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UCLA teaches students how to master the steep slopes of the embedded systems mountain. The
EE201A graduate course connects high-level design specification to embedded implementation.
There is a long-standing and wide culture gap between system designers that create those abstract
specifications and the system architects that need to implement them. In industry, the culture gap
has separated software from hardware teams, and platform creators from platform users. In an
embedded context, where these are very tightly connected, this leads to large inefficiencies both in
design time and design results. Our course takes students to both sides of the gap and lets them look
at this problem from different perspectives. For a given application, it teaches how to select target
architectures, tools, and design methods. The course covers a stepwise systematic design process.
It includes specification, transformation, and refinement of an application. Specifications enable
systematic and structured expression of an application. Transformations rework specifications into
ones that are a better match for a given target architecture. Refinements lower the abstraction level
toward the target architecture. The embedded systems mountain is traversed in two directions.
A vertical refinement axis covers elements such as power-memory-reduction methods or fixed-
point refinement. A horizontal exploration axis covers various architecture alternatives including
application-specific integrated circuits (ASIC), domain-specific processors, digital signal processors
(DSP), embedded cores, programmable processors, and system-on-chip (SOC). During the course,
the students also go through an extensive design project to apply the methods learned in this course.
A typical embedded application is used to drive the project. In this paper it is illustrated using an
embedded version of an image encoder, more specifically a JPEG encoder. Several commercial tools,
design environments, and platforms have been used as alternative implementation targets for this
application.
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Fig. 1. Embedded system design: from application to alternative implementations.

1. INTRODUCTION

Real-time embedded systems are a challenge to implement. An embedded en-
vironment constrains the energy consumption, the memory space, and the ex-
ecution time of an application. On the other hand, the complexity of the appli-
cations running on an embedded platform keeps increasing. Examples include
next-generation cell phones, portable game-boys and digital assistants, smart-
cards, and medical monitoring devices.

There is a huge need for courses to teach students systematic, divide-and-
conquer, design methods to map applications on embedded platforms. Tradi-
tional courses do not cover this topic. Courses in Electrical Engineering or
Computer Science are either focused on algorithm design, such as signal pro-
cessing, communications or networking, or they are focused on implementation
aspects such as Very Large Scale Integration (VLSI), computer architectures,
or circuits classes.

The goal of our embedded systems design course is to bridge the culture gap
between applications and implementation alternatives. According to the Inter-
national Technology Roadmap for Semiconductors, design complexity will limit
filling the silicon foundries, not process technology limitations [ITRS 2003].
Without design methods and tools, the designer in the middle is lost between
the vast algorithm space and the features offered by deep-submicron and nano-
technologies [De Man 2002; Gupta 2003].

1.1 Skiing Down the Slopes

In this graduate course, we assume that an application is given, but that design
paths into target architectures need to be explored. This leads to the concept
of a mountain, as shown in Figure 1. Students need to go through the design
phases to obtain alternative realizations, ranging from Verilog to assembly code.
This corresponds to skiing down different slopes of the mountain, starting from
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Fig. 2. Design of an embedded application requires close interaction with the architecture target
and associated design methods.

the application on the top. It will allow them to compare relative complexity
of different slopes, experience what a DSP compiler brings, relative to a hard-
ware synthesis tool, and get a feeling of the overall cost factors in a snowy and
seemingly uniform landscape.

The starting point of a single application with multiple implementation al-
ternatives is a key element. In one graduate class with duration of only 10 to
12 weeks, it is not realistic to consider the entire design space of all the al-
gorithm options and application alternatives, together with all the design and
implementation options. In our school, the duration of a course is 10 weeks. Each
week there are 4 hours of class lectures. Besides the class meetings, students
also receive weekly homework with hands-on assignments and experiments.
They typically have 1 week to turn in the assignment. Instead of individual
homework that are unrelated to each other, we have divided the problem of
system design in multiple steps. Each step is the focus of a homework.

This approach will prepare students well for future design jobs in industry.
Indeed, in many companies, the algorithm and system designer considers a
job done when Matlab code is operational and a high-level objective, such as
bit-error-rate (BER), is achieved. The system architect has to pick up this spec-
ification and obtain a suitable realization, corresponding to one of the downhill
slopes on the mountain. In the past, this was the job for the so-called “hard-
ware” or “VLSI” designer. These days, however, this task has become one of
platform selection, hardware/software codesign, embedded-software develop-
ment, besides the traditional hardware development.

A suitable realization is one that combines or trades-off different design
objectives such as performance, flexibility, energy consumption, and area, ex-
pressed in memory space or silicon gates.

