
ALGORITHM 691
Improving QUADPACK
Routines

PAOLA FAVATI

Istituto di Elaborazione dell’lnformazione,

Automatic Integration

CNR

and

GRAZIA LOTTI and FRANCESCO ROMANI

Urwersita’ di Piss

Two automatic adaptive integrators from QUADPACK (namely, QAG and QAGS) are modified

by substituting the Gauss-Kronrod rules used for local quadrature with recursive monotone

stable (RMS) formulas. Extensive numerical tests, both for one-dimensional and two-dimensional

integrals, show that the resulting programs are faster, perform less functional evaluations, and

are more reliable.

Categories and Subject Descriptors: G. 1.4 [Numerical Analysis]: Quadrature and Numerical

Differentiation– aclaptiue quadrature; G.4 [Mathematics of Computing]: Mathematical Soft-
ware; G.m [Mathematics of Computing]: Miscellaneous—IWR7’RAN

General Terms: Algorithms

Additional Key Words and Phrases:Integration, interpolatory quadrature, program testing

1. INTRODUCTION

QUADPACK [191 is a collection of FORTRAN programs designed for the
numerical evaluation of one-dimensional integrals and suitable for the treat-
ment of some multidimensional problems.

In a companion paper [71, the authors introduced a new class of quadrature
rules, called recursive monotone stable (RMS) formulas; these formulas allow
the composition without wasting previously computed functional values.

Two globally adaptive integrators of QUADPACK, QAG and QAGS, based
on Gauss –Kronrod rules, have been improved by substituting Gauss–

Authors’ addresses: P. Favati, Istituto di Elaborazione dell’Informazione, CNR, Piss, Italy;

G. Lotti and F Romani, Dipartimento di Informatica, Corso Itaha 40, 56100 Piss, Italy.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for dmect commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery To copy otherwise, or to republish, requires a fee and/or

specific permission,

@ 1991 ACM 0098-3500/91/0600-0218 $01.50

ACM Ti-ansactlons on Mathematical Software, Vol 17, No 2, June 1991, Pages 218-232

http://crossmark.crossref.org/dialog/?doi=10.1145%2F108556.108580&domain=pdf&date_stamp=1991-06-01

Algorithm 691: Improving QUADPACK . 219

Kronrod rules with RMS ones. Extensive numerical tests show that the
improved routines exhibit better performance and more reliability.

This package contains the improved programs in both single- (QXG/QXGS)
and double-precision (DQXG/DQXGS) versions together with service rou-
tines and simple test drivers.

The source code of QUADPACK, used to derive the modified code, comes
from the SLATEC library and has been received from the editor. The
resulting code is self-contained and allows full compatibility with the other
QUADPACK routines in the SLATEC library.

2. THIE IMPROVED QUADRATURE PROGRAMS

QAG is a simple globally adaptive integrator that uses, as local quadrature
module (LQM), a pair of Gauss- Kronrod integration formulas with k and
2 k + 1 points. The user can choose between k = 7, 10, 15, 20, 25, or 30 by
setting the variable KEY. The adaptive strategy attempts to reduce the error
by means of the ealgorithm [21, 221, and its purpose is the elimination of the
effects of integrand singularities of several types [171.

QAGS is an integrator based on globally adaptive interval subdivision in
connection with extrapolation. The LQM uses a pair of Gauss –Kronrod
integration formulas with 10 and 21 points. The extrapolation is carried out
by means of the c-algorithm [21, 22], and its purpose is the elimination of the
effects of integrand singularities of several types [17].

Both routines use an ordered list to retain information about the intervals
(lower and upper limits, approximate integral, error estimate). The LQM
used by QAGS and QAG (with k = 10) is named QK21 and is fully described
and listed in [191.

In this section we briefly describe the modified LQM (called QXLQM) used
by the improved automatic quadrature routines. QXLQM uses four RMS
formulas, with 13, 1!3, 27, and 41 nodes, denoted by Q13, Q19, QZT, Q41,
respectively. These formulas show the best performance among the families
of RMS formulas; the location of nonnegative abscissas is given in Table I.

