
Developing Embedded Multi-threaded Applications
with CATAPULTS, a Domain-specific Language for

Generating Thread Schedulers ∗

Matthew D. Roper and Ronald A. Olsson
Department of Computer Science
University of California, Davis
Davis, CA 95616-8562 USA

{roper,olsson}@cs.ucdavis.edu

May 19, 2005

Abstract

This paper describes CATAPULTS, a domain-specific language for creating and
testing application-specific user level thread schedulers. Using a domain-specific lan-
guage to write thread schedulers provides three advantages. First, it modularizes the
thread scheduler, making it easy to plug in and experiment with different schedulers.
Second, using a domain-specific language for scheduling code helps prevent several
of the common programming mistakes that are easy to make when programming in
low-level C or assembly. Finally, the CATAPULTS translator has multiple backends
that generate code for different languages and libraries. This makes it easy to pro-
totype an embedded application on a regular PC, and then develop the final version
on the embedded hardware; the CATAPULTS translator will take care of generating
the appropriate code for both the PC prototype and the final embedded version of
the program. Using our implementation of CATAPULTS for Z-World’s embedded
Rabbit processors, we obtained a performance gain of about 12.6% at the expense of
about 12.7% increase in code size for a fairly typical embedded application.

∗This work is partially supported by Z-World, Inc. and the University of California under the MICRO
program. The National Science Foundation partially supported our equipment through grant EIA-0224469.

1



1 Introduction

Embedded control systems are generally responsible for handling several concurrent tasks

(e.g., driving different pieces of hardware) and thus lend themselves to a multi-threaded

design. This model is intuitive to program in because it allows each task to be programmed

in relative isolation and makes it easy to follow the flow of control inside the task. Threads

can either be scheduled cooperatively, where each thread has control of the processor until it

explicitly yields it, or preemptively, where context switches are triggered at regular intervals

by a timer interrupt. Regardless of which type of threading is used, the algorithm used to

schedule threads can have a significant impact on the overall performance of the system.

With the limited resources available on an embedded system, the overhead of inefficient

context switching is much more noticeable than it would be on regular computer, which

has much more processing power.

This paper introduces CATAPULTS, a system for developing application-specific sched-

ulers, and shows how to use CATAPULTS for embedded systems applications. Generating

specialized schedulers for a specific application improves performance not only by minimiz-

ing inappropriate context switches, but also by speeding up the scheduling algorithm itself;

i.e., information such as thread priority or number of activations should only be tracked

and processed if an application actually needs it to make good scheduling decisions. Un-

necessary bookkeeping can be eliminated.

Our approach uses a domain-specific language for writing application-specific schedulers.

It provides three major benefits. First, all scheduling code is collected into a single, replace-

able component. The programmer need only fill in the body of various scheduling events

(e.g., “new thread,” “quantum expired,” “thread terminated,” etc.) in an aspect-oriented

manner. Second, using a domain-specific language allows much better static analysis to be

performed than if the scheduler were directly written in low-level C or assembly language

(as most embedded applications are). For example, it is impossible to “lose” a reference

2



to a thread using our language. Finally, using a domain-specific language allows multiple

translation backends to be developed in order to target different threading libraries or pro-

gramming languages; this is especially useful when simulating the system on a regular PC

before developing the actual embedded version.

Our primary targets for CATAPULTS are small, resource-constrained embedded con-

trollers with low processing power. Such systems generally run the control software directly

on the hardware, without the support of a real time operating system. Although we are

currently working on extensions to CATAPULTS to aid in the development and verification

of soft realtime schedulers, these are not a primary focus of our current implementation.

The rest of this paper is organized as follows. Section 2 provides an introductory

example of a CATAPULTS scheduler for a representative embedded application. Section 3

gives an overview of related work. Section 4 describes the purpose and design of the

CATAPULTS system. Section 5 provides details on the organization of the CATAPULTS

domain-specific language. Section 6 describes how the components of the system were

implemented. Section 7 discusses our experience, including performance results, of using

CATAPULTS on representative embedded applications. Finally, Section 8 provides some

discussion, describes possible avenues for future exploration, and concludes the paper.

