
A Conservative Extension of Synchronous Data-flow with
State Machines ∗

Jean-Louis Colaço
Esterel-Technologies

France

Bruno Pagano
Esterel-Technologies

France

Marc Pouzet
LRI, Université Paris-Sud

France

ABSTRACT
This paper presents an extension of a synchronous data-flow
language such as Lustre with imperative features expressed
in terms of powerful state machine à la SyncChart. This
extension is fully conservative in the sense that all the pro-
grams from the basic language still make sense in the ex-
tended language and their semantics is preserved.

From a syntactical point of view this extension consists in
hierarchical state machines that may carry at each hierarchy
level a bunch of equations. This proposition is an alternative
to the joint use of Simulink and Stateflow but improves
it by allowing a fine grain mix of both styles.

The central idea of the paper is to base this extension on
the use of clocks, translating imperative constructs into well
clocked data-flow programs from the basic language. This
clock directed approach is an easy way to define a seman-
tics for the extension, it is light to implement in an exist-
ing compiler and experiments show that the generated code
compete favorably with ad-hoc techniques. The proposed
extension has been implemented in the ReLuC compiler of
Scade/Lustre and in the Lucid Synchrone compiler.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.3.2 [Language clas-
sifications]: Data-flow languages

General Terms
Design, Languages, Theory

Keywords
Synchronous languages. Heterogeneous systems. Typing.
Clock calculus. Compilation.

∗This work was carried out in the context of the IMCAD
(Improving the Cockpit Application Development Process)
project. IMCAD is a shared-cost RTD project (Contract No
G4RD-CT-2001-00632) funded by the European Commu-
nity Under the Competitive and Sustainable Growth Pro-
gramme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
When implementing a critical real-time embedded sys-

tem, the designer has to chose its favorite programming
or design tools. When the application is data-flow dom-
inated (e.g., regulation systems), he will naturally go for
block diagram formalisms as provided by Simulink [20],
Scade/Lustre [11] or Signal [2]. On the contrary, when
the application is more control dominated (e.g., drivers or
protocols), imperative or automata based formalisms as pro-
vided by Stateflow [20], StateCharts [13], the Sync-
Chart [1] or Esterel [3] will certainly be better choices.
Nonetheless, real systems rarely fall into one category and
are often a mix of both styles. A typical example is a flight
by wire application where control laws are established in a
data-flow style for each flight phase (take-off, landing, etc),
transitions from one law to the other being specified in term
of an automaton.

This has conducted people to propose multi-paradigm so-
lutions allowing to use a dedicated language or formalism
for each aspect [14, 18, 6, 5, 4] and relying on a linking
phase to obtain the final application. This is typically what
provides commercial tools like Simulink and Stateflow: a
Simulink block-diagram may contain operators specified in
Stateflow and which compute some flow which control the
active parts of the system. Esterel-Technologies pro-
poses similar solutions in its Scade Suite, using SyncChart
as the language for describing state machines. PtolemyII
also provides mean to describe mixed systems made of data-
flow equations and finite state machines. It goes even fur-
ther by allowing various models of computations and com-
munications (e.g., Kahn process networks, communicating
sequential processes).

Nonetheless, this approach often lacks a unified semantics
which applied for the complete application. It forces a strong
separation of the two parts of the system at very early stages
of the design. Moreover, it works well when small automata
switch big control laws but is less satisfactory on more mixed
designs. When using different code generation tools for each
part, the ability to produce good software (readable and
efficient) is reduced and finally, on a safety critical project
where certification is required, the number of formalisms and
tools makes the job harder.

Our purpose is to define a unique language able to go from
a pure data-flow application to a pure control one in an inte-
grated way. Compared to the above mentioned approaches,
our solution simplifies the work of the designer by allowing
to directly write data-flow equations into the states where
they are active. Moreover, the presence of an automaton is

173

-- count the number of top between two tick

node counting (tick:bool; top:bool)

returns (o: bool);

var v: int;

let o = if tick then v else 0 -> pre o + v;

v = if top then 1 else 0

tel;

Figure 1: The counting node in Scade and in Lustre

not limited to the leafs of the description but can appear at
any level of the model hierarchy. This is a key feature when
designing complex systems.

Following the pioneering work by Maraninchi & Rémond
on Mode-automata [15, 16], we propose to provide impera-
tive constructs at a language level by extending a data-flow
language with imperative constructs. Our contribution is
the following. We propose an extension of a synchronous
data-flow language such as Lustre with a rich set of im-
perative features by means of state machines. These state
machines allows to express various kinds of transitions (weak
and strong transitions with possible reset of states). More-
over, this extension if fully conservative in the sense that all
the programs from the basic language still make sense in the
extended language and their semantics is preserved. This
is an essential feature for an integration into an industrial
tool such as Scade. In comparison, Mode-automata allows a
limited form of transitions (essentially weak transitions cor-
responding to Moore automata) and impose restrictions on
the form of data-flow programs appearing into states (e.g.,
clocks and node instances are forbidden). The central idea is
to base the extension on the use of clocks, translating imper-
ative constructs into well clocked data-flow programs. This
clock directed approach enjoys several nice properties. It
forces to give a very precise semantics of the extension and
is of great help when adapting existing static analysis (e.g.,
type and clock calculus); it is light to implement in an exist-
ing compilers allowing to reuse the existing code generator;
practical experiments show that the generated code com-
pete favorably with hand-written code or ad-hoc compilation
techniques [17]. Finally, the existing compilation techniques
for data-flow is understood enough to be accepted by the
certification authorities. Extending the language in a way
that preserves this feature is a key point for us. Thus, this
work is the basis for the evolution of the existing Scade
Suite solution.

The paper is organized as follows. Section 2 gives the main
intuitions of the proposed extension. Section 3 introduces a
basic synchronous data-flow language and reminds its type
and clock systems. Then it defines a programming language
by adding two kinds of imperative constructs, a switch-like
statement allowing to switch between sets of equations ac-
cording to some enumerated value and an automaton con-
struction. We define a translation semantics into the basic
language and extend the type and clock systems such that
any well typed (and clocked) program from the extended
language is translated into a well clocked program from the
basic language. Section 4 discuss other program analysis
and we conclude in section 5.

