Education

FINAL PROBLEM SET EXCERPTS

CS 292-S (Algebraic Algorithms)

Richard J. Fateman University of California Berkeley, (Spring, 1976)

1. Integrate

 $\log(\log(x) + 1) + 1/(\log(x) + 1)$

with respect to x using the Risch integration algorithm. Show all work.

ANSWER: $x \log(\log x + 1) + c)$

2. Using Richardson's Zero-equivalence algorithm, prove that

$$\log ((e^{2x} - 1)/(e^{x}+1) + 1) - x = 0$$

Show all work. You may not use the fact that

 $e^{2x} = (e^{x})^2$.

3. Compute the first three terms in the Taylor series expansion of f(x) about x = 0 when

$$f(x) = e^{x}/(\sin^{3}(x) + \cos^{3}(x))$$

by doing the appropriate arithmetic on power series for e^{X} , sin(x), cos(x). Prove, as a first step, the ratio of two power series

$$U = u_0 + u_1 \cdot x + \dots, \quad V = v_0 + v_1 \cdot x + \dots$$

is W where

$$w_n = (u_n - \sum_{0 \le k \le n} w_k v_{n-k}) / v_0$$

$$n = 0, 1, ...$$
 (where $v_0 \neq 0$).

ANSWER: $1 + x + 2x^2 + ...$

 How is the cost of evaluation of a polynomial at a point affected by representation in factored form.

ANSWER: Depends. Consider $(x-1)^8$, $x^8 - 1$.

- 5. Propose as many credible interpretations of the following expressions as you can. Which would you prefer?
 - a) DIFF(SUM(F(X), X, 0, INF), X);
 - b) DIFF(SUM(X+I,I,0,INF),X);

- c) DIFF(SUM(Y+1,1,0,X),X);
- d) DIFF(SUM(I+X,I,O,INF),X);
- e) SUM(F(I),I,0,-2);

ANSWER:

- a) O.
- c) $Y^{X+1} \log(Y)/(Y-1)$
- e) -F(-1) preserves some useful properties.
- Develop a quick test for a multivariate polynomial being "square-free". This test will return one of three indications:
 - a) square free
 - b) not square-free
 - c) cannot tell without more work.

Use no operations which produce coefficients larger than some (machine-dependent, in general) bound.

- 7. a) Prove 3 is a primitive eighth root of unity in Z_{41} .
 - b) Using a balanced representation for the integers mod 41, compute an 8 point Discrete Fourier Transform on the coefficients of

$$p = 3x^2 - 4x + 1$$

a polynomial over Z₄₁.

Then cube each term in the transformed sequence, and compute the inverse transform, (i.e., $p^3 \mod 41$). For the forward transform, use two techniques: multiplication by the Vandermonde matrix, and the "fast" algorithm. For the inverse, use whichever technique you find simpler. Show all essential computation.

-- 14 --