
Algorithm 693
A FORTRAN Package For Floating-Point
Multiple-Precision Arithmetic

DAVID M. SMITH

Loyola Marymount University

FM is a collection of FORTRAN-77 routines which performs floating-point multiple-precision

arithmetic and elementary functions. Results are almost always correctly rounded, and due to

improved algorithms used for elementary functions, reasonable efficiency is obtained.

Categories and Subject Descriptors: G. 1.0 [Numerical Analysis]: General—computer arithmetic;

G. 1.2 [Numerical Analysis]: Approximation— elementary function appro.ximatton;

G.4 [Mathematics of Computing]: Mathematical Software–algorzthm analyszs, efficiency,

portability.

General Terms: Algorithms

Additional Key Words and Phrases: Accuracy, arithmetic elementary function evaluation,

floating point, FORTRAN, mathematical library, multiple precision portable software

1. INTRODUCTION

FM is a package of FORTRAN subroutines that performs floating-point
multiple-precision arithmetic. Many such packages have been written, and
FM provides several improvements to previous packages in the areas of
speed, accuracy, exception handling, and maintainability of the code.

Brent’s MP package [6] is probably the most widely used of these packages
at present, due to its greater functionality and efficiency. The FM routines
give comparable speed at low precision and greater speed at higher precision,
and they provide better rounding properties and exception handling. This
increased speed comes mainly from the use of improved algorithms for
computing the elementary functions in multiple precision.

The FM package supports all the standard FORTRAN-77 intrinsic func-
tions. Results are almost always correctly rounded, and exceptions are

Author’s Address: Loyola Marymount University, Department of Mathematics, Los Angeles,

Calif., 90045.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01991 ACM 0098-3500/91/0600-0273 $01.50

ACM TransactIons on Mathematmal Software, Vol 17, No 2, June 1991, Pages 273-283.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F108556.108585&domain=pdf&date_stamp=1991-06-01


274 . David M Smith

handled in a way that minimizes the chance of getting results that appear
accurate but are not.

2. DESIGN OF THE PACKAGE

An FM number is represented in base b having t significant digits using
t + 1 words of an integer array. The first word contains the exponent, and
words 2 through t + 1 contain the t normalized base b digits. The sign of the
number is carried on the second word. Zero is represented by words 1 and 2
being zero. The implied radix point is left of the first significant digit. The
base may be any integer b greater than 1 such that b2 is a representable
integer. If M is the largest integer on a given machine, then the exponent
range is defined by m = Al/log M. The overflow threshold is b ‘“ + 1 and the
underflow threshold is b – ‘– 1. This allows FM routines to temporarily extend
the overflow/underflow threshold and simplifies detection of operations that
will overflow or underflow. The only restriction on the size of t is the memory
size of the machine.

For applications where space is critical, an option is provided to work with
FM numbers that are packed two digits per word. This uses less than half the
space for storing FM numbers, but the time spent packing and unpacking the
numbers slows execution speed, especially in operations such as addition,
where it may take longer to unpack the arguments and pack the result than
to perform the operation. This is less noticeable for functions like sin( x),
because only one pack and unpack operation is done; when the sine routine
calls other arithmetic routines, those arguments are kept unpacked.

Commonly used constants such as m and e are stored at the highest
precision previously computed for a given base. These constants are then
available without having to compute them again unless precision is later
raised above the previous maximum.

The FM package is written in FORTRAN-77, and the use of features such
as IF – THEN– ELSE blocks makes the routines much more readable than the
code of previous packages written in FORTRAN-66.

Arithmetic is done on FM numbers using subroutine calls. The assignment
C = A + B is done using CALL FMADD (MA, MB, MC). A precompiled such as AUG-
MENT [7] can be used to convert a program to one using the corresponding
FM calls. To keep the calling sequences simple, variables such as the base,
precision, exponent range, etc., as well as scratch arrays used for holding
temporary results in the package are stored in COMMON.