The goal of the course is to give the students insight in this application de-
velopment process, explore implementation alternatives, and link these with
design methods and tools. The interaction between application development, ar-
chitectural platforms, and design methods is illustrated in Figure 2. All three
components are covered in the course. It is the key in meeting the high-level
application objectives with a concrete implementation. Indeed, the application
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or application domain will influence and often determine the architecture plat-
form. For example, a programmable DSP processor has specialized instructions
and datapath units to efficiently implement the cellular phone baseband stan-
dards. Similarly, successful design methods and tools have been developed for
particular platforms and/or for particular application domains.

Many design-tool vendors offer us the opportunity to use their tools in our
course and project. This is a win–win situation, as they get people trained in
new design methods and the students access the latest in electronic system
design automation. Unique to a class environment is that we can put these
design methods and tools in a larger context. We have the luxury to start with
unbiased students and to divide the class in teams. Different teams use different
environments, platforms, and/or tools. At the end of the course, the different
alternatives can be compared, based on the design goals of performance, area
and programmability, including design time and learning curve.

This links the theoretical part of the course with the tightly integrated design
experiment part of it. Instead of using a single design environment or a single
architecture platform, we divide the class in teams of 2 or 3 students. Each team
starts from the same initial specification, but the target platform is different,
as is some part of the design flow. For instance, for the JPEG image encoder,
four different implementation platforms were targeted using multiple design
flows [Sakiyama 2003a, 2003b].

1.2 Prerequisites for the Course

The course is typically taken by fresh graduate students with an undergradu-
ate education in Electrical Engineering, Computer Engineering, or Computer
Science. The students have a basic knowledge of computer architectures, circuit
design, hardware description languages, and some programming experience (C,
Java).

For the project, we try to make heterogeneous teams, e.g., one student with
a Computer Science background will team with an Electrical Engineering stu-
dent. This also mimics the reality in industry where students have to learn
to work in teams of engineers with different background. We typically take a
task or component of an embedded system that requires acceleration, a third-
party module, or some form of hardware/software codesign. We have taken
applications from signal processing and networking, as will be illustrated in
Section 3.

In general, we do not require that the students know a lot about the appli-
cation. We noticed, however, that those students who excel in the project often
are also those who have gained a thorough insight into the application.

1.3 Overview of the Paper

In the next section, we explain the organization of the course curriculum. We
explain and work out the three essential parts of the course: specification,
refinement, and implementation. In Section 3, we discuss a typical sample
course projects: an embedded JPEG image encoder. We conclude the paper in
Section 4.
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Table I. Comparative Feature List in GEZEL

Examples Reading Assignment
Topic for Theory Examples Examples
Specification and

models of
computation

Data flow vs.
control flow

Lee 1987
Harel 1987

Create a golden
test-bench

Transformation and
refinement

Data flow
transformations,
HW/SW codesign

Panda 2001 Reduce memory
accesses with
Atomium

Implementation
platforms

ASIC, FPGA, DSP,
SOC.

Verbauwhede 2000 Implement on an
embedded core
with a HW
accelerator

2. CURRICULUM

The curriculum is organized around three main topics: specification, refine-
ment, and implementation. The first part discusses the importance of speci-
fications and associated models of computation. In a second part, the impor-
tance of systematic transformations and gradual refinement is covered. This
corresponds to different tracks down the hill. In the third part, the different
implementation platforms are covered. This corresponds to the horizontal ex-
ploration at the bottom of the mountain.

2.1 Practical Organization

The lectures are evenly distributed over the three main topics. Typically, in a
first lecture, some basic introductory material to the topic is covered. Then, in
the follow-up lecture, more advanced research papers on the topic are studied.
The advanced topics are not only presented by the instructor. In addition, papers
are also distributed to the students and the students initiate the discussion by
preparing slides on the topic for a follow-up lecture.

Occasionally we have invited speakers. Sample invited speakers are Prof.
Gajski to speak about Spec-C [Gajski et al. 2000], Dr. Killian to speak about
the Tensilica instruction-set extension approach and associated design tools,
Mr. Ueda to talk about the design of the Matsushita i-Mode cell phone IC’s, and
Mr. Johnson to talk about the Handel-C design environment. For academics,
such a presentation offers a forum for their research. For professionals, this
presentation offers a forum for their tools and potential future users or employ-
ees. For the students, this brings them closer to reality and provides a glimpse
of what industry offers.

2.2 Link between Theory and Practice

Next to the lectures there are practical assignments, organized as a design
project. A new application was chosen every time the course is offered. During
the quarter, an initial specification is transformed and implemented on different
platforms. The different assignments correspond to different steps in the design
process. Some examples are discussed in detail in Section 3.