2 An Introductory Example

CATAPULTS is most easily introduced by providing an example of applying it to a simple,

hypothetical multi-threaded application: the embedded control system of a weather moni-

toring station. The application has to monitor several temperature sensors (which have to

be checked with different frequencies), drive a display that changes when the temperature

reaches a certain threshold, and perform various calculations while the hardware is idle.

Such a situation is relatively easy to model in a multi-threaded application: one thread is

assigned to each temperature sensor, one thread drives the output display, and one or more

3



threads perform miscellaneous calculations during the processor’s idle time.

Control systems of this form are common applications for languages on embedded sys-

tems such as Dynamic C [12], an extended subset of C that runs on Z-World’s 8-bit Rabbit

processors (Dynamic C and our implementation of CATAPULTS on it are discussed in

Section 6.2). Although straightforward to implement, a standard Dynamic C implemen-

tation as described would fail to utilize the processor fully because Dynamic C’s native

thread scheduler uses a simple first come, first serve algorithm. Even though some threads

do not need to run as often as other threads or only really need to run when certain

application-level conditions occur, the Dynamic C scheduler has no such knowledge. It

schedules the threads in an inefficient manner, resulting in unnecessary context switches

and additional overhead. In our weather monitoring example, the “slow” sensors will be

queried for information as often as the “fast” sensors, even though they won’t be ready to

report information each time.

Using CATAPULTS can make such an application more efficient. It allows the program-

mer to quickly and easily create a thread scheduler tailored specifically for this application.

Figures 1 through 8 show the scheduler specification (some minor details are omitted to

save space).

Our example scheduler begins with a thread definition section, shown in Figure 1. It

specifies what attributes the scheduler should track for each thread. In this example, only

a single attribute (“state”) is declared to track the status of a thread (i.e., whether the

thread is new, running, suspended, blocked on I/O, etc.).

thread {
int state; // new, running, suspended, etc.

}

Figure 1: Thread attribute declarations

Next, the scheduler declares which per-thread application variables should be imported

into the scheduler. Importing an application variable into the scheduler allows the scheduler

4



to monitor the variable for changes made by the application and also allows the scheduler

to modify the variable’s contents (which is a useful way of communicating information back

to the application). Per-thread variables imported this way can be referenced exactly like

regular thread attributes in event handler code. Application variable imports are discussed

in depth in Section 5.2. Figure 2 illustrates the per-thread imports for our example; a single

application variable (“threadclass”) is imported, which allows the scheduler to determine

the scheduling class (“slow sensor”, “display”, etc.) to which a given thread belongs.

threadimports {
// possible values are thread class constants
// defined in data section
int threadclass default 0;

}

Figure 2: Thread import declarations

The scheduler specification must also include declarations for any global objects used

by the scheduler, including both global variables and constants of primitive types (i.e.,

integers and floats) and thread collections (queues, stacks, etc., provided by the runtime

system; see Section 5.1).

Figure 3 shows this data declaration section for our example scheduler. Several thread

collections are declared to hold different classes of threads: new (i.e., just created) threads

are placed on a stack, sensor threads are divided depending on their speed between two

queues, a thread reference is used to hold the single thread that drives the display, and

another queue is used to hold the calculation threads. Regular variables of primitive types

(just integers in this case) are also defined here to keep track of the last time a thread of a

specific class ran, and constants are defined for the different scheduling classes to which a

thread can belong.

Just as a scheduler may need to import thread-specific attributes from the applica-

tion, it may also need to monitor or update regular (global) application variables. For

CATAPULTS to link a general application variable with an identifier in the scheduler, the

5



data {
threadref current; // current thread
threadref next; // next thread (named yield)
stack NQ; // new threads
queue standard_sensors; // sensors
queue slow_sensors; // sensors monitored

// less frequently
threadref display; // display driver
queue calculations; // calculation threads
// Last time various thread types ran
int last_display, last_sensor1, last_sensor2;

const int UNKNOWNCLASS = 0,
SENSOR1CLASS = 1, SENSOR2CLASS = 2,
DISPLAYCLASS = 3, CALCCLASS = 4;

}

Figure 3: Global data declarations

imported variable must be declared in an imports block, along with a default value to use

in case the application does not register the variable or the variable needs to be used by the

scheduler before the application has a chance to register it. In our example, a single global

variable (“temperature”) is imported from the application. This variable will be used later,

in the scheduler’s event handlers, to determine whether or not the display output thread

should be run.