Two subroutines are provided that return characteristic values related to
the current base and precision being used. The first returns the largest FM

number less than the overflow threshold, and the second is a function that

returns the number that represents one unit in the last place (ulp) of the

input argument. Using these, it is easy to compute other base and precision-

dependent values such as the smallest positive FM number, “machine eP-

silon,” or the next FM number bigger than a given one.

3. ACCURACY

Because the amount of precision being carried can be changed during the

course of a sequence of operations, it is easy to carry guard digits so that the

ACM Transactmns on Mathematical Software, Vol 17, No 2, June 1991



Algorithm 693: Floating Point Multiple-Precision Arithmetic . 275

inevitable rounding errors are unlikely to propagate and cause the result to
be wrong. Upon entry to an FM routine, the current precision is raised

enough to make it likely that the final result will be correctly rounded when

precision is restored at the end of the routine. It is not always easy to know

in advance how many guard digits will be required, and the precision may be

raised again in the routine if a partial result indicates that more digits are

needed.

The goal of the FM routines is to compute results that are accurate to

within 0.001 ulp before rounding to the current precision. This gives an error

after rounding of no more than 0.501 ulp, and means that for random input

arguments no more than one in a thousand results will be incorrectly

rounded. Here, “correctly rounded” means that, assuming the input argu-

ments are exact, the result returned is the nearest FM number to the exact

result, with rounding to an even last digit if the exact result lies halfway

between two adjacent FM numbers. In the tradeoff between speed and

accuracy, the goal above can be achieved with only a slight time penalty. The

extra time spent computing guard digits is most noticeable at low precision

and becomes almost negligible at high precision.

Many previous multiple-precision packages did not have good accuracy for

the elementary functions. since the user could easily raise the precision

before calling the routine, responsibility for determining the number of guard

digits was left to the user. Errors of tens of thousands of ulps were common

when using a large base to evaluate elementary functions with these pack-

ages. Carrying two or three guard digits contained the error in most but not

all of these cases. For a given function evaluation the number of guard digits

needed depends on the base, precision, and input argument(s).

For example, Kahan [8] shows that computing tan(52174) is difficult be-

cause of cancellation. To illustrate the use of guard digits in the package,

consider three computations using 13 = 10,000 and t = 10:

(a) tan(O.3) This argument presents no problems due to cancellation. The
“standard” number of guard digits used in FM is given by 5/log 10(b) + 2.
This is three here, so the tangent calculation is done using t = 13; and
then the result is rounded to ten digits.

(b) tan(52173) Here some accuracy will be lost due to cancellation when the
argument is reduced. The argument reduction is essentially done modulo
r /4. Since the base b exponent of the argument is two, two additional
guard digits are used. This means the argument reduction is done using

t= 15, after which the main tangent calculation proceeds using t = 13.

(c) tan(52174) As before, the argument is reduced using t = 15. The result
is 52174 mod 7r/4 = 5 .5E – 6. The exponent base b of the reduced value
is – 1, indicating that more than the expected amount of cancellation has
occurred. The argument reduction is done again with t = 16, and then
the tangent calculation for the reduced argument uses t = 13.

Since the FM package is designed to give good performance when t is not
extremely large, the formula for guard digits above does not depend on t.For
more than about ten thousand significant digits a formula involving t would

ACM Transactions on Mathematical Software, Vol. 17, No 2, June 1991



276 . David M Smith

be needed for guard digits, and different algorithms would need to be used for
multiplication, division, and most elementary functions.

Kahan [8, 9] has pointed out that even if rounding is only slightly sloppy, it
can sometimes lead to highly inaccurate results. He also notes that it is a
great boon to the user to know that the results are correctly rounded. The
fact that identities are true and bounds on the errors are known simplifies
any analysis of a computation enough to justify a small time penalty. Black
et al. [3] reach similar conclusions in discussing the accuracy of elementary
function routines.

