
Dynamic Privacy Management: a Plug-in Service
for the Middleware in Pervasive Computing

Dan Hong
Department of Computer

Science
Hong Kong University of
Science and Technology

Hong Kong, China

csdhong@cs.ust.hk

Mingxuan Yuan
Department of Computer
Science and Technology
Xi’an Jiaotong University

Xi’an, Shaanxi, 710049, China

harry yuan@ei.xjtu.edu.cn

Vincent Y. Shen
Department of Computer

Science
Hong Kong University of
Science and Technology

Hong Kong, China

shen@cs.ust.hk

ABSTRACT
Context-aware applications can better meet users’ needs wh-
en sensing agents installed in the environment automatically
provide input relevant to the application. However, this non-
intrusive context usage may cause privacy concerns since
sensitive user data could be leaked to unauthorized parties.
Therefore, data privacy protection becomes one of the ma-
jor issues for context-aware applications. In this paper, in
order to provide services based on various levels of privacy
concerns, we extend the Platform for Privacy Preferences
of W3C and define a specification for representing user pri-
vacy preferences for context-aware applications. We also
propose a privacy infrastructure, which could be installed
as a plug-in service for middleware supporting context-aware
applications. This infrastructure enables the middleware to
automatically generate a privacy policy and the user prefer-
ence file according to the current context. The middleware
simply matches these two files to decide whether to proceed
with the application. We demonstrate the efficacy of this
approach through a prototype implementation.

Categories and Subject Descriptors
K.4.1 [Computers and society]: Public Policy Issues—
Privacy ; H.1.2 [Models and principles]: User/Machine
Systems—Human factors

General Terms
Design, Human Factors

Keywords
privacy, context, P3P, pervasive computing, middleware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileHCI’05, September 19–22, 2005, Salzburg, Austria.
Copyright 2005 ACM 1-59593-089-2/05/0009 ...$5.00.

1. INTRODUCTION
Sensing technologies have made significant progress in re-

cent years. Their availability in a pervasive computing en-
vironment can provide the context needed for certain appli-
cations. Context-awareness enhances these applications by
providing more environmental parameters, such as location,
time, activities, and so on, as automatic inputs to the ap-
plication. This automation reduces manual interaction be-
tween users and computing devices, and therefore context-
aware applications are gradually gaining acceptance by most
users [4] [6] [9] [18].

However, users are concerned about possible leakage of
privacy information. This problem has been pointed out
when the “active badge” system [17], the first context-aware
application, was tested at the Xerox Palo Alto Research
Center. Further studies [3] [11] confirm that privacy is a
difficult design issue, which could become a major user con-
cern. A privacy data owner wishes to know not only who
can access the privacy data, but also what types of data are
collected and how are they used.

The pervasive computing environment makes privacy data
management different from other application domains. The
ubiquitous sensors are unobtrusively deployed and work all
the time. Their invisibility, which leads to a very exciting
user experience, introduces the important privacy issue at
the same time. This non-intrusive nature of pervasive com-
puting causes user concern because there is less information
indicating whether privacy data are collected and used. It is
not appropriate to send a permission request to the privacy
data owner each time such data are used. Another prob-
lem is that user preferences may change dynamically when
the context changes. For example, the purpose of a student
who goes to a coffee shop may affect his privacy decision. If
he goes there to meet with his friends, he is willing to let
his friends know his location. However, if he goes there to
study, he might not wish to be disturbed and would prefer
that nobody knows his location. In this example, the loca-
tion data protection relies not only on the current location
but also the purpose. This dynamic privacy data protection
issue has not been addressed by previous research.

The Privacy Policy Preference Platform (P3P) recommen-
ded by the W3C [15], is the first “social” protocol defined in
an XML-based language to address the privacy issue tech-
nically [2]. P3P enables websites to translate their privacy
practices into a standard, machine-readable format that can

1



be retrieved automatically and interpreted by a user’s brows-
er [1]. P3P supports privacy management effectively when
users browse the Web where the context is basically fixed.
The specification is very useful for concise presentation of
the privacy policy in terms of purpose, recipient, retention,
remedy, and so on. In this paper we define an extension of
P3P to support context-aware applications. We use the ex-
tension space in P3P to specify policies relevant to context-
aware applications. To represent user preferences we also
define another markup language which helps machine pro-
cessing within the middleware.

We propose a privacy management infrastructure which
could easily be plugged into the middleware, which is the
intermediary between applications and sensing agents. The
middleware manages contexts pushed from sensing agents,
sends appropriate context to an application, or triggers sens-
ing actions when an application needs more context data
which is not available in the context database. One advan-
tage of using middleware is that it can provide centralized
context management for all applications. These applica-
tions get context from the middleware indirectly instead of
communicating with thousands of sensing agents individu-
ally. This would speed up the development of context-aware
applications. Our infrastructure enables the middleware to
make decisions dynamically based on real-time computed
results, which are dependent on both the users’ preferences
and the context in the pervasive environment. Moreover,
our work not only offers flexibility to users for modifying
privacy policy but also enables users to extend their own
privacy interests. This means that users can define their
own pervasive environment parameters which are part of
later computing decisions. As a result, the middleware can
provide more personalized services.

