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ABSTRACT
We study the problem of minimizing energy consumption in real-
time embedded systems that execute variable workloads and are
equipped with processors having dynamic voltage scaling (DVS)
capabilities. This problem is about how to decide tasks’ running
speeds (speed schedule) before they are scheduled to execute. In
this paper, we show that it is possible to incorporate the dynamic
behavior of the tasks into the speed schedule to, along with the dy-
namic slack reclamation technique, minimize the expected (total)
energy consumption in the system.

Categories and Subject Descriptors:D.4.1 [Operating Systems]:
Process Management - Scheduling; D.4.7[Operating Systems]: Or-
ganization and Design - Real-time systems and embedded systems

General Terms: Algorithms

Keywords: Real-time, Dynamic Voltage Scaling, Power manage-
ment, Processor Acceleration to Conserve Energy

1. INTRODUCTION
Energy conservation is critically important for many real-time

systems such as battery-operated embedded systems which have a
restricted energy budget. Dynamic voltage scaling (DVS), which
involves dynamically adjusting the voltage and frequency of the
CPU, has become a well-known technique in power management
for real-time embedded systems. Through DVS, quadratic energy
savings can be achieved at the expense of just linear performance
loss [13, 16]. Thus, the execution of tasks can be slowed down
in order to save energy, as long as the deadline constraints are not
violated. A natural problem that rises from this context is how to
minimize the energy consumption in the system while still meeting
the deadlines. The problem is about determining a task’s speed
(or equivalently, determining the amount of time allotted to a task)
before it is scheduled to execute in the system.

The systems under our consideration are frame-based hard real-
time embedded systems that execute variable workloads. In these
systems, tasks usually run for less than their worst-case execution
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time (WCET), creating the opportunity for dynamic slack reclama-
tion to further slow down the future tasks. Furthermore, theexe-
cution time of tasks is usually unpredictable before their execution.
Therefore, the design goal of DVS schemes becomesminimizing
the expected (total) energy consumptionin the system.

In this paper, we show that failing to capture the dynamic behav-
ior of the tasks by the existing DVS schemes leads to suboptimal
power management, and that it is possible to incorporate thedy-
namic behavior of the tasks into the speed schedule to, alongwith
the dynamic slack reclamation technique, minimize the expected
(total) energy consumption in the system. The dynamic behavior
of the tasks is captured by the probability density functionof the
workload of the tasks, which, in practice, is represented bya his-
togram. Profiling on training data sets, or online learning for a cer-
tain number of frames, can be used to obtain the probability density
function of the workload of a task. Provided with the probability
density functions for all the tasks, our DVS scheme can derive the
optimal speed schedule to minimize the expected energy consump-
tion in the system. Our DVS scheme is divided into two phases:
(a) the offline phase precomputes the speed schedule, which con-
sists of the percentage of the time left before the deadline allotted
to each task; (b) the online phase is invoked before the execution
of each task, obtaining the time left before the deadline andcom-
puting the execution speed for the task. Both phases are efficient:
the offline phase runs in polynomial time and the online phaseonly
takes constant time.

This paper is organized as follows. We first briefly review the
closely related work in Section 2. The system and task model are
described in Section 3. Section 4 presents our optimal DVS scheme
and proof of correctness. In Section 5, we discuss issues when
applying our optimal DVS scheme in practice. We end the paperin
Section 6 with concluding remarks and future work directions.

2. CLOSELY RELATED WORK
Real-time applications usually exhibit a large variation in actual

execution times [3, 12]. Thus, DVS schemes must take into con-
sideration unused computation time of tasks.

DVS in real-time applications is categorized asinter-taskor intra-
taskvoltage scaling [7]. Inter-task schedules speed changes ateach
task boundary, while intra-task schedules speed changes within a
single task. For inter-task voltage scaling, Mossé et al. [11] in-
troduced the concept ofspeculative speed reductionand proposed
three DVS schemes (i.e., greedy, proportional, and statistical schemes)
with different speed reduction. To be able to navigate the full spec-
trum of speculative speed reduction, in [2] system designers can
set a parameter to control the degree of speed reduction aggres-
siveness. Our DVS scheme chooses the degree of speed reduction
aggressiveness automatically, based the probability distribution of
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the workload of the tasks, to minimize the expected energy con-
sumption.