Let

b
I= /() f X dx, J= /’1 f(x)l dx ~= /blf(~) -~/(~-~)1 dx

a a a

The input parameters of QXLQM are the integrand function, the integration
interval, and a control variable KEY which tells which formulas have to be
used. In the following we assume KEY = 2 (the value used by QXGS). The
meaning of the other values of KEY (used by QXG) are discussed later. The
routine QXLQM computes the following:

RESULT Real approximation to the integral 1.

RESABS Real approximation to the integral J.

RESASC Real approximation to the integral M.

ABSERR Real estimate of 11 – RESULT 1.

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991.

220 ● P. Favati et al.

Table I. Values of Nonnegative Abscissas of the Rules QM, Qlg, Q27, Qil

Q13 Q19 Q27 Q41

o
1/4

2/4

3/4

7/8

15/16

1

0
1/4

3/8

4/8

5/8

6/8

7/8

15/16

31/32

1

0
1/8

2/8

3/8

4/8

5/8

11/16

12/16

13/16

14/16

15/16

31/32

63/64

1

0
1/8

3/16

4/16

5/16

6/16

7/16

8/16

9/16

10/16

11/16

12/16

13/16

27/32

28/32

29/32

30/32

31/32

63/64

127/128

1

Let EPMACH be the machine precision and UFLOW be the smallest
positive real in the arithmetic used. QXLQM uses the pair Q13, Q19 if the
estimated relative error is less than 1000 * EPMACH; otherwise it tries the
pair Qlg, QZT. The computation proceeds with the pair Q27, Q41 only if the
estimated relative error is greater or equal to 1000 * EPMACH and the
empirical test ABSERR/ABSOLD < 0.16 ensures the necessary smoothness
of the integ-rand function. The constant 0.16 has been determined experimen-
tally. A lower bound a * EPMACH * RESABS to ABSERR takes into account
the influence of roundoff errors. In order to determine a suitable value of a,
the extended precision value QRES of RESULT has been computed for many
functions and tolerances. The maximum value of the ratio IRESULT –
QRES I /EPMACH * RESABS results in a value less than 6, We decided to

ACM Transactions on Mathematical Software, Vol. 17, No 2, June 1991

Algorithm 691: Improving QUADPACK . 221

use a = 10. Apart from this change, the same, very conservative, QUAD-
PACK error estimation procedure was retained.

The computation (with KEY = 2) is structured as follows:

Compute RESOLD by using Q13,
Compute RESULT, RESABS, RESASC by using Q,9,
If RESASC = O then ABSERR:= I RESULT – RESOLD I

else ABSERR ,= RESASC * min[l, (200* \ RESULT – RESOLD I / RESASC)3’2];

If RESABS > UFLOW / (1 O * EPMACH) then ABSERR := max[l O * EPMACH * RESABS,

AB.SERR],

If ABSERR < 1000 * EPIvIACH * RESABS then exit;

ABSOLD := ABSERR; RESOLD:= RESULT;

Compute RESULT by using Q27;

H RESASC = O then AB!3ERR:= \RESULT – RESOLDI
else ABSERR:= RESASC* min[l, (200 * IRESULT – RESOLDI / RESASC)3’2];

If RESABS > UFLOW/ (1O* EPMACH) then ABSERR:= max[l O * EPMACH * RESABS,

ABSERR];

If (ABSERR c 1000 * EPMACH * RESABS) or (ABSERR >016 * ABSOLD) then exit;

RESOLD := RESULT;

Compute RESULT by using Q41;
If RESASC = O then ABSERR:= IRESULT – RESOLDI

else ABSERR:= RESASC* min[l, (200* IRESULT – RESOLDI / RESASC)3’2],
If RESABS > UFLOW / (1 O * EPMACH) then ABSERR = max [1O * EPMACH * RESABS,

ABSERR].

The routine QXLQM saves the computed functional values together with
the other information on the interval by using the same ordered list tech-
nique of QAG, QAGS. At any bisection the available functional values are
reordered and the missing values are computed. No functional evaluations
are performed twice for the same argument.

The variable KEY, vvhich is used by QXG, allows the user to control which
formulas can be used. The action of KEY is the following

KEY s O. Only the pair Q13, Q19 is used.

KEY = 1. The pair Q13, Q19 is used for the first error estimate, then if
ABSERR > 1000* EPMACH * RESABS, QZT is used.