The rest of the paper is organized as follows. Section 2 de-
scribes an overview of privacy management architecture. In
Section 3, we define our privacy markup language. Section
4 presents how our automatic privacy policy infrastructure
works. We discuss the benefits of our current results in Sec-
tion 5 and compare them with related work in Section 6.
Finally, we present our conclusions in Section 7.

2. MIDDLEWARE OVERVIEW
Our privacy management is based on the middleware ar-

chitecture, which is shown in Figure 1. The middleware
works between the sensing agents and applications. At the
bottom layer, sensing agents continuously monitors the envi-
ronment and send context data to the middleware. Context
Collector receives all data and stores them in the Context
Database for later retrieval. At the top layer, an applica-
tion uses Communication Support to communicate with the
middleware to get context data,. When the middleware re-
ceives a request from Context Dispatcher, Application Man-
ager searches the Context Database and sends back the data
to the application with the scheduling help of Context Dis-
patcher.

If an application wants to collect some privacy data, then
it uses Application Privacy Policy Generator to automat-
ically generate a new privacy policy file according to the
current context. It then sends the policy and the context
query (the same query as the one when there is no privacy
service) together to the middleware through Communication
Support to the Application Manager. Application Manager
forwards the privacy policy to Privacy Data Mediator to

justify the access rights of the application and privacy data
inquirer. Based on the privacy data owner’s user prefer-
ence file and the context from the pervasive environment,
Privacy Data Mediator generates a context-aware user pref-
erence and then checks if the application has the right to
access the context. After negotiating with Privacy Data
Mediator, Application Manager either searches the context
from the Context Database or rejects the request directly.

Traditional Role Based Access control (RBAC), which
gives the same access rights to people in the same group,
allows privacy data owners to set up their own preference.
However, it is not enough for the pervasive environment
since there are more concerns than just people. In Privacy
Data Mediator, we enhance RBAC to multiple dimensions
which could be defined by privacy data owners.

Application

Manager


Context

Collector


Context

Dispatcher


Communication Support

Application Privacy


Policy Generator


Default Framework + Application Logic


Sensing Agent


Privacy Data

Mediator


Context

Database


User Preference

Database


Application Layer


Middleware Layer


Sensor Layer


Figure 1: Overview of middleware architecture

From Figure 1, we can find out that Privacy Data Media-
tor works independently in the middleware. If a middleware
does not already support privacy management, it is easy
to plug in a Privacy Data Mediator without changing the
existing implementation.

3. PRIVACY MARKUP LANGUAGE

3.1 Privacy policy
P3P is a labeling protocol which allows services and indi-

vidual users to come to agreement on the release of personal
data [2]. Figure 2 illustrates an example of a P3P policy.
Alice collects current location information, which is indefi-
nitely kept and might be forwarded to her partners in order
to finish the current service. The access is given to contact
information as well as to certain other identified data.

Since P3P is designed for websites to collect user per-
sonal data through the browser, it needs to be extended
for context-aware and pervasive environments [1]. In our
approach, we use the same syntax in P3P and make an ex-
tension for the pervasive environment. When an application
collects some privacy data from the middleware, it provides
as much information as it can in order to help privacy data
owners make the decision automatically. All the related in-
formation could be included in a privacy policy file. A policy
file defines:

• What: the privacy data that the application collects.
This is the first factor privacy data owner concerns
when there is a query. The queried context helps to
reduce manual input in meeting users’ needs during an
interaction.

2



<?xml version="1.0" encoding="UTF-8" ?>


<POLICIES xmlns="http://www.w3.org/2002/01/P3Pv1">


       <POLICY name="global" >


              <ENTITY>


                    <DATA-GROUP>


           <DATA ref="#business.name">Alice</DATA>


    </DATA-GROUP>


              </ENTITY>


              <ACCESS><contact-and-other/></ACCESS>


              <STATEMENT>


    <PURPOSE><current/></PURPOSE>


    <RECIPIENT><ours/></RECIPIENT>


    <RETENTION><indefinitely/></RETENTION>


    <DATA-GROUP>


                          <DATA ref="#dynamic.miscdata">


                  <CATEGORIES><location/></CATEGORIES>


           </DATA>


                   </DATA-GROUP>


              </STATEMENT>


        </POLICY>


</POLICIES>


Figure 2: A P3P policy example

• Why: the purpose for which the application collects
the data. This is the most important item that affects
the privacy data owner’s decision.