For intra-task voltage scaling, Lorch et al. [9] have shown that if
a task’s computational requirement is only known probabilistically,
there is no constant optimal speed for the task and the expected en-
ergy consumption is minimized by gradually increasing speed as
the task progresses, which is an approach named asProcessor Ac-
celeration to Conserve Energy(PACE). Practical PACE (PPACE)
[15] takes into consideration a number of practical issues and im-
proves the performance of PACE. However, PACE and PPACEhave
only been studied for single task when considering hard real-time
guarantee. In [10], PACE is used for soft real-time systems when
the system has only one task but the maximum speed is used when
the system has multiple tasks. In Section 4.1, we present thetheo-
retical results of using PACE for multiple tasks with a single hard
deadline (frame length).

AbouGhazaleh et al. [1] proposed a hybrid compiler-operating
system intra-task DVS scheme for energy consumption of time-
sensitive embedded applications. Our scheme is implemented at
the operating system level and assumes no access to application
source codes.

3. TASK AND SYSTEM MODEL
We consider a frame-based task model withN periodic tasks

in the system, all ready at time zero. The task set is denoted by
T = {T1, T2, . . . , TN}. Each taskTi (1 ≤ i ≤ N ) is character-
ized by its worst-case execution cycles (WCEC)Wi and the proba-
bility density function of its execution cyclesPi(x), which denotes
the probability that taskTi executes forx (1 ≤ x ≤ Wi) cycles.
Obviously, we have

PWi

x=1 Pi(x) = 1 andPi(Wi) 6= 0. All task
periods are identical and all task deadlines are equal to their period.
The common deadline/period (also known as frame length) is de-
noted byD. The execution of the frame is to be repeated and all
tasks must be executed during each frame. There are two possible
relationships among the tasks: (1) they are all independent, which
means that the execution order is flexible; (2) they must execute
consecutively in a specific order, where the tasks can be treated as
sequential sections of a single application.

The tasks are to be executed on a variable voltage processor with
the ability to dynamically adjust its frequency and voltageon appli-
cation requests. We assume that the processor is the major power
consumer, which is true for many embedded systems. We also as-
sume that the processor frequency can be adjusted continuously
from 0 to infinity (we shall discuss the more realistic cases,such as
the processor has minimum and maximum frequencies, in Section
5). The processor power consumption when running at frequency
f is c0 + c1f

α (α is a constant that is at least 2) wherec0 and
c1 denote the power consumption of the processor when idle and
the maximum dynamic power, respectively. The dynamic power
is determined by the processor operating frequency and the max-
imum dynamic power is the dynamic power consumed when the
processor is operating at the maximum frequency. We assume that
the system is never turned off, therefore we can ignorec0 andc1

because they do not affect the analysis results. Thus, the processor
power consumption used in the analysis isp(f) = fα. We assume
that the power consumption for all other components in the system
is constant, and thus can be ignored without affecting the analysis
results.

4. THE OPTIMAL DVS SCHEME
In this section, we will give the details of our new DVS scheme,

which is based on an important property of optimal expected en-

ergy consumption of a sequence of tasks. We first assume inter-
task voltage scaling, and we consider intra-task voltage scaling in
Section 4.1. Next, let us look at a preliminary lemma.

LEMMA 1. Both the optimal worst-case and expected energy
consumption of executing a single taskT are proportional to 1

dα−1

(α is defined in Section 3) whered is the amount of time allotted to
execute the task.

PROOF. Suppose thatW is the worst-case number of execution
cycles ofT , andP (x) is the probability thatT executes forx cy-
cles. Obviously, we should use the lowest possible speed (W

d
) such

thatT will finish within time d in the worst case. Therefore, the
optimal worst-case energy consumption of executingT is
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and the optimal expected energy consumption of executingT is
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which are both proportional to 1
dα−1 .