2. OVERVIEW
Consider a purely synchronous data-flow language such

as Lustre, taken as a basic language. This language al-
lows for the description of block diagrams such as a simple
counter as given in figure 1 (the left part show its graphical
Scade representation). This program counts the number
of top between two tick. Nonetheless, for the purpose of
an integration of automata constructs, we make this basic
language a little more general. We equip it with a mean to
reset a function application in a modular way following [12],
we provide value constructors belonging to some enumerated
types and a merging operator for combining exclusive flows.
We can provide synchronous semantics and type systems for
such a language. Moreover, efficient compilation techniques
exist [19] and this last point is not addressed in the present
paper.

Based on this language we propose to extend it with hier-
archical state machines. The example in figure 2 illustrates
this extension on the well known case of the chronometer.
This is a two button device: StSt stands for start/stop but-
ton and Rst is the reset one. It is supposed to be a cyclic
application with a 10ms cycle-time. The flows disp_1 and
disp_2 are the two fields of the display. Time counting starts
and stops using the button StSt. When the chronometer
is stopped, pressing the Rst button resets it. When the
counter is running, pressing Rst freezes the display, giving a
lap time. The solution we implement here contains two state
machines in parallel, one has two hierarchy levels. The tran-
sitions are of two kinds: strong (arrow starting with a red
bullet) or weak (arrows terminated by a blue bullet). These
transitions can directly enter a state, which means that all
its content must be reset when firing it or enter through an
history connector H∗ meaning that the target state is re-
sumed instead of being reset. When a strong transition is
fired, its target state is activated in the same synchronous
tick; we use it to start and stop the chronometer. In the case
of a weak one, the active state is the source one, which allow
to have a condition that depends on internal computations
without introducing a causality cycle. This example also in-
troduces shared variables. For instance s is defined in states
STOP and START. The last s notation allows to refer to the
latest past value of a shared variable. The d flow is purely
local and is delayed using the regular pre of Lustre. When
no value is defined for a shared variable (disp_1 and disp_2

in LAP), the default action consists in maintaining the latest
computed value (that is, disp_1 = last disp_1).

The semantics of the extension is obtained by translating
automata construction into a purely data-flow kernel. Intu-
itively this translation is based on the following mapping:

• activation of a state is represented by a clock;

• exclusivity of the states of an automaton is encoded
with exclusive clocks based on the use of an enumer-
ated type;

• states hierarchy is represented by clocks hierarchy.

174

In Lustre, the clock of a flow characterizes the instants
where the flow provides new values. Clocks give a power-
ful and safe way to control the activation of several block
diagrams: a piece of data-flow networks can be controled
by sampling its inputs according to a condition, that is, to
set its input on some particular clock. Thanks to the clock
calculus, the resulting description is guaranted to be syn-
chronous.

3. FORMALIZATION

3.1 A Purely Data-flow Internal Language
We define a synchronous data-flow kernel considered as a

basic calculus in which any Lustre program can be trans-
lated. Nonetheless, we make it a little more general. We
equip it with a mean to reset a function application in a
modular way following [12] and we provide value construc-
tors belonging to some enumerated types. Finally, we do
not impose to declare types nor clocks which are computed
automatically.

A program is made of a sequence of global value declara-
tions (d) and type declarations (td). A global value decla-
ration may define either a constant stream (let x = e),
a combinatorial function (let fun x(p) = e) or a node
(let node x(p) = e). To simplify the presentation, only ab-
stract types and enumerated types are provided here. Ex-
pressions (e) are made of value constructors (C) belong-
ing to an enumerated type, initialised delays (e1 fby e2),
variables (x), applications (x(e)), pairs (e, e), local defini-
tions (letD in e), sampling functions and a reset construct.
e1 when C(e2) is the sampled stream of e1 on the instants
where e2 equals C. Symmetrically, merge is the combination
operator: if e is a stream producing values belonging to a
finite enumerated type t = C1 + ... + Cn and e1, ..., en are
complementary streams, then it combines them to form a
longer stream. x(e) every c is the reset function applica-
tion: the internal state of the application x(e) is reset every
time the boolean stream c is true.

A pattern p may be a variable or a pair pattern (p, p).
A declaration (D) can be a collection of parallel equations.
An equation can define some instantaneous values (p = e),
activation (or decision) variables (clock x = e).

e ::= C | x | e fby e | (e, e) | x(e)
| letD in e | x(e) every e
| e when C(e) | merge e (C → e) ... (C → e)

D ::= D andD | p = e | clock x = e
p ::= x | (p, p)
d ::= let x = e | let fun x(pat) = e

| let node x(pat) = e | d; d
td ::= type t | type t = C1 + ... + Cn | td; td

We note fv(e) the set of free variables from an expression
e. Its definition is straightforward and is not given here.

e1 fby e2 stands for the initialised delay as depicted in
the following diagram. Moreover, when x stands for a com-
binatorial function (typically an external function such as +,
not), it applies point-wise to its arguments. If x and y are
two streams, +(x, y) stands for the point-wise addition that
we write here in infix position.

x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
x fby y x0 y0 y1 y2 ...
x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

The kernel provides a general sampling mechanism based on
enumerated types. This way, the classical sampling opera-
tion e when c of Lustre and Lucid Synchrone where c
is a boolean stream is written e when True(c). In the same
way, e when not c is now written e when False(c). The
conditional if/then/else, the delay pre and initialization
operator -> of Lustre can be encoded in the following way:

if e1 then e2 else e3 =
let clock c = e1 in

merge c (True→ e2 when True(c))
(False→ e3 when False(c))

where c 6∈ FV (e1) ∪ FV (e2)
e1 -> e2 = if True fby False then e1 else e2

pre (e) = nil fby e

The conditional if/then/else is built from the merge op-
erator and the sampling operator when provided we define
type bool = True + False. The uninitialized delay opera-
tion pre (e) is a shortcut for nil fby e where nil stands for
any constant value which has the type of e. We should rely
on some initialization analysis to know whether the compu-
tation depends on the actual nil value [9]. The let/clock

construction is used for introducing the decision variable c
which is used for sampling streams.

h True False True False ...
x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
x -> y x0 y1 y2 y3 ...
pre (x) nil x0 x1 x2 ...
z = x when True(h) x0 x2 ...
t = y when False(h) y1 y3 ...
merge h

(True→ z)
(False→ t)

x0 y1 x2 y3 ...