KEY’ = 2. All the four formulas can be used, according to the algorithm
(see above).

KEY = 3. The pair Q19, QZT is used for the first error estimate, then if
ABSERR > 1000* EPMACH * RESABS, QAI is used.

KEY >4. Only the pair QZT, Qll is used.

The routine QXGS differs from QAGS in the following ways:

(1) QXLQM (with KEY = 2) is called instead of QK21.

(2) Handling of the computed functional values is performed.

(3) The accuracy requirement over the set of big intervals is made stricter
in order to correctly perform extrapolation.

The routine QXG differs from QAG in the following ways:

(1) QXLQM (with KEY set by the user) is called instead of QK15,
QK21 ,... ,QK6’1.

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991.

222 . P. Favati et al.

(2) Handling of the computed functional values is performed,

3. ONE-DIMENSIONAL INTEGRATION TESTS

The problem of testing general purpose quadrature routines is widely dis-
cussed in the literature. Two different approaches are discussed:

(1) battery experiments [1, 5, 6, 9, 11, 18, 201, where several test functions
exhibiting different behaviors are used to measure the performance of
quadrature algorithm under consideration;

(2) parameter studies [3, 14, 15, 16], where a family of integrand functions
depending on some parameters is used to perform the test.

Both approaches have been used in our tests.
The battery test uses sets of functions obtained by the union of the ones

proposed in the literature. Moreover some of our functions are obtained from
a single family by varying the parameters. The subroutine defining the test
functions assigns the value zero at points where a function assumes an
infinite value and it assigns the true limiting value where a function has an
indeterminate form.

Following Robinson [20] the integrands have been grouped, on the grounds
of their analytical properties, into five classes.

Class A (smooth). Class A contains 43 well-behaved functions, that is,
continuous and not greatly oscillatory functions with continuous first deriva-
tive. Examples include exp(x) in [0, 1] and x /(exp(x) – 1) in [0, 1].

Class B (singularities). Class B contains 84 functions having one or more
integrable singularities in the function or in the first derivative within the
integration interval. Examples include I x – b \ a in [0, 1], where a = (1.1

(0.1) 0.5, b = 1/2, 1/3, 7r/4, and log sin TX in [0, 1].

Class C (peaks). Class C contains 55 functions with one or more sharp
peaks in the integration interval or with a singularity near the integration
interval. Examples include 2 ‘/(1 + 2‘(x – b)2) in [0, 1], where r = 2 (1) 9,
b = 1/2, 1/3, and log(x + 0.001) in [0, 1].

Class D (oscillating). Class D contains 49 rapidly oscillating functions.
Examples include x sin 30x cos x in [0, 2 T] and x k sin mr x in [0, 1], where
k = 0(1)3, m = 5, 10, 15, 20, 25, 100.

Class E (step). Class E contains 29 functions with finite discontinuities in
the function or in its first derivative within the integration interval. Exam-
ples include [mx] x k-1 in [0, 1], where k = O, 1, 2, m = 5 (5) 25, and {l/x} in
[0, 1].

