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ABSTRACT time (WCET), creating the opportunity for dynamic slacklaeca-
tion to further slow down the future tasks. Furthermore, ére-
cution time of tasks is usually unpredictable before the@oaition.
Therefore, the design goal of DVS schemes becomiegmizing
the expected (total) energy consumpiiothe system.

In this paper, we show that failing to capture the dynamiclveh
ior of the tasks by the existing DVS schemes leads to subaptim
power management, and that it is possible to incorporatelyhe
namic behavior of the tasks into the speed schedule to, alithg
the dynamic slack reclamation technique, minimize the etque
(total) energy consumption in the system. The dynamic biehav
of the tasks is captured by the probability density functiérthe
workload of the tasks, which, in practice, is represented Iys-
togram. Profiling on training data sets, or online learnimgef cer-

We study the problem of minimizing energy consumption in-rea
time embedded systems that execute variable workloads r@nd a
equipped with processors having dynamic voltage scalingS)D
capabilities. This problem is about how to decide taskshing
speeds (speed schedule) before they are scheduled to exdéeut
this paper, we show that it is possible to incorporate theadyin
behavior of the tasks into the speed schedule to, along héthly-
namic slack reclamation technique, minimize the expedtaell}
energy consumption in the system.

Categories and Subject DescriptorsD.4.1 [Operating Systenfis
Process Management - Scheduling; D.@F¢rating SystenfisOr-
ganization and Design - Real-time systems and embeddezhsyst

General Terms: Algorithms tain number of frames, can be used to obtain the probabgihsity

Keywords: Rea|_time’ Dynamic V0|tage Sca"ng, Power manage- function of the workload of a task. Provided with the proﬂlﬁbl

ment, Processor Acceleration to Conserve Energy density functions for all the tasks, our DVS scheme can deitie
optimal speed schedule to minimize the expected energycons

1 INTRODUCTION tion in the system. Our DVS scheme is divided into two phases:

(a) the offline phase precomputes the speed schedule, which ¢
sists of the percentage of the time left before the deadllnged
to each task; (b) the online phase is invoked before the ¢xecu

Energy conservation is critically important for many réete
systems such as battery-operated embedded systems wheh ha

restricted energy budget. Dynamic voltage scaling (DVS)ictv of each task, obtaining the time left before the deadline @omd-
involves dynamically adjusting the voltage and frequentyhe puting the execution speed for the task. Both phases aréeetffic

CPU, has become a well-known technique in power managementi« oine phase runs in polynomial time and the online pluabe
for real-time embedded systems. Through DVS, quadratiggne  iskes constant time.

savings can be achieved at the expense of just linear peafaren
loss [13, 16]. Thus, the execution of tasks can be slowed down
in order to save energy, as long as the deadline constraantsoa
violated. A natural problem that rises from this contextasvtto and proof of correctness. In Section 5, we discuss issues whe
minimize the energy consumption in the system while stiletirey applying our optimal DVS scheme in practice. We end the paper

the deadlines. The problem is about determining a task'8pe  gection 6 with concluding remarks and future work direction
(or equivalently, determining the amount of time allottedattask)

before it is scheduled to execute in the system.

The systems under our consideration are frame-based leird re 2. CLOSELY RELATED WORK

This paper is organized as follows. We first briefly review the
closely related work in Section 2. The system and task magel a
described in Section 3. Section 4 presents our optimal DViSrse

time embedded systems that execute variable workload$ieet Real-time applications usually exhibit a large variatinrattual
systems, tasks usually run for less than their worst-caseution execution times [3, 12]. Thus, DVS schemes must take inte con
*This work has been supported by NSF grant ANI-0125704 and sideration unused computation ime of tasks.

ANI-0325353. DVSin real-tirr_le applications is categorizedmter-taskor intra-
taskvoltage scaling [7]. Inter-task schedules speed changesct
task boundary, while intra-task schedules speed chandb vei
single task. For inter-task voltage scaling, Mossé et &l] jn-
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the workload of the tasks, to minimize the expected energy co
sumption.

