
Single Appearance Schedule with Dynamic Loop Count for
Minimum Data Buffer from Synchronous Dataflow Graphs

Hyunok Oh
Center for Embedded
Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

oho@iris.snu.ac.kr

Nikil Dutt
Center for Embedded
Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

dutt@ics.uci.edu

Soonhoi Ha
School of EECS

Seoul National University
Seoul,151-742,Korea

sha@iris.snu.ac.kr

ABSTRACT
In this paper, we propose a new single appearance schedule
for synchronous dataflow programs to minimize data mem-
ory and code memory size at the same time. When the
software code is automatically synthesized from the dataflow
program graphs, a single appearance schedule promises only
one appearance of each node definition in the generated
code. While several heuristics have been developed to find a
single appearance schedule, they all have to pay significant
amount of data memory overhead compared with a buffer
optimal schedule. The key idea of the proposed technique is
to make a dynamic decision of loop count to make a sched-
ule quasi-static. The proposed quasi-static static schedule
produces a single appearance schedule code with minimum
data memory requirement. We prove that the proposed
scheduling technique is optimal for a chain-structured graph
in terms of data memory requirement while maintaining the
single appearance schedule. The only penalty for the pro-
posed technique is slight performance overhead of computing
loop counts dynamically. Experimental results show that
the proposed algorithm reduces 20% total memory with less
than 1% performance overhead compared with the previous
single appearance schedule algorithms for CD2DAT and non
uniform filter bank applications.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Data-flow language

General Terms
Algorithm, Languages

Keywords
Synchronous Dataflow, Single Appearance Schedule, Mem-
ory Optimization,Dynamic Loop Count,Automatic Code Syn-
thesis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

1. INTRODUCTION
As system complexity increases and fast design turn-around

time becomes important, high level software design method-
ologies become critical. In the context of DSP applica-
tions, there have been several approaches to automatic code
generation from block diagram specification including COS-
SAP [1], GRAPE [10], and Ptolemy [7]. It is also the main
concern of this paper.

In a hierarchical dataflow program graph, a node, or a
block, represents a function that transforms input data streams
into output streams. The functionality of an atomic node is
described in a high-level language such as C or VHDL. An
arc represents a channel that carries streams of data samples
from the source node to the destination node. The number
of samples produced (or consumed) per node firing is called
the output (or the input) sample rate of the node. In case
the number of samples consumed or produced on each arc
is statically determined and can be any integer, the graph
is called a synchronous dataflow graph (SDF) [11] which is
widely adopted in aforementioned design environments. We
illustrate an example of SDF graph in Figure 1(a). Each
arc is annotated with the number of samples consumed or
produced per node execution.

A

B

C

2
1

2 3

1
3

(a)

(b)
3(A2B)2C

main()
{
int i,j,k;
for(;;) {

for(i=0;i<3;i++) {
// A’s code
for(j=0;j<2;j++) {

// B’s code
}}

for(k=0;k<2;k++){
// C’s code

}}}
(d)

A

B

C

(c)

Figure 1: (a) SDF graph example, (b) a scheduling
result, (c) a code template, and (d) buffer allocation

To generate a code from the given SDF graph, the order
of block executions is determined at compile time by static
scheduling of the graph. Since a dataflow graph specifies
only partial orders between blocks, there are usually several

157

valid schedules that satisfy the partial ordering. Figure 1(b)
shows one of many possible scheduling results in a list form,
where 2C means that node C is executed twice. The sched-
ule will be repeated with the streams of input samples to the
application. A code template according to the schedule of
Figure 1(b) is shown in Figure 1(d). The block definition is
inlined in the generated code, it is called inline-style. When
a software code is automatically synthesized from an SDF
graph, buffer space is allocated to each arc to store the data
samples between the source and the destination blocks as
shown in Figure 1 (c). The total buffer size becomes 14 in
this example. The number of allocated buffer entries should
be no less than the maximum number of samples accumu-
lated on the arc at run-time.

If a schedule contains only one lexical appearance of each
node, this schedule is called a single appearance schedule(SAS)
(e.g. as 3(A2B)2C in Figure 1(b)). A single appearance
schedule minimizes the code memory size since each block
has a single definition in a generated code. Consider an-
other schedule that is a non single appearance schedule,
2(A2B)C(A2B). Then, the generated code has two instances
for nodes A and B while it reduces the data buffer size from
14 to 10 in Figure 1. In general while an SAS is preferable
to minimize the code memory size, it requires larger buffer
memory than a non SAS. The buffer size on each arc in
a SAS is no less than the least common multiplier of the
producing sample rate and consuming sample rate for the
arc.

In this paper we propose a novel single appearance schedul-
ing technique whose key idea is introducing a dynamic de-
cision of loop count to make a schedule quasi-static. The
proposed quasi-static schedule produces a single appearance
schedule code with minimum data memory requirement. Sec-
tion 2 defines some notations and section 3 reviews the re-
lated works. In section 4, we introduce motivational ex-
amples. The proposed technique is explained in section 5.
We will show experimental results in section 6 and make a
conclusion in section 7.

2. TERMINOLOGY
We use the following notation to represent the parameters

of arc a and node v in SDF graphs.
src(a) : the source node of a that produces samples on

the arc
sink(a) : the sink node of a that consumes samples from

the arc
p(a) : the number of samples produced by an invocation

of src(a)
c(a) : the number of samples consumed by an invocation

of sink(a)
d(a) : the number of initial delay samples on arc a
inv(v) : the total number of invocations of node v per

period.
For arc AB in Figure 1, src(AB) = A, sink(AB)=B,

p(AB)=2, c(AB)=1, d(AB)=0, inv(A)=3, inv(B)=6 and
inv(C)=2.

