
High-level Real-time Programming in Java

David F. Bacon Perry Cheng David Grove Michael Hind V.T. Rajan Eran Yahav
IBM T.J. Watson Research Center

Matthias Hauswirth
Università della Svizzera

Christoph M. Kirsch
Universität Salzburg

Daniel Spoonhower
Carnegie Mellon University

Martin T. Vechev
University of Cambridge

ABSTRACT
Real-time systems have reached a level of complexity beyond
the scaling capability of the low-level or restricted languages
traditionally used for real-time programming.

While Metronome garbage collection has made it practical
to use Java to implement real-time systems, many challenges
remain for the construction of complex real-time systems,
some specific to the use of Java and others simply due to
the change in scale of such systems.

The goal of our research is the creation of a comprehensive
Java-based programming environment and methodology for
the creation of complex real-time systems. Our goals include
construction of a provably correct real-time garbage collec-
tor capable of providing worst case latencies of 100 µs, capa-
ble of scaling from sensor nodes up to large multiprocessors;
specialized programming constructs that retain the safety
and simplicity of Java, and yet provide sub-microsecond la-
tencies; the extension of Java’s “write once, run anywhere”
principle from functional correctness to timing behavior; on-
line analysis and visualization that aids in the understanding
of complex behaviors; and a principled probabilistic analy-
sis methodology for bounding the behavior of the resulting
systems.

While much remains to be done, this paper describes the
progress we have made towards these goals.

Categories and Subject Descriptors: C.3 [Special-
Purpose and Application-Based Systems]: Real-time and
embedded systems; D.3.2 [Programming Languages]: Java;
D.3.3 [Programming Languages]: Language Constructs and
Features—Dynamic storage management; D.3.4 [Program-
ming Languages]: Processors—Memory management (gar-
bage collection) D.4.7 [Operating Systems]: Organization
and Design—Real-time systems and embedded systems

General Terms: Experimentation, Languages, Measure-
ment, Performance

Keywords: Scheduling, Allocation, WCET, Tasks, Visual-
ization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
Real-time systems are rapidly becoming both more com-

plex and more pervasive.
Traditional real-time programming methodologies have re-

volved around relatively simple systems. This has meant
that it was possible to use restrictive programming method-
ologies with deterministic, statically verifiable properties or
very low-level programming techniques amenable to cycle-
accurate timing analysis [18].

However, those techniques do not scale to the large, com-
plex systems that are now beginning to be built. The lack of
scaling is manifested at both the theoretical and the practi-
cal level. Basic principles of undecidability mean that as the
software increases in size, the required expressiveness yields
a system that can not be statically verified. Basic principles
of software engineering mean that low-level programming is
untenable at the resulting scale.

As a result there is broad interest in using Java for a wide
variety of both soft- and hard-real-time systems. Java pro-
vides two main advantages: a scalable, safe, high-level pro-
gramming model, and a huge body of software components
that can be used to compose the soft- and non-real-time
portions of the system. Being able to use a single language
across all domains of the system provides enormous benefits
in simplicity, re-usability, and staffing and training require-
ments.

Java’s high level of safety and security comes from a com-
bination of both static and dynamic checking. Although
dynamic checks typically reduce execution-time determin-
ism, in a large-scale mission- or safety-critical system the
reliability they provide is essential.

The goal of the Metronome project at IBM Research is to
make Java suitable for programming real-time systems. Our
goal encompasses both hard- and soft-real-time systems, at
time scales as low as those achievable by any software sys-
tem.

The largest potential source of non-determinism in Java
is garbage collection. In previous work we addressed this
issue with the development of a true real-time garbage col-
lector which is capable of providing latency, utilization, and
throughput guarantees that make it suitable for program-
ming systems with periods as low as 5 milliseconds [2].

This technology forms the basis of a new real-time Java
virtual machine product being developed by IBM, and is un-
der evaluation by various customers in the defense, telecom-
munications, and embedded systems businesses.

However, significant challenges remain in real-time garbage
collection, in real-time Java, and in complex real-time sys-

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

Pause Time (ms)

C
ou

nt

Figure 1: Pause time distributions for javac in the
J9 implementation of Metronome, with target max-
imum pause time of 3 ms and a “beat” size of 500 µs.
The actual maximum pause is 2.4 ms.

tems in general. This paper describes our ongoing research
across these various problem domains.

2. THE METRONOME COLLECTOR
In this section we describe our previous work on the Metro-

nome, which forms the heart of the real-time Java system
we are developing [2, 1]. Metronome was originally imple-
mented in Jikes RVM [16]; a second generation implemen-
tation of the Metronome is underway in IBM’s J9 virtual
machine. We describe the algorithm and engineering of the
collector in sufficient detail to serve as a basis for under-
standing the work described in the rest of this paper.

The Metronome is an incremental collector targeted at
embedded systems. It uses a hybrid approach of non-copying
mark-sweep (in the common case) and copying collection
(when fragmentation occurs).

The original algorithm was designed for uniprocessors.
Recently this restriction has been removed and the system
has been applied in server-class systems, as described in Sec-
tion 3.1.

Metronome uses a snapshot-at-the-beginning algorithm
that allocates objects black (marked). Although it has been
argued that such a collector can increase floating garbage,
the worst-case performance is no different from other ap-
proaches and the termination condition is easier to enforce.
Other real-time collectors have used a similar approach.

Figures 1 and 2 show the real-time performance of our col-
lector. Pause times are centered around the “beat” which is
the nominal frequency of the underlying scheduler (500µs);
worst-case latencies are well below the target. Utilization
is high (above the 70%) with minimal jitter. Utilizations of
100% occur while collection is off. In this section we explain
how the Metronome achieves these goals.

2.1 Features of the Metronome Collector
Our collector is based on the following principles:

Segregated Free Lists. Allocation is performed using seg-
regated free lists. Memory is divided into fixed-sized

0 1 2 3 4 5 6 7 8 9

x 10
10

0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Time (cycles)

Figure 2: CPU utilization for javac under the
Metronome. Mutator interval is 7 ms, collector in-
terval is 3 ms, for an overall utilization target of
70%; the collector achieves this within 0.8% jitter.

pages, and each page is divided into blocks of a partic-
ular size. Objects are allocated from the smallest size
class that can contain the object.

