. The
Rate Monotonic algorithm has been
proven to the optimal fixed-priority
scheduling algorithm for periodic
tasks. Using this algorithm, the
tasks are priority ordered by their
ra tes-- the shorter their period, the
higher their priority. Note that as-
signment of priorities is based
solely upon response time require-
ments and does not consider the
relative semantic importance of the

S O August 1991/Vol.34, No.8/OOMMUNI~kTIONS OF THE AGM

tasks. When the schedulability of
the entire task set cannot be guar-
anteed, the relative semantic im-
portance of the tasks comes into
play. In such a case semantic-based
load shedding is appropr ia te .
Otherwise, the highest schedulable
utilization is achieved by assigning
priorities solely on response time
requirements.

Given the maximum run time,
Ci, and period, Ti of each of the
conventional real-time tasks, we
now solve for the maximum capac-
ity of the AI Server task, Ca(~ which
will not violate the response time
requirements of the lower-priority
Display and Life Suppor t System
tasks. A tight schedulability bound
can be calculated by an exact-case
analysis consistent with the rate-
monotonic algori thm [14]. This
bound expressed as:

Vi, 1 <-- i<--n ,

i 1 [I T k] ~
rain E Cj ~ k L Tj j - (1)

R i =

(k, hi1 -< k

(k, 1) E R i

takes explicit account of the actual
task sets' per iod ratios and run
times. Equation 1 yields a maxi-
mum Cats of 516 ms which corre-
sponds to a maximum utilization of
the AI Server of Uals = C A I s / T A I s =

0.516 or 51.6%. Adding this to the
utilization of the other real-time
tasks, we get a total schedulable uti-
lization of 94.3%. The following
section provides an analytical treat-
ment to answer whether the AI
Server capacity is sufficient to meet
the response time requirement of
the Collision Avoidance applica-
tion.

Application Analysis
To analyze the application, we use
the following equation:

Cat = n[tp~.(s) + 2t~,,]
+ m[ttw(d) + 2tsw] + mtg~,,(d, m)

where

m

tegs)

tsw
tl~,(d)

t~,(d, n)

maximum number of
planes looked at and pri-
oritized;
maximum number of
planes for which advice is
generated;
worst-case priori ty calcu-
lation time for a stream,
which is a function of the
prioritization strategy s. In
our example, we use an
algorithmic evaluation
strategy to calculate the
priori ty of the plane;
stream-switch overhead;
worst-case execution time
in generat ing advice for
each plane, and is a func-
tion of the number of
dimensions d considered.
In our example, we calcu-
late advice along two di-
mensions, namely, alti-
tude and turn;
worst-case execution time
to resolve advice conflicts
at a global level, and is a
function of the number of
dimensions d and planes n
considered.

Given the number of planes
(n-5), the worst-case computat ion
requirement would be to generate
advice for all planes (n = 5). From
Table 4, the predicted value o f Caz
is 726ms, using the fastest problem-
solving strategy available. The
server capacity Caz~ is 516 ms. Thus
this application cannot generate
advice for all planes. The largest
predicted time (Caz=498 ms),
which is less than the server capac-
ity is the level of guarantee. In this
case, we can guarantee at least five
planes will be looked at, and advice
generated for the two highest-
priority planes.

To verify the validity of our pre-
dictions, we ran exper iments to de-
termine the execution times. The
results compar ing our predicted
per formance and the actual perfor-
mance are summarized in Table 4.
The effectiveness of the techniques
to reduce variance, and the rela-
tively small size of the application
have allowed us to make useful pre-
dictions about the performance of
the system.

Predictable "Best Effort" Evolution
In real-world situations, the appli-
cation can sometimes be subjected
to overloads beyond the design lim-
its. Even though the design re-
quirements dictate that there will be
less than five planes in the vicinity
at any given time, the system must
degrade gracefully in cases where
this requirement is exceeded. I f this
happens, the application must con-
tinue to priorit ize and generate
advice starting from the highest-
priority plane, until time runs out.
We should note that regardless of
the strategies available, a minimum
amount of execution time is needed
before a useful result can be gener-
ated. This min imum time is deter-
mined by using the fastest problem-
solving strategies available. I f the
minimum time is greater than the
server capacity, the system breaks.
From an engineer ing perspective, it
is useful to be able to predict the
breakdown points of the system.