Let 1 denote the exact integral value, lCO~Pthe computed integral value,
~~~= \ IcompE – I \ the absolute value of the absolute error, and E,,l =

I&s / I 1 I the absolute value of the relative error. Most integration routines
allow the user to state both absolute and relative error bounds. In Robinson
[201, to make the results comparable, the different programs were tested with
relative tolerances 10 – ~, t = 2(2)10. This choice is the simpler one, but does
not allow zero values for 1.

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991



Algorithm 691: Improving QUADPACK . 223

We prefer to use error tolerances T = 2(2)14 for the following logarithmic
error measure:

E = --loglO(EPMACH + E~,, /(1 + I 1 l)),

where EPMACH guarantees an upper bound to E. Note that E is a reason-
able measure since it is a continuous, monotone function of E.b, and it is
defined when 1 = O, as well. Moreover, the use of a logarithmic measure
allows the estimate of a reasonable mean value of the error for different test
functions.

Once a tolerance T for our error measure is fixed, the following tolerances
for E.b, and Erel result in

Tol~~, = (10-~- EPMACH)(l + Ill)

Tol,(,l = Tol~~~ / I 1 I , defined if 1 # O.

These tolerances are the error bounds given to the integration routines.
This procedure needs the a priori knowledge of the exact integral I and can

be followed for test purposes only.
The computations have been carried out for the double-precision version of

the programs by using system IBM/370 computers (IBM 3081 and IBM 3090)
for which EPMACH = 16-13 s 2.22 x 10-16. The maximum number of
subintervals allowed in the subdivision process was limited to 1000. The
parameters taken into account are the following:

(1) the percentage of successes;

(2) the mean number of functional evaluations;

(3) the total execution time.

Let Ee,t and E~Ct be the estimated and actual values of the measure E,

respectively, obtained by the absolute error estimate of the program and by
the true error.

The computation is considered successful if either .Ee,t > EaCt > T (which is
the “classical” notion of success) or E~Ct > Ee~t > T (in this case the goal of
integrating within the required accuracy has been reached but the error
estimate is too optimistic). The computation is considered failed if E,,t > T

and E.Ct < T; otherwise the program is assumed to quit. The output error
flag of the programs are not taken into consideration.

Preliminary tests suggested using QAG with KEY = 2 and QXG with
KEY ❑ = 1, since for these values the routines exhibit the best reliability.

Figure 1 shows the percentage of successes for each program and for each
class. Results concerning CADRE have been included for comparison pur-
poses. QUADPACK routines are clearly more robust than CADRE and
improved routines are slightly better than the original ones.

Figures 2-6 show the mean functional evaluations for the five classes. In
each case improved routines are better than original ones and extrapolated
routines are better than the corresponding nonextrapolated ones. The only
except ion is for peaked functions where no advantages from extrapolation are
apparent and, for the highest value of T, QAG is better than QAGS.

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991.



224 . P. Favati et al,

% of successes

QAGS

QXGS

QAG

Q)(G

CADRE

A B c D E

Claaa

Fig. 1. Percentages of successes

300-

200-

1oo-

-- QXGS
+ QAGS
+ QAG
+ QXG

o~
o 5 10 15

Tolerance T

Fig.2. Mean evaluations Class A(smooth)

Figure 7 shows the total execution time for QAGS, QXGS, QAG, and QXG,
for the classes A-D. The improved routines require both an evaluation time
and a total time shorter than the original ones.

For what concerns memory occupation, the maximum number of subinter -
vals produced in the subdivision process has been computed for the various

ACMTransactIons on Mathematical Software, Vol. 17, No 2, June 1991.



Algorithm 691: Improving QUADPACK . 225

3000
-1

[~

-- QXGS

=-= QAGS

+ QAG

2000 -e- QXG

1000

+&
o

0 5 10 15

Tolerance T

Fig. 3. Mean evaluations Class B (singularities)

6007

* QXGS

500- * QAGS