3. RELATED WORKS
Since minimization of memory requirements in embedded

system is crucial, many researches have been performed to
find a schedule to minimize data memory and/or code mem-
ory.

Ade et al. [3, 4] have developed the formula on the upper
bounds on the minimum buffer memory requirement for a
number of restricted subclasses of delayless, acyclic graphs,
including arbitrary-length chain-structured graphs. Some of
these bounds have been generalized to handle delays in [5]
which has shown that the problem of constructing a schedule
that minimizes the buffer requirement is NP-complete.

Ritz et al. [15, 16] have proposed a buffer sharing op-
timization among a subset of single appearance schedules,
called flat single appearance schedule. Since the flat SAS
does not allow nested loops, it usually requires large buffer
memory even though it shares buffers allocated on each arc.
Murthy et al. have developed several heuristics that pro-
duce SAS with nested loop: APGAN, RPMC, and GDPPO
[6, 13]. These algorithms have an inherent limitation that
they require at least buffer memory of LCM(p(a), c(a)) for
each arc a.

To overcome the limitation of SAS, some techniques have
been developed, which give up the single appearance con-
straint for overall memory saving [17, 18, 8, 9]. These
approaches observe the trade-off of code and data memory
size and try to minimize the code memory overhead by gen-
erating function-style codes instead of inline-style code. By
defining each block as a function call, a generated code from
a non SAS has only one definition of each block but paying
the extra overhead of function calls.

Buffer sharing algorithms [12, 14] have been proposed to
minimize data memory. These sharing algorithms analyze
buffer life time and share buffers of which life-times are not
overlapped with each other.

The proposed technique is unique and novel that it mini-
mizes the data memory while preserving the single appear-
ance of block definition in the inline-style code.

4. MOTIVATION
As discussed earlier, single appearance scheduling algo-

rithms pay huge penalty of data memory for a graph with
large sample rate changes. Moreover, no SAS exists for
cyclic graphs in general. The following two examples show
these limitations of SAS. With those examples we will in-
troduce the proposed scheduling technique.

The first example is shown in Figure 2(a). The previ-
ous SAS algorithms produce 2A3B5C as the schedule result,
which requires 6 and 15 data buffers on arc AB and arc BC
respectively. If a buffer optimal non SAS algorithm is ap-
plied, the schedule becomes ABCABCCBCC (= 2(ABC)
CB2C) requiring 4 and 7 data buffers, which is minimum
buffer size while additional code memory is necessary to rep-
resent multiple appearances of node B and C in a code.

To avoid the multiple lexical appearances of nodes in buffer
optimal non SAS we propose a dynamic loop count single
appearance scheduling called dlcSAS which converts a buffer
optimal non SAS result to a single appearance schedule while
preserving the minimum buffer size. Examine the non SAS
in Figure 2 (b). In the buffer optimal schedule, whenever
a sink node has enough samples on its input arc it should
be executed. Hence, node B can be executed twice after the
second invocation of node A while node B can be executed
only once after the first invocation of node A. In the pro-
posed dlcSAS, we notate this varying loop count of node B
as 2(A{1,2}B) meaning that the loop count values of node
B are 1 and 2 alternatively every invocation of node A. We
can compute the loop count values of node B by dividing the

158

number of accumulated samples by the input sample rate of
node B. For instance, in Figure 2 (c), the loop count for node
B (= ka) is the number of samples on arc AB (= ra+3) over
the input rate of node B (= 2), which is ka = (ra + 3)/2.
Note that ra indicates the number of samples on arc AB
after node B is fired and before node A is executed. There-
fore, the number of accumulated samples (= ra) is added
by the produced number and subtracted by the consumed
number.

Similarly, node C can be executed twice after the second
and the third invocations of node B while it can be executed
only once after the first invocation of node B. The schedule
is represented as 3(B{1,2,2}C) in the proposed dlcSAS. By
combining the two schedules, we obtain the final dlcSAS,
2(A{1,2}(B{1,2,2}C)). The generated code template from
this dlcSAS is shown in Figure 2 (c). Note that the gener-
ated code has a single appearance of each block while pre-
serving the minimum buffer memory as the buffer optimal
non SAS. The generated code requires run time overhead of
determining the loop count dynamically. However this per-
formance overhead becomes negligible when the code size of
each node becomes large.

main()
{
int n,i,j, a[4],b[7],ra=0,ka,rb=0,kb;
for(;;) {
for(n=0;n<2;n++) {
/* A’s code */
ka=(ra+3)/2; ra += 3-2*ka;
for(i=0;i<ka;i++) {
/* B’s code */
kb=(rb+5)/3; rb += 5-3*kb;
for(j=0;j<kb;j++) {

/* C’s code */
}}}}}

(c)

A B

(a)

SAS : 2A3B5C
Buffer-optimal non SAS :

ABCABCCBCC
dlcSAS :

2(A {1,2}(B {1,2,2}C))

(b)

3 2 C35

Figure 2: (a) An SDF graph (b) schedule results and
(c) generated code by dlcSAS

The second example illustrates a cyclic graph that has no
valid SAS as shown in Figure 3 where there are 4 initial
delay samples on arc BA. 2ABAB is the only valid schedule
and it is a buffer optimal non SAS. We can translate it as
a dlcSAS that is 2({2,1}A B). It means that the first loop
count of node A is 2 and the second is 1.

