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ABSTRACT 

This paper describes a computer program 
which evaluates, manipulates and identifies non- 
dimensional numbers (pi terms, dimensionless num- 
bers or factors) generated using the Buckingham 
Pi Theorem. Computations are performed using 
SYMBOLANG, an algebraic (symbol) manipulation 
package (solutions are kept in symbolic form). 
Manipulation occurs in two ways. First, many 
allowable combinations of pi terms (up to 720) 
are generated by changing the ordering of the 
dimensional equations which are solved. Second, 
a small group of operators (squaring, square- 
rooting, cube-rooting, reciprocating, and divi- 
sion of both the minimum and maximum exponent) 
are applied to each solution (these too are solu- 
tions and also kept in symbolic form). Numerical 
substitution into the symbolic forms produce sca- 
lars (evaluated solutions) for subsequent use 
(plotting, regression, factor analysis, etc.). 
Finally, every symbolic solution is compared with 
well-kdown nondminsional numbers (e.g., Reynold's, 
Weber's, etc.). If a match is not found, this 
information is displayed. 

"It i8 out of the question to formulate 
and earry out experiments nowadays with- 
out making use of similarity and dimen- 
8ionality concepts". 

I. INTRODUCTION 

One measure of the importance of a scientific 
area is the number of papers written in that area. 
Dimensignal analysis has generated over 600 publi- 
cations-, however, only a handful of these papers 

. . . . . .  3,4,5,6,7 
deal with computerized ulmenslonall~y 

There are several reasons why so little com- 
puter work has been done in dimensional analysis. 
First, much work has been devoted to methodol- 
ogies and specific solutions in highly special- 
ized areas. Second, and more important, is that 
computer codes have been inflexible. Only one 
solution is usually generated for a given order- 
ing of dimensional equations. Therefore, fruit- 
ful and/or well recognized solutions might not 
be generated. This, just because of reordering. 
Next, identifiable and well recognized solutions 
are not identified. The user does needless com- 

putational work when this occurs. Finally, with 
the exception of the work of Cohen and Ferrari, 
(Reference 6), solutions are not usually numeri- 
cally evaluated. Therefore, a great deal of com- 
putational work must be performed before suitable 
data is available for plotting, regression, clust- 
ering, or factor analysis. 

The program described in this paper over- 
comes most of the named deficiencies. That is, 
those of inflexibility. Computer solutions are 
generated using the Buckingham Pi Theorem 
(Section II). Computations are performed using 
SYMBOLANG (Section III), an algebraic (symbol) 
manipulation package. Solutions to dimensional 
equations are kept in symbolic form. In addi- 
tion, solutions are manipulated in two ways. 
First, many allowable combinations of pi terms 
(up to 720) can be generated by the program auto- 
matically changing the order of the dimensional 
equations. Second, a small group of operators 
(squaring, cubing, square-rooting, cube-rooting, 
reciprocating, and division by both the minimum 
and maximum exponent) are applied to each gene- 
rated solution. Various transformations applied 
to solutions produce new solutions. Products of 
solutions also produce new solutions. Provision 
has been made for numerical substitution into the 
symbolic forms producing scalars (evaluated 
solutions) for subsequent use. In addition, 
every symbolic solution is compared with well- 
known nondimensional numbers (e.g., Reynold's, 
Weber's, etc.). Well-known numbers are selected 
from the Land Table 8. When a match between a 
symbolic solution and a Land number is found, the 
name of the Land number is printed for all such 
numbers which match (i.e., there may be more than 
one name printed for a particular solution). 

II. THE BUCKINGHAM PI THEOREM 

9 
The Buckingham Pi Theorem summarizes the 

entire theory of dimensional analysis I0. The 
result of a dimensional analysis is the reduc- 
tion of the number of variables in a problem. 
Application of the Pi theorem itself provides 
the method of solution of a set of dimensional 
equations. Simply stated, the Pi theorem asserts: 

If there are n variables involving N 
fundamental units, these may be 
combined to forn n-N dimensionless 
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parameters each involving N + 1 
variables. 

The usual method of applying the Pi theorem 
is for one to write equations describing the phy- 
sical system one is interested in in terms of a 
set of fundamental units (force, length, time, 
etc.). The equations are then systematically ex- 
ponentiated and multiplied together (hence "Pi" 
theorem for the mathematical symbol for multipli- 
cation (,). The resulting exponentials fo~m an 
N by N set of linear equations whose solution is 
applied back to the variables of the problem (see 
the example below). One can see that it is tedi- 
ous to work a problem involving many variables by 
hand. In fact, there is no good indicator of 
just how many variables one should include in a 
problem (that is true even for a computerized 
solution). 

The following example (taken from Housner 
and Hudson II) used throughout the remainder of 
the paper illustrates the mechanisms of the Buck- 

Consider a drag force (F) acting upon 
a body moving through a fluid. Assume 
a constant velocity (V) through the 
fluid of density (p) and viscosity (~). 
If the analysis is applied to bodies of 
a specific shape, the cross-sectional 
area (A) may be used as a measure of 
the body's size. 