A program is a collection of stream functions defined glob-
ally. In doing this, we make a distinction between combina-
torial functions whose definitions begins with a let/fun and
stateful functions (let/node). These two type of functions
exist in synchronous data-flow languages such as Lustre,
Scade and Lucid Synchrone: a combinatorial function
is a function typically imported from a host language (e.g.,
C) and applies point-wise to its argument whereas a node
has an internal state and must thus be compiled in a spe-
cial way. These two kind of stream functions will receive
different types as we shall see later.

For example, the node counting the number of top be-
tween two tick shall be written:

let node counting (tick, top) =

let o = if tick then v else 0 -> pre o + v

and v = if top then 1 else 0 in o

Figure 1 shows how this simple example can be represented
in Scade and gives the equivalent Lustre text.

The semantics of this kernel can be defined precisely fol-
lowing classical formulations and we do not come back on
it here. See [8] for a denotational Kahn semantics. The se-
mantics of the reset follows the proposal in [12]. The only
novelties come from the sampling mechanism on enumerated
types and these semantics can be adapted accordingly.

3.1.1 The Type System
This kernel is statically typed and we give it a ml-like

type system. We distinguish type schemes (σ) which can be
quantified from regular types (t). A regular type is made of

175

let node chrono (StSt, Rst) = (disp_1, disp_2) where
automaton

CHRONO ->
do automaton

STOP ->
do s = 0 -> last s
and m = 0 -> last m
and run = false
unless StSt continue START

| START ->
let d = 0 -> (pre d + 1) mod 100 in
do s = if d < pre d

then (last s + 1) mod 60
else last s

and m = if s < last s
then (last m + 1) mod 60
else last m

and run = true
unless StSt continue STOP

end
until Rst and not run then CHRONO

end and
automaton

TIME ->
do disp_1 = s
and disp_2 = m
until Rst and run then LAP

| LAP ->
do until Rst then TIME

end

Figure 2: A Chronometer

basic atomic types (B), combinatorial function types (t
0−→

t) and sequential function types (t
1−→ t), product types

(t× t) and type variables (α).

σ ::= ∀α1, ..., αn.t

t ::= B | t k−→ t | t× t | α
B ::= int | bool | . . .
k ::= 0 | 1
H ::= [x1 : σ1, ..., xn : σn]

Typing is obtained by asserting judgments of the form

H
k

` e : t and H
k

` D : H0. The first one states that “the
expression e has type t in environment H”. The second
one states that “the definition D is well typed in H and
produces the typing environment H0”. k = 0 means that
the expression is combinatorial (no internal state is modified
during the computation) whereas k = 1 stands for a state-
full expression.

Typing is made in an initial environment H0 such that:

H0 = [. fby . : ∀α.α× α
1−→ α,

pre (.) : ∀α.α
1−→ α,

if . then . else . : ∀α.bool× α× α
0−→ α]

Due to lack of space, the typing rules for expressions and
declarations are not reproduced in this paper. They can be
easily deduced from usual presentation [7]. For the node
counting, the compiler automatically compute type bool×
bool

1−→ int.

3.1.2 The Clock System
The type system checks the data consistency of a program,

that is, what is transported on a channel. The purpose of the
clock calculus is to check the time consistency, that is, when
a value is available. The clock calculus produces judgments
of the form H ` e : cl for expressions and H ` D : H0 for
definitions. H ` e : cl means that “the expression e has
clock cl in the environment H”. H ` D : H0 means that
“the definition D defines the local environment H0 under

the environment H”.

ρ ::= ∀α1, ..., αn.∀X1, ..., Xm.cl | cl
cl ::= cl → cl | cl × cl | (c : ck) | ck
ck ::= base | α | ck on C(c)
c ::= X | m
H ::= [x1 : ρ1, ..., xn : ρn]

We distinguish clock schemes (ρ) that can be quantified,
from regular clocks types (cl). A regular clock type is made
of function clocks (cl → cl), product clocks (cl × cl), a de-
pendence (c : ck), and stream clocks (ck). A stream clock
may be the base clock (base), a clock variable (α), a sam-
pled clock (ck on C(c)) on a condition c. Here, c can be
either a skolem name (m) or a meta-variable(X).

FV (cl) defines the set of free variables (α) of cl. Dom(H)
is the domain of H. FN (cl) stands for the set of free vari-
ables (X). N (cl) is the set of names (x) of cl. Their defini-
tions are straightforward and not given here.

An expression e1 when C(e2) is well clocked if e1 and e2

have the same clock α. In that case, the clock of the result
is a sub-clock of α that we write α on C(c) if c stands for the
value of e2. The clock type (c : ck) given to an expression e
says two things: e is present on clock ck and has the value
c.

Clocks can be instantiated or generalized in the following
way:

cl[~ck/~α][~c/ ~X] ≤ ∀~α. ~X.cl
genH(cl) = ∀α1, ..., αn.∀X1, ..., Xm.cl where

{α1, ..., αn} = FV (cl)− FV (H) and
{X1, ..., Xm} = FN (cl)− FN (H)

genall(cl) = gen∅(cl)

The clock calculus is done in an initial environment H0. As
for the typing, we give clock types to the basic primitives:

H0 = [. fby . : ∀α.α× α → α,
pre (.) : ∀α.α → α,
if . then . else . : ∀α.α× α× α → α]

If d is a definition, then H ` d : H ′ builds a global clocking

176

environment H ′ from the definition d. Its definition is the
following.