• Who: the people who receive the personal informa-
tion, could also be referred to as “privacy data in-
quirer”. It could be either the user of a context-aware
application or the application itself. Privacy data own-
ers are willing to provide data only when they trust.

• When: the time when the privacy data inquirer re-
quests context from the middleware.

• Whom: the privacy data owner. Different users may
have different privacy preferences. According to this
information the middleware knows whose user prefer-
ence it should check in User Preference Database.

• Where: the location the application takes place.

For a context-aware application, some items (“What” and
“Why”) discussed above are quite stable. For a single ap-
plication, no matter who uses this application, or when and
where a user uses it, these items always stay the same. These
first two points have already been well-described by P3P el-
ements <purpose> and <data-group> in <statement>

respectively.
Not all the items are well-defined in P3P. P3P uses <enti-

ty> to describe the business communities who collect the
data. Obviously, it is not enough to represent the “Who”
item, which includes both the privacy data inquirer and the
application. Therefore, we extend the element <entity>

as follows:

"<EXTENSION>"


"<DATA-GROUP>"


"
<DATA ref=`#application.name`/>" PCDATA "</DATA>"


"</DATA-GROUP>"


"</EXTENSION>"


extension =


The last three items, “When”, “Whom”, and “Where”,
are not specified in P3P. We find out that the declara-
tion about context data collection in P3P is too simple for
privacy data owner to make decisions. For example, one
user Alice uses a Find-a-friend application to look for all the
friends on her friends list. However, her friends may have a

privacy concern related to Alice’s location. Therefore, the
policy should contain the identifiers about whose locations
are collected, when the context is collected, and where Alice
is. However, it is hard for privacy data inquirers to denote
the information in original P3P privacy policies. In order
to adapt to this new feature of privacy data collection, we
add one more <extension> as the child of the <policy>

element.

extension  =
 "<EXTENSION>"


"<DATA-GROUP>"


"<DATA ref=`#extra.time`/>" PCDATA "</DATA>"


"<DATA ref=`#extra.whom`/>" PCDATA "</DATA>"


"<DATA ref=`#extra.location`/>" PCDATA "</DATA>"


"</DATA-GROUP>"


"</EXTENSION>"


In order to share context all over the world, we use “Coor-
dinated Universal Time” to indicate time. With the help of
the new extension of <entity> and <policy>, the privacy
policy file could provide a rich context for the middleware
to automatically make the decision for privacy data owners.

<?xml version="1.0" encoding="UTF-8" ?>


<POLICIES >


       <POLICY name="global" >


              <ENTITY>


                      
<EXTENSION>


                    
        <DATA-GROUP>


                 <DATA ref="#application.name">Find-friend</DATA>


           </DATA-GROUP>


                    </EXTENSION>


                    <DATA-GROUP>


           <DATA ref="#business.name">Alice</DATA>


     </DATA-GROUP>


              </ENTITY>


                ......


               </STATEMENT>


                 
<EXTENSION>


                     <DATA-GROUP>"


                           <DATA ref="#extra.time"/>2005-03-12T19:20+01:00</DATA>


                           <DATA ref="#extra.whom"/>Bob</DATA>


                           <DATA ref="#extra.location"/>Room4201 </DATA>


                     </DATA-GROUP>


                </EXTENSION>


        </POLICY>


</POLICIES>


Figure 3: A policy example after extending P3P

For our example, Alice uses the Find-a-friend application,
and queries the location context of her best friend Bob.
Figure 3 is the example of a privacy policy file after we
extend P3P. Note in the <entity>, we describe the ap-
plication name (Find-a-friend) as an <extension> element.
Alice’s current location (Room4201) and query time (when
she wants to know about Bob at 2005-03-12T19:20+01:00)
are defined in the <extension> element of <policy>.

3.2 User preference file
In order to coordinate and match with privacy policy eas-

ily, the user preference file uses similar syntax with privacy
policies. In a context-aware application there may be too
much private context. According to P3P v1.0 [15], there
are already about eighty privacy data items and the num-
ber keeps growing. So it is not applicable for users to de-
fine each privacy protection mechanism one by one. In our
approach, we provide the privacy protection based on the
<categories> concept. There are seventeen categories
defined in P3P, such as <physical/>, <preference/>,
<location/> and so on. We define the category-based
preference representation below:

3



preference =
"<PREFERENCES >"


1*categories block


"<PREFERENCES >"


categories  =


"<"category name ">"


1*application groups block


1*user groups block


* extension


"</"category name ">"


category =


"<CATEGORIES >"


1*category block


"</CATEGORIES >"