400- -+ QXG

300-

L---0 —~ I i 1

0 5 10 15

Tolerance T

Fig. 4. Mean evaluations Class C (peaks).

classes of functions.

A B c D E

QXGS 14 70 36 52 1000
QAGS 15 48 26 103 1000
QXG 41 233 34 78 1000
QAG 26 229 26 104 1000

ACM TransactIons on Mathematical Software, Vol. 17, No. 2, June 1991



226 . P. Favati et al.

800

600

400

F

QXGS

QAGS

(MG

CXG

o I
1 I 1

0 5 10 15

Tolerance T

Fig. 5. Mean evaluations Class D (oscillating).

12000

10000

8000

6000

4000

2000

0

* QXGS

+ QAGS

+ QAG

+- (XG

I I I I

o 5 10 15

Tolerance T

Fig, 6. Mean evaluations Class E (step).

These results show that, for improved routines, less than 100 subintervals
suffice to integrate correctly functions in the classes A– D (the only exception
being QXG applied to functions with singularities).

The parameter studies have been performed to test the sensitivity of the
quadrature programs to the location of discontinuities.

The first problem taken into consideration is the computation of the
integral of the step function, namely,

1

/()f X dx,
o

ACM TransactIons on Mathematical Software, Vol 17, No. 2, June 1991.



Algorithm 691: Improving QUADPACK . 227

501

40

30

E Evaluation

2.0 ❑ Overhead

10

0

QAGs QXGS QAG QXG

PROGRAM

Fig. 7. Total execution time, overhead time, and evaluation time of classes A-D

where

f(x) = {;;
ifx <y,

otherwise,

with y varying in [0, 11.
It is easy to imagine that automatic routines using bisection, like the four

under consideration, will have a special behavior when y is near 1/2, 1/4,
3/4, . . ., etc. The more evident phenomena appear in the neighborhood of
y = 1/~. The use of open basicrulespresentsseriousdifficulties when y is

close to 1/2 because these rules see a too simple integrand function, ignoring
the singularity and failing the integration. This fact is shown in Figures 8
and 9. Apparently there are two sources of problems: the use of open rules for
QAG and QAGS and the extrapolation for QAGS and QXGS. QXG, which
uses closed rules without extrapolation, seems to be quite insensitive to the
location of the discontinuity.

The second problem taken into consideration is the computation of the
integral

.1
/() f X dx,

o

where

f(x) =[x-yl,

with y varying in [0, 11. In this case the discontinuity is on the first
derivative. The same phenomena due to the use of open formulas are ex-
pected. The plots for this function are very similar to the previous ones and
are not presented for the sake of brevity. The difficulties are present but less
apparent. The routine QXG seems to be quite insensitive to the location of
the discontinuity, as in the previous case.

ACMTransactions on Mathematical Software, Vol. 17, No 2, June 1991.



228 . P. Favatl et al

- OAGS

30-

26

22

10

6

2 II I I I I I -12
0.497 0.498 0499 0.500 0.501 0.502 0.503

Y

Fig. 8. Actual error .& for QAGS and QXGS near Y = 1/2 (T= 10)

+ QAG
30- * QXG -16

26- -12

22- -8

18- -4
0
< :
a 14- -0 CJ

lo- --4

6- --8

2 1 I 1 I r -12
0.497 0.498 0.499 0 500 0.501 0,502 0.503

Y

Fig 9. Actual error EaC, for QAG and QXG near y = 1/2 (T= 10)

A third test, with a function presenting discontinuities in the second
derivative (namely, I x – y I 2), shows that the four routines are insensitive to
this type of discontinuity. The same result has been obtained with the highly
oscillating parametric integrand (COSa r x + 1) used by DeBoor [3] for testing
CADRE .

4. TWO-DIMENSIONAL INTEGRATION TESTS

As suggested in the reference manual [19, p. 113], QUADPACK routines, like
all the one-dimensional integrators, can be used to handle double integrals of

ACM Transactions on Mathematmal Software, Vol 17, No. 2, June 1991,



Algorithm 691: Improving QUADPACK . 229

the form

L= /bdx/’(x)f(x>Y)dY= /b12(x)dx.
a c(x) .a

The test computation of a double integral with a pair of one-dimensional
integrators, say INT1, INT2, is structured as follows:

(1) Given the exact value II and the tolerance T, compute the absolute
tolerance Tol .~~ ==(10- ~ – EPMACH)(l + I III).

(2) Assign to INT1 the tolerance Tol.~,l = 0.8 Tol.~~.

(3) Assign to INT2 the tolerance Tol.,~, = Tel.,, /(20 I b - a I).