H0 ` p : cl1 H + H0 ` e : cl2 Dom(H0) = fv(p)

H ` let fun f(p) = e : [genall(cl1 → cl2)/f]

H0 ` p : cl1 H + H0 ` e : cl2 Dom(H0) = fv(p)

H ` let node f(p) = e : [genall(cl1 → cl2)/f]

H ` e : cl

H ` let x = e : [genall(cl)/f]

H ` d1 : H1 H + H1 ` d2 : H2

H ` d1; d2 : H1 + H2

The clocking rules for expressions and declarations are de-
fined in figure 3.

The system states that a constructor C may receive any
stream clock ck. The clock of a variable can be instanti-
ated. In this calculus, variables which serve as activation
variables are introduced with a special keyword clock, fol-
lowing the presentation of [8]. These variables can in turn
be used to down-sample an other stream, and we give a
unique symbolic value m so that only streams down-sampled
with the same source name m can be considered to be syn-
chronous. The clock rules for definitions, applications and
functions are straitforward. An expression e1 when C(e2)
produces a stream which is on some clock ck on C(c) if
e1 has some clock type ck and e2 has clock type (c : ck).
The merge construction expect streams which are on oppo-
site clocks ck on Ci(c). Note that when bool = False +
True, we obtain the classical rule for the merge operator
given in [8], replacing the original notation merge e e1 e2 by
merge e (True→ e1) (False→ e2).

3.2 The Programming Language
In this section, we introduce a programming language

which extends the basic one with control structures.
Expressions (e) are extended with a mean to access the

last value of a shared variable (last x). A declaration
may now introduce local names (letD1 inD2), a case state-
ment (match x with C1 → D ... Cn → D), a reset definition
(reset D every e) or an automaton. Every handler S → u s
in an automaton is made of two parts. (u) defines a set of
shared variables (do D w) which may use some auxiliary
local names (letD inu) and a set of weak conditions (w)
to escape from the handler. (s) stands for the set of strong
escape conditions.

e ::= C | x | e fby e | (e, e) | x(e) | last x
| letD in e | x(e) every e
| e when C(e) | merge e (C → e) ... (C → e)

D ::= D andD | p = e | clock x = e | letD inD
| match e with C → D ... C → D
| reset D every e
| automaton S → u s ... S → u s

u ::= letD inu | do D w
s ::= unless e then S s | unless e continue S s | ε
w ::= until e then S w | until e continue S w | ε

We define some auxiliary definitions. Def (D) stands for the
defined names from D. The function fv(.) is now lifted to
definitions such that fv(D) stands for the set of free variables
from D. Their definitions are given in appendix B.

3.2.1 Translation Semantics
In this section, we introduce a translation semantics for

the extended language, that is, a semantics where new pro-
gramming constructs are expressed in terms of the basic
ones. For this purpose, we define a translation function T (.)
which applies recursively to expressions and declarations. In
order to keep the notation light, we overload the notation.
The actual interpretation of T (.) shall be clear from context.
The general structure of the translation is given in figure 4.
It is essentially a morphism translating every new program-
ming constructs (i.e., match/with, automaton, reset/every,
last) in terms of the basic ones and leaving the other con-
structs unchanged. For the translation, we introduce three
translation combinators whose definition is detailed below.

3.2.1.1 Reseting a Behavior
The translation of the reset/every construction consists

in propagating the reset construct recursively. When ar-
riving at an application, it transforms it into a reset ap-
plication. Let CResetx D be the result of this translation
applied to a definition D reset on some boolean condition
x and CResEx e, the result of the translation applied to
expressions. We have:

CResetx (D1 andD2) = D′
1 andD′

2

where D′
1 = CResetx D1

and D′
2 = CResetx D2

CResetx (p = e) = p = CResEx e
CResetx (clock y = e) = clock y = CResEx e
CResEx (y(e)) = y(e′) every x

where e′ = CResEx e
CResEx (y(e1) every e2) = y(e′1) every x or e′2

where e′1 = CResEx e1

and e′2 = CResEx e2

CResEx (e1 fby e2) = let y = CResEx e1 in

if x then y
else y fby (CResetx e2)
where y 6∈ fv(e1) ∪ fv(e2)

CResEx (letD in e) = letD′ inCResetx e
where D′ = CResetx D

CResEx C = C
CResEx y = y
CResEx (e1 when C(e2)) = e′1 when C(e′2)

where e′1 = CResEx e1

and e′2 = CResEx e2

CResEx (e1, e2) = (CResEx e1,CResEx e2)

CResEx merge e (C1 → e1)(Cn → en) =
merge e′ (C1 → e′1)(Cn → e′n)
where e′ = CResEx e and e′i = CResEx ei

The reset condition x is distributed recursively in every def-
inition or sub-expression. The interesting cases appear with
applications and initialized delays. In the former case, an
application is transformed into a reset application. More-
over, an already reset application on some expression e2 can
now be also reset on the condition x. In the later, an ini-
tialised delay e1 fby e2 is transformed into a conditional
which emits the initial value when x is true.

3.2.1.2 Activation Conditions over Enumerated Types
The match/with construction is expressed as a combina-

tion of merge and when constructions, associating an equa-
tion for every variable it defines. For this purpose, we define
projC(x)

y (D) as the projection of D according to y and on

177

H ` C : s

H + H0 ` D : H0 H + H0 ` e : cl

H ` letD in e : cl

H ` e : ck m 6∈ N (H)

H ` clock x = e : [(m : ck)/x]

H ` p : cl H ` e : cl

H ` p = e : [cl/p]

cl ≤ H(x)

H ` x : cl

H ` D1 : H1 H ` D2 : H2

H ` D1 andD2 : H1 + H2

H ` e1 : cl2 → cl1 H ` e2 : cl2

H ` e1(e2) : cl1

H ` e1 : cl1 H ` e2 : cl2

H ` (e1, e2) : cl1 × cl2

H ` e1 : ck H ` e2 : (c : ck)

H ` e1 when C(e2) : ck on C(c)

H ` e : (c : ck) ∀i 1 ≤ i ≤ n H ` ei : ck on Ci(c)