For the simple examples discussed above, dlcSAS may be
regarded as a different representation of a buffer optimal non
SAS. Every non SAS can be transformed into a dlcSAS by
storing for each node loop count values as many as schedule
length and setting 1 to loop count of a node when the node
appears in non SAS. For instance, when ABAC schedule
is given, four loop count values are assigned to every node
A, B, and C. And then since node A is executed first and
third, {1,0,1,0} is assigned. Similarly {0,1,0,0} and {0,0,0,1}
are assigned to node B and C respectively. Therefore we
can build the equivalent dlcSAS of 4({1,0,1,0}A {0,1,0,0}B
{0,0,0,1}C). We are, however, interested in simple expres-
sion of loop count computation to minimize code memory
and performance overhead. Therefore if we restrict the dlc-
SAS to contain only simple computation then a buffer op-
timal non SAS may not be represented as a dlcSAS since if
we can represent it as a dlcSAS with simple expression then

we can find a buffer optimal schedule by computing the ex-
pression, while finding a buffer optimal schedule is known
as NP problem [13].

main()
{
int i,j, a[4],b[4],r=0,h;
for(;;) {
for(i=0;i<2;i++) {

if(r>=1) {h=1;r-=1;}
else {h=2;r+=1;}
for(j=0;j<h;j++) {

// A’s code
}
// B’s code

}}}
(c)

A B

(a)

SAS : N/A
Buffer optimal non SAS :
2ABAB

dlcSAS : 2({2,1}A B)
(b)

2 3

2 3
4

Figure 3: (a) An SDF graph with delay samples (b)
schedule results and (c) generated code by dlcSAS

5. DYNAMIC LOOP COUNT SINGLE AP-
PEARANCE SCHEDULING ALGORITHM

5.1 Dynamic Loop Count for Two Nodes
In this section, we first explain how to compute the dy-

namically varying count values and generate a code for the
variation. For a pair of nodes, we can change the loop count
value for a source node or a sink node to represent a buffer
optimal schedule.

When we change the loop count value of the source node,
the source node should be executed multiple times to pro-
duce the sufficient number of samples for the sink node. Let
the accumulated number of samples on the arc as r. Then
the loop count h of the source node should be no less than

⌈ c(a)−r

p(a)
⌉. It means that the number of samples on the arc

after the source node execution should be no less than c(a).
After executing both nodes, the accumulated number r is
updated as r+h ∗ p(a) − c(a). For the minimum buffer re-
quirement, the loop count of the source node is set to that

bound as denoted as p(a)hc(a) or p(a)h
d(a)
c(a) when d(a) > 0.

The dlcSAS of Figure 3 belongs to this case.
When we change the loop count value of the sink node, the

sink node can be executed until the accumulated samples are
exhausted. Since there are r + p(a) samples after execution
of the source node and the sink node consumes c(a) samples
per execution, the sink node can be executed no more than

⌊ r+p(a)
c(a)

⌋ times. Let k be the loop count of the sink node.

After executing both nodes, there are r + p(a) − k ∗ c(a)
samples on the arc. For the minimum buffer requirement,
the loop count of the sink node is set to that bound as

denoted as p(a)kc(a) or p(a)k
d(a)

c(a) when d(a) > 0. The dlcSAS

of Figure 2 belongs to this case. Note that users are free
to choose any representation between loop count for source
node and sink node.

Equation 1 summarizes the formulation of dynamic loop
count in both cases.

Equation 1. For each arc a, r = d(a) initially and

(i) if a schedule is (h src(a))(sink(a)), h = ⌈ c(a)−r

p(a)
⌉ and

r = r + h ∗ p(a) − c(a).

159

(ii) if a schedule is (src(a))(k sink(a)), k = ⌊ p(a)+r

c(a)
⌋ and

r = r + p(a) − k ∗ c(a).

5.2 Optimization of Dynamic Loop Count
Computation

The computation of dynamic loop count value as shown
in Equation 1 requires ceiling or floor function. To avoid the
ceiling or floor function, we devise another equation for the
loop count computation as Equation 2.

Equation 2. Let h denote a dynamic loop count variable
for a source node, k for a sink node , and r the number of
accumulated samples on arc a. The initial value of r is d(a).

(i) For the schedule of (h src(a))(sink(a)),
if r ≥ c(a)− (n−1)∗p(a) then h = n−1 and r = r+(n−

1) ∗ p(a)− c(a); otherwise h = n and r = r + n ∗ p(a)− c(a)

where n = ⌈ c(a)
p(a)

⌉.

(ii) For the schedule of (src(a))(k sink(a)),
if r ≥ (n+1)∗c(a)−p(a) then k = n+1 and r = r+p(a)−

(n + 1) ∗ c(a); otherwise k = n and r = r + p(a) − k ∗ c(a)

where n = ⌊ p(a)
c(a)

⌋.

Proof. Equation 2 comes from Equation 1 . Consider
the case (i). At most h∗p(a)−c(a) samples are accumulated
every sink node execution. If r ≥ c(a)−(n−1)∗p(a) then h =

⌈ c(a)−r

p(a)
⌉ ≤ ⌈ c(a)−c(a)+(n−1)∗p(a)

p(a)
⌉ = n− 1, which decreases r

since (n − 1) ∗ p(a) − c(a) = p(a) ∗ (⌈ c(a)
p(a)

⌉ − c(a)
p(a)

− 1) < 0.

Therefore r < (c(a) − (n − 1) ∗ p(a) + (n ∗ p(a) − c(a)) =

p(a) and h = ⌈ c(a)−r

p(a)
⌉ ≥ ⌈ c(a)−p(a)

p(a)
⌉ ≥ ⌈ c(a)

p(a)
⌉ − 1 = n − 1.

Consequently if r ≥ c(a) − (n − 1) ∗ p(a) then h = n − 1;
otherwise h = n since h ∗ p(a) + r ≥ c(a), c(a) − h ∗ p(a) ≤
r < c(a) − (n − 1) ∗ p(a) and h > n − 1.