For intra-task voltage scaling, Lorch et al. [9] have shohat if
a task’s computational requirement is only known probatidally,
there is no constant optimal speed for the task and the esgheot
ergy consumption is minimized by gradually increasing sipae®
the task progresses, which is an approach namé&daessor Ac-
celeration to Conserve Enerdi?ACE). Practical PACE (PPACE)
[15] takes into consideration a number of practical issuesim-

proves the performance of PACE. However, PACE and PPACE have

only been studied for single task when considering hardtee
guarantee. In [10], PACE is used for soft real-time systernsrw

the system has only one task but the maximum speed is used wher?

the system has multiple tasks. In Section 4.1, we preserthédte
retical results of using PACE for multiple tasks with a segkrd
deadline (frame length).

AbouGhazaleh et al. [1] proposed a hybrid compiler-opegati
system intra-task DVS scheme for energy consumption of-time
sensitive embedded applications. Our scheme is implemexite
the operating system level and assumes no access to ajpplicat
source codes.

3. TASK AND SYSTEM MODEL

We consider a frame-based task model wihperiodic tasks
in the system, all ready at time zero. The task set is denoted b
T ={T1,T»,...,Tn}. Eachtaskl; (1 < i < N) is character-
ized by its worst-case execution cycles (WCB;) and the proba-
bility density function of its execution cycld3 (x), which denotes
the probability that task; executes forr (1 < z < W;) cycles.
Obviously, we havé """, Pi(z) = 1 and P;(W;) # 0. All task
periods are identical and all task deadlines are equal topgkeod.

The common deadline/period (also known as frame lengthgis d
noted byD. The execution of the frame is to be repeated and all
tasks must be executed during each frame. There are twdpssi
relationships among the tasks: (1) they are all independérich
means that the execution order is flexible; (2) they must @eec
consecutively in a specific order, where the tasks can beetiees
sequential sections of a single application.

The tasks are to be executed on a variable voltage proceghor w
the ability to dynamically adjustits frequency and voltageappli-
cation requests. We assume that the processor is the majer po
consumer, which is true for many embedded systems. We also as
sume that the processor frequency can be adjusted consilyuou
from O to infinity (we shall discuss the more realistic casesh as
the processor has minimum and maximum frequencies, in@ecti
5). The processor power consumption when running at freguen
fisco+ aif* (o is a constant that is at least 2) whergand
c1 denote the power consumption of the processor when idle and
the maximum dynamic power, respectively. The dynamic power
is determined by the processor operating frequency and the m
imum dynamic power is the dynamic power consumed when the
processor is operating at the maximum frequency. We asshanhe t
the system is never turned off, therefore we can igngrandc;
because they do not affect the analysis results. Thus, teegsor
power consumption used in the analysis(g) = /<. We assume
that the power consumption for all other components in tistesy
is constant, and thus can be ignored without affecting ttadyais
results.

4. THE OPTIMAL DVS SCHEME

In this section, we will give the details of our new DVS scheme
which is based on an important property of optimal expected e
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ergy consumption of a sequence of tasks. We first assume inter
task voltage scaling, and we consider intra-task voltagérggin
Section 4.1. Next, let us look at a preliminary lemma.

LeEmMA 1. Both the optimal worst-case and expected energy
consumption of executing a single téBlare proportional todal,1
(« is defined in Section 3) whedids the amount of time allotted to
execute the task.

PROOF Suppose thaltl” is the worst-case number of execution
cycles ofT', and P(x) is the probability thafl” executes for: cy-
cles. Obviously, we should use the lowest possible spge)ds(uch
thatT" will finish within time d in the worst case. Therefore, the
ptimal worst-case energy consumption of execufing

(5)2= (%) =2

d d
and the optimal expected energy consumption of exec(tiigy

éP(x)p <%) e Wl YW P

W dafl
which are both proportional tgalj. |

W=
d

Interestingly, the result of Lemma 1 still holds for mulgghsks.