H ` merge e (C1 → e1)...(Cn → en) : ck

H ` x(e1) : cl H ` e2 : ck

H ` x(e1) every e2 : cl

Figure 3: The kernel Clocking rules

T (x(e)) = x(T (e))
T (e1 fby e2) = T (e1) fby T (e2)
T (x(e1) every e2) = x((T (e1))) every (T (e2))
T (e1 when C(e2)) = T (e1) when C(T (e2))
T (merge e (C1 → e1) ... (Cn → en)) = merge T (e) (C1 → T (e1)) ... (Cn → T (en))
T (D1 andD2) = T (D1) andT (D2)
T (clock x = e) = clock x = T (e)
T (letD1 inD2) = T (D1) andT (D2) if Def (D2) ∩ (fv(D1) ∪Def (D1)) = ∅

TS(letD inu) = (D andD′, se, re) where se, re, D′ = TS(u)

TS(ε) = ∅, S, False
TS0(until e then S w) = (x = e andD, if x then S else se, if x then True else re)

where x 6∈ fv(u) ∪ fv(e) and D, se, re = TS0(w)
TS0(until e continue S w) = (x = e andD, if x then S else se, if x then False else re)

where x 6∈ fv(u) ∪ fv(e) and D, se, re = TS0(w)
TS0(unless e then S s) = (x = e andD, if x then S else se, if x then True else re)

where x 6∈ fv(u) ∪ fv(e) and D, se, re = TS0(s)
TS0(unless e continue S s) = (x = e andD, if x then S else se, if x then False else re)

where x 6∈ fv(u) ∪ fv(e) and D, se, re = TS0(s)

T (reset D every e) = letx = T (e) inCResetx T (D) where x 6∈ fv(D) ∪ fv(e)
T (match e with C1 → D1 ... Cn → Dn) = CMatch (T (e)) (C1 → (T (D1),Def (D1))) ... (Cn → (T (Dn),Def (Dn)))
T (automaton S1 → u1 s1 ... Sn → un sn) = CAutomaton (S1 → (TS1(u1),TS1(s1))) ... (Sn → (TSn(un),TSn(sn)))

Figure 4: The Translation Semantics

clock condition C(x) such that:

projC(x)
y (D) = e if (y = e) ∈ D

= (pre (y)) when C(x) otherwise

If N is a set of names, we write SplitN (D) as the partition of
the declarations D into two sets D1, D2 such that Def (D2) =
N and D1 ∪D2 = D. Finally, we define the function:

COn D C(x) = D [x1 when C(x)/x1, ...,
xn when C(x)/xn

(pre (x1)) when C(x)/last x1, ...,
(pre (xn)) when C(x)/last xn]

where {x1, ..., xn} = fv(D)

This operation consists in filtering all the free variables ap-
pearing in D as well as their last value. In figure 4, the trans-
lation of a match/with statement consists in the translation
of its components and a call to the compilation combinator
CMatch given in figure 5.

A free variable y read in a handler Di is transformed into
y when Ci(x). Thus, it is observed on some clock ck on C(x)
provided that y and x have the same clock ck. An expression
last y is transformed into (pre (y)) when C(x) meaning
that the expression pre (y) has clock ck, that is a faster
clock than the local clock ck on C(x) of the handler. last y

really means the previous value of y, the last time y has been
computed. On the contrary, an expression pre (y) inside a
handler is transformed into an expression pre (y when C(x)).
Thus, pre (y) which stands for a local memory denotes the
previous value of y on the clock of the handler, not on the
clock x is defined. This is why we say that pre (y) stands for
the previous value of y, the last time y has been observed.

Note that the proposed translation only deals with last

appearing inside a match; for the others present at top level
this translation can be extended by replacing last by pre.
Another choice is to define an analysis that reject the pro-
grams containing a last in a context where it behaves like
a pre.

To illustrate the translation process, consider the follow-
ing piece of code (given in concrete syntax where do/done

separate shared variables from local declarations).

match x with
Left -> let cpt = 1 -> last o1 + 1 in

do o1 = 2 * cpt done
| Right -> do o2 = 1 -> pre o2 + 1

and o1 = 0 done
end

cpt is a local variable whereas o1 and o2 are shared vari-

178

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =
D′

1 and ... and D′
2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))
...

(Cn → projCn(x)
y1

(Gn))
and ... and
yk = merge x

(C1 → projC1(x)
yk

(Gk))
...

(Cn → projCn(x)
yk

(Gk))
where ∀i, x 6∈ fv(e) ∪ fv(Di)
and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x
and cpt = 1 -> ((pre o1) when Left(c)) + 1
and o1 = merge c (Left -> 2 * cpt) (Right -> 0)
and o2 = merge c

(Left -> (pre o2) when Right(c))
(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the
source program refers to the previous value of o1 whereas
pre o2 refers to the value o2 had, the last time x was equal
to Right.

3.2.1.3 Automata
The automaton construction is translated by applying re-

cursively the translation function to its components as de-
scribed in figure 4. For this purpose, we have introduced
the translation function for handlers. We write TC(u) =
(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for
translating the constructions u and escape conditions s and
w. D stands for a set of declarations, es denotes an expres-
sion computing a state according to an escape condition and
er denotes an expression computing a reset condition for the
next state. The translation function is parameterized by the
state name S of the handler. In case no escape occur, the
state expression must return S.

The translation function is given in figure 6. An automa-
ton is translated into two case statements: the first one
computes what is the current state to be executed accord-
ing to strong preemptions whereas the second one computes
the equations in the current state and where to go at the
next state. We introduce several auxiliary variables. s de-
fines what is the current state; ns stands for the next state
whereas pns stands for its previous value. r stands for a
boolean value which is true if the current state must be re-
set on entry; nr is true if the state to be executed at the
next reaction will have to be reset; pnr stands for its previ-
ous value. Moreover, we must add a new type definition of
the form type t = S1+...+Sn provided there is no name con-
flict neither with existing type names nor with enumerated
values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an
automaton only one set of equations is executed during a
reaction. It is moreover possible to enter strongly in a state
and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D′
n, es′n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD′

n every pnr
and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r
...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns
and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)
∪FV (Di) ∪ FV (D′

i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that
is, to cross more than two transitions. This is a key differ-
ence with the SyncChart or StateCharts, and largely
simplifies program understanding and analysis.