Consider the case (ii). If r ≥ (n + 1) ∗ c(a) − p(a) then

k = ⌊ p(a)+r

c(a)
⌋ ≥ ⌊ p(a)+(n+1)∗c(a)−p(a)

c(a)
⌋ = n + 1. Since r <

c(a), k ≤ n + 1. Therefore if r ≥ (n + 1) ∗ c(a) − p(a)
then k = n + 1; otherwise k = n since p(a) + r ≥ k ∗ c(a),
k ∗ c(a)− p(a) ≤ r < (n+ 1) ∗ c(a)− p(a) and k < n +1.

Even though Equation 2 looks more complex than Equa-
tion 1, it is actually simpler since p(a), c(a) and n are con-
stant values. For instance, when p(a) = 3 and c(a) = 7, the
generated code of the loop count computation becomes ”if(r
≥ 1) { h=2; r-=1;} else {h=3;r+=2;}” by Equation 2. On
the other hand, the code would be ”h = ceil((7-r)/3); r +=
3*h-7;” by Equation 1. The code by Equation 2 consists
of a comparison, an assignment, and an arithmetic opera-
tion while the code by Equation 1 needs an assignment, 5
arithmetic operations, and a ceiling function.

Further optimization can be applied when a loop count
value is 0 or 1. Consider Figure 4. When the loop count for
a source node is changed, the generated code is represented
like Figure 4 (b). Since the dlcSAS is ({1,0,1,0,1,0,0}A)B,
the loop count is dynamically computed every execution of
node B. However, the computation overhead can be reduced
further as shown in Figure 4 (c). where the ”for” loop is
replaced by an ”if” statement and the computation of loop
count value becomes simpler.

The code template of this optimization is shown in Equa-
tion 3.

Equation 3. (i) A code for a dynamic loop count for a
source node when p(a) > c(a):

main()
{
int i,j, a[9],r=0,h;
for(;;) {
if(r>=3) { h=0;r-=3;}
else {h=1; r+=4;}
for(i=0;i<h;i++) {

// A’s code
}
// B’s code

}}
(b)

main()
{
int i,j, a[9],r=0,h=0;
for(;;) {

if(h==0) {
// A’s code
if(r>=2) { h=2;r-=2;}
else {h=1; r+=1;}

} h--;
// B’s code

}}
(c)

A B

(a)

7 3

Figure 4: (a) An SDF graph (b) Unoptimized code
(b) optimized code

int h=0, r=0;
...
if(h==0) {
// source node’s code
if(r ≥ (n+1)*c(a)-p(a)) {h=n;r-=(n+1)*c(a)-p(a);}
else {h=n-1; r+=p(a)-n*c(a);}

}else h--;

// sink node’s code

where n = ⌊ p(a)
c(a)

⌋.

(ii) A code for a dynamic loop count for a sink node when
p(a) < c(a):

int k=n-1,r=0;
...
// A source node’s code
if(k==0) {
// A sink node’s code
if(r ≥c(a)-(n-1)*p(a)) {k=n-2;r-=c(a)-(n-1)*p(a);}
else k=n-1;r+=n*p(a)-c(a);

} else k--;

where n = ⌈ c(a)
p(a)

⌉.

This optimization is useful when we should apply a dy-
namic count for a source node when p(a) > c(a) or a dy-
namic count for a sink node when p(a) < c(a). Consider
Figure 5. If we want to avoid zero loop count value, we can
make the dlcSAS between node A and B as ”A{1,2}B” and
”{2,1}BC” between B and C. Unfortunately, the two loop
counts for node B are conflicting each other since {1,2}B
and {2,1}B cannot be expressed simultaneously. There-
fore the proposed dlcSAS scheduling algorithm generates
”A{1,2}(B{0,1,1}C)”. For the loop count computation of
node C, Equation 3 can be used to obtain the code shown
in Figure 5 (c).

If p(a) divides c(a) or c(a) does p(a) then we can generate
more compact code as shown in Equation 4, since we do not
need to update r which indicates the number of accumulated
samples.

160

main()
{
int n,i,j, a[4],b[4],ra=0,ka,rb=0,

kb=1;
for(;;) {

for(n=0;n<2;n++) {
for(i=0;i<3;i++) {

// A’s code
if(ra>=1) {ka=2;ra-=1;}
else {ka=1;ra+=1;}
for(j=0;j<ka;j++) {

// B’s code
if(kb==0) {

// C’s code
if(rb>=1) {kb=1; rb-=1;}
else {kb=0; rb+=1;}

} else kb--;
}}}}}

(c)

A B

(a)

SAS : 2A3B2C
Buffer-optimal non SAS :

2(AB)CBC
dlcSAS : 2(A{1,2}(B{0,1,1}C))

(b)

3 2 C2 3

Figure 5: (a) An SDF graph (b) schedule results and
(c) generated code by dlcSAS

Equation 4. (i) A code for a loop count for a source
node when p(a) > c(a) and c(a) divides p(a):

int h=0;
...
if(h==0) {

// A source node’s code
h = n-1;

} else h--;
// A sink node’s code

where n = p(a)
c(a)

.

(ii) A code for a dynamic loop count for a sink node when
p(a) < c(a) and p(a) divides c(a):

int k=n-1;
...
// A source node’s code
if(k==0) {

// A sink node’s code
k = n-1;

} else k--;

where n = c(a)
p(a)

.