(4) Compute Cl with the integrator INT1 by using the result Cz( x) of INT2
als the integrand function.

The test functions have been selected from those presented in literature for
testing double integrals. A first group of 8 well-behaved integrals has been
used for a battery test with tolerances T = 4, 6, 9, 12. Examples are

1

H
1

xzex~ dxdy,
.00

~:T~3Tcos(x+Y)dxdY7 /:1~”’2x’sin(x+Y)dxdY

11

//( X2 + O.OOO1)-l((y + 1/4)2 -I- O. OOO1)-l dxdy.
00

The test was completed with five more difficult integrals, tested with toler-
ances 3, 4, 5, 6, namely,

H H“ “IX2-YI dxdy, “ ‘el X+Y-ll dxdy,
o 0

11

)/( )

11
l–xy ‘1 dxdy, ‘~~( )f X, Y dx,

0.0

where

and

f(x, Y) = {:: ifxz-l-yz<l

otherwise

/lfwl -X)(l -Y)l-’dx
00

Preliminary tests, using nonextrapolated routines used as INT1, exhibit a
very bad performance; for example, for the singular integrand (1 – xy) – 1,
with tolerance T = 5 we get the following results

INT1 INT2 E Number of Evaluationsact

QAG QAG~ 8.31 216279

QAGS QAGS 13.66 21315

ACM Transactions on Mathematical Software, Vol. 17, No 2, June 1991



230 . P. Favati et al

Table II Resultsof Test with Battery Test of 13Intemands

Mean Number Time

INT1 INT2 Succeses Fails Quits of Evaluations (s)

OAGS QAGS 50 2 0 76989 86 sec

QAGS QAG 50 2 0 66989 81 sec

QXGS QXGS 51 0 1 22544 36 sec

OXGs GIG 52 0 0 14593 28 sec

ADAPT 50 0 2 20200 20 sec

TWODQD 42 1 9 9000 11 sec

Therefore only extrapolated routines have been used as INT1, and the
following four combinations were tested:

QAGS - QAG(KEY = 2), QAGS - QAGS,

QXGS - QXG(KEY = 1), QXGS - QXGS

In Table II the complete set of results is presented, together with the
performance of TWODQD and ADAPT, adaptive routines for automatic
quadrature in many dimensions [10, 12, 131, tested for comparison purposes.
From

(1)

(2)

the test, the following considerations can be deduced.

The QUADPACK routines are more reliable than TWODQD and ADAPT
for high tolerances and can be applied to irregular regions too.

The use of QXGS and QXG instead of QAGS and QAG routines in-
creases the reliability, results in a lower number of functional evalua-
tions, and decreases the evaluation time.

5. DESCRIPTION OF THE PACKAGE

The package is self-contained and consists of the single-precision version of

ACM ‘rransact,ons on Mathematical Software, Vol 17, No 2, June 1991



Algorithm 691: Improving QUADPACK . 231

the following routines written in standard FORTRAN.

(1) Test routines:

TEST test driver for QXGS and QXG;
IF integrand function for the test.

(2) New code:

QXGS integration routine, modification of QUADPACK routine QAGS;
QXG integration routine, modification of QUADPACK routine QAG,
QXGSE integration routine, called by QXGS, modification of QUAD-

PACK routine QAGSE;
IQXGE integration routine, called by QXG, modification of QUADPACK

routine QAGE;
QXLQM called by QXGSE, QXGE (replaces the QUADPACK routines

QK1O, QK21, . . . . QK61);
QXRUL called by QXLQM, applies the quadrature rules;
QXRRD reorders the computed functional values before the bisection of an

interval; it is called by QXGSE, QXGE;
QXCPY copies one array into another, called by QXGSE, QXGE (the

overall efficiency can be improved by coding this routine into
machine language).

(3) Service routines shared with original QUADPACK code:

QELG QUADPACK service routine (SLATEC version); performs eal-
gorlthm extrapolation, called by QXGSE;

QPSRT QUADPACK service routine (SLATEC version); performs the
ordered list management, called by QXGSE, QXGE;

RIMACH SLATEC service routine [81 handles machine constants; it is
machine dependent and should be modified depending on the
machine characteristics.

The double-precision version of the package contains routines whose names
begin with D (e.g., DQXG) and uses the service routine DIMACH. In
RIMACH and DIMACH the calls for error messages have been eliminated in
order to obtain a stand-alone package.

These new quadrature programs save time by retaining functional values;
it is clear that the storage requirements are much harder than the original
QUA13PACK routines. In fact, QXGS and QXG require two work arrays: (1)