THEOREM 1. The optimal expected energy consumption of ex-
ecuting N tasksTi,T», ..., Tn consecutively is proportional to
Dj,l whereD is the amount of time allotted to execute the tasks.

PROOF Suppose that the worst-case number of execution cy-
cles ofT; is W;, and the probability thal; executes for: cycles
is P;(z). Let the optimal expected energy consumption of execut-
ing tasksT;, Ti41, ..., Tn consecutively with allotted timé be
denoted byF (7, d). Therefore, we are to prove that(1, d) is pro-
portional to—-—. This can be done by induction.

The base case fdr' (N, d) is obviously true by Lemma 1.

In the induction step, assume that: + 1, d) is proportional to

——, thatis, E(i + 1,d) = Yitl whereC;.; only depends on
Wj andPj(z) (i + 1 < j < N). To computeE (i, d), we first
compute the expected energy consumptiginof executing tasks
T;, Tit1, ..., T with allotted timed when allotting timed” out of

time d for taskT;. The running speed fdF; is obviously‘;"}, and
the time left for executing tasks 1, Ti42,...,In isd — x/ ‘;Vf

whenT; has only executed cycles. Therefore,

W.
- Wi Wi Cit1
E = ZPi(x) <p< ):p/ —1—7})
= d’ d (d—uz/FH)t
W; a—1
Wi Cit1
3o (+(5) S
Letd = Bdwhere0 < 3 < 1. Thus,
. Na—1 .
S Pi() <$ (VZ) + Q,CEL%)
’ Wi
E = dafl
w; w, \ ot W;  Pi(x)Cit1
2w Pi(@) ( 5 ) +2 0 et
= dafl
f(B) +9(8)
- dafl
. . a—1 . i (2)C;
wheref (3) = 32,7, Pi(o)e (%) andg(8) = 1Y, e
Wi

Let

Ci = min (f(8)+

0<B<1

9(8))



Then
C;

E(i,d) = min(E') = pr

Thus proved the claim. [

Theorem 1 shows that the optimal expected energy consumptio
of a sequence of tasks is of the same form as that of a sindle tas
that is, both are inversely proportional to the — 1)st power of
the allotted time. This is a very powerful result becausaitdes

obtain more energy savings. Theoretically, the answer &itige
and it is due to the following theorem.

THEOREM 2. Ifintra-task DVS is allowed, then the optimal ex-
pected energy consumption of execufihig proportional toda;,1
whered is the amount of time allotted to execute the task.

PrROOF Suppose thatthe worst case number of execution cycles
of T'is W, and the probability thaf’ executes for: cycles isP(x)

Define the cumulative density functionf, associated with the
number of cyclesX, that taski’ executes asdf (z) = Prob(X <

us to treat a sequence of tasks as a single task. When a sequenc;) — 7, P(3) (cdf(0) = 0). Let the running speed for thé"

of tasks are to be executed, they are partitioned into twtsptre
first task and the rest of the tasks, which can be treated amske
Thus, the problem of allotting time to multiple tasks is redd
to allotting time to just two tasks, which can be efficientbh&d
thanks to the nice form of the power function. In fact, thishe
basic idea of the proof of Theorem 1.

The proof of Theorem 1 indicates that in order to minimize the
expected energy consumption of executing a sequence afatskn
a given amount of time, one should allocate to the first task a fixed
percentage of and set the speed such that the first task is guaran-
teed to finish within the time allotted to it in the worst cag¢hen
the first task finishes, the same procedure can be appliecsieely
to the rest of the tasks. The proof of Theorem 1 also shows bow t
go about computing the time allocation percentage for eask. t
As in the proof, letC; denote the constant in the optimal expected
energy consumption of executing, T;1, . . ., Tv consecutively
andj; denote the time allocation percentage Tor We compute
C; andg; in the reverse order. That is, first compdte, 8w, then
Cn-1,BNn-1,...,andlastC, 1. The efficiency of the algorithm
depends on how to find the minimum value &f3) + g(3) as in
the proof. In fact, by deriving the first and second derivediof
f(B) andg(B3), we find thatf(3) is a convex decreasing function
andg(p) is a convex increasing function. It is easy to show that
f(B) + g(B) is a convex function with only one minimum when
0 < B < 1. Thus, finding the minimum value ¢f(3) + g(3) can
be efficiently solved using existing minimization methosisch as
the gradient descent. The algorithm for computing timecaltimn
percentages is shown in Figure 1.