Interestingly, the result of Lemma 1 still holds for multiple tasks.

THEOREM 1. The optimal expected energy consumption of ex-
ecutingN tasksT1, T2, . . . , TN consecutively is proportional to

1
Dα−1 whereD is the amount of time allotted to execute the tasks.

PROOF. Suppose that the worst-case number of execution cy-
cles ofTi is Wi, and the probability thatTi executes forx cycles
is Pi(x). Let the optimal expected energy consumption of execut-
ing tasksTi, Ti+1, . . . , TN consecutively with allotted timed be
denoted byE(i, d). Therefore, we are to prove thatE(1, d) is pro-
portional to 1

dα−1 . This can be done by induction.
The base case forE(N, d) is obviously true by Lemma 1.
In the induction step, assume thatE(i + 1, d) is proportional to
1

dα−1 , that is,E(i + 1, d) =
Ci+1

dα−1 , whereCi+1 only depends on
Wj andPj(x) (i + 1 ≤ j ≤ N ). To computeE(i, d), we first
compute the expected energy consumptionE′ of executing tasks
Ti, Ti+1, . . . , TN with allotted timed when allotting timed′ out of
time d for taskTi. The running speed forTi is obviouslyWi

d′
, and

the time left for executing tasksTi+1, Ti+2 , . . . , TN is d − x/Wi

d′

whenTi has only executedx cycles. Therefore,

E′ =

Wi
X
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Let d′ = βd where0 ≤ β ≤ 1. Thus,
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Let

Ci = min
0≤β≤1

(f(β) + g(β))
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Then

E(i, d) = min(E′) =
Ci

dα−1

Thus proved the claim.

Theorem 1 shows that the optimal expected energy consumption
of a sequence of tasks is of the same form as that of a single task,
that is, both are inversely proportional to the(α − 1)st power of
the allotted time. This is a very powerful result because it enables
us to treat a sequence of tasks as a single task. When a sequence
of tasks are to be executed, they are partitioned into two parts: the
first task and the rest of the tasks, which can be treated as onetask.
Thus, the problem of allotting time to multiple tasks is reduced
to allotting time to just two tasks, which can be efficiently solved
thanks to the nice form of the power function. In fact, this isthe
basic idea of the proof of Theorem 1.

The proof of Theorem 1 indicates that in order to minimize the
expected energy consumption of executing a sequenceof tasks within
a given amount of timet, one should allocate to the first task a fixed
percentage oft and set the speed such that the first task is guaran-
teed to finish within the time allotted to it in the worst case.When
the first task finishes, the same procedure can be applied recursively
to the rest of the tasks. The proof of Theorem 1 also shows how to
go about computing the time allocation percentage for each task.
As in the proof, letCi denote the constant in the optimal expected
energy consumption of executingTi, Ti+1, . . . , TN consecutively
andβi denote the time allocation percentage forTi. We compute
Ci andβi in the reverse order. That is, first computeCN , βN , then
CN−1, βN−1, . . . , and lastC1, β1. The efficiency of the algorithm
depends on how to find the minimum value off(β) + g(β) as in
the proof. In fact, by deriving the first and second derivatives of
f(β) andg(β), we find thatf(β) is a convex decreasing function
andg(β) is a convex increasing function. It is easy to show that
f(β) + g(β) is a convex function with only one minimum when
0 ≤ β ≤ 1. Thus, finding the minimum value off(β) + g(β) can
be efficiently solved using existing minimization methods,such as
the gradient descent. The algorithm for computing time allocation
percentages is shown in Figure 1.

ALGORITHM Offline({Wi}, {Pi(x)})
1. βN := 1

2. CN := Wα−1
N

PWN
x=1 PN (x)x

3. for i := N − 1 downto1 do

4. F (β) =
PWi

x=1 Pi(x)x
“

Wi

β

”α−1

+
PWi

x=1

Pi(x)Ci+1

(1− xβ
Wi

)α−1

5. Ci = min
0≤β≤1

F (β)

6. βi = argmin
0≤β≤1

F (β)

7. return{Ci} and{βi}
END

Figure 1: The offline phase

The algorithm in Figure 1 is done offline. The online schedul-
ing phase is straightforward: when starting executing taskTi and
having timed left for executingTi, Ti+1, . . . , TN , set the speed to
Wi

βid
.