A key concept of the curriculum is to tighten theory to practical assignments,
as shown in Table I. The three rows correspond to the three phases in the
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course. The three columns associate theory with assigned reading and with
assignments in the course project.

By making this link between theory and practice, we want to teach the stu-
dents how to link fundamental concepts to their practical application. In the
fast-moving field of embedded systems, the useful span of knowledge is not
more than a few years. Consequently, embedded systems professionals are in a
continuous process of retraining. From all the innovations that come out in the
form of tools, methods, and architectures, they will have to learn how to select
those that can solve their design problems.

The concept of a design flow as a curriculum also promotes a continuous
evolution of the course material over subsequent offerings of the course. Recent
evolutions in the field are introduced to the students by covering these topics
in the advanced lectures or by assigning them as reading material. Therefore,
the material described in the next section is not fixed.

In addition, the concept of course layering with specification, refinement, and
implementation is applicable to different design domains as well, for example
graphics, networking or security.

2.3 Student Evaluation

An active participation of the students is required in class. The grading is based
on three main criteria: the theory, the project results, and the reporting. The
theoretical part is covered during the final exam. The project results are eval-
uated after each design step. For instance, Figure 9 (see later) shows the re-
duction in memory accesses obtained by each team. The teams with the most
memory access reduction (to the left of the histogram) will receive the highest
grade. Originality, even if it did not necessarily result in a positive outcome, is
rewarded. Reporting, documentation, and presentations are a third component
of the grade. Communication skills are very important for future engineers who
need to learn to work in a team setting. Each design step needs a report. Pre-
sentations are done during the class on different advanced research topics. At
the end of the quarter, the teams also present their design results.

2.4 Introduction to the Course

One lecture is used to introduce the course. First, the course is situated based on
Figures 1 and 2. It is illustrated with typical examples, such as cellular phones,
or ambient intelligent systems. Very motivational are the short descriptions of
EE-Times, called “under the hood” [Carey 2004]. Systematic design of a system
as complex as an embedded system is divided in to three main tasks:

� A systematic top-down refinement from specification to implementation. This
is illustrated with the Y-chart concept of Gajski and Kuhn [1983].

� A systematic exploration of alternative implementation techniques. What
are the different platforms and architectures available? It includes topics
such as hardware/software codesign, systems-on-chip, the role of intellectual
property, etc.
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� A systematic evaluation of the cost factors. Examples are energy versus flex-
ibility and programmability and performance versus time to market.

The reading associated with this lecture includes Gupta [2003] and DeMan
[2002]: both publications describe the culture gap. To illustrate the fact that
there exists an implementation world next to general-purpose processing, we
use the article by Strauss [2000]. It shows the importance of digital signal
processing (including video, image, voice, audio, sensor, and other processed
signals), in the overall computing done by embedded system platforms, and, in
general, on all platforms. The different examples of “under the hood” clearly
illustrate to the students that a typical embedded application is a very hetero-
geneous architecture with multiple different cores, programmable, and third
party or intellectual property (IP) modules.

2.5 Specification and Models of Computation

A few lectures follow on the importance of specifications and executable mod-
els. The specifications of an embedded system are very heterogeneous and one
model cannot capture it all. Indeed, similar to architecture design, a model that
is tuned to an application domain will be more efficient. It has modeling prim-
itives that allow accurate and fast expression of complex design problems in
that domain. Often, it is also possible to design very specific supporting design
methods and tools. The result is that a real embedded system will use a mixture
of specifications, models, and simulation environments.

In a first part, we present a classification in specifications and models.
The Tagged Signal Model [Lee and Sangiovanni-Vincentelli 1996] allows us
to clearly introduce the concept of time, partial and total order of events, the
difference between discrete time and discrete events, etc.

The two most popular models of computation for signal processing systems
are then discussed in more detail. These are the data flow model for the data
processing part and the control flow model to model the reaction to events,
typically used to model the control part of an embedded system.

Explicit modeling of parallelism is important to obtain efficient implemen-
tation of many signal-processing applications. Therefore, the synchronous data
flow graph model is introduced [Lee and Messerschmitt 1987] for individual or
1D signals. To model the dependencies between multidimensional arrays of sig-
nals, we use the stream model of Phideo [Verhaegh et al. 2001] and the single as-
signment multidimensional signal representations [Verbauwhede et al. 1996].