imports {
int temperature default 0;

}

Figure 4: Application variable imports

The remainder of the scheduler definition consists of event and query handlers. These

handlers, which resemble C functions, are callbacks that the base threading library has been

modified to call when it needs to perform a scheduling action or get information from the

scheduler (see Section 6.2). The difference between an event handler and a query handler

is the type of action performed. Event handlers are used when the base threading library

is directing the scheduler to perform a specific action (e.g., “suspend this thread”). Event

6



handlers are intended to perform side effects by manipulating the scheduler’s global data

structures; they return no value. In contrast, query handlers are used when the internals of

the base threading library need to know something about the scheduler (e.g., “how many

threads are currently in the system?”); query handlers return a value and must not have

any side effects. Figures 5-8 contain a subset of the example scheduler’s event and query

handlers (the full set of event and query handlers is not reproduced here to save space).

event init {
last_display = 0;

}

event newthread(t) {
t => NQ; // Place t on ’new thread’ queue

}

Figure 5: Event handlers to initialize the scheduler and handle new thread creation events

After writing an entire specification, such as that in Figures 1 through 8, the developer

then runs the CATAPULTS translator on the specification. It produces a scheduler tar-

geted for a particular backend. The developer then links that scheduler together with the

application code.

If the developer decided to prototype/simulate the system on a regular PC before ac-

tually developing the embedded Dynamic C version, the scheduler specification could be

passed through a different CATAPULTS backend to generate scheduling code for whatever

language and library was being used for the prototype.

3 Related Work

Very little work has been done in the area of domain-specific languages for writing sched-

ulers. The most closely related project is Bossa [2], a system for generating Linux kernel

schedulers using a domain-specific language. Although Bossa is similar in nature to CATA-

PULTS, it aims to solve a different set of problems. Since Bossa deals with operating system

7



event schedule {
threadref tmp;

// Move new threads to their appropriate containers
// if we know what type of thread they are yet.
foreach tmp in NQ {

if (tmp.threadclass == SENSOR1CLASS)
tmp => standard_sensors;

else if (tmp.threadclass == SENSOR2CLASS)
tmp => slow_sensors;

else if (tmp.threadclass == DISPLAYCLASS)
tmp => display;

else if (tmp.threadclass == CALCCLASS)
tmp => calculations;

}

// Update last run times
last_display++; last_sensor1++; last_sensor2++;

// Determine next thread to run:
// - run target of named yield, if any
// - run display if temperature >= 100 and display
// hasn’t been updated in over 10 ticks
// - run regular sensor if none run in 3 ticks
// - run slow sensor if none run in 6 ticks
// - else run calculation thread
if (|next| == 1) { // |next| = size of next

next => current; // (|next| is 1 or 0 here)
} else if (temperature>=100 && last_display>10) {

display => current;
last_display = 0;

} else if (last_sensor1>3 && |standard_sensors|>0) {
standard_sensors => current;
last_sensor1 = 0;

} else if (last_sensor2>6 && |slow_sensors|>0) {
slow_sensors => current;
last_sensor2 = 0;

} else {
calculations => current;

}

dispatch current;
}

Figure 6: The main scheduling event handler

8



event switch_out(t) {
if (t.threadclass == SENSOR1CLASS)

t => standard_sensors;
else if (t.threadclass == SENSOR2CLASS)

t => slow_sensors;
else if (t.threadclass == DISPLAYCLASS)

t => display;
else if (t.threadclass == CALCCLASS)

t => calculations;
}

event set_next_thread(t) {
t => next;

}

Figure 7: Event handlers for context switching away from a thread and performing a named
yield to a specific thread

query threads_ready {
return |standard_sensors| +

|slow_sensors| +
|display| +
|calculations|;

}

Figure 8: An example query handler that returns to the base threading library the number
of threads currently ready to run in the system

schedulers instead of application-level schedulers, its primary focus is on safety rather than

performance or expressibility. In Bossa, all operations are guaranteed to be safe, but this

limits the overall power of the language. For example, Bossa does not allow any form of

unbounded loop; in contrast, CATAPULTS provides traditional for, while, and do loops

for cases where a safer foreach loop does not suffice. Our compiler will generate a warning

if it cannot be sure that the loop will terminate. CATAPULTS also differs from Bossa in

that Bossa is tightly coupled with a specific target language and platform (i.e., it generates

Linux kernel C code). CATAPULTS allows different backends to be written for different

target platforms and languages.