I f the number of planes, n,
crosses a threshold, the system
spends all the time classifying the
data that it has no time remaining
to generate useful advice. In our
example, the limiting case of the
system is reached when it has jus t
enough time to calculate advice for
the highest-priori ty plane. Assum-
ing the worst-case advice calcula-
tion time for a single plane, and a
zero global-advice conflict resolu-
tion time (since advice is generated
for only one plane), we estimate:

nbreakdow n

Caz~ -- [tlw(d) + 2t~w]
(2)

[t&.(s) + 2tsw)

Notice that the number of planes

COMMUNICATIONS OF THE ACM/August 1991/VoL34, No.8 91

proce.,~sed in the limiting case is a
function of the available computa-
tion bandwidth, CA1 s, Substituting
values of the variables in equation
(2), the system breakdown point is
computed to be f l b r e a k d o w n = 7
planes. With seven planes, we can
now generate advice only for the
highest-priori ty threat. I f the num-
ber of planes goes beyond seven,
the system will not have enough
computat ion bandwidth to gener-
ate any advice. This provides a de-
sign margin of two planes over and
above the design requi rement of
five planes. This analysis allows us
to a priori predict the effect of
changing the number of planes and
computat ional bandwidth on the
performance of the application.

Summary
In this article, we argued that large
execution time variance is the pri-
mary problem in providing practi-
cal per formance guarantees for in-
tegrated, real-time problem-solving
systems. We showed that this vari-
ance is due to search which is inher-
ent to problem-solving tasks.
Search occurs at two levels in a
problem-solving t a sk - - the problem
space level and the knowledge re-
trieval level. To reduce the execu-
tion time variance, it is necessary to
reduce the extent of search at both
these levels. At the problem space
level., the search can be reduced by
the ;application of problem-specific
knowledge, whereas at the knowl-
edge retrieval level, no problem-
specific knowledge is available. At
this level, the search must be re-
duced by knowledge-lean methods
like knowledge and data part i t ion-
ing, and reducing the expressive-
ness of the knowledge representa-
tion formalism.

To evaluate the effectiveness of
the~,;e techniques, we implemented
CROPS5, a real-time problem-
solving architecture. CROPS5 pro-
vides predictable primitives at the
knowledge retrieval level and sup-
ports problem-specific strategies
that reduce variance at the problem
space level, In addit ion, CROPS5
has been designed to be easily inte-

v i . i D r ~ w

grable into conventional real-time
systems. Implementat ions of
CROPS5 currently run on two real-
time operat ing systems. CROPS5
has been used to develop a proto-
type aircraft collision avoidance sys-
tem and a dynamic factory-schedul-
ing system.

We used the collision avoidance
system as a benchmark to compare
CROPS5 with OPS5. Results show
that the variance o f the real-time
problem-solving primitives in
CROPS5 is significantly lower. Spe-
cifically, the variance in context
switching is reduced by two orders
of magni tude, and the variance in
p reempt ion points is reduced by an
o rde r of magnitude. Fur thermore ,
these primitives allowed us to elimi-
nate r edundan t computat ion, re-
sulting in a speedup of a factor of
about 2. We achieved predictable
match processing in this application
by part i t ioning data across mult iple
streams. Overall, we were able to
predict application execution times
to within 10% of actual measured
values in an integrated real-time
environment . The AI server was
successful in ensuring that conven-
tional real-time tasks on the same
comput ing pla t form cont inued to
meet their deadlines even after the
CAS application was in t roduced
into the system.

Using these techniques, we were
able to demonst ra te that it is feasi-
ble to reduce problem-solving vari-
ance and thereby provide practical
per formance guarantees for time-
constrained problem-solving tasks
in integrated real-time environ-
ments, while maintaining all per-
formance guarantees for the con-
ventional real-time tasks.

Acknowledgments
We thank Herber t Simon for his
valuable comments in organizing
the arguments in this article. We

thank Dorothy Setliff and the other
reviewers for their suggestions on
improving the clarity of this article,
We also thank Hiroshi Arakawa,
Dave Stewart, Gary Hi ldebrand,
Stephen Chou and Hide Tokuda
for their help at various stages in
implement ing the exper imental
testbed. []

References
1. Acharya, A. and Kalp, D. Release

Notes on ParaOPS5 4.4 and
CParaOPS5 5.4, 1989. Available
with the CParaOPS5 distribution
from the School of Computer Sci-
ence, Carnegie Mellon University.