Simple control flow models can be represented by a finite-state machine
(FSM) and more complex ones with an extended finite-state machine (EFSM)
or hierarchical concurrent finite-state machine (HCFSM). This concept is intro-
duced nicely in a visual manner through the Statechart model of Harel [1987]. A
combination of control flow and data flow is available through the Finite-State
Machine with Datapath (FSMD) model.

Although these models have their limitations in expressiveness, they are
very instructional to provide students insight in representations that are very
different from what they have learned before. Usually they have only learned
imperative models, expressed in sequential languages such as C.
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Because of the wide adoption of C and C++ as initial specification languages,
several system design languages are developed, such as SystemC and SpecC.
These languages have the advantage that only a single syntax is needed. One
should bear in mind, however, that teaching languages is not a substitute for
teaching models. Indeed, a language is just a representation of a model through
a set of syntax rules. Often the model represented in the language is entirely
different from the model desired for design. For example, developing data flow
models in C++ will require a set of classes to support data flow semantics. In a
graduate course where more lectures are available, this topic can be furthered
elaborated and more advanced topics can be added.

2.6 Transformation and Refinement

In the second part of the course, transformations and gradual refinement are
introduced. A large selection of transformations, gradual refinements, and syn-
thesis techniques are available. In this course, we focus on the viewpoint of
the designer and focus on transformations that benefit the design objectives.
Next, three main categories are listed. The list is not intended to be complete;
the topics were chosen because we feel they have a large impact on the final
implementation results. Memory transformations are chosen because they are
relatively independent of the target platform, yet they have a great influence
on the final performance. Two other kinds of transformations (for performance
and for fixed-point refinement) are much more closely linked to the target ar-
chitecture platform. Hence they are situated closer to the bottom of the slope.

Memory Transformations. Many real-time signal processing applications
operate on large arrays and streams of data. Examples are video, audio, and
games. In reality, the throughput and performance of most of these applications
is limited by the data transfers, either to/from memory or between software and
hardware acceleration units and the size of the embedded memories. Hence, in
this course, we place great emphasis on a detailed study of memory accesses,
memory size, and code transformations to reduce those memory accesses and
to reduce the memory size. This requires an insight into the dependenciess
between production and consumption of arrays, the life-time analysis of multi-
dimensional arrays, followed by code transformations to reduce the amount of
data that needs to be stored and that needs to be accessed.

This part is closely linked to the previous one that introduces multidimen-
sional array representations.

Code transformations for memory optimization occur high up on the moun-
tain. As an example, code transformations to improve data locality are unre-
lated to the final implementation platform. The overall reduction of memory
accesses will benefit the final solution regardless of the specific architecture
selected.

The basic reading for this part is reference [Panda et al. 2001]. More advanced
topics are taken from Catthoor et al. [1998].

Performance Transformations. Related to the previous topic are transfor-
mations to improve parallelism, pipelining, resource utilization, etc. Similar
code transformations can be used to obtain the performance goals.
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In the digital signal processing community, many transformations are known
to improve performance. A typical reference is Parhi [1999]. From the general-
purpose parallel programming community, a similar set of code transformations
is known and many interesting references are available. Many of these transfor-
mations can benefit multiple platforms. e.g., solutions with multiple processors,
also very large instruction word processors or behavioral level-synthesis tools.

Floating-Point to Fixed-Point Transformations. In a signal-processing-
oriented design flow, data-type refinements related to floating-point and
fixed-point signal representations are a very important aspect. The basics
of fixed-point signal representation, such as sign, wordlength, overflow, and
truncation behavior are quite easy to explain. A more complex matter is an
optimization strategy to convert floating-point into fixed-point behaviour while
meeting preset precision constraints (SQNR, signal-to-quantization noise
ratio). The problem here is that floatingpoint to fixed-point transformation is
a highly nonlinear optimization, and, on top of that, it also requires an un-
derstanding of advanced signal-processing concepts. Two concrete references
that use a C++ environment are a simulation-based [Cmar et al. 1999] and a
pseudoanalytical [Keding et al. 1998] approach.

This topic is closely related to the final implementation platform. In an
application-specific intruction-set processor environment, the designer can fine
tune the different wordlengths to the requirements of the application. Pro-
grammable digital signal processors include specific instructions and features
that can be used by the designers to obtain maximum precision for the prede-
fined wordlengths. Examples are accumulators with guard bits, block floating
point, truncation, and saturation logic.

Although the design process looks like a purely top-down process, in reality,
the transformations and refinements are also bottom-up driven. Those consid-
erations originate from the availability of third-party IP modules (for hardware)
and legacy code (for software).