4.1 Enabling Intra-Task DVS
So far we use a fixed speed for executing a task and never change

the speed during the execution. One would wonder whether we can
apply the PACE technique to execute a task in our DVS scheme to

obtain more energy savings. Theoretically, the answer is positive
and it is due to the following theorem.

THEOREM 2. If intra-task DVS is allowed, then the optimal ex-
pected energy consumption of executingT is proportional to 1

dα−1

whered is the amount of time allotted to execute the task.

PROOF. Suppose that the worst case number of execution cycles
of T is W , and the probability thatT executes forx cycles isP (x)

Define the cumulative density function,cdf , associated with the
number of cycles,X , that taskT executes ascdf(x) = Prob(X ≤
x) =

Px

i=1 P (i) (cdf(0) = 0). Let the running speed for theith

cycle of T befi. Then the problem of finding the optimal speed
schedule ofT such that the expected energy consumption is min-
imized can be expressed as the following mathematical program
[9][15]

Minimize
X

1≤i≤W

(1 − cdf(i − 1)) fα−1
i

Subject to
X

1≤i≤W

1

fi

≤ d

and the solution [9][15] is
“

PW

j=1 (1− cdf(j − 1))
1
α

”α

dα−1
(1)

which is proportional to 1
dα−1 .

Lemma 1 and Theorem 2 show that the optimal expected energy
consumption for executing a task within a given amount of time us-
ing a fixed speed is of the same form as that using PACE: they are
both inversely proportional to the(α−1)st power of the time allot-
ted to the task. We can also see that using PACE for every task in
frame-based real-time systems would obtain more energy savings.
This is because Theorem 2 can serve as the base case for using
PACE as Lemma 1 does for not using PACE, and thus the proof
can proceed with just a slight modification (i.e., executingthe task
using the speed schedule for a single task computed by (1)). Con-
sidering the two base cases (Lemma 1 and Theorem 2), since the
expected energy consumption using PACE for a single task is less
than that using a constant speed [9], by induction it is easy to show
that using PACE in our DVS scheme would obtain more energy sav-
ings than not using PACE. This also indicates that our DVS scheme
can unify intra-task voltage scaling and inter-task voltage scaling in
order to minimize the expected energy consumption in the system.

However, applying the PACE technique for executing a task in
our DVS scheme is not recommended due to the following reasons:

1. If taking into account the issues discussed in Section 5, ap-
plying the PACE technique in practice will result in much
more energy consumption compared to the theoretical en-
ergy consumption computed by (1) in the proof of Theorem
2. Thus, using PACE could even consume more energy than
not using PACE. Our evaluation results in [14] supports this
conjecture.

2. Using PACE incurs more online scheduling overhead. This
is because before executing a task, the speed schedule for
PACE must be recomputed based on the time allotted to the
task. The time complexity isO(BM) whereB is the number
of bins in the histogram andM is number of discrete speeds
available in the processor [8]. In fact, the computation of
speed schedule is asymptotically inefficient considering that
it involvesO(B) floating-point calculations.

We present Theorem 2 only for sake of completeness of the the-
oretical results.
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4.2 On the Execution Order in A Frame
If all the tasks in the system are independent, we can executethe

tasks in arbitrary order inside a frame. Different order results in
different expected energy consumption. Finding the optimal order
that results in minimum expected energy consumption appears to
be a very hard problem [5]. Currently, we do not know of any so-
lution except for enumerating all orders of the tasks and comparing
the corresponding expected energy consumption. When the num-
ber of tasks is large, this brute-force approach becomes impractical.
Heuristics have been proposed in [4, 5]. The basic idea is to elimi-
nate the biggest uncertainty as early as possible. Through extensive

experiments, we found that the quantity
PWi

x=1
Pi(x)x

Wi
is a good met-

ric for measuring the uncertainty of taskTi. Thus, we sort the tasks
in increasing order of this metric before applying the algorithm in
Figure 1 and execute the tasks in the same order during each frame.