Modularizing scheduling code has also started to receive some attention from Linux

9



kernel developers. A recent Linux kernel patch [7] separates all scheduling logic out into

a separate kernel source file, thus making it much easier to replace the kernel scheduler.

Although it appears that this pluggable scheduler framework is unlikely to be accepted into

the mainline kernel, it has received notable support and is being developed as an external

patch to the kernel. This pluggable scheduler framework provides some of the benefits that

systems such as Bossa or CATAPULTS do — modularization and ease of replacement —

but lacks the portability and safety benefits that can be obtained from using a domain-

specific language like CATAPULTS. Had it existed early enough, the pluggable scheduler

framework would have been an excellent foundation on which to build Bossa or other

kernel-based frameworks.

Other applications of domain-specific languages for embedded systems include Hume [5].

Hume aims to provide a language for programming embedded systems that includes high-

level features such as automatic memory management, exception handling, and polymor-

phic types, while guaranteeing application resource usage and timing behavior. Hume

is intended for actual application development and although threads are provided, their

scheduling cannot be changed from the builtin round-robin algorithm.

4 Design

Allowing application programmers to replace the thread scheduler, a very highly tuned com-

ponent of most software systems, is a controversial approach. Although errors introduced

in the scheduling specification can result in poor performance or instability, well-written

schedulers can result in significantly improved performance. The use of CATAPULTS is

an optimization with a tradeoff: higher performance at the cost of additional work writ-

ing a CATAPULTS scheduler and less assurance of stability. We expect applications to

be written without regards for the scheduler, and then, if higher thread performance is

necessary, an application-specific scheduler can be written and plugged-in. The most “dan-

10



gerous” feature of CATAPULTS is the use of imported application variables (discussed in

Section 5.2) since it allows direct interaction between the application and the scheduler.

Importing application variables is an optional feature that allows more specialized sched-

uler development at the cost of tighter coupling between the application and scheduler;

the application developer can decide whether this tradeoff is worthwhile for the specific

application. Even if application-specific schedulers that import application variables are

not desired, performance can often be enhanced simply by selecting an appropriate generic

scheduler for the application. In this case, the scheduler can be developed and fine-tuned

by a third party, which makes the use of a CATAPULTS scheduler just as safe and easy as

using the original, built-in scheduler.

The CATAPULTS scheduling language was designed with three major goals in mind:

modularization and pluggability of scheduling logic, prevention of common programming

errors encountered in schedulers, and portability across different scheduling libraries with

different capabilities. This section discusses these three goals. A fourth important goal,

good performance, is implicit in the design decisions made for CATAPULTS and is discussed

in Section 7.

4.1 Modularization

Although threading libraries on embedded systems are generally far simpler than their PC

counterparts, modifying or replacing the scheduling algorithm used by a thread library

is still a non-trivial task. Although it may be easy to locate the function that picks the

next thread, most threading libraries have other scheduling code spread throughout the

library (e.g., code that manipulates queues of threads when various events occur). Tracking

down every such reference to the scheduler’s data structures is tedious and error-prone.

For example, although the GNU Pth threading library [4] isolates its main scheduling

routine in a file pth sched.c, making any large changes to the Pth scheduler (such as

replacing Pth’s new thread queue, ready queue, etc. with different data structures and

11



thread organizations) can require code modifications to more than 20 files. Furthermore,

if the developer wishes to actually change the data structures used to store threads (e.g.,

add a new queue for threads of a specific type), the modifications required become even

more invasive.

With CATAPULTS we overcome this problem by allowing the developer to write the

scheduler specification independently from the rest of the threading library. The CATA-

PULTS translator will then weave the user-specified scheduling code into the rest of the

threading library to create a version of the library that is specialized for the specific appli-

cation. Thus, it is very easy to try out different scheduling strategies.