The following variables and fundamental units 
enter into the problem: 

Variable Fundamental Units 

F = F 

= FL-2T 

A = L 2 

p = FL-4T 2 

-i 
V = LT 

where F = Force, L = Length and T = Time, 

According to the Pi theorem, two terms can be 
formed from the five equations (each equation is 
expressed in terms of the three fundamental units). 
The two solutions will each contain four of the 
variables. The pi terms formed with this ordering 
are: 

= FA~V ~ = 
Fl+~L2~-4~+ ~T2~-7 

and 

Solving these equations we find: ~i has the solu- 
tion G = -i, ~ = -i, 7 = -2; T^ has the solution 

= -1/2, ~ = -i, 7 = -i; so the rlsulting dimen- 
sionless pi terms are: 

F and 
~1 = Apv 2 5 = A1/2pV 

"l is a pressure coefficient and T 2 is the recip- 
rocal of the Reynold's number 10. One can see how 
the equations are systematically selected and vis- 
ualize the ease with which such an algorithm can 
be programmed. 

The above represents one set of solutions. 
In this particular case, eight other solutions 
are possible depending upon the reordering of the 
five basic equations. The full set of solutions 
is listed below: 

F APV 2 
(1) (6) F 

ApV 2 

vAl/2pl/2 
(2) ~ (7) 

Ai/2pV Fi/2 

A~2V2 (8) ~ (A °) 
(3) F2 Fl/2pl/2 

(4) pF(V°) (9) V~A1/2 
~2 F 

pF 
(5) ~2 pl/2 1/2 (V°) (i0) (A °) 

In this example, only solutions (1) and (2) 
are fruitful (contain information). The other 
eight solutions can all be derived from solutions 
(i) and (2). We must note, however, that solu- 
tions (4) and (10) are minimal in the sense that 
they (a) contain the fewest possible number of 
variables and (b) the sum of their (integer) ex- 
ponents is a minimum (see References 4 and 5 for 
a further discussion of minimal solutions). 

III. SYMBOLANG 

SYMBOLANG 12'13, a high-level FORTRAN lan- 

guage for algebraic (symbol) manipulation, was 
used to form the symbolic products (pi terms) of 
the fundamental units. This application was well 
suited for SYMBOLANG. Not only were solutions 
generated, but, one was able to see the develop- 
ment of the pi terms as the products were being 
formed. In addition, the final equation was also 
displayed. SYMBOLANG is of pedagogical value in 
demonstrating the mechanisms of the Buckingham 
Pi Theorem. 

IV. THE PROGRAM 

The name of the main program is BUCKY. 
BUCKY initializes the SLZP-SYMBOLANG working 
storage area, then reads and displays the inputs 
(sample inputs appear in Figure i). BUCKY next 
calculates the number of combinations (orderings) 
possible based upon the number of equations in- 
put, however; only 720 permutations are allowed. 
BUCKY next breaks the equations into two pieces; 
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Figure i. Sample Inputs 

VARIABLE ENGLISH UNITS METRIC UNITS 

Force (F) 104Lbs 444820 x 104 Dynes 

Velocity (V) 

Area (A) 

Density (6) 

Viscosity (~) 

103Ft/Sec 

102Ft 2 

Lb Sec 
.00237~ 

4 
Ft 

-7 Lb Sec 
4 x i0 

Ft 2 

30480 cm 
sec 

2 
92903.04 cm 

.0012144 Dyne Sec 
4 

cm 

1.915201 Dyne Sec 
2 

cm 

PROGRAM INPUTS 

8 

FORCED 
VISCOSITY 
AREA 
DENSITY 
VELOCITY 
FORCE 
LENGTH 
TIME 

5 
3 

NOMOR 
$$ 

444820. 
1.915201 
92903.04 
.00122144 
30480. 

-9999.9 
-9999.9 
-9999.9 

+ 04-9999.9 
- 04-9999.9 

-9999.9 
-9999.9 
-9999.9 

FORCED=FORCE$$ 
VISCOSITY=FORCE*TIME/LENGTH**2$$ 
AREA=LENGTH**2$$ 
DENSITY-FORCE*TIME**2/LENGTH**4$$ 
VELOCITY=LENGTH/TIME$$ 
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Figure 2. Sample Program Outputs 