3.2.2 The Type System
We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the
translation semantics such that it gives the same types as
the typing of the translation. These rules state in particular
that newly introduced constructions are only allowed in a
node (they are considered as state-full constructions). For
the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do
not detail it here. When typing a program, it is possible to
restrict the use of last x such that last x is only accepted
when x is a shared variable, that is, a variable which is de-
fined either in a case statement or an automaton. This way,
there is no possible confusion between last x and pre (x) (it
is not possible to write last x in a context where it behaves
like pre (x)). There is technically no reason to restrict the
use of last x since a pending last x can always be replaced
by pre (x) once control structures have been translated into
the basic language. We have experimented both solutions
in our compilers. Experimenting real-size designs will help
in choosing the more appropriate solution.

3.2.3 The Clock System
The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can
thus be safely compiled. Remember that we have introduced
the notation COn D C(c) to say that every free variable in a
block is observed on the local clock defined by the block. We
now define H onck C(c) to apply on clocking environment
in order to simulate this process during the clock calculus.
Consider for example a match/with statement which is itself
executed on some clock ck. When entering in a branch, a
free variable x with defined clock ck will be read on the
sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is
an environment H ′ such that the clock information associ-
ated to x1 in H ′ is α on C(c). As a consequence, if a free
variable has some sub-clock ck on C′(c′) instead of ck, then

179

the translation of the program will result in a badly clocked
program. This is why we impose that free variables be on
the clock ck.

We define merge(H1, ..., Hn) as the merge of several envi-
ronments returning a environment H such that:

• Dom(H) = Dom(H1) ∪ ... ∪Dom(Hn)

• ∀x, ∀i, j.i 6= j, Hi(x) = cl1 ∧Hj(x) = cl2 ⇒ cl1 = cl2

We extend the previous system with the rules given in fig-

ure 7. The predicate H
ck

` u : H ′ states that the automaton
handler u produces the clock environment H ′ and has es-
cape conditions on clock ck. The predicates H ` w : ck and
H ` s : ck state that the weak and strong escape conditions
are on clock ck.

Let us explain the clocking rule for match/with statements
(the one for automata being similar). We first introduce a
new symbol m which abstract the value of the test e which
has itself clock ck. We say that shared variables in the han-
dler must all be on clock ck on Ci(m) provided that free
variables are all red on clock ck on Ci(m) also.

3.2.4 Type and Clock Preservation
We can state now that the program transformation pre-

serves types and clocks. Precisely, any well typed (clocked)
program in the extended language receive the same type
(clock) as its translated version.

Theorem 1 (Correction). For any expression e,
declaration D and environment H we have:

• H
k

` e : ty iff H
k

` T (e) : t and

H
k

` D : H ′ iff H
k

` T (D) : H ′

• H ` e : cl iff H ` T (e) : cl and
H ` D : H ′ iff H ` T (D) : H ′

The proof is made by induction on the proof derivations for
types and clocks.

4. DISCUSSION
The proposed extension has been fully implemented both

in the ReLuC compiler at Esterel-Technologies and in
the Lucid Synchrone compiler. In both compilers, a pro-
gram is first typed, clocked, then two other program analysis
are applied. The causality analysis [10] first rejects programs
which cannot be statically scheduled. Then, the initializa-
tion analysis rejects programs containing un-initialized de-
lays [9]. Whereas we did not described these two analysis
in the present paper, they have been modified according
to the introduction of control structure. Once programs
have passed these four analysis, the imperative constructs
are translated into a basic language close to the one used
in this paper and the resulting program is passed to the
existing code generation phase.

We have experimented the proposed extension and ap-
proach on several examples ranging from simple ones to
more complex ones with the following results. First of all,
the generated code for programs combining data-flow equa-
tions and automata constructs is very good and compete fa-
vorably with hand-written code or ad-hoc compilation tech-
niques as proposed in [17]: when C is the target language,
the code generator of ReLuC is able to generate the minimal
number of switch statements such that only the instructions
from the active state of an automaton are executed at every
instant (the C code generated by the ReLuC compiler for the
chronometer is given in appendix A) . Thus, as far as code

generation is concerned, no pertinent information has been
lost during the programming transformation. This result
comes from the fact that our transformation relies deeply
on the use of clocks and the existing compilation techniques
developed in both compilers are specifically tuned to opti-
mize clocks. Second, the modification of both compilers was
light and an important part of the compiler was left un-
changed. The typing, clock calculus, causality analysis and
initialization analysis have been slightly modified and a new
pass was added to the compiler. This pass follows closely
the proposal described in section 3.2.1.

The causality and initialization analysis has not been dis-
cussed in the present paper due to lack of space. These
two analysis raise some interesting problems which are in-
formally discussed here. In [9], we have proposed a modular
analysis expressed as a type system for a language close to
the basic language. Thus, one way to check the correct
initialization of a complete program could be to apply the
analysis once the translation has been performed. Nonethe-
less, this solution does not work for, at least, three reasons.
First, it gives poor diagnostic in case of error. Second, it
does not fit well in a graphical programming environment
where systems must be analyzed on the fly interactively, thus
rejecting complex program transformation. Finally, in the
case of automata, precious information has been lost during
the translation so that the existing initialization analysis
may produce false negative when applied to the translated
program. Consider for example:

let node two x = o where
automaton

S1 -> do o = 0 -> last o + 1 until x continue S2
| S2 -> do o = last o - 1 until x continue S1
end

o is always defined. Nonetheless, if we look at its transla-
tion (after a few simplifications), the information that S1 is
an initial state and thus, that o do have a value at the very
first instant is no more clearly apparent.

let node two x = o where
o = merge s

(S1 -> 0 -> (pre o) when S1(s) + 1)
(S2 -> (pre o) when S2(s) - 1)

and ns = merge s
(S1 -> if x when S1(s) then S2 else S1)
(S2 -> if x when S2(s) then S1 else S2)

and clock s = S1 -> pre ns

On such a program, the analysis presented in [9] states
that o is not initialised because clock informations are not
taken into account.