5. PRACTICAL CONSIDERATIONS
The algorithm and analysis in Section 4 are theoretically sound.

However, when applying this theory to practice, some of the as-
sumptions are no longer valid. In this section, we discuss the issues
that arise when our DVS scheme is used in practice and present
solutions to these issues.
Granularity In general, it is impractical to store the probability for
each cycle considering that a task usually takes millions ofcycles.
In practice, histogram is used to approximate the probability den-
sity function. We treat each bin of the histogram as asuper cycle.
Thus, the analysis in Section 4 remains unchanged for the proba-
bility density function being represented by a histogram.
Maximum and Minimum SpeedThe analysis in Section 4 is based
on the assumption that the processor speed can be tuned from 0to
infinity. However, every processor has a maximum speedsmax

and a minimum speedsmin. The speed that is used to execute
a task cannot violate this constraint. It is easy to fix this prob-
lem. When starting executing taskTi and having timed left, if
the speedWi

βid
< smin, then just usesmin. Similarly, if the speed

Wi

βid
> smax, then just usesmax. Also, if the resulting speed is

less than the speed obtained using the greedy scheme, we willuse
the greedy-derived speed; this is because greedy guarantees dead-
lines in the most aggressive form. It is easy to see that the resulting
schedule is still valid as long as the tasks can be scheduled using
the maximum speed when all tasks take WCEC.
Discrete SpeedsSo far we assume that the processor speed can
be tuned continuously. But real-world processors only provide a
finite set of discrete speeds. This problem can be easily fixeddue
to the fact that any speed can be simulated by using its two adjacent
discrete speeds [6].
Speed Change OverheadCurrently available commercial proces-
sors have speed change overhead, including time penalty anden-
ergy penalty. If there are too many speed changes in the system, for
example, when using the PACE technique to execute a task as de-
scribed in Section 4.1, speed change overhead cannot be ignored in
designing DVS schemes. Since we do not recommend using PACE
in our scheme, the number of speed changes in our scheme is at
mostN for continuous frequency and2N for discrete frequency,
we can ignore the speed change overhead in general (or the time
penalty is subtracted from the frame length).
Different Energy Consumption for Different Instruction In real-
ity, different machine instructions consume different energy. Thus,
the power consumption of executing a task not only depends onthe
running frequency, but also the instructions executed by the task.
To capture this, we can use differentc1 for different tasks in the
power functionc0 + c1f

α. It is easy to see that our analysis can

be done with only a slight modification. Note that all the existing
schemes cannot capture this subtlety.

6. CONCLUSIONS
In this paper, we study the problem of minimizing the expected

energy consumption in frame-based real-time embedded systems.
We make the following contributions: (1) We show that the dy-
namic behavior of tasks needs to be captured in the speed schedule
in order to minimize the expected (total) energy consumption in
the system; (2) We provide an optimal DVS scheme for processors
whose speed and voltage can be tuned continuously; (3) We extend
the theoretical framework to take into consideration the practical
issues, devising efficient solutions to the problems. Simulation re-
sults [14] using Intel XScale processor model on both synthetic and
real-life workloads show that our new DVS scheme achieves a sig-
nificant energy savings over the existing schemes; (4) We provide
the theoretical results on using PACE for multiple tasks that share
the same deadline, which is an open problem put forth in [9]. We
also discuss the practicality of the theoretical results and validate it
through simulation [14].

Future work will investigate the case of the problem where dif-
ferent tasks have different deadlines.
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[14] R. Xu, D. Mossé, and R. Melhem. Minimizing Expected Energy in Real-Time

Embedded Systems. Technical Report TR-05-125, Departmentof Computer
Science, University of Pittsburgh, 2005.
http://www.cs.pitt.edu/∼xruibin/publications/TR-05-125.pdf.

[15] R. Xu, C. Xi, R. Melhem, and D. Mossé. Practical PACE forEmbedded
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