4.2 Error Prevention

Threading libraries for embedded systems are often written in C or low-level assembly since

these are the languages that are most often used for application development. Although

C and assembly are very powerful languages, they do very little to prevent programming

errors, especially when manipulating complex data structures via pointers. When such

errors occur in thread schedulers, they often take the form of a thread coexisting on two

different data structures at once (essentially duplicating a thread) or of a thread’s reference

being “lost” by the scheduler. Even in higher-level languages these types of mistakes are

often easy to make and they are often very hard to track down and debug since the exact

scheduling conditions that trigger the bug may not be easy to reproduce.

CATAPULTS provides a very simple (yet seemingly sufficient for most schedulers in

our experience) set of data structures for storing collections of threads: threadrefs, stacks,

queues, and lists that are sortable on any thread attribute (e.g., priority). All of these

containers are unbounded except for threadrefs, which are bounded containers with a single

slot. For convenience, individual threadrefs can be grouped into arrays, but each element

of the array must be accessed directly; the array itself is not considered to be a thread

collection. CATAPULTS enforces the invariant that each thread in the system is contained

12



in exactly one collection at any time; this is a strength of CATAPULTS because thread

references can never be duplicated or lost due to programmer error (although they can be

explicitly destroyed when no longer needed). The only way to add or remove a thread

from a container is to use the thread transfer operator, whose syntax is src => dest;.

Each type of thread container has predefined logic that specifies how threads are inserted

and removed by the transfer statement (e.g., removal occurs at the end of queues, but

at the beginning of stacks). When this transfer operator is encountered in a scheduler

specification, the CATAPULTS translator attempts to verify statically that there will be

at least one element in the source container; if this cannot be guaranteed, the CATAPULTS

translator inserts runtime assertions into the generated code. Similar checks are made to

ensure that a bare thread reference used as the destination of a transfer statement does

not already contain a thread. All thread transfer operations fall into one of four cases and

cause the following types of checks to be performed:

threadref => threadref Attempt to statically determine that the source threadref is full

and that the target threadref is empty. If either of these cannot be determined with

certainty, runtime assertions are inserted into the generated code.

threadref => unbounded container Attempt to statically determine that the source

threadref is full. If unable to determine statically, a runtime assertion is inserted into

the generated code.

unbounded container => threadref Attempt to statically determine that the source

container contains at least one thread and that the target threadref is empty. If either

of these cannot be determined with certainty, runtime assertions are inserted into the

generated code.

unbounded container => unbounded container Attempt to statically determine

that the source container contains at least one thread. If unable to determine stati-

cally, a runtime assertion is inserted into the generated code.

13



It should be noted that due to CATAPULTS’ use of callback-like event and query handlers,

the empty or full status of a container can only be inferred intra-handler and not inter-

handler. Since event handlers can be called in any order, the contents of all containers (with

the exception of threadrefs used as parameters to a handler) are completely unknown at

the start of an event handler. As thread transfers are performed, it will become statically

apparent that some containers are not empty (i.e., they have had threads transferred into

them) or that some threadrefs are definitely empty (they have had a thread transferred out

of them). So in general, less than half of this kind of container checks can be done statically

at compile time — only when a container has been previously operated on by the current

event or query handler can any information about its contents be inferred.

4.3 Portability

One of the primary goals of CATAPULTS is to make it as portable and retargettable as

possible. CATAPULTS is not restricted to generating code for any one threading library;

different code generation modules can be plugged in to allow generation of scheduling

code for different libraries or even different languages. At the moment we have backend

code generators for Dynamic C (a C-like language with threading features that is used

to program ZWorld’s embedded Rabbit controllers [12]) and GNU Pth [4] (a powerful

cooperative threading library for PC’s); writing more backends for other languages will be

straightforward.

The fact that CATAPULTS can compile to different target languages and libraries and

has backends for both embedded systems and regular PC’s is especially advantageous when

simulating or prototyping a system on a PC and then re-writing a final version on the actual

embedded hardware. CATAPULTS allows the programmer to develop a scheduler once and

then (assuming a CATAPULTS code generation module exists for both languages), simply

recompile to generate schedulers for both the prototype and final system, even though they

are using different languages and threading libraries.