4. EFFICIENCY

It takes extra time to compute guard digits and to check for different kinds of
exceptions, but by using efficient algorithms for the high-level functions and
by doing the kind of code tuning described by Bentley [1, 2], the FM routines
compare favorably with previous multiprecision packages in terms of speed.

Since the fundamental operations used to perform the FM operations are
done using one-word integer arithmetic, the main way to gain speed is to use
a large base. If b = 10,000, then four base 10 digits are stored in a word.
Because of normalization, the first significant digit of the number may have
only one base 10 digit, so b = 10,000 and t = 26 is roughly equivalent to
b = 10 and t = 101.

Because of a code-tuning trick used in multiplication and division, it is
faster to use a base that is only 1/4 to 1/2 as big as the largest possible base.
Another consideration in choosing the base is that if b is a power of ten, then
input and output conversion between base b and base ten is much faster. For
these reasons, the best base is often the largest power of ten less than the
square root of the largest one-word integer. This is 10,000 on most 32-bit
machines.

Brent [5] gives algorithms for the elementary functions that are asymptoti-
cally faster than those used in FM. Because these algorithms are more
complicated, they are slower than the FM functions unless t is very large.
Some tests were done that indicated that only for precision over ten thou-
sand digits would the O(log tll(t))algorithm for exp( x) be faster than the
0( tl ‘3M( t))version used in FM.

Table I gives timing results for a variety of FM routines and compares the
times for the same calls using Brent’s MP package. Times are given in
seconds and are average times for a number of different arguments. Timing
runs were made using b = 10,000 on a Macintosh IICX microcomputer (a
Motorola 68030-based machine running at 15.67 MHz). Times are rounded to
about three significant digits; but will change slightly for different compilers
or different sets of test numbers. The effect of internal guard digits is most
evident at t = 10, since the FM routines are computing these functions using
three more digits than MP.

5. EXCEPTION HANDLING

Some previous multiple-precision packages print a message and halt execu-
tion when a condition like overflow, zero-divide, or negative argument to
square root occurs. Others replace underflowed results with zero and set

ACM TransactIons on Mathematical Software, Vol 17, No 2, June 1991



Algorithm 693: Floating Point Multiple-Precision Arithmetic . 277

add

multiply

divide

sqrt(x )

exp(.c)

ln( x )

sin(x)

tan-l(z)

Table I. Timing Comparisons

t=lo

FM Ml’

.0027 .0005

.0049 .0030

.0140 .0’2.59

.03.5’! .0411

.0881 .1070

.1860 .1610

.0914 .1230

.2210 .2400

t=50

FM LIP

.0034 .0012

.0350 .0S8A

.0705 .16.50

.1420 .2310

,s140 1.5100

1.4000 1.9300

.6980 1.8200

1.5400 4.5500

t = ’250

FM MP

.0071 .0050

.7150 .8130

.9030 ~.6’200

1.2200 3.!3.500

24.0000 56.1000

32.’2000 80.7000

18.6000 83.4000

29.5000 307.0000

overflowed results to the largest possible value. FM tries to keep the program

running when exceptions occur, but not to fall victim to inaccurate results

such as those that can come from setting underflow to zero.

Since the FM exponent range is large, overflow and underflow should not

happen very often. For example, if b = 10,000 on a 32-bit computer, then the
overflow threshold is about 10400’000’000.H owever, Kahn [10] has said that
this can sometimes make overflow or underflow more likely, as people try
more ambitious calculations for which there is less intuitive feel for the size
of intermediate results.