Each preference file has several categories. The category
names are the same as the definition in P3P. For each cat-
egory we basically have two blocks (could be extend by
extension): “application groups” block and “user groups”
block, both of which are used to define the group-based ac-
cess rights. This is because without a completely accurate
grouping mechanism (or some manner of collapsing cate-
gories in a meaningful way), few users would be able to cor-
rectly categorize a situation without errors [2]. Each block
contains several group definitions according to the same cat-
egory. So far, the privacy protection is still RBAC, which
is too simple for pervasive computing. So we extend these
two blocks by adding the “time” block. By doing so, we al-
low the privacy data owners to manage their preferences in
more detail by time, which is the common factor that affects
privacy decisions. There are two kinds of time blocks. One
is the “permission” time, which denotes a restricted time
period when data in this category could be accessed. The
other one is the “query” time, which denotes the time pe-
riod when the query is allowed. In different time periods,
privacy data owner could have totally different preferences.
We use <include> and <exclude> to denote the time
period when access is allowed or denied, respectively. The
exact access rights (purpose, dispute, and retention) are de-
fined in the access statement as it is defined in [15]. In dif-
ferent time periods, a privacy data owner could have totally
different preferences by specifing different time blocks.

"<TIME  ref=time.string>"


1* include block


1* exclude block


access statement


"</TIME>"


time =


"<INCLUDE >"


time period; defined in Time definition lists


"</INCLUDE >"


include =


"<EXCLUDE >"


time period; defined in Time definition lists


"</EXCLUDE >"


exclude =


access


[disputes-group]


purpose


rentention


access statement =


Figure 4 is a simple example of a user preference file. It
allows people in the friends list to access privacy data in
workingtime (except classtime) if the purpose of collecting
this data is for the completion of current activity and the
inquirer’s location is Room4201. This preference file also
allows applications in the my favorite list to access the
location data during holidaytime if the application uses these
data for contact purpose and promises that it does not retain
them. The attributes workingtime, classtime, holidaytime,
my favorite and friends are defined in this user’s time
definition list and users list, respectively (discussed in 4.2.1).

<?xml version="1.0" encoding="UTF-8" ?>


<PREFERENCES >


       <CATEGORIES>


              <LOCATION>


                    <USER-GROUPS>


                         <FRIENDS>


                             <TIME ref="#time.permission">


                                  <INCLUDE><workingtime/></INCLUDE>


                                  <EXCLUDE><classtime/></EXCLUDE>


                                  <ACCESS><contact-and-other/></ACCESS>


                                  <PURPOSE><current/></PURPOSE>


                                  <RETENTION><indefinitely/> </RETENTION>


                                  <RECIPIENT><ours/> </RECIPIENT>


                                   <EXTENSION>


                                         <DATA-GROUP>


                                            <DATA ref="inquirer.location">ROOM4201</DATA>


                                         </DATA-GROUP>


                                    </EXTENSION>


                                </TIME>


                         </FRIENDS>


                    </USER-GROUPS>


                    <APPLICATION-GROUPS>


                           <MY FAVORITE>


                              <TIME ref="#time.permission">


                                       <INCLUDE><holidaytime/></INCLUDE>


                                       <ACCESS><contact-and-other/></ACCESS>


                                       <PURPOSE><contact/></PURPOSE>


                                       <RETENTION><no-retention/></RETENTION>


                                       <RECIPIENT><ours/> </RECIPIENT>


                                </TIME>


                         </MY FAVORITE>


                    </APPLICATION-GROUPS>


              </LOCATION>


      </CATEGORIES>


</PREFERENCES>


Figure 4: User preference file example

4. PRIVACY COMPONENTS
From Figure 1, we can see that if the middleware wants to

support privacy management, we need to modify both the
application layer and the middleware layer. In the applica-
tion layer, the privacy data inquirer provides its privacy data
collection policy via the Application Privacy Policy Gener-
ator. The middleware layer provides privacy management
service to the privacy data owner through the Privacy Data
Mediator by sending back the context or rejecting the re-
quest.

4.1 Application layer privacy component
In the application layer, the only component is Applica-

tion Privacy Policy Generator. From the discussion in 3.1,
we can see that the privacy policy is different in different
situations. The main function is to automatically generate
a new extension P3P privacy policy file for the application
according to the current context (e.g., privacy data inquirer
and current location) and some input from the privacy data
inquirer (e.g., privacy data owner and query time).

The context, which an application is interested in, has
similar properties. For example, the Find-a-friend appli-
cation cares only about the privacy data owner’s location
data. Therefore, the application could have some basic pri-
vacy policy which does not need a dynamic environment
context. Then when a privacy data inquirer uses the appli-
cation, what Application Privacy Policy Generator needs to
do is to extend the basic privacy policy to the format we
defined in 3.1.

4.2 Middleware layer privacy components
In a context-aware application the same user might have

different preferences depending on the context. The tradi-
tional RBAC does not support this requirement since the

4



privacy data owner could group several people together and
give this group the same right to access privacy data. Such
groupings cannot address multiple contexts, such as the time
and purpose of access.