Mostly Non-copying. Since fragmentation is rare, objects
are usually not moved.

Defragmentation. If a page becomes fragmented due to
garbage collection, its objects are moved to another
(mostly full) page.

Read Barrier. Relocation of objects is achieved by using
a forwarding pointer located in the header of each ob-
ject [8]. A read barrier maintains a to-space invariant
(mutators always see objects in the to-space).

Incremental Mark-Sweep. Collection is a standard in-
cremental mark-sweep similar to Yuasa’s snapshot-at-
the-beginning algorithm [27] implemented with a weak
tricolor invariant. We extend traversal during marking
so that it redirects any pointers pointing at from-space
so they point at to-space. Therefore, at the end of a
marking phase, the relocated objects of the previous
collection can be freed.

Arraylets. Large arrays are broken into fixed-size pieces
(which we call arraylets) to bound the work of scan-
ning or copying an array and to bound external frag-
mentation caused by large objects.

Since our collector is not concurrent, we explicitly control
the interleaving of the mutator and the collector. We use
the term collection to refer to a complete mark/sweep/ de-
fragment cycle and the term collector quantum to refer to a
scheduler quantum in which the collector runs.

2.2 Read Barrier
We use a Brooks-style read barrier [8]: each object con-

tains a forwarding pointer that normally points to itself, but
when the object has been moved, points to the moved ob-
ject.

Application

Collector

S
cheduler

m = maximum live memory
a(∆G) = allocation rate

R = collection rate
ρ = fragmentation factor

memory size = s

utilization = u

task period = ∆t

memory size = s
utilization = u

- or -

Figure 3: Interaction of components in a Metro-
nomic virtual machine. Parameters of the applica-
tion and collector are intrinsic; parameters to the
scheduler are user-selected, and are mutually deter-
minant.

Our collector thus maintains a to-space invariant: the mu-
tator always sees the new version of an object. However, the
sets comprising from-space and to-space have a large inter-
section, rather than being completely disjoint as in a pure
copying collector.

Although we use a read barrier and a to-space invariant,
our collector does not suffer from variations in mutator uti-
lization because all of the work of finding and moving objects
is performed by the collector.

Read barriers, especially when implemented in software,
are frequently avoided because they are considered to be
too costly. We have shown that an efficient read barrier im-
plementation can be obtained using an optimizing compiler
that is able to optimize the barriers.

We apply a number of optimizations to reduce the cost of
read barriers, including well-known optimizations like com-
mon subexpression elimination and special-purpose optimi-
zations like barrier-sinking, in which the barrier is sunk
down to its point of use, which allows the null-check re-
quired by the Java object dereference to be folded into the
null-check required by the barrier (since the pointer can be
null, the barrier cannot perform the forwarding uncondition-
ally).

This optimization works with any null-checking approach
used by the run-time system, whether via explicit compar-
isons or implicit traps on null dereferences. The important
point is that we usually avoid introducing extra explicit
checks for null, and we guarantee that any exception due
to a null pointer occurs at the same place as it would have
in the original program.

In the Jikes RVM implementation of Metronome, these
optimizations resulted in fairly low read barrier overheads.
On the SPECjvm98 benchmarks, the mean read barrier over-
head is 4%, or 9.6% in the worst case (in the 201.compress

benchmark). Read barriers are not yet fully operational in
our J9 implementation, but we will apply similar optimiza-
tions and expect to achieve similar results.

2.3 Time-Based Scheduling
Our collector can use either time- or work-based schedul-

ing. Most previous work on real-time garbage collection,
starting with Baker’s algorithm [3], has used work-based
scheduling. Work-based algorithms may achieve short in-
dividual pause times, but are unable to achieve consistent

utilization.
The reason for this is simple: work-based algorithms do

a little bit of collection work each time the mutator allo-
cates memory. The idea is that by keeping this interruption
short, the work of collection will naturally be spread evenly
throughout the application. Unfortunately, programs are
not uniform in their allocation behavior over short time
scales; rather, they are bursty. As a result, work-based
strategies suffer from very poor mutator utilization during
such bursts of allocation.

In fact, we showed both analytically and experimentally
that work-based collectors are subject to these problems and
that utilization often drops to 0 at real-time intervals.

Time-based scheduling simply interleaves the collector and
the mutator on a fixed schedule. While there has been con-
cern that time-based systems may be subject to space explo-
sion, we have shown that in fact they are quite stable, and
only require a small number of coarse parameters that de-
scribe the application’s memory characteristics to function
within well-controlled space bounds.

2.4 Provable Real-time Bounds
Our collector achieves guaranteed performance provided

the application is correctly characterized by the user. In
particular, the user must specify the maximum amount of
simultaneously live data m as well as the peak allocation
rate over the time interval of a garbage collection a(∆GC).
The collector is parameterized by its tracing rate R.

Given these characteristics of the mutator and the collec-
tor, the user then has the ability to tune the performance of
the system using three inter-related parameters: total mem-
ory consumption s, minimum guaranteed CPU utilization u,
and the resolution at which the utilization is calculated ∆t.

The relationship between these parameters is shown graph-
ically in Figure 3. The mutator is characterized by its allo-
cation rate over the interval of a garbage collection a(∆GC)
and by its maximum memory requirement m. The collector
is characterized by its collection rate R and a pre-selected
fragmentation limit ρ (typically 1/8 worst-case fragmenta-
tion overhead is tolerated). The tunable parameters are ∆t,
the frequency at which the collector is scheduled, and either
the CPU utilization level of the application u (in which case
a memory size s is determined), or a memory size s which
determines the utilization level u.

In either case both space and time bounds are guaran-
teed.

3. BETTER REAL-TIME COLLECTION
The Metronome system just described provides worst-case

latencies of 3 milliseconds, suitable for the majority of real-
time systems. However, there is still room for improvement
and areas in which the technology needs to be extended.

3.1 Multiprocessor Real-time Collection
Large systems which track many concurrent events are of-

ten implemented on multiprocessors to achieve the desired
level of performance and scale. The original Metronome al-
gorithm was limited to uniprocessors, making it unavailable
to this significant application domain.