FM defines special symbols to stand for signed overflow, signed underflow,
and unknown results. Operations involving these symbols are defined so as
to make results safe from the usual uncertainties present when exceptions
have occurred. A result of “UNKNOWN” is returned whenever the result cannot

be computed accurately or cannot definitely be placed in
underflow or overflow categories. Here are a few examples:

3 + ( + OVERFLOW) = +OVERFLOW

EXP ( + OVERFLOW) = +OVERFLOW

1/( - OVERFLOW) = -UNDERFLOW

2/( + OVERFLOW) = UNKNOWN
(i- OVERFLOW) /2= UNKNOWN

0.4+ (-UNDERFLOW) =0.4

SQRT ( + UNDERFLOW) = UNKNOWN

COS ( - UNDERFLOW) = 1

one of the four

The user can control the action taken when an exception does occur. The
options available include doing nothing and continuing execution, printing a
warning message and continuing, or printing a message and stopping the
program. A flag variable in common is set to a value indicating which
exception has occurred. This can be tested by the user’s program upon return
from any FM routine. Any exceptional results that are converted by FM for
output are printed as “+OVERFLOW.”, etc.

ACM Transactions on Mathematical Software, Vol 17, No 2, June 1991



278 . David M. Smith

Since underflow is distinct from zero, programs that compare numbers by

subtracting and comparing the result to zero can be converted to FM

calls automatically without danger of underflow giving rise to incorrect

comparisons.

A logical function is provided for making direct comparison of two FM

numbers. It allows the same six types of comparisons as FORTRAN’s logical

IF statement and is faster than subtracting and testing the sign of the result.

Cases where the order of the two arguments cannot be determined, such as

whether two overflowed results are equal, are treated similarly to other

exceptions.

6. ARITHMETIC TRACING

It is often useful to be able to trace the execution of a calculation, and FM

provides an option for automatic tracing of FM calls. The user can print input

arguments and results for each operation or just results. The trace gives the

routine being called, call level within the FM package, and current values of

the base and precision. The FM numbers may be printed either in formatted

base ten form or in unformatted base b form where the integer array

elements are printed. The trace can be set to print all FM calls to a specified

call level within the package.

7. INPUT/ OUTPUT

Two routines are provided for input and output. The input subroutine con-

verts a character string to an FM number with the current base and

precision. The conversion is free-format, and the number sent in the charac-

ter string can be in any integer, fixed-point, single, double, quadruple, or FM

format.

The output subroutine converts an FM number to a character string. The

formats available correspond to FORTRAN’s I, F, E, and lPE formats. The

number of digits displayed can be specified for each type.

Both subroutines take advantage of the fact that the conversion can be

done much more quickly when b is a power of ten. The time is 0(t) for these
values of b and 0(t2) for other values of b.

For printing one FM number per line, a subroutine is available that
automatically generates the output subroutine call and prints it under the
currently specified format.

8. SOME ALGORITHMS USED IN FM

8.1 Addition and Subtraction

The standard 0(t) algorithm is used essentially as in Knuth’s description
[11].

8.2 Multlpllcation and Divmon

The 0(t2) method is used because it is faster for small and moderate t.Of the
various methods [11] that are asymptotically faster, the two that seem most
promising when t is of moderate size are the two-piece recursion method and
the integer FFT method. The two-piece recursion method is 0(tl”g’3, =

ACM Transactions on Mathematical Software, Vol 17, No 2, June 1991



Algorithm 693: Floating Point Multiple-Precision Arithmetic . 279

O(tl 58), and the FFT methods are O(t log t). Tests have shown that the
0(t2) method is faster unless t is larger than a few thousand.

The speed of these operations is improved by minimizing the time spent
normalizing partial results. When the base used is not too large, the partial
results need not be normalized after each step, since we can guarantee that
integer overflow cannot happen on the next step. The smaller the base, the
longer normalization may be postponed. In Brent’s MP the base is restricted
so that 8 b2 – 1 is representable. This allows normalization to be done only
once for each eight steps. In FM, larger values of b are allowed, and the
program discovers during the operation whether the next step can be done
before normalizing. This uses the digits actually being multiplied, instead of
worst-case upper bounds. For example, on a 32-bit machine, if b = 10,000
and t is large, then normalization is done only about once each 40 steps.