5.3 Dynamic Loop Count for Chained
Structure SDF Graphs

So far we have explained how to construct a dlcSAS be-
tween two nodes. In this section, we explain how to con-
struct a dlcSAS for the entire graph. First we will explain a
scheduling algorithm for a chain-structured graph as shown
in Figure 6. We can cluster nodes in this graph in various
ways such as A((BC)D), (AB)(CD), and so on. For example,
the APGAN SAS algorithm clusters the graph to A((BC)D)
and generates the schedule as 40A3(5(2B3C)3D) which re-
quires 141 data buffers. However, the cluster of A((BC)D)
is not feasible for dlcSAS. Here is the reason. First we have
to make a dlcSAS for (BC) cluster. Assume that the loop
count of node C is dynamic. Then the schedule becomes (B

3k2 C). Now we have to make the next dlcSAS for the clus-
ter of ((B 3k2 C) D). Since the number of samples produced
from (BC) cluster is not constant, it is not possible to de-
termine the dynamic loop count of either node D nor (BC)
cluster. Equations for the dynamic loop count computation
assume that the production and the consumption rates are
constant. If we vary the loop count of node C for the dlcSAS
of (BC) cluster, the dlcSAS of (BC) cluster becomes (3h2B
C). In this case, it is not possible to determine the dlcSAS
between node A and cluster ((BC)D) since the consumption
rate of node B varies dynamically.

Therefore, we propose two clustering algorithms for the
dlcSAS construction of the entire graph: source node first
(shortly source-dlcSAS) and sink node first (shortly sink-
dlcSAS). For the graph of Figure 6, we cluster (((A)B)C)D
and A(B(C(D))) by source-dlcSAS and sink-dlcSAS respec-
tively. We assign a dynamic loop count to the source node
by the source node first clustering algorithm or to the sink
node by the sink node first algorithm.

If we cluster nodes by the source node first, then we build
a code with a dynamic count for a source node, which is
5(3h2((3h4A)B)C)D; otherwise a code with a count for a
sink node, (A3k4(B3k2(C1k5D)))). In the former schedule,
node A is executed 3h4 times to produce the enough num-
ber of samples for node B to be executed. Node B is also
executed 3h2 times to produce the enough number of sam-
ples for one invocation of node C. Then, Node C is executed
five time every invocation of node D. Therefore the sched-
ule requires minimum data buffer size. We know that the
later schedule also requires minimum data buffer size. Gen-
erally the dlcSAS algorithm produces buffer optimal code
for chained structure graphs as stated in Theorem 1 below.

B
3 4

C
3 2

A D
1 5

Figure 6: A chained structure SDF graph

Lemma 1. The schedule of (h src(a))sink(a) requires min-
imum buffer memory on arc a for a graph with two nodes
src(a) and sink(a).

Proof. We prove it by showing that the accumulated
number of samples on the arc is always no more than the
bound, max(d(a), c(a)+p(a)−g+(d(a) mod g)) as reported
in [4] where g denotes gcd(p(a), c(a)). By Equation 1, the
number of accumulated samples is r + h ∗ p(a) where h =

⌈ c(a)−r

p(a)
⌉. Let c(a) − r = n ∗ p(a) + m(0 ≤ m < p(a)).

If m = 0 then h = ⌈n∗p(a)
p(a)

⌉ = n. Therefore r + h ∗ p(a) =

r + n ∗ p(a) = r + c(a) − r = c(a) < c(a) + p(a) − g + (d(a)
mod g).

If m > 0 then h = ⌈n∗p(a)+m

p(a)
⌉ = n + 1 and r + h ∗ p(a) =

r+(n+1)∗p(a) = r+ c(a)−r−m+p(a) = c(a)+p(a)−m.
Since c(a)− r = n ∗ p(a)+m, m = c(a)−n ∗ p(a)− r. Since
r = d(a)+t∗g m = c(a)−n∗p(a)−t∗g−d(a) =u∗g−d(a) =
v ∗g− (d mod g), where t, u and v are integer values. Since
m > 0 and v ∗ g − (d mod g) > 0, v ≥ 1. Therefore m ≥
g− (d mod g). Hence c(a)+p(a)−m ≤ c(a)+p(a)− g+(d
mod g).

161

Theorem 1. Source-dlcSAS generates a buffer optimal
schedule for a chain structured graph.

Proof Proof by induction. Assume that a graph has
{v1, v2, ..., vn+1} vertices and {a1, a2, ..., an} arcs. as shown
in Figure 7.

(i) If n = 1 then arc a1 requires minimum buffer proved
by Lemma 1.

(ii) Assume that if n = k then the algorithm generates
buffer optimal schedule for Figure 7 (b). The schedule is
hak

(hak−1((...)vk−1))vk. Let the schedule S.
When n = k + 1, the schedule of (hak+1S)vk+2 does not

change S. Therefore the sizes of buffers on a1, ..., ak do not
change. Since the invocation of S is equal to that of vk+1,
optimal buffer for arc ak+1 is allocated by Lemma 1. Hence
if n = k +1, the schedule requires minimum buffer memory.

v1 v2

a1n=1

v1 v2

a1n=k vk vk+1

ak

v1 v2

a1n=k+1 vk vk+1

ak vk+2

ak+1

Figure 7: Proof of Theorem 1

Similarly, we can prove that sink-dlcSAS algorithm gener-
ates buffer optimal schedule. Moreover, we can mix source-
dlcSAS and sink-dlcSAS to generate optimal schedule unless
both source and sink loop count are applied for one node as
shown in Figure 5.

5.4 Dynamic Loop Count for Arbitrary SDF
Graphs

Now, we extend the algorithm to the general graph topol-
ogy. Since buffer optimal schedule for general SDF graphs
is an NP problem [13], we propose a heuristic algorithm.
The key idea is to make a sequential list of nodes by adding
virtual arcs between two unconnected nodes and apply the
source-dlcSAS or the sink-dlcSAS algorithm. In order to
make a virtual arc between two unconnected nodes, we use
the number of invocations of node v inv(v) to compute the
number of producing and consuming sample rates p(a) and
c(a). We can prove that inv(sink(a))hinv(src(a)) is equal to

p(a)hc(a) by Theorem 2.