Test and verification are a very important component in all refinements and
transformations. They are not treated as a separated subject, but rather are
included in each design step, as testbenches. Formal verification is not yet in-
cluded. In the course, we emphasize an understanding of design representation
and transformations that are at the level of the designer, rather than at the level
of the tools.

2.7 Implementation

The third set of lectures focuses on the large variation of architectural plat-
forms available to the designer. We provide two basic concepts to select an
architecture platform. One is the concept of the energy-flexibility trade-off. The
second one is a representation of flexibility. Flexibility is offered in the forms
of programmability, reprogrammability, configuration, reconfiguration, etc. We
present a systematic classification of flexibility in what we call the “reconfigu-
ration hierarchy” [Schaumont et al. 2001].

The energy flexibility trade-off is illustrated in Figure 3. General-purpose ap-
proaches provide cost effectiveness but lack energy efficiency. Fully dedicated
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Fig. 3. Energy-flexibility trade-off.

approaches are best for energy efficiency, but are also very expensive to design.
Moreover, dedicated architectures lack programmability, as they completely
unify application and platform. A embedded systems platform, which typically
consists of multiple heterogeneous processing elements, seeks a balance be-
tween power and cost, by selectively reducing general-purpose programma-
bility. The reduced programmability is achieved by targeting the architecture
specialization to the application. Each component of the multiprocessor system-
on-chip (MPSOC) is highly optimized to its application domain. The examples
of “under the hood” can be used to confirm this.

The reconfiguration hierarchy is used to determine the amount of flexibility
a programmable processor, coprocessor, retargetable instruction-set processor,
reconfigurable logic, and so on, offers to the designer.

Between the two extremes of a fixed application-specific integrated circuit
(ASIC) and a general-purpose programmable CPU, there is almost a continuum
of options available. The two extremes, ASIC and CPU correspond to the two
extremes at the bottom of the mountain (shown in Figure 1).

ASICs are still used because the know-how is available in the form of library
modules. Examples of such modules include two-dimensional discrete cosine
transform, a cryptographic module for advanced encryption standard (AES)
operations, and a Viterbi or Turbo acceleration unit for wireless communica-
tions. To increase the reuse possibilities, the designers of third-party IP blocks
add features, parameters and other options to these blocks to turn them into
special-purpose programmable units. For example, the AES unit can be pro-
grammed to execute encryption or decryption. Similarly, the Viterbi unit can
be programmed for the number of states or samples. Programmable modules
have better reuse across different designs instances.

A processor has fundamentally four basic components: the data path or ex-
ecution units, the control part, the memory part, and the interconnect. This
corresponds to the “reconfigurable feature” axis shown in Figure 4. Each of
these components can be fixed or can be made programmable. At the same
time, the granularity of programming needs to be defined. If a data path is
still reprogrammed at the bit-level or at the lookup-table level, it is called
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Fig. 4. The reconfiguration hierarchy.

“reconfiguration,” typically on a field-programmable gate array (FPGA) or
a FPGA block. If it is reprogrammed at the instruction level, it is called
instruction-set reconfiguration. This corresponds to the “computation abstrac-
tion level axis” in Figure 4.

The third axis corresponds to the “binding time.” It relates the relative timing
of configuration to the timing of the data processing and it allows making dis-
tinction between configuration, reconfiguration, and adaptive reconfiguration.

The reconfiguration hierarchy is illustrated in the course with typical
processors and design environments. For instance, DSP processors have all
components of the processor architecture adapted to the application domain
[Verbauwhede and Nicol 2000]. This not only includes the well-known multiply-
accumulate (MAC) datapath, but also the Harvard architecture to improve the
data-stream processing, the specialized addressing units, and so on.

General-purpose embedded processors, such as ARM or Leon SPARC, offer
different opportunities for optimization. One option is instruction-set exten-
sion. Examples are the Tensilica [Rowen 2004] and Lisatek [Hoffmann et al.
2002]. This only changes the datapath and associated instructions. The ba-
sic architecture remains a Von Neumann machine. Instead of tightly coupled
instruction set extensions, another option is to build loosely coupled coproces-
sors. The GEZEL environment allows students to experiment with this type of
coprocessor [Gezel 2004].

At the end of this lecture series, we also provide time to discuss the important
topic of communication between modules and processors. We will discuss topics
such as multiprocessor systems-on-chip (MPSOC), and newer developments,
such as networks-on-chip.
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Fig. 5. Project goals for the JPEG encode project.