Nonetheless, checking that the initial program is correctly
initialized comes from a simple deduction. The initial value
of o is necessarily defined since the initial state is only weakly
preempted. Thus, when the control enters in state S2, o
do have a previous value. On the contrary, the following
program must be statically rejected since x must be true at
the very first instant:

let node two x = o where
automaton

S1 -> do o = 0 -> last o + 1 unless x continue S2
| S2 -> do o = last o - 1 until x continue S1 end

The extension of the initialization analysis given in [9]
has been implemented in both compilers. This is relatively
simple because at most two successive transitions can be
taken during one reaction (a strong preemption cannot be

180

cl ≤ σ

H[x : σ] ` last x : cl

H ` e : ck m 6∈ N (H) H onck Ci(m) ` Di : Hi onck Ci(m)

H ` match e with C1 → D1...Cn → Dn : merge(H1, ..., Hn)

H ` e : ck H ` D : H ′

H ` reset D every e : H ′

m 6∈ N (H) H onck Si(m)
ck onSi(m)

` ui : Hi onck Si(m) H onck Si(m) ` si : ck on Si(m)

H ` automaton S1 → u1 s1 . . . Sn → un sn : merge(H1, ..., Hn)

H ` D : H0 H ` w : ck

H
ck

` do D w : H0

H ` D1 : H1 H + H1 ` D2 : H2

H ` letD1 inD2 : H2

H ` D1 : H1 H + H1

ck

` u : H2

H
ck

` letD1 inu : H2

H ` e : ck H ` w : ck

H ` until e then S w : ck

H ` ε : ck

H ` e : ck H ` w : s

H ` until e continue S w : s

H ` e : ck H ` w : ck

H ` unless e then S w : ck

H ` e : ck H ` w : ck

H ` unless e continue S w : ck

Figure 7: The Extended Clock System

followed by an other strong preemption). Intuitively, any
shared variable x from an initial state with no strong pre-
emption or belonging to the initial state and its immediate
successor by a strong preemption is well initialised such that
last x has a defined value in the remaining states.

We believe that the clock based approach proposed in this
paper is general enough to apply to any data-flow language
providing a clock mechanism and associated compilation
methods. This is, in particular the case for Signal. Such an
experiment would be interesting because Signal provides a
richer clock calculus than the one used in the present paper.
This may give the ability to relax the constraint imposed on
free variables, namely that all the free variables accessed in
an automaton must be on the same clock. Nonetheless, this
restriction did not appear to be a limitation in all the real
applications we have encountered so far.

5. CONCLUSION
In this paper, we have presented a conservative extension

of a synchronous data-flow language such as Lustre with
imperative constructs by means of state machines. This
extension is conservative in the sense that it applies to the
whole Lustre language without any restriction and this is
a central point for being used in an industrial tool.

The proposed extension provides a rich way to mix data-
flow equations and automata with strong or weak escape
conditions. Yet, we made it simple enough to be usable
in a qualified compiler (as it is the case for Scade). This
is why we have adopted a clock-directed approach defined
as a source-to-source transformation. Starting from a ba-
sic Lustre-like kernel, we have extended it with control
structures which are in turn translated into the basic ker-
nel. This way, it is possible to use the existing code gener-
ation phase without modification. The resulting extension
has been fully implemented in two compilers, the ReLuC
compiler of Scade at Esterel-Technologies and in the
one of Lucid Synchrone. Experimental results show that
this approach leads to a very efficient code. The proposed
extension will be integrated into Scade-V6, the new version
of Scade.

6. REFERENCES
[1] Charles André. Representation and Analysis of Reactive

Behaviors: A Synchronous Approach. In CESA, Lille, july
1996. IEEE-SMC. Available at:
www-mips.unice.fr/∼andre/synccharts.html.

[2] A. Benveniste, P. LeGuernic, and Ch. Jacquemot.
Synchronous programming with events and relations: the
SIGNAL language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

[3] G. Berry and G. Gonthier. The Esterel synchronous
programming language, design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[4] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. Heterogeneous Concurrent Modeling and
Design in Java. Memorandum UCB/ERL M04/27, EECS,
University of California, Berkeley, CA USA 94720, July
2004.

[5] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogeneous
systems. International Journal of computer Simulation,
1994. special issue on Simulation Software Development.

[6] Reinhard Budde, G. Michele Pinna, and Axel Poigné.
Coordination of synchronous programs. In International
Conference on Coordination Languages and Models,
number 1594 in Lecture Notes in Computer Science, 1999.

[7] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and
Marc Pouzet. Towards a Higher-order Synchronous
Data-flow Language. In ACM Fourth International
Conference on Embedded Software (EMSOFT’04), Pisa,
Italy, september 2004.

[8] Jean-Louis Colaço and Marc Pouzet. Clocks as First Class
Abstract Types. In Third International Conference on
Embedded Software (EMSOFT’03), Philadelphia,
Pennsylvania, USA, october 2003.

[9] Jean-Louis Colaço and Marc Pouzet. Type-based
Initialization Analysis of a Synchronous Data-flow
Language. International Journal on Software Tools for
Technology Transfer (STTT), 6(3):245–255, August 2004.

[10] Pascal Cuoq and Marc Pouzet. Modular Causality in a
Synchronous Stream Language. In European Symposium
on Programming (ESOP’01), Genova, Italy, April 2001.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language lustre.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[12] Grégoire Hamon and Marc Pouzet. Modular Resetting of
Synchronous Data-flow Programs. In ACM International
conference on Principles of Declarative Programming
(PPDP’00), Montreal, Canada, September 2000.

[13] D. Harel. StateCharts: a Visual Approach to Complex
Systems. Science of Computer Programming, 8-3:231–275,
1987.