Lemma 2. phd
c =n∗p hn∗d

n∗c

Proof. phd
c = ⌈ c−r

p
⌉ (initially r=d) = ⌈n∗c−n∗r

n∗p
⌉ (ini-

tially n*r = n*d) = n∗phn∗d
n∗c

Theorem 2. inv(sink(a))hinv(src(a)) is equivalent to p(a)hc(a).

Proof. Since inv(src(a)) ∗ p(a) = inv(sink(a)) ∗ c(a) by
SDF equation, inv(src(a)) = n ∗ c(a) and inv(sink(a)) =
n ∗ p(a). inv(sink(a))hinv(src(a)) = n∗p(a)hn∗c(a) = p(a)hc(a)

by Lemma 2

Theorem 2 says that we may connect two unconnected
nodes with a virtual arc of which p(a) and c(a) are computed
by invocation numbers.

main()
{
int i,j,AC[21],AD[8],BC[6],BD[8];
int hb=0;rb=0,rc=0,hc=0;
for(;;) {
for(n=0;n<16;n++) {
if(rc>=7){hc=1;rc-=7;}
else{hc=2;rc+=2;}
for(i=0;i<hc;i++) {
if(hb==0) {
for(j=0;j<3;j++)
{/* A’s code */}

/* B’s code */
if(rb>=2){hb=1;rb-=2;}
else{hb=0;rb+=1;}

} else hb--;
/* C’s code */

}
/* D’s code */

}}}
(c)

B

A

(a)

3
4

D4

3
C

1
4

4 9

A: A
B:3AB
C: 4h3(3AB)C
D: 9h16(4h3(3AB)C)D

(b)

Inv(A)=36 Inv(C)=16

Inv(B)=12 Inv(D)=9

Figure 8: (a) A general SDF graph, (b) schedule the
graph and (c) generated code by dlcSAS

Figure 8 presents an example in which invocation num-
bers of node A, B, C and D are 36, 12, 16 and 9 respec-
tively. Assume that node A is scheduled before node B,
and node C before node D. When scheduling node B af-
ter node A, we connect node A and node B with a vir-
tual arc of which p(a) and c(a) are 12 and 36 respectively.
Therefore h becomes 12h36 (=3). The intermediate sched-
ule is (3A)B. When node C is scheduled, h is 16h12(= 4h3)
since invocations of node B and node C are 12 and 16 re-
spectively. The schedule becomes (4h3((3A)B))C. Finally
when node D is scheduled, h is 9h16 since invocations of
node C and node D are 16 and 9. Consequently the fi-
nal schedule becomes (9h16(4h3((3A)B)C))D which requires
buffers of size 43, while the previous SAS algorithm produces
3(4B3(4AD))16C which requires buffers of size 208.

Now we summarize a dynamic loop count scheduling al-
gorithm for general graphs in Figure 9.

The proposed algorithm first finds a runnable node that
has no input arc or enough samples for all of its input arcs.
In order to avoid allocating a new loop count variable, a
node of which invocation number is equal to that of recently
scheduled node and delay is zero is preferred. If the selected
node does not need a new loop count then it is inserted to
the current loop; otherwise we allocate a new loop count for
the node.

When we select a node requiring a new loop count, we
prefer a node with the maximum number of invocations.
Consider an example of Figure 10(a). If we first select a
node with the minimum number of invocations then we can
get a schedule in Figure 10(b). In that case, the buffer size
of arc BC is 3 since the loop count for node B is {3,0,0}. On
the other hand, if node A is scheduled first then the buffer
size of arc BC is 1.

The handling of arcs with delay samples in a general graph
is more complex than in a chain structured graph. If a
scheduled node has a unscheduled child node then delays
should be regarded as 0. Consider Figure 11. If a schedule
becomes Figure 11 (b) then the second invocation of node

162

main()
{

int cInv=0;
Schedule S;
Node v, lastv;

do {
lastv = v;
v=findRunnableNode(G,cInv,S);
if(v==null) break;
fire(v,G);
if(S.size()==0) {
S.append(v);
cInv=inv(v);

} else if(cInv==inv(v) && delay(v,lastv,S)==0) {
S.append(v);

} else {
S.encloseLoop(n*inv(v),n*cInv, n*delay(v,lastv,S));
S.append(v);
cInv = inv(v);

}
} while(true);

}

delay(v, lastv, S) = 0 if ∃e such that src(e) ∈ S,sink(e) /∈
S and (src(e) 6= lastv or sink(e) 6=v);

delay(v, lastv, S) = inv(v)* min(d(a)
p(a)

) while src(a)=lastv

and sink(a)=v, otherwise.
In addition, n is an integer making n ∗ delay(v, lastv, S)
integer.

Figure 9: a dynamic loop count scheduling algo-
rithm for general graphs

A

C
1 1

B

3

1

(a)

(b)

3((3h1B)A)C
Buffer size
AC = 3, BC = 3

(c)

(3A)BC
Buffer size
AC = 3, BC = 1

Figure 10: (a) A general SDF graph, (b) minimum
invocation node first, and (c) maximum invocation
node first

B
2

3

C
4 3

A

1 1

2

(a)

(b)

2h1((2h1A)B)C= ABCCAABCC

(c)

2h1((2h3A)B)C = AABCCABCC

3

Figure 11: (a) A general SDF graph, (b) wrong
schedule, and (c) right schedule

C is impossible since node A should be executed twice in
order to execute node C two times. In other words, since

2h1(2h
1
3A) < 4h3A, node A is not guaranteed to produce

enough samples for node C in Figure 11 (b) schedule. There-
fore delay for dynamic loop count is regarded as zero when
any scheduled node has a unscheduled child node. More-
over, when there are multiple arcs between lastv and v in

Figure 9, the minimum delay can be computed by min d(a)
p(a)

where src(a) = lastv and sink(a) = v since p(a)h
d(a)
c(a) =1

h
d(a)
p(a)

c(a)
p(a)

by Lemma 2 and d(a)
p(a)

indicates normalized delay value.