WORK consisting of LENW = 46* LIMIT real words, and (2) IWORK con-
sisting of LENIW = 3 * LIMIT integer words, where LIMIT is the maximum
number of subintervals allowed, The experiments presented in Section 3
suggest that LIMIT ==100 will work reasonably (except for step functions).
On a 32-bit computer with 8-byte double precision this means that, in most
cases, less than 40,000 bytes of memory are needed to retain functional
computed values.

In order to adapt the package to an existing environment there are three
possibilities:

(1) Users may allow the package to stand alone. RIMACH and DIMACH
should be changed according to the used computer; all the routines in the
package are installed. If an error handling routine is wanted, one can
adapt the calls to XERROR in QXGS and QXG.

ACM Transactions on Mathematical Software, Vol. 17, No 2, June 1991.



232 . P. Favati et al

(2) SLATEC users may uncomment the calls to XERROR in QXGS and QXG
and install only the new code.

(3) QUADPACK users, out of SLATEC environment, should install only the
new code. The local version of QELG, QPSRT, and RIMACH should be
checked for compatibility with the new code.

REFERENCES

1. CASALETTO, J., PICKET, M., AND RICE, J. R. A comparison of some numerical integration

programs, Szgnum Newsletter 4 (1969), 30-40.

2. DAVIS, P, J., AND RABINOWITZ, P, Methods of Numerical Integration, Academic Press, New

York, 1984.

3. DEBOOR, C.. CADRE: An algorithm for numerical quadrature. In Mathematzcal Software,

J. R. Rice, Ed., Academic Pressj New York, 1971, pp. 417-449.

4, DONGARRA, J. J,, AND GROSSE, E.. Distribution of mathematical software via electronic

mail. Signum Newsletter 20 (1985), 45-47,

5. ENGELS, H. Numerzcal Quadrature and Cubature. Academic Pressj New York, 1980,

6. FAIRWEATHER, G., AND KEAST, P. An investigation of Romberg quadrature. ACM Trans.
Math. Softw. 4, 4 (Dec. 1978),316-322.

7. FAVATI, P., LOTTI, G , AND ROMANI, F. Interpolator integration formulas for optimal

composition. This issue, pp. 207-217.

8. Fox, P. A., HALL, A. D., AND SCHRYER, N. L. ALGORITHM 528: Framework for a portable

library. ACM Trans. Math. Sotfw. 4, 2 (June 1978), 177-188,

9. GENTLEMAN, W M, Implementing Clenshaw-Curtis quadrature, I Methodology and experi-

ence; II Com~utinz the cosine transformation. Gmmun. ACM 15, 5 (May 1972), 337-360,

10.

11.

12.

13.

14.

15

16.

17,

18.

19

20.

21.

22.

.-
GENZ, A. C., AND MALIK, A. A. Remarks on Algorithm 6: An adaptive algorithm for

numerical integrations over an N-dimensional rectangular region. J. Comput. Appl. Math.

6 (1980), 295-302.

KAHANER, D. K. Comparison of numerical quadrature formulas. In Mathematical Software,

J. R, Rice, Ed., Academic Press, New York, 1971, pp. 229-259.

KAHANER, D. K,, AND RECHARD) 0, W, TWODQD: An adaptive routine for two-dimensional

quadrature. J. Comput. Appl. Math. 17 (1987), 215-234.

KAHANER, D. K., AND WELLS, M. B. An experimental algorithm for N-dimensional adaptive

quadrature. ACM Trans. Math. SoftzJJ. 5, 1 (Mar. 1979), 86-96,

LYNESS, J. N. When not to use an automatic quadrature routine. SIAM Reu. 25 (1983),

63-87.

LYNESS, J. N., AND KAGANOVE, J. J. A technique for comparing automatic quadrature

routines. Comp. J. 20 (1975), 170-177,
LYNESS, J. N., AND KAGANOVE, J. J. Comments on the nature of automatic quadrature

routines. ACM Trans. Math. Softw. 2, 1 (Mar. 1976), 65-81.

LYNESS, J. N., AND NINHAM, B. W. Numerical quadrature and asymptotic expansions.

Math. Comput. 21 (1967), 162-178,

PIESSENS, R. An algorithm for automatic integration. Angewandte Znformatik 9 (1973),

399-401.
PIESSENS, R , ET AL QUADPACK: A S.bm.&zePackage for Automatic Integrczt,on,

Springer-Verlag, Berlin, 1983.

ROBINSON, I. A comparison of numerical integration programs, J. Comput. Appl. Math. 5

(1979), 207-223.

SHANKS, D. Nonhnear transformations of divergent and slowly convergent sequences. J
Math, PhYs. 34 (1955), 1-42.
WYNN, P. On a device for computing the em(Sm) transformation, Math. Conzput. 10 (1956),
91-96.

Received June 1988; revised July 1989; accepted May 1990

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991