The fundamental problem is that the Metronome collector
relies on being able to make atomic (but small and bounded)
changes to the heap during its execution quanta. This is
accomplished by the use of safe points, which are inserted

by the compiler into the application code at points where
certain invariants hold. A context switch into the collector
may only take place when all threads are at safe points.

Safe points are essentially a low-overhead amortized syn-
chronization technique. They allow the compiled code to
perform heap operations without the use of expensive atomic
operations or locking.

There are several kinds of synchronization between the
mutators and the collector. When the mutator modifies the
heap, it must inform the collector so that its tracing of the
heap does not miss objects (via the write barrier). Similarly,
when the collector moves an object (to reduce fragmentation
and bound space consumption), it must inform the mutator
so that it sees the new version of the object (via the read
barrier).

To extend the Metronome algorithm to multiprocessors,
there are basically two options: perform the work quanta
synchronously across all processors, or design the algorithm
so that the quanta can proceed concurrently with the muta-
tors. Our current implementation uses the former approach,
we call stop the worldlet.

Stop the worldlet has the advantage of (relative) simplicity
in that basic atomicity constraints are still enforced. How-
ever, it is fundamentally limited in its ability to scale up
to large numbers of processors, and in its ability to scale
down pause times. This is due to the costs of barrier syn-
chronization, unevenness in the work estimators, and other
fine-grained load balancing issues. However, with careful
engineeraing we are able to achieve very good results on
multiprocessors of modest scale (so far, up to 8-way ma-
chines).

In addition to basic synchronization problems, multipro-
cessing also introduces some new issues specific to the real-
time domain. In particular, the real-time guarantee must
take into account the load balancing behavior across pro-
cessors, since the collection does not complete until the last
processor is finished.

At a theoretical level, this requires the programmer to
bound another parameter, namely the longest chain of ob-
jects uniquely reachable from the roots [6]. The tracing of
such a chain can not be parallelized, and therefore we must
assume that in the worst case one processor begins process-
ing the chain just as all of the others finish tracing the rest
of the heap. In particular, this parameter determines the
worst-case load balance.

The actual quality of load balancing is also determined
by constant overheads and the trade-off between granularity
and synchronization overhead; once again, good engineering
can help stave off the inevitable. In practice, both load
balancing problems become progressively more significant
as the system is scaled up.

The extra time spent in load balancing does not adversely
affect latency. It has two significant effects: the first is the
delay in completion of a collection, which translates into a
higher memory requirement (since the program will continue
to allocate while it waits for the collector to finish). In
practice, this does not appear to be a major problem on
memory-rich multiprocessors.

The second significant effect is on utilization, since all pro-
cessors are stopped synchronously. However, in some cases
the work of various phases of collection can be overlapped,
which reduces this effect. Further improvement can be ob-
tained by allowing mutators to run concurrently with some

phases of collection. In particular, the tracing phase, which
is most subject to the fundamental load balancing prob-
lems described above, is amenable to execution in parallel
with the mutators. The phases which are not amenable to
parallelization with the mutators are stack scanning and de-
fragmentation.

The implementation of Metronome in IBM’s J9 virtual
machine uses the stop-the-worldlet approach and is in use
now by customers, who are achieving good results on 2- to
4-way multiprocessors.

In the long term, we seek to develop truly scalable algo-
rithms. We have begun work on an almost wait-free algo-
rithm, called Staccato, which will not only greatly increase
the scalability of the collector but also allow further reduc-
tion in latency: the ability of mutators to run in parallel
with any phase of the collector essentially allows extremely
fast preemption.

3.2 Priorities, Latency, and Jitter
An issue that is often confusing to users is the question

of the priority of the garbage collector. They want to set
the priority of their real-time threads higher than that of
the collector, so that they get serviced quickly even when
collection is in progress. However, if this were done with op-
erating system priorities that really were higher than those
of the collector, then the collector could be interrupted while
the heap was in an indeterminate state.

As a result, the collector runs at a higher “physical” pri-
ority (in the operating system) than Java threads that have
access to the garbage collected heap. However, users may
set threads to run at a higher “logical” priority than the
collector, in which case the collector will voluntarily give
up control as soon as it detects that a logical high-priority
thread is ready to run.

For periodic threads and timers, since the collector knows
the deadline in advance, it can adjust its work quantum in
advance so that it finishes in time for the deadline. There
is a small amount of jitter in the work estimator, but by
factoring that jitter into the deadline we are able to meet
time-based deadlines with a jitter of ±3µs. The cost is that
we must spin during the over-provisioning period for the
work estimator, which is typically 5µs. Although there are
occasional longer latencies, they are predictable and the col-
lector can schedule around them.

However, the frequency of periodic threads and the la-
tency for event-driven threads is still limited by the inherent
latency of the collector.

3.3 Latency Reduction
The lower limit at which real-time garbage collection can

be applied is determined by the worst-case latency of the
system. This is currently about 2 milliseconds, making the
system suitable for periodic tasks down to about 200 Hertz.
While adequate for a large body of real-time systems, there
are still many systems with lower latency requirements.

The worst-case latency is determined by the largest atomic
step that the system needs to take. In a garbage collector,
those steps typically consist of things like scanning the stacks
for roots, scanning the global variables for roots, scanning
the pointers of an object, moving an object, and so on.

In the Metronome, the use of arraylets ensures that both
object scanning and object relocation are bounded and short
operations. The use of a read barrier and mark-phase pointer

fixup avoids the need for atomically updating all of the
pointers to a moved object. Global variables are write-
barriered, so they need not be scanned for root pointers
(the write barrier records them incrementally).

However, in our current implementation, two significant
atomic steps remain: stack processing and finalizer process-
ing. To achieve our current bounds, stack size and finalizer
usage is limited. However, these are not fundamental prob-
lems and we are working to incrementalize them.

Stack processing can be incrementalized by the use of
stacklets, which partitions the stack into fixed-size chunks
which are then processed atomically [9]. This requires a
modification to the call and return sequences so that stack
overflow on call causes the insertion of a “return barrier”,
which snapshots the pointers of the stacklet below it before
returning to the calling function.

With stacklets, the atomic root processing of the collector
is limited to scanning the top stacklets of the currently run-
ning threads. We expect this to take in the neighborhood
of 50 microseconds on current hardware.