3. SAMPLE COURSE DESIGN PROJECTS

In this section we present a sample course project and discuss the structure
and organization of the labs, along with the results obtained by the students. A
JPEG encoder was chosen as a typical embedded application driver. In another
class project, an embedded web server was chosen. The course organization out-
lined in this paper was applied in both projects. Students were grouped in small
teams. Using a single-system specification, each of the teams worked toward a
different target architecture in a series of design steps, including specification,
optimizing transformations, and implementation. The JPEG encoder project is
described next to illustrate the design project. The project materials, including
assignments and sample descriptions, are available on the web.

3.1 Project Goals and Specification of the JPEG Encoder Project

In the JPEG encoder project, we started with a reference JPEG implementation
in C code and targeted three kinds of platforms: digital signal processor (DSP),
application-specific instruction-set processor (ASIP), and dedicated hardware.
As illustrated in Figure 5, the design was done for maximum performance, with
implementation cost (area, memory footprint, etc.) being a second criterion.

There are a considerable amount of variations in JPEG encoding
[Pennebaker and Mitchell 1992], and we opted to implement only the simplest
encoder, the so-called 422-baseline encoding scheme. The motivation for this
choice was given by the amount of time one can invest to get familiar with
the application. This should not require more than a single lab project. A 422-
baseline JPEG encoder is a block-based encoder that processes blocks of 8-by-8
pixels of image data. The encoding process proceeds through a series of image-
transform steps, which range from pure signal processing to control-oriented
run-length coding. The output of the encoder is a bitstream, captured within a
string of bytes. The JPEG file format (JFIF) is obtained by appending a JPEG
header onto the JPEG data.
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Fig. 6. Data flow in the JPEG encoder.

Although it is out of the scope of this article to discuss the detailed operation
of a JPEG encoder, it is still useful to point out the educational value of the
different parts of a JPEG encoding chain. Looking at the system dataflow in
Figure 6, we identify four different stages in a JPEG encoder. Each of those has
different design aspects.

� RGBYUV is a two-phase downsampling filter. It reads in 2 pixels of red–blue–
green color data (6 bytes) and produces 2 pixels of luminance/chrominance
data. Doing such a design requires students to get an understanding of color
spaces and of multirate filter structures. In addition, the filter design is a nice
target for fixed-point refinement because of the limited 1-byte resolution on
input and output.

� 2D-DCT is a two-dimensional discrete cosine transform (DCT). It processes
blocks of 8-by-8 pixels (luminance or chrominance data). There are two as-
pects in such a design. First, students must understand how a 2D-DCT can
be decomposed into a series of 1D-DCTs using a transpose operation on 2D
data. Second, they must also find an optimal implementation for the DCT
in terms of precision and operations. Such optimal designs are available
from literature [Chen et al. 1977], but students must still locate the correct
references.

� Q & ZZ is a quantization/zigzag-scan block, which reduces the precision of
the DCT-transformed data. Because we used a fixed quantization spec, this
block reduces to a computationally simple architecture. The design of the
block is interesting because the system dataflow changes radically just after
it—from a 2D to a 1D representation using so-called zigzag scan.

� HUF is a Huffman encoder, which implements a run-length encoding al-
gorithm. The encoder has different modes of operation for luminance and
chrominance components and, in addition, the zero-frequency component
of each block (the pixel at coordinates 0,0 of each 64-pixel block) is coded
differentially, while the higher-frequency components are not. A Huffman
coder, being a run-length encoding algorithm, exhibits data-dependent con-
trol flow. In contrast to previous blocks, where all operations can be scheduled
statically (and optimized using static-scheduling principles), the students
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Table II. Platforms and Tools for the JPEG Encoder Project

Platform Language Development Toolkit Prototyping Platform
TI C54 C Code Composer TI development kit
AD BlackFin C Visual DSP++ (2.0) AD development kit
ART Designer C ART Designer (ARM OptimoDE) Insight FPGA PCB
Celoxica DK1 HandleC DK1 Insight FPGA PCB

encounter a situation where efficient implementation of control flow becomes
crucial.

� SYSTEM. Even when the four functions mentioned above are understood
and designed correctly, there is still a system integration task. System-level
aspects to address are system-level pipelining, image row-scan to block-scan
conversion, and JPEG image file formats.

A broad range of skills and know-how is required in order to complete the
JPEG encoder design. In our experience, it is exactly this broad range that
makes it a challenging course project. The organizational effort went into struc-
turing the design flow of the JPEG encoder into a series of lab projects, and to
stripping out a number of typical time-wasters associated with system design.

First and foremost, there was the issue of a good reference implementation.
The standard reference implementation from the Independent JPEG group
[IJG 2004] provides an open-source implementation. Being a standard, how-
ever, this implementation comprises over 30,000 lines of C code in 72 files and
is an obvious overkill for our goals. We ended up developing our own reference
JPEG encoder of 868 lines of C++ code in 5 files. This implementation was based
on the encoder available in the vic project [McCanne and Jacobson 1995].