We know that 1h
d

inv(src(a))
inv(sink(a))

= inv(sink(a))∗nh
d∗inv(sink(a))∗n

inv(src(a))∗n

where d = min(d(a)
p(a)

).

main() {
int i,n,hA=0,hB=0,hC;
int rC=0,DA[4],AB[4],AC[2]
,BD[2],CD[5];
for(;;) {
for(n=0;n<6;n++) {

if(hB==0) {
hB=1;
if(rC>=1) {hC=1; rC-=1; }
else {hC=2; rC+=2; }
for(i=0;i<hC;i++) {

if(hA==0) {
hA=1;
/* A */

} else hA--;
/* C */

}
/* B */

} else hB--;
/* D */

}}}

(a)

6(2h1(3h4(2h1A)C)B)D)

(b)

A D

B

C3

3

3

2

2

2

1

2

11

(c)

4

Figure 12: (a) cyclic SDF graph (b) dlcSAS and (c)
generated code by dlcSAS

Figure 12(a) indicates a cyclic graph. Since there are 4
initial samples on arc DA, node A is schedulable. After
node A is scheduled, node B and node C are available.
We schedule node C first since we prefer a node with a
large invocation number. In this example, inv(C)=4 and
inv(B)=3. Since inv(A)=2 and inv(C)=4, the intermediate
schedule becomes (2h1A)C. Only node B is available since
node D waits for samples on arc BD. The schedule becomes
(3h4((2h1A)C))B since inv(B)= 3 and inv(C)=4. Finally,
after scheduling node D of which invocation number is 6,
we can build the schedule of 6((2h1(3h4(2h1(A)C))B)D) as
shown in Figure 12(b). Since the schedule is equivalent to
ACCBDDACBDDCBDD, buffer sizes on arc DA, AB, AC,
BD and CD are 4, 2, 4, 2 and 6 respectively. The buffer
size requirement is not optimal since buffer size on arc CD
is 4 in the optimal schedule of ABCDCDABDCDBCDD.
Note that if node B precedes node C then a schedule is
6(3h2(4h3(3h2(A)B)C)D) and is not valid since it needs 5
initial samples on arc DA.

Even though the dlcSAS is not optimal for general SDF
graphs, it still requires less buffers than the previous sin-
gle appearance schedule. In this example, the previous sin-
gle appearance schedule cannot generate any valid schedule

163

since it requires 6 initial samples on arc DA to execute node
A twice. If there are 6 samples on arc DA, the buffer re-
quirements on arc DA, AB, AC, BD and CD become 6, 6,
2, 2 and 12 from a schedule of 2(A(2C))3(B(2D)) computed
by APGAN.

6. EXPERIMENTS
We have implemented the proposed algorithm into our

high level system design framework [2] and experimented
two real life examples to demonstrate effectiveness of our ap-
proach. In these experiments, we used the arm compiler and
armulator to measure memory size and cycles on ARM920T
processor. The first example is compact dist to digital au-
dio tape converter(CD2DAT) and the second example is 4
channel non-uniform filter bank.

Figure 13 illustrates a CD2DAT application in an SDF
that converts CD format (44.1 KHz sampling data) to DAT
format (48 KHz). Each arc requires 4, 10, and 11 size buffers
at least to hold live samples while each node has additional
buffers if it need to refer previous samples. The invocations
of FIR1, FIR2, FIR3 and FIR4 are 147, 98, 56 and 40 re-
spectively. In this application, the previous SAS algorithm
required 6, 56, and 280 for each arc totaling 342 while the
proposed dlcSAS algorithm needs 4,10,11 size buffers, which
is optimal.

FIR1 FIR2 FIR3 FIR4
2 3 4 7 5 71 4

a b c

SAS : 7(7(3(FIR1)2(FIR2))8(FIR3))40(FIR4)
dlcSAS:40(5h7 (4h7 (2h3(FIR1)(FIR2))(FIR3))(FIR4))

main()
{
int i,i1,i2,i3,r1=0,r2=0,r3=0, n1,n2,n3, a[4],b[10],c[11];
for(;;) {

for(i=0;i<40;i++) {
if(r3>=2) {n3=1; r3-=2;} else {n3=2; r3+=3;}
for(i3=0;i3<n3; i3++) {

if(r2>=3) { n2=1; r2-=3;} else {n2=2; r2+=1;}
for(i2=0; i2<n2; i2++) {

if(r1>=1) {n1=1; r1-=1;} else {n1=2; r1+=1;}
for(i1=0; i1<n1; i1++) {

/* FIR1’s code */ }
/* FIR2’s code */ }

/* FIR3’s code */ }
/* FIR4’s code */

}}}
(c)

(a)

(b)

Figure 13: (a) A CD2DAT algorithm, (b) schedules,
and (c) generated code by dlcSAS

Table 1 summarizes the comparison results between the
previous SAS approach [13] and proposed dlcSAS approach
on ARM920T processor. Our schedule generates a code sav-
ing 40% data memory with 0.03% and 1.54% execution time
and code size overheads respectively. These overheads are
quite small compared with 0.75% and 10.85% execution time

Table 1: Comparison for CD2DAT example
previous SAS dlcSAS ratio(%)

code memory 7516 bytes 7632 bytes 1.54
data memory 6724 bytes 4032 bytes -40.04
total memory 14240 bytes 11664 bytes -18.09
cycles 54981K cycles 54998K cycles 0.03

Table 2: Comparison for non-uniform filter bank ex-
ample

previous SAS dlcSAS ratio(%)
code memory 13128 bytes 13540 bytes 3.14
data memory 15720 bytes 9664 bytes -38.52
total memory 28848 bytes 23204 bytes -19.56
cycles 71060K cycles 71363K cycles 0.43

and code size overhead respectively on TMS320C67x in the
function call invocation approach [9].