The other problem is finalizer processing, or more pre-
cisely the processing of all of Java’s “strange” pointers, which
include not only unreachable finalized objects, but also weak,
soft, and phantom references. This is not inherently difficult
to incrementalize, but requires that all java.lang.ref types are
implemented with a double indirection so that the require-
ment for atomic clearing can be met in unit time.

More problematic, however, is how to implement soft ref-
erences, whose semantics almost require a stop-the-world
garbage collection: “ All soft references to softly-reachable
objects are guaranteed to have been cleared before the vir-
tual machine throws an OutOfMemoryError”. If this is done
when memory is truly full, then by the time the collector
makes its last-ditch attempt to reclaim memory, the real-
time characteristics will have already been violated. The
implementation is free to clear soft references at any time,
and in our initial implementation we simply clear them on
each collection.

However, a solution which retains the useful properties
of soft references is desirable, but it is not clear how to
reconcile this with real-time collection. In particular, since
we require an upper bound m on the size of the live data in
the heap, and soft references are explicitly designed to allow
that quantity to be indeterminate. At present we have no
solution to this problem.

3.4 Verifying Application Parameters
Metronome’s ability to provide real-time guarantees is

contingent on accurate characterization of the maximum live
memory m and the maximum long-term allocation rate a.
Clearly the ability to accurately characterize those quanti-
ties is essential to the correctness of the resulting system.

Allocation rate is the easier of the two to bound. In fact,
bounding the allocation rate is simpler than computing the
WCET of a task, since as Mann et al [19] have shown, it can
usually be performed using an analysis that follows worst-
case paths without knowing which ones are taken or how
often. They achieved static bounds that were usually within
a factor of two of the actual measured allocation rate.

In some cases it may be necessary to provide loop bounds
to obtain a sufficiently tight bound on the allocation rate,
but this is also true of WCET analysis.

The more difficult problem is computing the maximum

live memory m. An accurate bound would essentially have
to perform an abstract interpretation of the collector at
compile-time, which in general will be unable to provide
useful bounds for the kinds of complex programs of interest.
Currently, for unrestricted programs, we do not see any al-
ternative, except empirical methods based on test coverage.

However, it is important to distinguish the problems in-
troduced by garbage collection per se from those introduced
by the use of dynamic data structures which are inherent
to complex real-time systems. The maximum live memory
must also be computed in a system built with explicit allo-
cation and de-allocation, or in a system using object pooling
from a fixed-size pool, or in a system using scoped memory
in all but the most trivial ways.

Fundamentally, the complexity of verification comes from
the use of dynamic data structures. The additional com-
plexity introduced by garbage collection is that the alloca-
tion rate must also be considered. However, this must be
balanced against the reduction in complexity and the im-
provement in reliability provided by automatic garbage col-
lection.

3.5 Verifying the Collector
The other aspect of correctness is that of the collector

implementation itself. A real-time concurrent garbage col-
lector is a very complex subsystem of the virtual machine,
and the algorithms involved are notoriously difficult to prove
correct. Since the collector now forms part of the trusted
computing base of a critical system, verification becomes
increasingly important.

The study of concurrent garbage collectors began with
Steele [23], Dijkstra [11], and Lamport [17]. Concurrent
collectors were immediately recognized as paradigmatic ex-
amples of the difficulty of constructing correct concurrent
algorithms. Steele’s algorithm contained an error which he
subsequently corrected [24], and Dijkstra’s algorithm con-
tained an error discovered and corrected by Stenning and
Woodger [11]. Furthermore, some correct algorithms [4] had
informal proofs that were found to contain errors [20].

Many additional incremental and concurrent algorithms
have been introduced over the last 30 years, but there has
been very little experimental comparison of the algorithms
and no formal study of their relative merits. While there
is now a well-established “bag of tricks” for concurrent col-
lectors, each algorithm composes them differently based on
the intuition and experience of the designer. Since each al-
gorithm is different, a correctness proof for one algorithm
cannot be re-used for others.

Previous work on proving the correctness of concurrent
collectors has applied the proof to the algorithm itself. Since
the algorithm is complicated, the proof is as well, and there-
fore subject to error.

We have taken a different approach: rather than proving
the ultimate algorithm correct, we start with an extremely
simple algorithm which is amenable to a simple proof, and
then transform it into a practical, efficient algorithm with
a series of incremental transformations, each of which can
also be proved correct [25, 26].

In the process of developing these transformations, we
have generalized various aspects of concurrent collection, in-
cluding the treatment of write barriers as reference count-
ing operations, mixing incremental-update and snapshot ap-
proaches in a single collector, and providing a range of tech-

Handler
Object

HEAPSTACK GLOBAL

Buffer 1 Buffer 2

Handler

Figure 4: Interaction of Handlers with the heap.
Handlers reside in the garbage collected heap, but
are pinned (gray objects) during their lifetime.
They may be referenced by other heap objects, and
will be subject to garbage collection once the han-
dler exits.

niques for handling newly allocated objects.
This has resulted not only in new insights, but also in the

derivation of new algorithms, which have been shown both
empirically [25] and formally [26] to be more precise than
some previous algorithms. In particular, the new algorithm
retains the predictable termination property of snapshot al-
gorithms (which are necessary to achieve real-time guaran-
tees) with the lower memory requirements of incremental-
update algorithms.

We have formalized for the first time the notion of the rela-
tive precision of concurrent collectors, and express the trans-
formations as correctness-preserving and precision-reducing.
We observe that many precision-reducing transformations
are also concurrency-increasing, and are currently working
to formalize the notion of relative concurrency of collectors.

Ultimately, our goal is to produce the actual code of the
collector via mechanical transformation from the simple,
provable algorithm and a selection of provable transforma-
tions chosen to provide the desired performance properties.

4. SPECIALIZED CONSTRUCTS
Although real-time garbage collection is able to provide

real-time behavior to extremely general code at a fairly high
resolution, as discussed in Section 3.3 there appear to be
fundamental limits on how low that latency can be driven.

Furthermore, in some situations, it is desirable to use a
more restrictive programming model to enforce certain re-
source constraints or to improve the level of static verifia-
bility of the system.