[14] M. Jourdan, F. Lagnier, P. Raymond, and F. Maraninchi.
A multiparadigm language for reactive systems. In 5th
IEEE International Conference on Computer Languages,
Toulouse, May 1994. IEEE Computer Society Press.

[15] F. Maraninchi and Y. Rémond. Mode-automata: About
modes and states for reactive systems. In European
Symposium On Programming, Lisbon (Portugal), March
1998. Springer verlag.

[16] F. Maraninchi and Y. Rémond. Mode-automata: a new
domain-specific construct for the development of safe
critical systems. Science of Computer Programming,
(46):219–254, 2003.

181

[17] F. Maraninchi, Y. Rémond, and Y. Raoul. Matou : An
implementation of mode-automata into dc. In Compiler
Construction, Berlin (Germany), March 2000. Springer
verlag.

[18] Axel Poigné and Leszek Holenderski. On the combination
of synchronous languages. In W.P.de Roever, editor,
Workshop on Compositionality: The Significant
Difference, volume LNCS 1536, pages 490–514, Malente,
September 8-12 1997. Springer Verlag.

[19] Pascal Raymond. Compilation efficace d’un langage
déclaratif synchrone: le générateur de code Lustre-v3. PhD
thesis, Institut National Polytechnique de Grenoble, 1991.

[20] www.mathworks.com/.

APPENDIX

A. C CODE FOR THE CHRONOMETER
#define true (bool)1
#define false (bool)0
#define not true ^
typedef unsigned char bool;

typedef enum {__t1_none, __tSTOP_s1, __tSTART_s1} __Tt1;
typedef enum {__t3_none, __tTIME_w1, __tLAP_w1} __Tt3;
typedef enum {STOP, START} __TA1;
typedef enum {TIME, LAP} __TA3;
typedef enum {__t2_none, __tCHRONO_w1} __Tt2;

/* context */
typedef struct {

/* outputs */
int disp_1, disp_2;
/* inits */
bool _M_init3, _M_init2, _M_init1, _M_init0;
/* memories */
__TA3 __Next_SA3;
__TA1 __SA1;
__Tt2 __fired_w2;
int m, _M_pre_d00, _M_pre_s1;

} C_CHRONO;

void CHRONO_init (C_CHRONO *C){
C->_M_init3 = true; C->_M_init2 = true;
C->_M_init1 = true; C->_M_init0 = true;

}

void CHRONO_cycle(const bool StSt, const bool Rst, C_CHRONO *C){
bool __reset_CHRONO;
int s, d0;
__Tt1 __fired_s1; __TA3 __SA3;
__TA1 __preNext_SA1; __Tt3 __fired_w3;

__reset_CHRONO = (C->__fired_w2 == __tCHRONO_w1);
if (C->_M_init0) {

C->_M_init0 = false;
__SA3 = TIME;

} else __SA3 = C->__Next_SA3;
if (__reset_CHRONO) {

C->_M_init3 = true;
C->_M_init2 = true;
C->_M_init1 = true;

}
if (C->_M_init1) {

C->_M_init1 = false;
__preNext_SA1 = STOP;

} else __preNext_SA1 = C->__SA1;
switch (__preNext_SA1) {
case START:

if (StSt) __fired_s1 = __tSTART_s1;
else __fired_s1 = __t1_none;
switch (__fired_s1) {
case __tSTART_s1:

C->__SA1 = STOP;
break;

default:
C->__SA1 = __preNext_SA1;

}
break;

case STOP:
if (StSt) __fired_s1 = __tSTOP_s1;
else __fired_s1 = __t1_none;

switch (__fired_s1) {
case __tSTOP_s1:

C->__SA1 = START;
break;

default: C->__SA1 = __preNext_SA1;
}

}
switch (C->__SA1) {
case START:

__reset_CHRONO = true;
if (C->_M_init3) {

C->_M_init3 = false;
d0 = 0;

} else d0 = ((C->_M_pre_d00 + 1) % 100);
if ((d0 < C->_M_pre_d00)) s = ((C->_M_pre_s1 + 1) % 60);
else s = C->_M_pre_s1;
if ((s < C->_M_pre_s1)) C->m = ((C->m + 1) % 60);
C->_M_pre_d00 = d0;
break;

case STOP:
__reset_CHRONO = false;
if (C->_M_init2) {

s = 0; C->_M_init2 = false; C->m = 0;
} else s = C->_M_pre_s1;
break;

}
if ((Rst & (not __reset_CHRONO))) C->__fired_w2 = __tCHRONO_w1;
else C->__fired_w2 = __t2_none;
switch (__SA3) {
case LAP:

if (Rst) __fired_w3 = __tLAP_w1;
else __fired_w3 = __t3_none;
switch (__fired_w3) {
case __tLAP_w1:

C->__Next_SA3 = TIME;
break;

default: C->__Next_SA3 = __SA3;
}
break;

case TIME:
if ((Rst & __reset_CHRONO)) __fired_w3 = __tTIME_w1;
else __fired_w3 = __t3_none;
switch (__fired_w3) {
case __tTIME_w1:

C->__Next_SA3 = LAP;
break;

default: C->__Next_SA3 = __SA3;
}
C->disp_1 = s; C->disp_2 = C->m;

}
C->_M_pre_s1 = s;

}

B. AUXILIARY FUNCTIONS

Def (D1 andD2) = Def (D1) ∪Def (D2)
Def (letD1 inD2) = Def (D2)
Def (p = e) = fv(p)
Def (clock x = e) = {x}
Def (reset D every e) = Def (D)
Def (match e with

C1 → D1

...
Cn → Dn

) = ∪1≤i≤nDef (Di)

Def (automaton
S1 → u1 s1

...
Sn → un sn

) = ∪1≤i≤nDef (ui)

Def (letD inu) = Def (u)
Def (do D w) = Def (D)

fv(D1 andD2) = fv(D1) ∪ fv(D2)
fv(letD1 inD2) = fv(D1) ∪ (fv(D2)−Def (D1))
fv(x = e) = fv(e)
fv(clock x = e) = fv(e)

182