NUMBER OF PRIMITIVES 8 

LAND CANDIDATES REFERS TO 
A COMPILATION OF DIMENSIO}~ESS NUMBERS BY NORMAN S. LAND 

NASA SP-274, USGPO STOCK NUMBER 3300-0408, 1972 

PRIMITIVES USED IN EVALUATION 

PI THEOREM SOLVER 

PRIMITIVES VALUES 
FORCED 0.44482000E i0 -0.99999000E 04 0.00000000E 00 

VISCOSITY 0.19152010E-03 -0.99999000E 04 0.00000000E 00 
AREA 0.92903040E 05 -0.99999000E 04 0.00000000E 00 

DENSITY 0.12214400E-02 -0.99999000E 04 0.00000000E 00 

VELOCITY 0.30480000E 05 -0.99999000E 04 0.00000000E 00 

FORCE -0.99999000E 04 0.00000000E 00 0.00000000E 00 

LENGTH -0.99999000E 04 0.00000000E 00 0.00000000E 00 

TIME -0.99999000E 04 0.00000000E 00 0.00000000E 00 

THERE ARE 5 FORMULAS INVOLVING 3 VARIABLES 

THERE ARE 5 POSSIBLE COMBINATIONS 

FORCED=FORCE$$ 
VISCOSITY=FORCE*TIME/LENGTH**2$$ 

AREA=LENGTH**2$$ 
DENSITY=FORCE*TIME**2/LENGTH**4$$ 

VELOCITY=LENGTH/TIME$$ 

4*B 
THERE ARE 2 PI TERMS 

LTV = FORCE**(1 + B)*LENGTH**(2*A 

*TIME**(2*B - C) 
$ 

SEND OF EXPRESSION 

SOLUTION OR MANIPULATED SOLUTION FOR PI TERM 

FORCED ** .10000000E 01 
AREA ** -.10000000E 01 

DENSITY ** -.10000000E 01 
VELOCITY ** -.20000000E 01 

VALUE(S) OF PI TERM FOLLOW 

VALUES USED IN EVALUATING PI TERM 
0.44482000E l0 0.92903040E 05 

EVALUATED TERM = 

+ c) 

0.12214400E-02 0.30480000E 05 

0.42194157E-01 RECIPROCAL = 0.23699964E 02 

LAND CANDIDATES 
BOND WEBER EOTVOS MAG INTER 
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the one to the left of the equal sign are vari- 
ables and those to the right of the equal sign are 
fundamental units. Now, the Pi theorem algorithm 
is invoked. This is where the exponentiation and 
multiplication of fundamental units occurs. The 
result of this step is the system of equations 
which is solved using a matrix inverse routine. 
The solution of the linear equations is performed 
in subroutine BUCKSV. Next, the appropriate 
numerical operator (squaring, etc.) is established 
and a numerical substitution made. A scalar is 
produced. 

Evaluation is performed in subroutine EVALP. 
EVALP is an inelegant routine whose main virtue 
lies in producing the correct scalar value. Up 

to five values may be input for each of 24 vari- 
ables (a considerable number for a dimensional 

analysis). Reciprocating is also performed in 
EVALP. 

After evaluation, the exponents of the sym- 
bolic solution are passed to TABLUK, which com- 
pares them with well-known dimensionless numbers 
taken from the Land Table. When a match is found, 
the name(s) of all numbers in the table fitting 
the match is printed. 

Following the table lookup, a new numerical 
operator is selected (subroutine PRMTE) and the 
evaluation and lookup process repeated. When all 
numerical operators have been processed, a new 
ordering of the equations is generated (this is 
a random process performed in ONEMR which also 
keeps track of which permutations have already 
been made) and the entire solution process is 
repeated. Up to 720 solutions are permitted, so 
all solutions will be generated even for rela- 
tively large problems. Sample Program outputs 
appear in Figure 2. 

V. DISCUSSION 

In an earlier section, we have seen what 
program BUCKY does. Namely, it forms solutions 
to the Buckingham Pi Theorem, evaluates these 
solutions, and finally, identifies them when pos- 
sible. In addition, reordering the dimensional 
equations allows for different solution sets to 
be formed. When there are few equations to be 
solved, every possible solution is formed; there- 
fore, an optimal solution is always generated 3,4'5. 

Furthermore, numeric substitution into the sym- 
bolic form generates scalar values (evaluated 
solutions) which may be kept in a data base for 
further use. When an investigator finds a solu- 
tion particularly suited to his needs, selective 
retrieval of evaluated solutions allow data to be 
plotted as well as used in regression, clustering, 
or factor analysis. As a last step, an attempt 
is made to identify each solution (primary and 
algebraically manipulated) by comparing solutions 
with well-known nondimensional numbers. It should 

also be noted that by keeping solutions in sym- 
bolic form one does not need to refer to other 

documents to determine which variables are 
involved in the solution. 

There are some shortcomings to program 
BUCKY. First, no attempt is made to verify that 
there is a consistent set of equations (none of 

the other computer programs does this either). 
Failure to provide a consistent set of equations 
result in a singular matrix which cannot be 
inverted. Second, the program does not provide 
for an automatic change of units 6. This is cor- 
rectable by providing conversion factors and hav- 
ing a separate conversion calculation phase before 
evaluation occurs. Finally, while no other pro- 
gram attempts to identify solutions, not all well- 
known solutions are tabled. This can be easily 
corrected by adding solutions to the table. In 
addition, some well-known solutions are not recog- 
nized because of dimensional substitutions which 
can be but are not made. For instance, 

Ai/28V 

is a Reynold's number; however, the program does 

not realize that Ai/2= L (A is area, D is length). 

This fault can also be corrected by substituting 
fundamental units for variables, however, the ex- 

pense of making all such substitutions does not 
seem to warrant the gain (there are always numer- 
ous little things one can do:) 

No further extension of this work is contem- 
plated at the present time. 
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