8 7
8 7

8 7 7 8
7 8

7 8

8

8 8
8

20
8

Figure 14: SDF graph for a non-uniform filterbank.
The highpass channel retains 1/8 of the spectrum
and the lowpass channel retains 7/8 of the spectrum

Figure 14 represents the SDF graph of a 4-channel non-
uniform filterbank. The sample rates are shown on each arch
whenever they are different from unity. In the 4-channel
non-uniform filterbank, the lowpass filters retain 7/8 of the
spectrum while the highpass filters retain 1/8. We can also
save more than 20% total memory with less than 1% per-
formance overhead in this example.

7. CONCLUSION
In this paper, we presented a new single appearance schedul-

ing algorithm to minimize data memory and code memory
jointly for synchronous dataflow graphs. Our algorithm is
different from previous algorithms in terms of determining
loop counts at run time even though the SDF graphs can
be scheduled at compile time. Therefore while it intro-
duces performance overhead to compute loop counts(which
is much lower than function call approaches), it reduces
buffer memory requirement close to buffer lower bounds of
non single appearance schedule. Especially when the given
graph is a chained structure, the proposed algorithm guar-
antees memory optimal schedule. In case of cd2data and
non uniform filter bank applications, we can reduce more
than 20% of total memory size with less than 1% perfor-
mance overhead compared with the previous single appear-
ance schedules.

8. ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCR-

0203813, ACI-0204028, National Research Laboratory Pro-
gram (Grant No. M1-0104-00-0015), and IT leading R&D
Support Project funded by Korean MIC.

164

9. REFERENCES
[1] COSSAP User’s Manual. Synopsys Inc. 700 E.

Middlefield Rd. Mountain View,CA94043, USA.

[2] http://peace.snu.ac.kr/research/peace.

[3] M. Ade, R. Lauwereins, and J. A. Peperstraete. Buffer
memory requirements in dsp applications. In IEEE
Wkshp. on Rapid System Prototyping, June 1994.

[4] M. Ade, R. Lauwereins, and J. A. Peperstraete. Data
memory minimization for synchronous data flow
graphs emulated on dsp-fpga targets. In DAC, June
1997.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Software Synthesis from Dataflow Graphs. Kluwer
Academic Publisher, Norwell MA, 1996.

[6] S. S. Bhattachayya, P. K. Murthy, and E. A. Lee.
Apgan and rpmc: Complementary heuristics for
translating dsp block diagrams into efficient software
implementations. In Journal of Design Automation for
Embedded Systems, volume 2, pages 33–60, January
1997.

[7] J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschimitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. In Int.
Journal of Computer Simulation, special issue on
Simulation Software Development, volume 4, pages
155–182, April 1994.

[8] M. Karczmarek, W. Thies, and S. Amarasinghe.
Phased scheduling of stream programs. In LCTES’03,
June 2003.

[9] M. Ko, P. K. Murthy, and S. S. Bhattacharyya.
Compact procedural implementation in DSP software
synthesis through recursive graph decomposition. In
Proceedings of the International Workshop on Software
and Compilers for Embedded Processors, pages 47–61,
Amsterdam, The Netherlands, September 2004.

[10] R. Lauwereins, M. Engels, J. A. Peperstraete,
E. Steegmans, and J. V. Ginderdeuren. Grape: A case
tool for digital signal parallel processing. In IEEE
ASSP Magazine, volume 7, pages 32–43, April 1990.

[11] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous dataflow programs for digital signal
processing. In IEEE Transaction on Computer,
volume C-36, pages 24–35, January 1987.

[12] P. K. Murthy and S. S. Bhattacharyya. Shared buffer
implementations of signal processing systems using
lifetime analysis techniques. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, volume 20, pages 177–198, February 2001.

[13] P. K. Murthy, S. S. Bhattachayya, and E. A. Lee.
Joint minimization of code and data for synchronous
dataflow programs. In Journal of Formal Methods in
Systems Design, volume 11, pages 41–70, July 1997.

[14] H. Oh and S. Ha. Memory-optimized software
synthesis from dataflow program graphs with large size
data samples. In EURASIP Journal on Applied Signal
Processing, volume 2003, pages 514–529, May 2003.

[15] S. Ritz, M. Willems, and H. Meyr. Optimum
vectorization of scalable synchronous dataflow graphs.
In Proceedings of the International Conference on
Application-Specific Array Processors, October 1993.

[16] S. Ritz, M. Willems, and H. Meyr. Scheduling for
optimum data memory compaction in block diagram
oriented software synthesis. In Proceedings of the
ICASSP 95, May 1995.

[17] W. Sung and S. Ha. Memory efficient software
synthesis using mixed coding style from dataflow
graph. In IEEE Transaction on VLSI Systems,
volume 8, pages 522–526, October 2000.

[18] E. Zitzler, J. Teich, and S. S. Bhattacharyya.
Evolutionary algorithm based exploration of software
schedules for digital signal processors. In Proceedings
of the Genetic and Evolutionary Computation
Conference, volume 2, pages 1762–1770, Orlando,
Florida, USA, 13-17 1999. Morgan Kaufmann.

165