In division, it is more difficult to postpone normalization, since some
normalization must be done in order to see if the trial quotient digit is
correct. FM normalizes the first few digits of the partial result at each step
and tries to confirm that the correct quotient digit has been chosen. Except in
rare cases, examining these digits proves that the quotient digit is correct.
Then, for the rest of the partial result, normalization can be postponed in a
way similar to multiplication.

Instead of using integer arithmetic to select a trial quotient as in Knuth
[111, FM uses single-precision arithmetic to divide the next few digits and to
select the quotient. This gives a more accurate estimate, and so reduces the
probability of having to make a correction step and eliminates the need to
scale the numerator and denominator before starting the division. This
long-division version is faster than the Newton iteration division algorithm
used in MP [61, unless precision is high and a multiplication method is used
that is faster than 0( t2).

In subsequent algorithm descriptions, 34(t) will be used to denote the time
required for t-digit multiplication.

8.3 Multiplication and Division by Small Integers

Since these operations occur frequently and can be done in O(t) time, FM has
separate subroutines for them.

8.4 Square Roots and Other Inverse Functions

When doing multiple-precision Newton iterations, as in square root, loga-
rithm, and arctangent, the precision is increased at each iteration so that
only the final iteration is done using the full desired accuracy. The initial
approximation can be generated quickly using double-precision arithmetic,
and then the precision is almost doubled at each iteration. Thus, all the
iterations can be done in less than twice the time required for the last
iteration; see Brent [4] for further details.

A subroutine is provided for calculating the sequence of precision used for
any Newton solution of a simple root using a double-precision starting point.

8.5 Summing Series

When summing a series with decreasing terms, as the terms get smaller they
need not be computed to the same precision being carried for the sum. The

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991



280 . David M. Smith

precision can be reduced to contain only those digits needed in the sum while
computing the next term in the series. For example, in summing the Taylor
series for el 2 with a precision of 50 digits (base 10), if the last term added
was about 10-20 in magnitude and the next term is smaller, then it can be
computed using only 30 digits. Any further digits would be shifted off the end
and lost when the next addition is done.

In most series, computing the next term from the previous one may account
for most of the time spent, since it involves multiplications, divisions, or
other “slow” operations. For these, the time to sum the series may be
reduced by a factor of two or three using this technique.

8.6 Argument Reduction

Function computations can often be speeded up by using various identities to
reduce the size of the argument prior to summing a series and then reversing
the reduction at the end. For example, the exponential identity

exp(x) = exp(x/2~)2’

can be used as follows. Compute y = x/2 k using a few divide-by integer
operations, then sum the series for exp( y), then do k squarings to recover
exp( x). In the tradeoff between the faster convergence of the series versus the
overhead to reduce x and recover exp( x), the optimal value of k is 0(tl’2).
This gives an algorithm with speed 0(t112it4(t)); see Brent [41 for details.

8.7 Concurrent Series

Many power series consist of terms that are closely related, so that the next
term can be obtained from the previous term by a few operations involving
small integers and one 0( M( t)) operation to get the next power of x. Since
the operations with integers and the addition of the terms are all O(t),
reducing the number of multiplications is important. Computing the direct
sum

X2 x’
exp(x) = l+ X+ T+=+””.+;

requires ( n – 1) multiplications, ( n – 1) divisions by an integer, and n
additions. The sum can be rearranged as J“ concurrent sums

1 +x J/j! +x2J/(2j)!+ “ “ “

+x [1 +x~/(j+ l)! +“””

+X2 [1/2! +xJ/(j +2)! + ““”

+X3 [1/3! +xJ/(j +3)! +.”.

~xJ-l[l/(j – l)!+ xJ/(2j – l)!+ .“” .

ACM Transactions on Mathematical Software, Vol 17, No 2, June 1991



Algorithm 693: Floating Point Multiple-F’recision Arithmetic . 281

This now requires n/j + j – 1 multiplications (plus O(log j) multiplications
to get x~) and has the same number of divisions and additions as the direct
sum.