Context


Database


User Preference


Database


Application


Manager


User Privacy


Preference Generator


User Preference


Manager


Privacy Decision


Request


Decision


Privacy Data Mediator


Trust Engine


Figure 5: Overview of privacy management service

In our approach, we take care of each component that
is related to decision making about the privacy data. Pri-
vacy Data Mediator, which is illustrated in Figure 5, ba-
sically has three components: Trust Engine, User Privacy
Preference Generator, and User Preference Manager. Trust
Engine is a service provided to Application Manager when
an application requests some contexts related to a certain
subject, whose information might be accessed. When a pri-
vacy decision request is received, Trust Engine calls the User
Preference Generator, which automatically generates a user
preference file according to the current context. User Pref-
erence Generator first checks the User Preference Database,
finds the specific preference file for the privacy data owner,
searches for some related context in Context Database, and
automatically generates a real-time preference file based on
the preference file and the context. Comparing the privacy
policy and user preference, Trust Engine makes the final
decision whether to accept or reject the request. User Pref-
erence Manager is another privacy service, through which
users could identify their own interested contexts, and set
up privacy preferences for these contexts.

4.2.1 User Preference Database
User Preference Database stores files that are related to

user preferences. It contains five types of files.

• User preference files: define category-based user pref-
erences about privacy data. These are the most im-
portant files, representing privacy data owners’ view
regarding context.

• Time definition lists: define alias names of different
time periods for each user, such as workingtime, which
may be defined as 8.00am–5.00pm from Monday to
Friday.

• User group lists: define group information for RBAC.
Each group of people has the same access right to one
category. Each group has one or more people and each
person could belong to several groups.

• Application group lists: group applications, which are
always given the same access rights, in one cluster

• Privacy protection level: define privacy protection qual-
ity. Privacy data owner can use User Preference Man-
ager to modify this.

Time definition lists, user group lists, and application
group lists are references for user preference files. In the
example of user preference file in Figure 4, we can see that
by breaking these files away, the user preference files are
much easier to read not only by machines but also by peo-
ple. How to implement the reference files depends on the
developers, and this does not affect the interoperability be-
tween the applications and the middleware.

4.2.2 User Preference Generator
One feature of pervasive computing is that everything de-

pends on dynamic context variations. As a result, privacy
preferences might be different due to context changes in
context-aware applications. Since the user preference file
contains multiple preferences, which are suitable for diverse
situations, it is necessary for the middleware to find the
preference for the current situation. This is the reason that
User Preference Generator is needed. Its main function is
to find out which preferences are appropriate for the pri-
vacy data owner in the current context and to generate a
new preference file based on existing preferences.

The generator basically achieves this goal in four steps.
The first step is to locate the user’s preference file by “Whom”
value from the privacy policy. For convenient purpose, if
the privacy data owner does not modify his own privacy
preferences, the generator uses the default privacy policy to
protect his privacy data. Second, the generator checks the
privacy preference declaration based on categories, which
are provided in the privacy policy. Then, based on the re-
lated context information defined in the user preference file,
the generator requests the context information from the con-
text database. Finally, the generator removes the unsuitable
preference items, which are in conflict with the related con-
text parameter, and creates a new user preference file as
defined in 3.2 , which is suitable for the current situation.

From the discussion above, we can see that not all the
information that affects the privacy decision is provided by
the application and the generator meanwhile might query
the context database directly in order to get the related
context. The reason not everything is provided by an appli-
cation is that the generator has more rights to access privacy
data, which is not accessible by the application. This solves
the problem that an application requests context when the
privacy decision about this context is related to some con-
texts which the application has no right to access.

4.2.3 Trust Engine
After the User Preference Generator finishes its work, a

new preference file is passed to Trust Engine. Though this
file has removed any unrelated items, it still has redundant
information. This is because users and user groups (or appli-
cations and application groups) are not always in one-to-one
mapping. A privacy data inquirer might be in several groups
which have different access rights to the same category. For
example, Alice is in the close friends group as well as in
COMP101 classmates group. Bob gives the location data ac-
cess right to the close friends group at any time but gives the
COMP101 classmates group another access right only during
the class time of COMP101. So if Alice queries the location
information via an application (assuming that the applica-
tion is not related to location data access), after the User
Preference Generator process the file, Trust Engine receives
an ambiguous file from the User Preference Generator.

5



Trust Engine accepts or rejects the context request by
matching the preference file with the policy file. Trust En-
gine provides different levels to protect privacy data.

• Maximum protection: This gives the strictest ac-
cess to the privacy data. If one preference does not
match the policy, the request is rejected.

• Minimum protection: This is on the contrary to
Maximum protection and gives broadest access to the
privacy data. If one preference matches the policy,
then it accepts the request.