In this section we describe work in progress on the design
and implementation of two such constructs, called Handlers
and E-Tasks. Unlike the scoped memory construct of the
Real-Time Specification for Java [7], these constructs are
free of run-time exceptions and modularity-violating inter-
face constraints. They are designed to fit the natural pro-
gramming idioms of real-time systems, rather than being
designed to avoid garbage collection.

Taken together, Handlers and E-Tasks are likely to en-
tirely eliminate the need for low-level mechanisms like RTSJ’s
scoped and immortal memory, and replace them with safe,
high-level constructs that are compatible with the standard
Java language while requiring minimal changes to the vir-
tual machine.

4.1 Handlers
Handlers are designed for tasks that require extremely

low latencies and very high frequencies. They are based
on the principle that as the frequency with which tasks are
executed, their complexity of necessity drops.

Handlers are tasks that operate on a pre-allocated data
structure whose pointers are immutable. The run-time sys-
tem pins this data structure so that the garbage collector
cannot move it, as shown in Figure 4.

Because Handlers cannot change the shape of the heap,
and the garbage collector cannot change the location of the
Handler’s objects, Handlers can preempt the garbage col-
lector at any time, even while the invariants of the rest of
the heap are temporarily broken. This allows extremely fast
context switching, limited only by the underlying hardware
and operating system.

Rather than rely on dynamic checks, Handlers make use of
Java’s existing final mechanism, which is statically verified.
However, Handlers have some additional restrictions that
are checked at instantiation time, when the Handler is first
loaded and before it is scheduled. A Handler contains a run()
method and a set of local variables.

At instantiation time the validator checks that the data
structure reachable from the local variables does not contain
any non-final pointers, and that code reachable from the
run() method does not access any non-final global pointers,
manipulate threads, or perform any blocking synchroniza-
tion operations.

If the Handler is valid, then the data structure reachable
from its local variables is pinned: the garbage collector is
informed that the objects are temporarily unmovable.

The Handler is now guaranteed to access only final point-
ers of pinned objects. Because the pointers are final, it
will execute no write barriers and there is no mutator-to-
collector synchronization; because the objects are pinned,
the collector will not move them and there is no collector-
to-mutator synchronization.

Handlers are well-suited to tasks that perform buffer pro-
cessing. For instance, it may be necessary to sample a sensor
at very high frequency. The sample data can then be pro-
cessed by a lower-frequency task that analyzes the sample,
perhaps performing convolutions and then choosing an actu-
ator value. High-frequency buffered output can also be used
to drive devices such as software sound generators, where
the lower-frequency task can create a waveform and then
pass it in a buffer to a Handler.

Figure 4 shows a canonical Handler that uses double-
buffering. The buffers are exchanged between the Handler
and the garbage collected tasks using non-blocking queues.

A prototype implementation shows that Handlers are likely
to achieve latencies of a few microseconds on stock hardware
and operating systems.

By comparison with RTSJ’s scoped memory coupled with
NoHeapRealTimeThread’s [7], Handlers are both more reli-
able, since they throw no run-time memory access errors,
and more efficient, since they require neither run-time checks
nor run-time scope entry and exit (anecdotal evidence sug-
gests that scope entry and exit costs about 16µs).

Handlers are more restrictive than scopes in that they do
not allow dynamic memory allocation, but less restrictive in
that they do allow references from the heap. The result is
a more reliable, higher-performance programming construct
that better matches programmer needs.

4.2 E-Tasks
Many real-time systems decompose naturally into a set of

tasks that communicate solely by message passing. Such a
decomposition provides a very high level of determinism and
reliability because each task is purely functional in its inputs
and the task abstraction matches the sensor-to-actuator con-
trol flow of many systems.

E-Tasks provide such a task model within Java, adapted
from that of Giotto [13], but extending it to allow individ-
ually garbage collected tasks and the communication of ar-
bitrarily complex values over ports.

Like Handlers, E-Tasks rely on instantiation-time valida-
tion. They share some of the same restrictions, but neither
one is a subset of the other. E-Tasks are more restrictive in
that they may not observe any global mutable state, nor may
the heap contain references to objects inside of E-Tasks. On
the other hand, E-Tasks are less restrictive in that they may
allocate memory and mutate their pointer data structures.

Unlike Handlers, E-Tasks receive new objects from exter-
nal sources (via ports). If those sources include types not
previously seen by the E-Task, they could cause previously
un-validated code to be executed in overridden methods. As
a result, the E-Task validator must check not only its given
task, but also ensure that any changes to the call graphs of
preexisting tasks are benign.

E-Tasks and their ports also implement the logical execu-
tion time abstraction of Giotto, which provides platform-
independent programming of the timing behavior of the
task. The result is an extension of Java’s principle of “write
once, run anywhere” from the functional domain to the tim-
ing domain.

The logical execution time (LET) of a task determines
how long the task executes in real time to produce its re-
sult, independently of any platform characteristics such as
system utilization and CPU speed. Then, we check statically
and dynamically if the task does indeed execute within its
LET for a given platform, e.g., characterized by a scheduling
strategy and WCETs. If the task needs less time, its output
is buffered and only made available exactly when its LET
has elapsed. As a result, the behavior of the system is both
platform independent (assuming sufficient resources to com-
plete on time) and composable (since two LET-based sets
of tasks can be composed without changing their external
behavior).

As we illustrated in Figure 3, the Metronome real-time
collector allows a tradeoff between space and time based on
the available CPU and memory resources. With E-Tasks,
we can extend this notion to a finer granularity.

This is shown in Figure 5(a): we start by considering the
execution of the E-Task in the absence of garbage collection.
It runs for time t, has a base memory m of permanent data
structures, and allocates memory at rate a. As a result the
extra memory allocated by the task is e = at, and the total
space required for the task is s = m + at.

However, if we wish to reduce the task’s memory consump-
tion we can interpose intermediate garbage collections which
will temporarily reduce the memory utilization back to m.
As a result, the task will require additional time (g′ per
collection) but consume less space, as shown in Figure 5(b).