The increase in efficiency is lessened somewhat due to the fact that in the
direct series all the multiplications can be done at reduced precision (see
Section 8.5), while in the second form j – 1 of the multiplications must be
done at full precision. The optimal value of j is O(tlfz), and using this
method gives exp( x) in time 0(tl/2M( t)).

When argument reduction and concurrent series can both be used, the
optimal values of both j and k are 0( t113), and the running time of the
function is 0(tli3M(t)). As it is used in the FM package, the extra space
required by this method amounts to 0( tl/3) FM numbers, which is 0(.t4i3)
integer words. This concurrent sum technique has apparently not been used
in previous multiple-precision packages; see Smith [14] for details.

8.8 Exponential Function

For general arguments, the exponential routine uses the techniques above
and has running time 0( t1i3M( t)). The argument is split into integer and
fraction parts: x = n + f. Starting with the stored value of e, exp( n) is done
in O(log n) multiplications using the integer power routine, and exp( f) is
computed as shown in the examples above.

When exp(l) = e is computed, the standard series is used. The time is
0(t2), since computing the terms of the series uses only operations involving
small integers.

8.9 Logarithms

The natural logarithm is done using Newton’s method and exp( x), so the
time required is 0(tl/3M( t)). For values of x close to 1, the Taylor series is
used. This avoids cancellation and is faster unless t is large.

The routine for base 10 logarithms uses in x /ln 10, so it has the same
asymptotic running time and is slightly slower.

A routine is provided for computing ln( n). The integer n is approximated
by the nearest integer m of the form 2‘ 3J 5~ 7‘, and ln( m) is obtained as a
linear combination of ln(125/126), ln(224/225), ln(2400/2401), and
ln(4374/4375). These four values are computed in time 0(t2) and then saved,
so they do not have to be recomputed on subsequent calls. Then ln( n / m) is
computed, so that ln( n) = ln( n / m) + ln( m).

Thus if n itself has only 2,3,5,7 as prime factors, in(n) is computed in O(t)
time; otherwise the time required is O(t 2).

The general logarithm routine checks to see if the input argument can be
scaled to a small integer by multiplying or dividing by a power of b. If so, the
faster integer logarithm routine is used.

8.10 Power Functions

For computing x n where n is an integer, the integer power routine uses the
binary multiplication method, and the time is O(M(t) log n).

The general x~ function is computed using exp( y in x) unless y can be
expressed exactly as a one-word integer. In that case, the integer power

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991.



282 . David M. Smkh

routine is used. This is usually much faster and allows x to be negative when
y is an integer.

8.11 Trigonometric Functions

For sin( x), the argument is first reduced to lie between O and T/4 using
various identities. Then this value is further reduced by dividing by 3k, and
the Taylor series is added as j concurrent sums in a manner similar to

exp( x). After summing the series, sin(x) is recovered by k iterations of the
formula sin(3 a) = 3 sin(a) – 4 sin3(a).

Brent [4] suggests the argument reduction y = x/2 k and the corresponding
recovery formula sin(2 a) = 2 sin( a)(l – sinz( CZ))1J2. The triple angle formula
used in FM is faster and can be used for smaller values of t.

For COS(x) and tan( x), the sine routine and identities are used. The time

required for the trigonometric functions is 0( t1\3iW( t)).

FM provides an option under which all angles in trigonometric functions
and their inverses are given in degrees. This is sometimes more convenient

for the user and allows the first part of the argument reduction to be done in

degrees.

To compute w, FM uses Ramanujan’s identity [12]

1 4% ~ (4n!)(l103 + 26390n)——
T 9801 .=O (n!)43964~ “

The series is summed using only multiplications and divisions by small
integers, so the time is 0( t2).

8.12 Inverse Trigonometric Functions

The arctangent is computed using Newton iteration and the sine function,

unless the argument is very small, when the Taylor series is used. The other

inverse functions use tan – 1(x) and identities. The time required is

O(WM(Q).