A second issue was the availability of good target platforms including devel-
opment tools. Table II lists the four platforms that we selected for our project.
All of the tools and platforms were made available by the vendors free of cost. In
return, we offered these companies first insight into our project results and, in
some cases, provided detailed feedback. A point of concern was that platforms
with combined development of application and architecture (such ASIP and
dedicated hardware) require more effort than platforms with a predefined ar-
chitecture (such as DSP). We, therefore, used a flexible design plan and included
fall-back options for the more complicated targets.

3.2 Design Flow of the JPEG Encoder Project

Figure 7 illustrates the steps in the design flow of the JPEG encoder and their
mapping to lab projects. There were 26 students enrolled in the reference class.
They were asked to form two-person teams, which resulted in 13 design teams
for the whole class. We felt that the concept of teamwork is an essential element.
Grades were assigned to the teams, however, outside of the project students
were still graded individually. The teams were preassigned to a particular tar-
get to ensure a balanced outcome. Even though it was a 10-week course, we had
only five assignments in the project. For some of the steps more than 1 week
was allocated.
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Fig. 7. Design flow and lab projects for the JPEG encoder.

Identify Data Flow. The very first task for the students was to acquire an un-
derstanding of the JPEG encoding algorithm. They received a reference imple-
mentation of a JPEG encoder and were asked to identify the data flow in the al-
gorithm. The data flow can be expressed in terms of the production/consumption
pattern of data for each of the edges in Figure 6. The result of this analysis can
be expressed in tabular form as follows:

Edge Contents Read Write
edge1 2 × 64 pixels chrom 1..64 U 1..64 U,V

1..64 V
edge2 64 pixels Q table 1..64 —

For example, in edge 1, chrominance data is provided per 64 pixels and with
interleaved U and V components. The data is read out by the DCT block per
64 pixels in a noninterleaved fashion. Edge 2 shows a read-only sequence of
quantization coefficients. The design of such a table requires the students to
walk through the C code and, using a block diagram of a JPEG encoder, identify
the data flow at system level.

System-Level Model. In the second lab of the project, students created an
actor-based data flow model out of the sequential C code. The system-level data
flow was known from the first lab. In addition, data flow semantics had been
covered during the course [Lee and Messerschmitt 1987], in particular, the
concept of actors and the associated mechanism of firing rule. Students also
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Fig. 8. Data flow model construction in system design languages.

received a data flow model of the encoder in C++ in which the different encoder
components are captured as data flow actors with first-in first-out (FIFO) data
queues in between them. We instructed the students to use one of the C-based
system design languages, including SystemC, SpecC, and HandleC.

To our surprise the outcome of this lab demonstrated a strong correlation
between result and the system-level language used. Figure 8 shows the size
of the solutions (in lines of code) for each of the teams per system language.
Some environments show large variations in program size (and complexity).
Many models were also nonoperational, mostly because the students had not
figured out how to map data flow semantics into the concurrency model offered
by the language. Our conclusion from this experiment was that documenta-
tion and methodology is an essential aspect for a system design language. At
the time of this course project, only SpecC had elaborate documentation on
system-level communication semantics freely available on the web [Gerstlauer
2004]. The graph presented in Figure 8 should be treated with caution because
it contains timely information; newer versions of SystemC (TLM in 2.0) and
HandleC (DK3) are better documented and have a better orientation towards
system-level modeling problems. The goal of the lab project was to investigate
the quality and usefulness of these system-level languages, at a time when “the
language war” between C-based environments was still in full effect.

Fixed-Point Refinement. In a third assignment, the students performed
fixed-point data-type refinement for their platform. The methodology for fixed-
point refinement was based on measuring the difference of an image with that
of a JPEG-encoded and decoded image. Because a JPEG encoder by itself is
a lossy compressor, it also introduces quantization errors as part of the algo-
rithm. Hence, the fixed-point refinement criterion is to minimize additional
degradation apart from the JPEG encoding algorithm. Fixed-point refinement
is a nonlinear optimization and, in general, we felt that this poses significant
difficulties for the students.
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Fig. 9. Memory access count of optimized JPEG data flow model as obtained by different groups.

Fixed-point refinement also poses specific simulation requirements depend-
ing on the target platform. For the 16-bit DSP architectures (TI C54 and
AD Blackfin), good programming environments are available. Specific features
such as multiply-accumulate on increased wordlength can be expressed with
pragma’s in a C program.