2. Bares, J., Hebert, M., Kanade, T.,
Krotkov, E., Mitchell, T., Simmons,
R, and Whittaker, W. Ambler: An
autonomous rover for planetary
exploration. IEEE Comput. 22, 6
(June 1989).

3. Bastani, F.B. and Chen, I-R. The
role of artificial intelligence in fault-
tolerant process-control systems. In
Proceedings of the First International
Conference on Industrial and Engineer-
ing Applications of Artificial Intelli-
gence and Expert Systems, Vol. 2, June
1988.

4. Boddy, M. and Dean, T. Solving
time-dependent planning prob-
lems. In Proceedings Eleventh Interna-
tional Joint Conference on Artificial
Intelligence, Aug. 1989.

5. Chung, Jen-Yao, Liu, J.W.S. and
Lin, K.J. Scheduling periodic jobs
that allow imprecise results, IEEE
Trans. Comput. 39, 9 (Sept. 1990).

6. Dickey, F.J. and Toussaint, A.L.
ECESIS: An application of expert
systems on manned space stations.
In Proceedings of the First Conference
on Artificial Intelligence Space Applica-
tions (1984), pp. 483-89.

7. Fishetti, M.A. TMI Plus 5: Nuclear
power on the Ropes. IEEE Spectrum
21, 4 (1984).

8. Forgy, C.L. Rete: A fast algorithm
for the many pattern/many object
pattern match problem. Artif. Intell.
19, 1 (1982), 17-37.

9. Hayes-Roth, F. and Waterman,
D.A. Principles of pattern-directed
inference systems. Pattern-directed
Inf. Syst. (1978), 577-601.

10. Holloway, L., Paul, C.J., Strosnider,
J. and Krogh, B. Integration of
behavioral fault-detection models
and an intelligent reactive sched-
uler. In Proceedings of the 6th IEEE

92 A u g u s t 1 9 9 1 / V o l . 3 4 , No.8/COMMUNICATIONS OF T H E ACM

International Symposium on Intelligent
Control (Aug. 1991).

11. Kohn, W. Declarative hierarchical
controllers. In Proceedings of the
Workshop on Innovation Approaches to
Planning, Scheduling and Control
(Nov. 1990).

12. Laffey, T.J., Cox, P.A., Schmidt,
J.L., Kao, S.M. and Read, J.Y. Real-
time knowledge-based systems. AI
Magazine 9, 1 (1988), 27-45.

13. Laffey, T., Weitzenkamp, S., Read,
J., Kao, S., and Schmidt, J. Intelli-
gent real-time monitoring. In Pro-
ceedings of the AAA1-88 Seventh Na-
tional Conference on Artificial
Intelligence (Aug. 1988, Lockheed
Artificial Intelligence Center), pp.
72-76.

14. Lehoczky, J.P., Sha, L. and Ding, Y.
The rate monotonic scheduling al-
gor i thm-exac t characterization
and average case behaviour. In Pro-
ceedings of the IEEE Systems Sympo-
sium (1989).

15. Lesser, V.R., Pavlin, J., and Durfee,
E. Approximate processing in real-
time problem solving. AI Mag.
(Spring 1988).

16. Liu, C.L. and Layland, J.W. Sched-
uling algorithms for multiprogram-
ruing in a hard real-time environ-
ment. J. ACM 20, 1 (1973), 46-61.

17. Meystel, A. Intelligent module for
planning/control of master-depen-
dent systems, In Proceedings of the
First International Conference on In-
dustrial and Engineering Applications
of artificial Intelligence and Expert Sys-
tems, Vol. 1, June 1988.

18. Mok, A.K. Formal analysis of real-
time equational rule-based systems.
In Proceedings of the Real-Time Sys-
tems Symposium (Dec. 1989).

19, Newell, A. and Simon, H. Human
Problem Solving. Prentice-Hall,
Englewood Cliffs, N.J., 1972.

20. Paul, C.J., Acharya, A. and Black,
B., Strosnider, J.K. Concurrent
real-time ops5: An architecture for
real-time problem-solving. Tech.
Rep., Carnegie Mellon University,
May 1991.