• Privacy-level: Privacy level [10] is a function relating
to activity, time, location, and so on. The user’s sub-
jective values determine the actual level of preferred
privacy. If a privacy level value computed from the
real-time user preference file is greater than this level
then the request is accepted and vice versa. The pri-
vacy data owner could define the protection level in
the privacy level file and modify it through User Pref-
erence Manager.

Trust Engine provides services for Application Manager
when some personal contexts are required. Instead of mak-
ing acceptance and total rejection decision, there are some
other choices, especially when there is a conflict among mul-
tiple preferences. One possible solution is to record all the
conflict and ask the privacy data owner to make the decision
directly. This method is a little bit inconvenient for the pri-
vacy data owners since it might frequently interrupt privacy
data owner’s normal work. It could be worse if the privacy
data owner is not connected to the middleware and there is
no way for the privacy data owner to choose to accept or
reject the request. Another possible solution is for the mid-
dleware to send some fuzzy message, such as “The context
requested is not in the database”, instead of a full rejec-
tion. This is because privacy data owners may not like to
let others know that their request is rejected although they
really wish to do so. Sending such fuzzy messages needs to
be considered during middleware development.

4.2.4 User Preference Manager
Privacy data owners can add, update, and delete their pri-

vacy preferences by User Preference Manager. One criticism
of P3P is that its vocabulary and structure may be too com-
plex for naive users to use [7]. From the discussion in 4.2.1,
User Preference Manager should provide a user-friendly in-
terface for privacy data owners to manipulate five kinds of
files. Figure 6 is a possible layout of the User Preference
Manager.

The User Preference Manager console has a multiple-tab
interface and each tab corresponds to one data type. In
the Time Definition, Application Group Information, and
User Group Information tabs privacy data owners define
their own alias name for each item. Also in the User Pref-
erence tab they could specify their preferences based on
the category concept. Most privacy data owners do not
have knowledge about the privacy policy and therefore it
is hard for them to understand the options in <purpose>,
<retention>, <access>, and <recipient>. To assist
the user, we provide readable explanations about preference
manipulations at the bottom of the panel.

From Figure 6, we can see this interface is easy to use on
a desktop computer. However, privacy data owners some-

Figure 6: User Preference Manager console

times may need to use PDAs or cell phones to revise their
preferences. The layout of the console should be designed
to work with other input devices as well.

4.2.5 Implementation
Xu et. al. proposed and implemented the middleware

called Cabot [19] which could assist context transfer be-
tween applications and sensing agents. We use Cabot as
the platform for our experiment where the sensing agents
are simulated by software. We implement our privacy com-
ponents as a Java plug-in service for Cabot except the user
preference console, which is implemented in C#. We design
a simple application called “Find-a-friend”. In this applica-
tion example, an inquirer queries the location information
about his friends, and the friends manage their preferences
through our console. While many of the friends reveal their
locations, some of them may not wish to let the inquirer
know their locations at that particular time and the query
is rejected. From this experiment, we find privacy protection
based on context using the plug-in works effectively.

This experiment on Cabot is just an example. Other mid-
dleware may have different implementations and architec-
tures. However, implementing the Privacy Data Mediator
as a plug-in should work well since we only need to have the
right to access the Context Database of the middleware.

5. DISCUSSION

5.1 Extensibility
The reason users like to use a context-aware application

is that the service is more user-centric. An individual user
may have some special consideration that is different from
others. It is very difficult to define a preference file that is
suitable for everyone, everywhere, and at any time. So it
is better that the Privacy Data Mediator can help privacy
data owners extend their own interest. We care about the
human factors during the interaction, and leave space for
extension in the privacy policy and user preference file. The
following is the extension element in time element.

6



"<EXTENSION>"


"<DATA-GROUP>"


*("<DATA ref=`context-schema`/>" PCDATA "</DATA>")


"</DATA-GROUP>"


"</EXTENSION>"


extension =


Through User Preference Manager, privacy data owners
could extend their own interest context parameters, which
is related to privacy decisions, but does not disturb other
design considerations. This enables a personalized privacy
protection service for privacy data owners and provides a
much more user-oriented service during the query process.

5.2 Flexibility
The markup language, which we discussed in Section 3, is

designed to be a machine-processable interface for informa-
tion exchange among the components. Therefore the com-
ponents for privacy are relatively independent, which pro-
vides a lot of flexibility to the developers. They can use
different languages (such as Java and C++) across different
platforms. Moreover, in order to improve privacy protec-
tion, developers need only update one component and can
leave other components as before. For example, if developers
want to provide a higher privacy protection level to privacy
data owners, they do not need to modify the User Preference
Generator and only change the Trust Engine part.