8.13 Hyperbolic Functions

These are computed using exp( x), except when x is small. Then the accurate

value of exp( x) – 1, calculated in the exponential routine, is used. This

avoids cancellation in sinh( x) and tanh( x).

9. TESTING

Several different types of testing have been done. Many randomly generated
arguments for each function have been used and function values (at low

precision) compared to values obtained using FORTRAN’s double-precision

intrinsic functions. To test accuracy, results from FM calls were compared to

values obtained from the same computation done at higher precision. Tests

were also made comparing FM’s results to those of Brent’s MP. Some special

constants like T were compared to published values to high precision [13].

Tables of constants to 40 places [11] were also used.

ACM Transactions on Mathematical Software, Vol 17, No 2, June 1991.



Algorithm 693: Floating Point Multiple-Precision Arithmetic . 283

Testing has been done using several different machines, with values for

base and precision ranging from b = 2, t = 2 to b z 3,037,000,499, t = 256.

The package is coded to provide portability and allow maintenance. All

machine-dependent values are set in a single, well-documented subroutine.

Two small test programs are included to help install the FM package. Main

program TEST uses FM to evaluate 11 of the constants given to 40 decimal

places in Knuth [11]. FM numbers are kept in packed format. Program ROOTS

solves for the roots of the 10th-degree Legendre polynomial to 50 decimals.

It uses unpacked FM numbers and performs variable-precision Newton

iteration.

REFERENCES

1. BENTLEY, J. L. Programmmg Pearls. Addison Wesley, Reading, Mass., 1986.

2. BENTLEY, J. L. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs, N. J., 1982.

3. BLACK, C. M., BURTON, R. P., AND MILLER, T. H. The need for an industry standard of

accuracy for elementary-function programs. ACM Trans. Math. Softw. 10, 4 (Dec. 1984),

361-366.

4. BRENT, R. P. The complexity of multiple-precision arithmetic. In Complexity of Computa-

tional Problem Solving, R, S. Anderssen and R. P. Brent, Eds., University of Queensland

Press, Brisbane, 1976, 126-165.

5. BRENT, R. P. Fast multiple-precision evaluation of elementary functions, J. ACM 23, 2

(Apr. 1976), 242-251.

6. BRENT, R. P. A FORTRAN multiple-precision arithmetic package. ACM Trans. Math.

Softzv. 4, 1 (Mar. 1978), 57-70.

7. CRARY, F. D. A versatile precompiled for nonstandard arithmetics. ACM Trans. Math.

Softw. 5, 2 (June 1979), 204-217.

8. KAHAN, W. M. And now for something completely different: The TI SR-52, Univ of

California, Berkeley Electronics Research Lab Rep. UC13/ERL M77/23, Apr. 1977.

9. KAHAN, W. M. Can you count on your calculator? Univ. of California, Berkeley Electronics

Research Lab. Rep. UCB/ERL M77/21, Apr. 1977.

10. KAHAN, W. M. Implementation of algorithms. Univ. of California, Berkeley Computer

Science Tech. Rep. 20, 1973. Also distributed by National Technical Information Service

under DDC AD-769 124,

11. KNUTH, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd

ed., Addison Wesley, Reading, Mass., 1981.

12. RAMANUJAN, S. Modular equations and approximations to ~. Q. J. Math. 45 (1914),

350-372. Also in Collected Papers of Srznzvasa RamanuJan, G. H. Hardy, P. V. Seshu Aiyar,

and B. M. Wilson, Eds., Cambridge University Press, 1927, 23-39.

13. SHANKS, D., AND WRENCH, J. W. Calculation of m to 100,000 places. Math. Comput. 16

(1962), 76-99.

14. SMITH, D. M. Efficient multiple-precision evaluation of elementary functions. Math. Com-

put. 52 (1989), 131-134.

Received June 1987; revised January 1989; accepted March 1990

ACM Transactions on Mathematical Software, Vol. 17, No. 2, June 1991