ALGORITHM Offline({W;}, {Pi(z)})
Oy =1
O = Wa™ S Py (a)a

fori := N — 1 downtol do
F(8) = 3% P(a)e
Ci; = min F(B)

0<B<1

Bi = argminF (f3)
0<B<1

return{C;} and{g;}
END

a—1
wW; Pi(z)Ciq1
) + Zz:l (1,2&)&71
Wi

W,
B

N o g A~ wbhe

Figure 1: The offline phase

The algorithm in Figure 1 is done offline. The online schedul-
ing phase is straightforward: when starting executing tBs&nd
having timed left for executindl;, T;+1, ..., Tn, Set the speed to

i

Bid®
4.1 Enabling Intra-Task DVS

So far we use a fixed speed for executing a task and never change

the speed during the execution. One would wonder whetheawe ¢
apply the PACE technique to execute a task in our DVS scheme to
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cycle of T be f;. Then the problem of finding the optimal speed
schedule ofl" such that the expected energy consumption is min-
imized can be expressed as the following mathematical progr
[9](15]

Mnimze % (1—cdf(i—1)f"
1<i<W
Subject to > igd
1<i<W fi

and the solution [9][15] is

. 1\«
(S (= edr(G - 1)%)
dafl
which is proportional to; 7.

@)

O

Lemma 1 and Theorem 2 show that the optimal expected energy
consumption for executing a task within a given amount oétimns-
ing a fixed speed is of the same form as that using PACE: they are
both inversely proportional to thex — 1)st power of the time allot-
ted to the task. We can also see that using PACE for every ask i
frame-based real-time systems would obtain more energggsv
This is because Theorem 2 can serve as the base case for using
PACE as Lemma 1 does for not using PACE, and thus the proof
can proceed with just a slight modification (i.e., executimgtask
using the speed schedule for a single task computed by (b))- C
sidering the two base cases (Lemma 1 and Theorem 2), since the
expected energy consumption using PACE for a single tagisis |
than that using a constant speed [9], by induction it is easpbw
that using PACE in our DVS scheme would obtain more energy sav
ings than not using PACE. This also indicates that our DV&swh
can unify intra-task voltage scaling and inter-task vadtagaling in
order to minimize the expected energy consumption in theegys
However, applying the PACE technique for executing a task in
our DVS scheme is not recommended due to the following reason

1. If taking into account the issues discussed in Sectiomp5, a
plying the PACE technique in practice will result in much
more energy consumption compared to the theoretical en-
ergy consumption computed by (1) in the proof of Theorem
2. Thus, using PACE could even consume more energy than
not using PACE. Our evaluation results in [14] supports this
conjecture.

. Using PACE incurs more online scheduling overhead. This
is because before executing a task, the speed schedule for
PACE must be recomputed based on the time allotted to the
task. The time complexity i©(B M) whereB is the number
of bins in the histogram an#l/ is number of discrete speeds
available in the processor [8]. In fact, the computation of
speed schedule is asymptotically inefficient considetiag t
it involvesO(B) floating-point calculations.

We present Theorem 2 only for sake of completeness of the the-
oretical results.



