FINAL PROBLEM SET EXCERPTS
CS 292-S (Algebraic Algorithms)

Richard J. Fateman
University of California
Berkeley, (Spring, 1976)

1. Integrate

$$
\log (\log (x)+1)+1 /(\log (x)+1)
$$

with respect to x using the Risch integration algorithm. Show all work.

ANSHER: $\quad x \log (\log x+1)+c)$
2. Using Richardson's Zero-equi valence algorithm, prove that

$$
\log \left(\left(e^{2 x}-1\right) /\left(e^{x}+1\right)+1\right)-x=0
$$

Show all work. You may not use the fact that

$$
e^{2 x}=\left(e^{x}\right)^{2}
$$

3. Compute the first three terms in the Taylor series expansion of $f(x)$ about $x=0$ when

$$
f(x)=e^{x} /\left(\sin ^{3}(x)+\cos ^{3}(x)\right)
$$

by doing the appropriate arithmetic on power series for $e^{x}, \sin (x), \cos (x)$. Prove, as a first step, the ratio of two power series
$U=u_{0}+u_{1} \cdot x+\ldots, \quad v=v_{0}+v_{1} \cdot x+\ldots$
is W where

$$
w_{n}=\left(u_{n}-s_{0 \leq k<n} w_{k} v_{n-k}\right) / v_{0}
$$

$n=0,1, \ldots$ (where $\left.v_{0} \neq 0\right)$.
ANSINER: $\quad 1+x+2 x^{2}+\ldots$
4. How is the cost of evaluation of a polynomial at a point affected by representation in factored form.
ANSWER: Depends. Consider $(x-1)^{8}, x^{8}-1$.
5. Propose as many credible interpretations of the following expressions as you can. Which would you prefer?
a) $\operatorname{DIFF}(\operatorname{SUM}(F(X), X, 0, I N F), X)$;
b) $\operatorname{DIFF}(\operatorname{SUM}(X+I, I, 0, I N F), X)$;
c) $\operatorname{DIFF}(\operatorname{SUM}(Y+1, I, 0, X), X)$;
d) $\operatorname{DIFF}(\operatorname{SUM}(I+X, I, 0, I N F), X)$;
e) $\operatorname{SUM}(F(\mathrm{I}), \mathrm{I}, 0,-2)$;

ANSINER:
a) 0 .
c) $\mathrm{Y}^{\mathrm{X}+1} \log (\mathrm{Y}) /(\mathrm{Y}-1)$
e) $-F(-1)$ preserves some useful properties.
6. Develop a quick test for a multivariate polynomial being "square-free". This test will return one of three indications:
a) square free
b) not square-free
c) cannot tell without more work.

Use no operations which produce coefficients larger than some (machine-dependent, in general) bound.
7. a) Prove 3 is a primitive eighth root of unity in Z_{41}.
b) Using a balanced representation for the integers mod 41, compute an 8 point Discrete Fourier Transform on the coefficients of

$$
p=3 x^{2}-4 x+1
$$

a polynomial over Z_{41}.
Then cube each term in the transformed sequence, and compute the inverse transform, (i.e., p3 mod 41). For the forward transform, use two techniques: multiplication by the Vandermonde matrix, and the "fast" algorithm. For the inverse, use whichever technique you find simpler. Show all essential computation.