The difference between a task’s WCET and its deadline is
called its slack. By analogy, we call the difference between
a tasks base memory and its allocated memory its slop. De-
pending on the amount of slack and slop, garbage collections

m

t'

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

e'

t

g' g'

(a) Original E-Task (b) Garbage-Collected E-Task

m

e = at

Figure 5: Trading Space for Time in Task Execution.
Time is the horizontal axis, space is the vertical axis.
m is the base memory of the task, t is its execution
time, and a is its allocation rate.

can be introduced to trade space for time. Garbage collec-
tion is triggered by setting the limit of the private heap to
some value between m and s; this is called its space-out.

The ability to make these space/time tradeoffs introduces
the potential for sophisticated scheduling algorithms that
consider not only time, but also space. Although they would,
in general, be too expensive to perform online, it may be pos-
sible to compute them in advance and validate them with a
witness in the manner of schedule-carrying code [14].

As Sagonas and Wilhelmsson have discussed in the con-
text of Erlang (which has a similar task model) there are
tradeoffs between using a global heap in which read-only
objects are shared between tasks, private heaps which are
individually collected, and a hybrid of the two [22]. E-Tasks
present the same implementation choices; we concentrate on
the use of private heaps for the level of accountability they
provide, but there is nothing about the design that precludes
the other approaches.

One of the major problems with the message-based model
of E-Tasks is that it appears to require that data structures
sent on ports be immutable; otherwise a data structure read
from the same port by two tasks, or sent on a port and
(perhaps partially) retained by reference in the task, would
be subject to mutation that could cause side effects.

Such a restriction is undesirable because it would signif-
icantly limit the flexibility of the data structures and the
ability to use pre-existing libraries to create and process
them. However, it is not the mutability of the data structure
that is the fundamental problem, but rather the potential
for sharing.

We solve this problem with send-by-collection: at the end
of the task execution, a specialized garbage collector copies
the objects in ports from the sender to the receiver. In the
event that it knows, either statically or dynamically, that
there is no sharing, it may be possible to optimize that op-
eration. However, if there is sharing, then multiple receivers
will each receive their own copy of the mutable data, and
there will be no side effects.

In addition to allowing the use of mutable data structures,
send-by-collection means that E-Tasks can even make use
of libraries that invoke synchronized methods because all
data is guaranteed to be task-local and the synchronizations

are therefore guaranteed to be redundant. The specialized
collection simply removes any synchronization state from
the copied objects that are sent to other tasks.

5. ANALYSIS AND VISUALIZATION
Complex real-time systems are, well, complex. Therefore,

it is crucial to be able to understand their behavior. The
Metronome system supports this through an efficient, accu-
rate trace facility and a visualizer called TuningFork.

5.1 Trace Generation
Although tracing tools are commonplace (albeit not as

common as they should be), the generation and analysis of
traces in a real-time system poses certain challenges.

Beginning with the earliest versions of the system we in-
corporated a cycle-accurate trace facility into the virtual
machine. Trace events are usually fixed-size 16-byte records
consisting of an 8-byte timestamp (cycle count) and an 8-
byte data field.

The trace facility is designed to be efficient enough to be
run in “always on” mode, although command line options
are provided to disable it, and a build-time option allows us
to generate a virtual machine that does not even contain the
extra conditional tests.

The trace subsystem must be able to execute without in-
terfering with the real-time behavior of the rest of the sys-
tem. It therefore itself takes on many of the properties of a
real-time system. Its operations must be bounded and lock-
free. Therefore it may have to abandon buffers when the
filesystem or socket is not draining the data quickly enough,
or when the virtual machine is producing trace events too
quickly.

When the system is extended to multiprocessors, the com-
plexity of tracing increases considerably. First of all, most
systems (with the exception of the IBM 390 [15]) do not have
a globally synchronized high-resolution clock. In fact, there
is both skew and drift. On a single board this is relatively
low, since the processors typically share a single oscillator.
However, across boards the effect can become considerable.
Variations are caused by both static phenomena such as the
use of different chips, and dynamic phenomena such as tem-
perature variation.

While we perform a clock synchronization at startup and
periodically piggyback clock synchronization on other syn-
chronization events, there is always some level of uncertainty
in the measurements.

As a result, any trace analysis or visualization facility
must be prepared to deal with both incomplete and inac-
curate data. This also places a premium on trace data
that avoid dependence on previous entries. For instance,
we initially recorded allocation and freeing with incremen-
tal amounts, but this led to incorrect results if even one
record was lost, so we changed them to use absolute num-
bers. For events that are of necessity stateful, we include
sequence numbers to allow the detection of dropped events
and reconstruction of partial or estimated results.

The system is currently being extended to allow user-
defined events and their insertion from Java code. This will
allow users of the system to correlate application-level and
virtual machine events. With suitable kernel extensions op-
erating system events can be incorporated as well, allowing
complete vertical profiling.

5.2 Trace Visualization: The Tuning Fork
The trace facility in the virtual machine provides the raw

data, but it is also necessary to monitor and analyze that
information. TuningFork is a trace visualization tool that is
built as an Eclipse plug-in. TuningFork itself also exports a
plug-in based architecture, so that the trace format itself is
user-definable.

The various visualizations and analyses are also structured
as plug-ins, allowing a great deal of flexibility. We are in the
process of converting our off-line statistical analysis tools
to the TuningFork architecture, and are investigating the
possibility of allowing the same trace analysis plug-ins to
be run inside of the virtual machine that is gathering the
traces, so that it can be self-monitoring.

A screen shot of TuningFork is shown in Figure 6. It
provides both time-series and histogram views of data, as
well as a view of the ring buffer which contains chunks of
data from the different streams that make up the trace.

In the future, we plan to add an oscilloscope-style view for
visualizing very high-frequency events, and a heap density
view in the style of GCspy [21].

As on the producer side, TuningFork must also be struc-
tured as a fault-tolerant real-time system. It must itself
be prepared to discard buffers and to analyze data that is
incomplete or not well-ordered.

In order to provide a unified view of the information from
different parts of the system, the various streams (from dif-
ferent CPU’s, threads, etc.) are merged into a single, sorted
logical stream. There is a trade-off between the complete-
ness of the stream and the timeliness with which it can be
delivered; the system uses a paramterizable time window
within which it must receive data from all streams before
sorting and producing the result. This means that data ar-
riving after the window will be discarded. In Figure 6, this is
shown in the ring-buffer diagram in TuningFork’s lower left
pane, where the darkened set of buffers forms the “merge
window”.