From Figure 1, the privacy components are applicable to
be inserted or become a replacement of the privacy box (if
there is already a privacy management system) in the mid-
dleware. After achieving the goal, the middleware enables
a privacy management service for all the applications that
may query context from it. Moreover, when a new appli-
cation or more sensing agents are added, the Privacy Data
Mediator does not need too much modification except reg-
istering the application in the application list.

5.3 Security
Security is the basis of privacy. If there is no security

protection in the middleware, there is no privacy because
the communication channel could be attacked and all the
data transmitted on this channel could be copied and used
by third parties without permission. The security channel
could be achieved either by encryption or by digital sig-
nature. The W3C XML encryption syntax and processing
recommendation [16] specifies a process for encrypting arbi-
trary data (including an XML document) and representing
the result in XML format. Moreover, the XML Key Man-
agement Specification (XKMS) [14], which is a joint work
of W3C and IETF, could provide a security channel by dig-
ital signature. As a result, middleware developers could use
such ways to enable secure data transmission.

In pervasive computing, not only does the communication
channel affect security, where to store user preference files is
also crucial. Users must make sure that the private context
is stored in a safe place, as well as the user preference files.
The middleware should not leak the private context to other
illegal applications or users without the permission and allow
other parties to modify the private context and preference
files. In our infrastructure, this security is built on the trust
relationship between the privacy data owner and the middle-
ware. This relationship could be done by signing some con-
tract or inheriting from some trustable parties. Nowadays,
a context-aware application is normally designed for mobile

devices, and in order to enlarge their market share mobile
phone service providers try their best to work with other
companies to offer extra exciting functions which are beyond
basic mobile phone service. In this case, service providers
act as Privacy Data Mediator in our infrastructure, while
phone users could be privacy data owners (or privacy data
inquirers in some applications). For example, one shopping
center (privacy data inquirer) has a contract with a service
provider to push discount information to phone users based
on their private location information. It is clear that our
infrastructure is applicable for this example and it is flexi-
ble for other companies to join in when they have contracts
with the service provider.

5.4 Convenience
When people develop new technologies, they hope their

work is compatible with existing applications. As one of the
most popular applications on mobile devices (e.g. PDAs,
mobile phones), mobile Web browsing should be supported
by our infrastructure. By using P3P syntax, our privacy me-
diator fully supports the privacy policy in the existing Web
and provides more powerful context-aware privacy protec-
tion when users browse the Web via their mobile devices.

Privacy feature has been a plugged-in service in browsers
for a long time. However, it does not attract many users.
The reason is that P3P-compliant user interfaces face the
challenge of presenting often complex information about a
privacy policy in a manner that is easily understandable by
the user [1]. In this paper, we have proposed a possible
user preference management interface. By picking out the
complex items from the preference file and defining them in
a separate file, users have more intuitive feeling about their
preferences and have the ability to control their privacy data.

6. RELATED WORK
Many researchers have tried to address privacy issues in

pervasive environments. Some research has focused on appl-
ication-oriented privacy management. Fithian et. al. re-
ported the privacy management interface design in Mobile
Location-Aware Handleld Event Planner [6]. In [13] Rous-
sos and Moussouri considered consumers perceptions about
the grocery application and discussed about privacy and
trust issues that may prevent its adoption. In these applica-
tions, privacy data owners can then manage their data since
the data collected by a single application should be simple.
However, this solution has two obvious problems: one is
that users need to specify their own privacy preferences for
each application, which is not convenient. Another problem
is that there may be too much redundancy since each con-
text need to be copied in each application in the pervasive
environment.

Another approach is to offer centralized services. Based on
privacy needs of users and application developers, Confab,
a toolkit for the development of privacy-sensitive context-
aware applications, is a framework which provides customi-
zed privacy mechanisms [8]. Lei et. al. [12] used a privacy
engine, which provided Role Based Access Control (RBAC).
RBAC reduces the cost of administration and is easily ex-
pressed by business practices. Convington et. al. extended
the traditional RBAC to an “environment role”, which could
provide some privacy decisions based on pervasive environ-
ments [5]. The centralized privacy management service,
which could easily be plugged into the middleware, enables

7



privacy protection during interactions between users and all
applications.

However, we notice that from previous work, “static” pri-
vacy management, as predefined by developers, is not suit-
able for dynamic pervasive environment. There could be
some context in the pervasive environment, which may af-
fect the final privacy policy decision of a specific user, is not
taken into consideration by developers.

7. CONCLUSIONS
In this paper, we propose a markup language that is suit-

able for representation of both privacy policies and user
preferences. The language enables a machine-to-machine
privacy data collection process between the middleware and
applications. Our Privacy Data Mediator, implemented as a
plug-in for the middleware, plays a key role in enabling pri-
vacy data protection in a dynamic, extensible, flexible and
convenient manner. As context-aware applications become
more popular and the middleware becomes more widely de-
ployed, the privacy components proposed in this paper will
significantly reduce the number of human interactions needed
for privacy data protection.