14



Ideally, CATAPULTS would be able recompile schedulers for different threading pack-

ages with no modifications to the scheduler specification at all. However, since CATA-

PULTS allows programmers to write callback routines for various scheduling events, it

may be necessary to add code to the scheduler specification when switching to a more

featureful output module. For example, a scheduler developed for use with Dynamic C

need only specify callback code for a basic set of thread events (thread creation, thread

selection, etc.). If that scheduler specification is then used to generate a scheduler for a

more advanced threading library, such as Pth, additional code will need to be written to

specify what actions to perform on Pth’s more advanced scheduling events (e.g., OS sig-

nal received, I/O operation complete, etc.). Each CATAPULTS backend code generation

module includes a list of the scheduling events that are must be specified in order to create

a complete scheduler; if a code generation module is used with a scheduler specification

that does not include one or more of the required events, an error will be returned and

translation will stop.

5 Language Details

5.1 Data Types

CATAPULTS provides a typical set of primitive types. In addition, CATAPULTS provides

several thread container types for organizing the threads in the system: queue, stack,

pqueue, pstack, and threadref. A pqueue (or pstack) is similar to a queue (or stack),

but its threads are ordered by a user-specified key. A threadref can hold at most one

thread. As mentioned in Section 4.2, all threads must be present in one and only one of

the scheduler’s thread containers at any time and the thread transfer operator is used to

move threads between containers.

15



5.2 Imported Application Variables

As seen in Section 2, CATAPULTS allows two types of variables to be registered (imported)

with the scheduler: general (global) application variables and per-thread instance variables.

Registering general variables is useful for providing the scheduler with information about

the status or load of the system as a whole; common examples include the number of

open network connections in a multithreaded Internet server or the number of calculations

completed in a scientific application. In contrast, registering per-thread instance variables

with the scheduler is useful for tracking information that the application stores for each

thread. Per-thread instance variables are useful not only for monitoring information that

the application would be tracking anyway (e.g., the number of packets that have been

processed on a network connection for an Internet server), but also for specifically directing

scheduler behavior from the application, e.g., threadclass declared in Figure 2 and used

in Figures 6 and 7.

Imported application variables are the most controversial feature of CATAPULTS since

mixing application-level data with scheduler logic can be seen as a dangerous entanglement

of separate system levels. This optional feature provides a tradeoff to the application

programmer: it becomes harder to change the application without also making changes to

the scheduler, but performance can be significantly improved by making use of application-

level information.

Although registering variables requires some modification to the base application and

removes the transparency of CATAPULTS, the modifications required are minimal; only

a single registration statement is necessary near the beginning of the program for each

variable that is to be registered with the scheduler.

16



5.3 Verbatim Statements and Expressions

CATAPULTS provides verbatim statements and expressions, which allow the programmer

to include a block of code (either a statement-level block or a single expression) of the target

language directly in the scheduler. For example, a scheduler that uses a random number

generator to make some of its scheduling decisions will use verbatim statements to generate

random numbers because CATAPULTS has no instructions to do so. Thus, the programmer

can express anything that could be coded in the target scheduler’s programming language

at the expense of some portability (i.e., the verbatim statements and expressions will need

to be re-written for each target language/library to which the scheduler is compiled).

6 Implementation

This section describes two key parts of the CATAPULTS implementation: its frontend

and one of its backends. As noted earlier, CATAPULTS supports multiple backend code

generators. Each is written as a separate module, which makes it easy to add new backends

for other languages and libraries. We have currently implemented two such code generation

modules for CATAPULTS: a Dynamic C backend (for embedded systems) and a GNU Pth

backend (for PC’s). Below, we focus on the Dynamic C backend; Reference [11] discusses

the Pth backend.

6.1 The Frontend

The CATAPULTS translator is written in Python using PLY (Python Lex/Yacc) [3]. The

translator uses very simple propagation-based static analysis to track the various invariants

described in Section 4.2. Specifically, this static analysis is used to track the following

information:

• presence or absence of threads on a container or in a thread reference

17



• failure to store a thread passed as a parameter into a permanent container in an event

handler that requires this (e.g., newthread(t))

• failure of a query handler to return a value

• failure of an event handler to produce a side effect

• code following a dispatch or return statement

• statically known variable values

As discussed in Section 4.2, CATAPULTS generates runtime assertions in the generated

code for scheduler code that it cannot analyze statically.