Essentially, delay and loss are simply two sides of the same
coin. They also occur at both the beginning and end of the
merged in-memory events that can displayed by the visual-
izer, since when old buffers are discarded the data is lost in
an order different from the sorted order.

6. PROBABILISTIC WCET
In all of our work on enabling the use of Java for pro-

gramming complex real-time systems, a recurring theme is
the fact that various assumptions are being made about the
average behavior of the system.

This is true not only in the use of the long-term average
allocation rate to derive a bound for real-time garbage col-
lection, but is also implicit in the use of modern hardware
with its numerous sources of non-determinism and unpre-
dictability due to such things as caches, branch prediction,
hyperthreading, and so on.

Traditional approaches to the design of real-time systems
seek to maximize determinism to provide firm guarantees
that tasks will complete within their deadlines. This ap-
proach is enshrined in the concept of worst-case execution
time (WCET).

However, WCET analysis typically has to make many
conservative assumptions, which leads to significant over-
provisioning. With the current differential between cache

Figure 6: Screenshot of the Tuning Fork tool.

and main memory access, the level of over-provisioning is
often so high as to be useless.

WCET also drives a design methodology, in both hard-
ware and software, that places a strong emphasis on deter-
ministic execution time of operations rather than on opti-
mization for average-case execution time as is done in other
branches of computer science.

With the new generation of complex real-time systems,
the amount of variability increases and the WCET method-
ology does not scale up to the resulting levels of complexity.

We are investigating a different approach: real-time sys-
tems are composed of components in which there are many
sources of nondeterminism. In fact, assuming that they are
statistically independent, it is actually better to have more
sources of nondeterminism rather than less. Our approach
shares some features with that of Bernat et al [5], which
applied such techniques to basic block profiles.

By using many statistically independent sources of non-
determinism, we can analytically determine the amount of
over-provisioning required to meet an arbitrary level of con-
fidence that the task will complete within the given time.
Since the variance of a single type of event drops as the
total number of events becomes large, and the variance of
the composition of independent events drops super-linearly,

the amount of over-provisioning required to reach extremely
high levels of confidence is surprisingly small. Our approach
is to replace a deterministic WCET with a bound whose
probability of failure is below the mean time between fail-
ure (MTBF) of the physical components in which the real-
time software is embedded. We call this Probabilistically
Analyzed WCET, or PAWCET.

Our approach becomes more and more attractive as the
number of non-deterministic operations increases. Thus it is
well-suited for example to tasks with a 10 millisecond dead-
line running on a 1 GHz processor, where 10 milliseconds
might comprise 10, 000, 000 instructions, 2, 000, 000 memory
accesses, 5000 dynamic memory allocations, and so on. On
the other hand, it is not so well suited for a 1 microsecond
regime, or for a 10 millisecond regime on an 8-bit microcon-
troller running at 1 MHz.

However, more operation-rich regimes are exactly those to
which we wish to apply our methodology, since very short-
running programs are by their nature simpler to analyze us-
ing deterministic approaches (such as the technique of Fer-
dinand et al [12], which can tightly bound the costs due
to cache, branch prediction, etc. for programs restricted to
bounded loops over static data structures).

The probabilities can be analyzed using relatively recent

results in the statistics of large deviations [10]. We have
used these techniques to derive confidence formulae, and
for determining the range of applicability of the formulae.
In particular, for formulae that apply to a large number of
events, we quantify what constitutes a “large” number. This
number will be the inflection point below which traditional
deterministic WCET methods must be used.

Our approach provides both a design methodology and
a quantitative method of analysis. The design methodol-
ogy is to make abundant use of optimizations for improving
average-case performance, but to limit the variance of the
worst-case performance, and to maximize the independence
of the worst-case events from other optimized operations in
the system.

The PAWCET analysis takes information about the num-
ber of nondeterministic events, their probabilities, and their
degree of correlation, and provides an execution time esti-
mate that will be met with a given degree of confidence.

By allowing a much wider scope for optimizations, the
tasks will execute more quickly, which in itself makes it more
likely that they will be able to meet their deadlines. Even
more importantly it allows programmers to write simpler
code, which will result in a corresponding increase in relia-
bility.

Of course, the Achilles’ heel of any statistical approach
is unexpected correlation. PAWCET is only as good as the
probability estimates upon which it is based. Thus another
design principal is that systems should be designed to be
resilient to correlation. For example, set-associative caches
drastically reduce the execution time variance due to long-
term correlations in cache misses.

While probabilistic techniques have their limitations, as
real-time systems increase in complexity there will be no
other viable approach. In the long term, we expect the
methodology used to validate complex real-time systems
will combine static analysis, measurement, and probabilistic
analysis.

7. CONCLUSIONS
The growth in complexity of real-time systems has caused

existing methodologies based around small, simple systems
with totally deterministic behavior to break down. The sit-
uation is similar to that faced by hardware designers with
the advent of VLSI some twenty-five years ago.

Spurred by the advent of real-time garbage collection, in
conjunction with static compilation and the scheduling fa-
cilities of RTSJ, Java has reached a critical inflection point
in its usability and credibility for the construction of large,
complex real-time systems.

Continuing reduction in worst-case latency of garbage col-
lection, coupled with increased scalability for multiproces-
sors, will cause the domain of applications not amenable to
garbage collection to grow ever smaller.

For those applications with the shortest and most critical
timing constraints, specialized constructs such as Handlers
and E-Tasks promise to provide extremely low latency and
very high predictability, while maintaining Java’s high level
of abstraction and its strong guarantees of safety and secu-
rity.

The complexity of the systems involved means that abso-
lute determinism is precluded by the undecidability of the
analysis problems. Providing sophisticated tools for analy-
sis and visualization allows the complexity to be understood,

and principled probabilistic analysis allows the complexity
to be controlled.

We believe that these and other advances will lead to the
widespread adoption of Java for real-time programming in
the coming years.

Acknowledgments
Much of this work was done in the IBM J9 virtual machine,
and would not have been possible without the use of that
infrastructure or the assistance of the J9 team, in particu-
lar Pat Dubroy, Mike Fulton, and Mark Stoodley. We also
thank Bob Blainey, Tom Henzinger, En-Kuang Lung, and
Greg Porpora for many useful discussions.