21. Perry, T.S. and Wallich, P. A matter
of margins. IEEE Spectrum 23, 11
(Nov. 1986).

22. Rao, M.,Jiang, T.S. and Tsai,J.J.-P.
Integrated environment for intelli-
gent control. In Proceedings of the
First International Conference on In-
dustrial and Engineering Applications
of Artificial Intelligence and Expert Sys-
tems, Vol. 1, June 1988.

%£ I @
l,rOGE.ShSfg " , .

23. Skapura, D.M. and Zoch, D.R. A
real-time production system for te-
lemetry analysis. In Proceedings of the
1986 Expert Systems in Government,
(1986), pp. 203-209.

24. Sprunt, B., Sha, L. and Lehoczky, J.
A periodic task scheduling for hard
real-time systems. J. Real-Time Syst.
1, 1 (1989), 27-60.

25. Stewart, D., Schmitz, D.E. and
Khosla, P. Implementing real-time
robotic sytems using chimera ii. In
Proceedings of the 1990 IEEE Interna-
tional Conference on Robotics And Au-
tomation, (May 1990), pp. 598-603.

26. Strosnider, J.K. Highly responsive
real-time token rings. Ph.D. thesis,
Carnegie Mellon University, Aug.
1988.

27. Tokuda, H. and Mercer, C. Arts: A
distributed real-time kernel. ACM
Oper. Syst. Rev. 23, 4 (July 1989),

28. Tokuda, H., Nakajima, T. and Rao,
E Real-time Mach: Towards a pre-
dictable real-time system. In Pro-
ceedings of the USENIX Mach Work-
shop (Oct. 1990).

29. Tambe, M. and Rosenbloom, P.
Eliminating expensive chunks by
restricting expressiveness. In Pro-
ceedings of the Eleventh International
Joint Conference on Artificial Intelli-
gence (Aug. 1989), pp. 731-737.

30. Tambe, M. and Rosenbloom, P.
A framework for investigating pro-
duction system formulations with
polynomially bounded match. In
Proceedings of the AAAI-90 Eighth
National Conference on Artificial Intel-
ligence, (Aug. 1990), pp. 693-700.

CR Categories and Subject Descrip-
tors: D.4.7 [Operating Systems]: Orga-
nization and Design--real-time and
embedded systems; 1.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Meth-
ods and Search--backtracking, graph and
tree strategies, heuristic methods

Additional Key Words and Phrases:
Chimera, decision aids, expert systems,
knowledge-based systems, predictabil-
ity, production systems, real-time sys-
tems, search, variance

About the Authors:
C.J. PAUL is a Ph.D student in corn-

puter engineering at Carnegie Mellon
University. Between 1987 and 1989, he
designed and built networked real-time
process-control systems at IBM, Re-
search Triangle Park, N.C. His research
interests include parallel computer ar-
chitecture, real-time scheduling theory
and artificial intelligence. Author's
Present Address: Department of Elec-
trical and Computer Engineering, Car-
negie Mellon University, Pittsburgh, PA
15213, cjpaul@ece.cmu.edu.

ANURAG ACHARYA is a graduate
student at the School of Computer Sci-
ence at Carnegie Mellon. His research
interests include theory and implemen-
tation of programming languages, par-
allel processing and production systems.
Author's Present Address: School of
Computer Science, Carnegie Mellon
University, Pittsburg, PA 15213,
acha@cs.cmu.edu.

BRYAN BLACK is currently working at
Motorola Semiconductor Products Sec-
tor in Austin. His research interests in-
clude VLSI design, processor architec-
tures, and real-time systems. Author's
Present Address:Motorola Semicon-
ductor Products Sector, 505 Barton
Springs Road, Suite 400, Austin TX,
black@ece.cmu.edu.

JAY K. STROSNIDER is currently an
assistant professor of electrical and
computer engineering at Carnegie Mel-
lon. He has 10 years of industrial expe-
rience developing distributed, real-time
systems with IBM. His current research
focus is upon integrating technologies
within a reabtime, scheduling-theoretic
framework. Author's Present Address:
Department of Electrical and Computer
Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213,
strsnider@ece.cmu.edu.

This research is supported in part by a grant
from Northrop Research and Technology
Center, by the Office of Naval Research
under contract N00014-84-K-0734, and by
the Naval Ocean Systems Center under con-
tract N66001-87-C-01155

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/91/0800-080 $1.50

C O M M U N I C A T I O N S OF THE ACM/August 1991/VoL34, No.8 93