Mobile devices(HP IPAQ rx3715 PDAs) and location sens-
ing equipment (Bluetooth GPS receivers) were purchased.
A user-centric evaluation is being conducted in our campus
through Cabot which has the dynamic privacy management
component. Our next step is to evaluate when the right
time is to interrupt users when there is a conflict between
the policy and preference. We would also like to further
investigate using Semantic Web to help users define their
groups in order to simplify the interaction between users
and the middleware.

Acknowledgements
This research was supported in part by Sino Software Re-
search Institute grant SSRI01/02.EG14, “W3C Office” and
by Research Grant Council grant AOE/E-01/99, “Informa-
tion Technology for a 21st Century Hong Kong”.

8. REFERENCES
[1] M. Ackerman, T. Darrell, and D. J. Weitzner. Privacy

in context. Human-Computer Interaction, 16:167–176,
2001.

[2] M. S. Ackerman. Privacy in pervasive environments:
next generation labeling protocols. Personal and
Ubiquitous Computing, 8(6):430–439, November 2004.

[3] L. Barkhuus and A. Dey. Location-based services for
mobile telephony: a study of users privacy concerns.
In 9TH International Conference on
Human-Computer Interaction (INCTERACT03),
pages 709 –712, Zürich, Switzerland, July 2003. IFIP.

[4] T. Bohnenberger, A. Jameson, A. Krüger, and
A. Butz. Location-aware shopping assistance:
Evaluation of a decision-theoretic approach. In Mobile
HCI 2002, pages 155–169, Pisa, Italy, 2002.
Springer-Verlag.

[5] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey,
M. Ahamad, and G. D. Abowd. Securing
context-aware applications using environment roles. In
Symposium on Access Control Models and
Technologies, pages 10–20, Chantilly, Virginia, USA,
May 2001. ACM.

[6] R. Fithian, G. Iachello, J. Moghazy, Z. Pousman, and
J. Stasko. The design and evaluation of a mobile
location-aware handheld event planner. In MobileHCI
2003, pages 145–160, Udine, Italy, September 2003.
Springer-Verlag.

[7] H. Hochheiser. The platform for privacy preference as
a social protocol: An examination within the u.s.
policy context. ACM Transactions on Internet
Technology, 2(4):276–306, November 2002.

[8] J. I. Hong and J. A. Landay. An architecture for
privacy-sensitive ubiquitous computing. In The second
Internation Conference on Mobile Systems,
Applications and Services (MobiSys’04), pages
177–189, Bonston, Massachusetts, USA, 2004. ACM
Press.

[9] E. Kaasinen. User needs for location-aware mobile
services. Personal Ubiquitous Computing, 7(1):70–79,
2003.

[10] S. Lederer, A. K. Dey, and J. Mankoff. A conceptual
model and a metaphor of everyday privacy in
ubiquitous computing environments. Technical Report
UCB/CSD-2-1188, University of California, Berkeley,
June 2002.

[11] S. Lederer, J. Mankoff, and A. K. Dey. Who wants to
know what when? privacy preference determinants in
ubiquitous computing. In Short Talk in the Extended
Abstracts of CHI 2003, pages 724–725, Fort
Lauderdale, Florida, USA, 2003. ACM Press.

[12] H. Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R.
Ebling. The design and applications of a context
service. SIGMOBILE Mobile Computing and
Communications Review, 6(4):45–55, 2002.

[13] G. Roussos and T. Moussouri. Consumer perceptions
of privacy, security and trust in ubiquitous commerce.
Personal and Ubiquitous Computing, 8(6):416–429,
November 2004.

[14] W3C. Xml key management specification.
http://www.w3.org/TR/xkms/, March 2001.

[15] W3C. Platform for privacy preferences (p3p) project.
http://www.w3.org/TR/P3P/, April 2002.

[16] W3C. Xml encryption syntax and processing.
http://www.w3.org/TR/xmlenc-core/, December
2002.

[17] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The
active badge location system. ACM Transactions on
Information Systems,, 10(1):91–102, Jan. 1992.

[18] R. Want, B. N. Schilit, N. I. Adams, R. Gold,
K. Petersen, D. Goldberg, J. R. Ellis, and M. Weiser.
An overview of the parctab ubiquitous computing
experiment. IEEE Personal Communications,
2(6):28–43, December 1995.

[19] C. Xu, S. Cheung, C. Lo, K. Leung, and J. Wei.
Cabot: On the ontology for the middleware support of
context-aware pervasive applications. In IFIP NPC
Workshop on Building Intelligent Sensor Networks
(BISON 2004), pages 568–575, Wuhan, P.R. China,
October 2004.

8