6.2 The Dynamic C Backend

To apply CATAPULTS in an embedded environment, we developed a CATAPULTS back-

end for Dynamic C, an extended subset of C that is used to program Z-World’s 8-bit Rabbit

devices. Dynamic C includes builtin cooperative multithreading in the form of costatements

and cofunctions, but only allows a round-robin scheduling policy for the threads. Although

it is possible to use tricks to accomplish dynamic scheduling in Dynamic C [10], doing so

requires invasive changes to the application itself, which results in confusing code and does

not integrate well with CATAPULTS. Instead we chose to integrate CATAPULTS with the

cmthread.lib threading library that we had previously written for Dynamic C. cmthread.lib

is a substitute for Dynamic C’s language-level multithreading and provides an API that is

more consistent with other popular threading API’s such as Pth or Pthreads. cmthread.lib

also provides better performance in many cases.

Dynamic C applications run in an embedded environment with no operating system.

Our Dynamic C backend generates a custom version of the cmthread.lib library that con-

tains the custom generated scheduling code inline. The modifications to cmthread.lib to

make it work with CATAPULTS are minor: about 100 new lines of code were added to the

18



Table 1: Comparison of CATAPULTS threading library and generic cmthread.lib

Lines of Compiled Simulation
Code Code Size Duration

Generic cmthread.lib 457 21120 bytes 76.508 sec
Generated CATAPULTS library < 546+517 23808 bytes 66.837 sec

original 457 lines. Because this new code is being generated by CATAPULTS, its format-

ting sometimes splits what would normally be one line of code over several. So, a fairer

estimate is about 50 lines of new code. Also, a good portion of this code is functions that

simply do callbacks.

(In contrast, our Pth implementation dynamically loads schedulers at runtime [11],

which is neither possible nor advantageous in the Dynamic C environment; it therefore

uses indirect function calls via function pointers, which incurs some additional overhead.)

7 Experience

Below, we describe some of our experiences using CATAPULTS for embedded systems

applications. We have also used CATAPULTS with the Pth backend for regular PC appli-

cations such as the CoW web server and numerous small schedulers [11].

7.1 Weather Monitoring Station Application

In order to measure the benefit of using CATAPULTS on an embedded application, we sim-

ulated the weather monitoring station example described in Section 2. Since we do not have

access to real weather monitoring hardware, we wrote a Dynamic C application with the

appropriate control logic and replaced actual sensor and display hardware I/O with small

loops. The CATAPULTS scheduler specification described in the example in Section 2 was

used to control thread scheduling. The complete specification (including the minor details

omitted in Figures 1-8) was a total of 174 lines of code and was translated into 546 lines of

19



Dynamic C. In contrast, the original cmthread.lib library on which CATAPULTS’ output

is based is a total of 457 lines of Dynamic C code. Although space is a scarce resource

on embedded systems, this size increase is quite reasonable considering how much more

sophisticated the generated scheduler is than the simple first-come, first-serve scheduler in

cmthread.lib. The CATAPULTS library also links with another 517 line auxiliary library

that contains implementations of the various thread container types provided by CATA-

PULTS. The Dynamic C compiler will only link in the functions from this auxiliary library

that are actually used by the specific application, so only a couple hundred of these lines are

likely to be included in any given application. So, comparing only lines of code is somewhat

misleading; comparing code size is more useful. After compiling the simulation application

along with the threading library, the total code size downloaded to the Rabbit processor

was, as shown in Table 1, 23808 bytes when the generated CATAPULTS library was used

as compared to 21120 bytes when the generic cmthread.lib was used (i.e., a 12.7% increase

in size).

To measure the performance difference between the CATAPULTS generated scheduler

and generic cmthread.lib scheduler, we executed the control simulation until a total of 10000

executions of the “calculation” threads had run and then measured the total runtime. When

using the generic cmthread.lib, we allow threads to notice that they have no work to do and

yield immediately; this eliminates the additional overhead of useless hardware I/O, but still

incurs the overhead of an unnecessary context switch. As shown in Table 1, the simulation

completed almost 10 seconds faster when using the CATAPULTS-generated scheduler (a

12.6% speedup).