For ASIP and dedicated hardware design, fixed-point simulation requires
the use of a fixed-point precision data-type library. At the time of the project,
we made use of the C++ library provided by the AR|T simulation environment
[ARM OptimoDE 2004], but other options could be considered.

Memory Optimization. A fourth step was to optimize memory consumption
for the JPEG encoder on the different target platforms. The goal was to mini-
mize the amount of memory required to run the code on a particular platform.
The starting specification was the data flow model of the JPEG encoder that the
students had used before. The goal was to rewrite this model, gradually remov-
ing FIFO buffers and reintroducing control flow so that the overall storage in
the system was minimized. We made use of the Atomium memory analysis tools
[Imec 2004] . These tools parse in a C-program, instrument it with memory-
access profiling code, and write out an instrumented C-program. The traces that
are created as a result of running this program can be analyzed and format-
ted into tables by postprocessing tools. The results of these optimizations are
shown in Figure 9. Almost all teams were able to reduce the amount of memory
accesses with a factor of 2 to 3. We were also very pleased with the “point-tool”
concept of Atomium. The input and output is plain C code (with a number of
acceptable restrictions) and all of the analysis results are easily accessible.

Implementation. The final step of the project was the implementation step.
Students had to use all the results obtained previously (data flow, fixed-point
behavior, and memory organization) to find the fastest implementation for their
platform. The results for the project are illustrated in Table III. All of the teams
that targeted a DSP platform could successfully demonstrate their encoder
running on a development PCB. In the case of FPGA-based platforms, however,
compiling the architecture was quite difficult.
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Table III. Implementation Results for the JPEG Encoder Project

Average Code Performance
Platform Cycles 64 × 64 Image Length (Lines) (JPEG blocks/sec)
AD BlackFin 1,524K 879 12,602 (@300MHz)
TI C54 1,499K 707 4,270 (@100MHz)
ART Designer 677K 1,015 —
Celoxica DK1 700K 1,312 1,357 (@15MHz)

3.3 Experience from the Trenches

Running a project according to a design flow demands a significant investment
of time and preparation. However, we feel that the results in our projects show
that such effort is worthwhile. Indeed, there is no other place than an academic
curriculum that has the opportunity to simultaneously sample the quality of
many different state-of-the-art architectures and tools. From a practical view-
point there are some aspects that can simplify the organization of such a project.

A complete design flow is, for a large part, a software-development process.
Tools are run from a command line prompt and their results are available in
files. A student who is not familiar with basic computer skills (file management,
command-line operations, data filtering, and so on) in a Unixlike environment is
at a significant disadvantage. One might argue that these are practical matters
that should not burden the student. However, we feel that students should be
able to experience design in the same way as do practicing engineers.

For the same reason, we prefer to use point tools over closed environments.
A point tool performs a well-defined task in between well-defined design repre-
sentation formats (examples are Atomium, a C compiler, or GEZEL). In closed
environments, design activities are shielded by a GUI that often also forces a
certain manner of operation. We would not want all our design teams to run
the same design files in the same design environment. Rather, we want them
to use their creativity and outsmart their peers with a better design.

From an organizational viewpoint, software license management quickly be-
comes a burden. This is especially true in a contemporary academic computing
environment. Most of the students have their own laptop, in addition to their
own machine at home. They run many different operating system configura-
tions. They prefer to work at odd hours, from arbitrary locations connected to
the University through Internet. Because of this, we found node-locked licenses
to be virtually useless and floating licenses useful only if they can freely float.
Our own experience with license-less open-source software has been very pos-
itive because of this. Also, the availability of free (capability-restricted) FPGA
design and simulation software by some vendors is a very positive evolution.
At least these vendors see that design automation tools do not have the same
value for students as mp3 files.

4. CONCLUSIONS

The field of embedded system design and the state of contemporary technol-
ogy makes it possible to create complete systems with students in a course.
The course brings together application, design methods, and implementation
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alternatives. A good understanding of the interaction between these concepts,
will lead to successful designs. In this way, an embedded systems course does
not differ from an older VLSI design course.

What has changed is the complexity and the granularity of the problem, for
which adapted models of computation, associated design methods, and archi-
tecture platforms are presented. As the field of embedded systems evolves, so
will these topics. However, the basic concepts will remain and are part of any
engineering project.

The project makes it possible to create a realistic simulation of actual indus-
trial practice within the fail-safe context of a University. Besides a thorough
understanding of a design problem, such a simulation includes design work,
team work, and reporting. It brings a broad range of skills to student teams,
and shows them that there is more than one way to measure success.
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