4.2 Onthe Execution Order in A Frame

If all the tasks in the system are independent, we can exéueite
tasks in arbitrary order inside a frame. Different ordewuttssin
different expected energy consumption. Finding the oftonger
that results in minimum expected energy consumption ajggear
be a very hard problem [5]. Currently, we do not know of any so-
lution except for enumerating all orders of the tasks andgamng
the corresponding expected energy consumption. When time nu
ber of tasks is large, this brute-force approach becomesitipal.
Heuristics have been proposed in [4, 5]. The basic idea ifrtd-e
nate the biggest uncertainty as early as possible. Thraoughgve

W,
experiments, we found thatthe quanl@y;lwé—m is agood met-
ric for measuring the uncertainty of tak Thus, we sort the tasks
in increasing order of this metric before applying the aildpon in
Figure 1 and execute the tasks in the same order during esob fr

5. PRACTICAL CONSIDERATIONS

The algorithm and analysis in Section 4 are theoreticallynsio
However, when applying this theory to practice, some of the a
sumptions are no longer valid. In this section, we discuséstbues

be done with only a slight modification. Note that all the &rig
schemes cannot capture this subtlety.

6. CONCLUSIONS

In this paper, we study the problem of minimizing the expécte
energy consumption in frame-based real-time embeddedragst
We make the following contributions: (1) We show that the dy-
namic behavior of tasks needs to be captured in the speedidehe
in order to minimize the expected (total) energy consunmpitio
the system; (2) We provide an optimal DVS scheme for proassso
whose speed and voltage can be tuned continuously; (3) \Waext
the theoretical framework to take into consideration thecpcal
issues, devising efficient solutions to the problems. St re-
sults [14] using Intel XScale processor model on both sytitlaad
real-life workloads show that our new DVS scheme achievég-a s
nificant energy savings over the existing schemes; (4) Weighzo
the theoretical results on using PACE for multiple tasks #feare
the same deadline, which is an open problem put forth in [9%. W
also discuss the practicality of the theoretical resultb\aiidate it
through simulation [14].

Future work will investigate the case of the problem whefe di

that arise when our DVS scheme is used in practice and presenterent tasks have different deadlines.

solutions to these issues.

Granularity In general, it is impractical to store the probability for
each cycle considering that a task usually takes millionsyofes.

In practice, histogram is used to approximate the proligluin-
sity function. We treat each bin of the histogram asuper cycle
Thus, the analysis in Section 4 remains unchanged for thigapro
bility density function being represented by a histogram.
Maximum and Minimum Speed The analysis in Section 4 is based
on the assumption that the processor speed can be tuned fimom 0
infinity. However, every processor has a maximum speggl.
and a minimum speed,;,. The speed that is used to execute
a task cannot violate this constraint. It is easy to fix thisbpr
lem. When starting executing tagk and having timed left, if
the speed}% < Smin, then just use,,.,. Similarly, if the speed

Wji > Smaz, then just use ... Also, if the resulting speed is
I%ss than the speed obtained using the greedy scheme, weswill
the greedy-derived speed; this is because greedy guasateaad-
lines in the most aggressive form. It is easy to see that thdtieg
schedule is still valid as long as the tasks can be schedsiad u
the maximum speed when all tasks take WCEC.

Discrete SpeedsSo far we assume that the processor speed can
be tuned continuously. But real-world processors only jpi@a
finite set of discrete speeds. This problem can be easily fixed

to the fact that any speed can be simulated by using its twarad}
discrete speeds [6].

Speed Change Overhea@urrently available commercial proces-
sors have speed change overhead, including time penaltgm=and
ergy penalty. If there are too many speed changesin thersykie
example, when using the PACE technique to execute a task-as de
scribed in Section 4.1, speed change overhead cannot be@jimo
designing DVS schemes. Since we do not recommend using PACE
in our scheme, the number of speed changes in our scheme is a
most N for continuous frequency ar@iN for discrete frequency,

we can ignore the speed change overhead in general (or the tim
penalty is subtracted from the frame length).

Different Energy Consumption for Different Instruction In real-

ity, different machine instructions consume different rgye Thus,

the power consumption of executing a task not only dependson
running frequency, but also the instructions executed lpytaisk.

To capture this, we can use different for different tasks in the
power functionco + c1 f*. It is easy to see that our analysis can
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