7.2 CoW Web Server

We also adapted CoW [6], a cooperatively multithreaded web server, to use a CATAPULTS

scheduler. The version of CoW that runs on the Rabbits uses the standard Dynamic C

first-come, first-serve scheduler. We identified that we could obtain better performance if

20



the scheduler was tailored to the specific requirements of CoW. In particular, the more

quickly HTTP requests are processed and flushed from the system, the faster new requests

can be accepted. By giving greater priority to request handler threads that are near com-

pletion, the overall throughput of the system can be significantly increased. The complete

CATAPULTS scheduler specification for CoW appears in Reference [9].

8 Conclusion

Although real world embedded systems are likely to have a very diverse set of scheduling

requirements, we have applied CATAPULTS to what we believe to be a typical embedded

system and have achieved very positive results. Performance gains are likely to vary widely

depending on the complexity of the scheduling algorithm required by a given system and by

the penalty incurred by inefficient thread scheduling, but we have shown that developing

custom thread schedulers with CATAPULTS is relatively straightforward and can provide

significant performance gains. Moreover, using CATAPULTS provides more safety and

portability.

We have a number of plans for future exploration. We realize that many schedulers

share common code and data structure organization, so we would like to make it possible

to derive new schedulers from existing ones and then override specific parts in an object-

oriented manner. Hierarchical thread scheduling (e.g., as discussed in Reference [1]) is

another area we would like to explore; CATAPULTS could be extended to develop dif-

ferent scheduling algorithms for different subgroups of threads. Such hierarchical schemes

would allow different people to develop different schedulers for subgroups of threads in an

application and then schedule those subgroups according to a higher-level scheduler. It

would also be interesting to explore the possibility of creating schedulers graphically with

a GUI design tool; this would be especially attractive to engineers of a mechanical system

who do not have a lot of experience with software development. Finally, CATAPULTS

21



could be extended to work in a distributed environment with systems like DesCaRTes [8]

that distribute threads over a network of embedded, uniprocessor controllers.

Acknowledgments

Jason Cheung, especially, and Glen Sanford helped with the development and testing of

CATAPULTS.

References

[1] D. Auslander, J. Ridgely, and J. Ringgenberg. Control Software for Mechanical Systems: Object-
Oriented Design in a Real-Time World. Prentice Hall PTR, 2002.

[2] L. Barreto and G. Muller. Bossa: A language-based approach for the design of real time schedulers.
In 10th International Conference on Real-Time Systems (RTS), 2002.

[3] D. Beazley. PLY (Python Lex-Yacc). http://systems.cs.uchicago.edu/ply/.

[4] R. S. Engelschall. GNU Pth - the GNU Portable Threads. http://www.gnu.org/software/pth/.

[5] K. Hammond and G. Michaelson. Hume: a domain-specific language for real-time embedded systems.
In Proceedings of the Second International Conference on Generative Programming and Component
Engineering, 2003.

[6] T. Ishihara and M. D. Roper. CoW: A cooperative multithreading web server. http://www.cs.
ucdavis.edu/~roper/cow/.

[7] C. Kolivas. Pluggable CPU scheduler framework, October 2004. http://groups-beta.google.com/
group/fa.linux.kernel/msg/891f15d63e5f529d.

[8] J. T. Maris, M. D. Roper, and R. A. Olsson. DesCaRTes: a run-time system with SR-like functionality
for programming a network of embedded systems. Computer Languages, Systems and Structures,
29(4):75–100, Dec. 2003.

[9] M. D. Roper. CATAPULTS scheduler code for CoW webserver. http://www.cs.ucdavis.edu/
~roper/catapults/examples/embcow.sched.

[10] M. D. Roper. Dynamic threading and scheduling with Dynamic C. http://www.cs.ucdavis.edu/
~roper/dcdynthread/.

[11] M. D. Roper and R. A. Olsson. CATAPULTS: Creating and testing application-specific user level
thread schedulers. in preparation.

[12] Z-World Inc. Dynamic C user’s manual. http://www.zworld.com/documentation/docs/manuals/
DC/DCUserManual/index.htm.

22