8. REFERENCES

[1] Bacon, D. F., Cheng, P., and Rajan, V. T. Con-
trolling fragmentation and space consumption in the
Metronome, a real-time garbage collector for Java. In
Proceedings of the Conference on Languages, Compil-
ers, and Tools for Embedded Systems (San Diego, Cal-
ifornia, June 2003). SIGPLAN Notices, 38, 7, 81–92.

[2] Bacon, D. F., Cheng, P., and Rajan, V. T. A
real-time garbage collector with low overhead and con-
sistent utilization. In Proceedings of the 30th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New Orleans, Louisiana, Jan.
2003). SIGPLAN Notices, 38, 1, 285–298.

[3] Baker, H. G. List processing in real-time on a serial
computer. Commun. ACM 21, 4 (Apr. 1978), 280–294.

[4] Ben-Ari, M. Algorithms for on-the-fly garbage collec-
tion. ACM Trans. Program. Lang. Syst. 6, 3 (1984),
333–344.

[5] Bernat, G., Colin, A., and Petters, S. M. WCET
analysis of probabilistic hard real-time system. In IEEE
Real-Time Systems Symposium (2002), pp. 279–288.

[6] Blelloch, G. E., and Cheng, P. On bounding time
and space for multiprocessor garbage collection. In
Proc. of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Atlanta,
Georgia, June 1999). SIGPLAN Notices, 34, 5, 104–
117.

[7] Bollella, G., Gosling, J., Brosgol, B. M., Dib-

ble, P., Furr, S., Hardin, D., and Turnbull, M.

The Real-Time Specification for Java. The Java Series.
Addison-Wesley, 2000.

[8] Brooks, R. A. Trading data space for reduced time
and code space in real-time garbage collection on stock
hardware. In Conference Record of the 1984 ACM Sym-
posium on Lisp and Functional Programming (Austin,
Texas, Aug. 1984), G. L. Steele, Ed., pp. 256–262.

[9] Cheng, P., and Blelloch, G. A parallel, real-time
garbage collector. In Proc. of the SIGPLAN Conference
on Programming Language Design and Implementation
(Snowbird, Utah, June 2001). SIGPLAN Notices, 36, 5
(May), 125–136.

[10] Dembo, A., and Zeitouni, O. Large Deviations:
Techniques and Applications, second ed., vol. 38 of
Stochastic Modelling and Applied Probability. Springer-
Verlag, 1998.

[11] Dijkstra, E. W., Lamport, L., Martin, A. J.,

Scholten, C. S., and Steffens, E. F. M. On-the-fly

garbage collection: an exercise in cooperation. Com-
mun. ACM 21, 11 (1978), 966–975.

[12] Ferdinand, C., Heckmann, R., Langenbach, M.,

Martin, F., Schmidt, M., Theiling, H., Thesing,

S., and Wilhelm, R. Reliable and precise WCET de-
termination for a real-life processor. In Proc. of the
First International Workshop on Embedded Software
(Tahoe City, California, Oct. 2001), T. A. Henzinger
and C. M. Kirsch, Eds., vol. 2211 of Lecture Notes in
Computer Science, pp. 469–485.

[13] Henzinger, T. A., Kirsch, C. M., and Horowitz,

B. Giotto: A time-triggered language for embedded
programming. Proceedings of the IEEE 91, 1 (Jan.
2003), 84–99.

[14] Henzinger, T. A., Kirsch, C. M., and Matic, S.

Schedule-carrying code. In Proc. of the Third Inter-
national Conference on Embedded Software (Philadel-
phia, Pennsylvania, Oct. 2003), R. Alur and I. Lee,
Eds., vol. 2855 of Lecture Notes in Computer Science,
pp. 241–256.

[15] IBM Corporation. Enterprise Systems Architec-
ture/390 Principles of Operation, ninth ed., June 2003.

[16] Jikes Research Virtual Machine (RVM).
http://jikesrvm.sourceforge.net.

[17] Lamport, L. Garbage collection with multiple pro-
cesses: an exercise in parallelism. In Proc. of the 1976
International Conference on Parallel Processing (1976),
pp. 50–54.

[18] Lee, E. A. What’s ahead for embedded software?
Computer 33, 9 (2000), 18–26.

[19] Mann, T., Deters, M., LeGrand, R., and Cytron,

R. K. Static determination of allocation rates to sup-
port real-time garbage collection. In Proc. of the ACM
SIGPLAN/SIGBED conference on Languages, Compil-
ers, and Tools for Embedded Systems (Chicago, Illinois,
2005), pp. 193–202.

[20] Pixley, C. An incremental garbage collection algo-
rithm for multi-mutator systems. Distributed Comput-
ing 6, 3 (Dec. 1988), 41–49.

[21] Printezis, T., and Jones, R. GCspy: an adaptable
heap visualisation framework. In Proc. of the ACM
SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications (Seattle,
Washington, 2002), pp. 343–358.

[22] Sagonas, K., and Wilhelmsson, J. Message
analysis-guided allocation and low-pause incremental
garbage collection in a concurrent language. In Proceed-
ings of the Fourth International Symposium on Mem-
ory Management (Vancouver, British Columbia, 2004),
pp. 1–12.

[23] Steele, G. L. Multiprocessing compactifying garbage
collection. Commun. ACM 18, 9 (Sept. 1975), 495–508.

[24] Steele, G. L. Corrigendum: Multiprocessing com-
pactifying garbage collection. Commun. ACM 19, 6
(June 1976), 354.

[25] Vechev, M. T., Bacon, D. F., Cheng, P., and

Grove, D. Derivation and evaluation of concurrent
collectors. In Proceedings of the Nineteenth European
Conference on Object-Oriented Programming (Glas-
gow, Scotland, July 2005), A. Black, Ed., Lecture Notes
in Computer Science, Springer-Verlag.

[26] Vechev, M. T., Yahav, E., and Bacon, D. F. Para-
metric generation of concurrent collection algorithms.
Submitted for publication, July 2005.

[27] Yuasa, T. Real-time garbage collection on general-
purpose machines. Journal of Systems and Software 11,
3 (Mar. 1990), 181–198.

