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The oldest algorithm for handling symbolic in- 

formation is, perhaps, one which computes the deri- 

vative of a function. Nowadays, such an algorithm, 

to be a valuable tool, is never used on its own but 

as an element of a very large set of procedures.This 

set constitutes a formula manipulation system and 

the algorithm for differentiation certainly lies at 

its heart. 

If, during the implementation of the system 

care is not taken to make sure that the procedures 

are consistent with each other there is a strong pos- 

sibility that the system produces wrong results. With 

this matter in view I decided to design several easy 

tests to control the consistency of formula manipula- 

tion systems. With the design of this set of tests I 

have in mind three kinds of readers: 

The first one is the traditional mathematician 

who supports his work with pencil and paper alone. 

The algorithms in the set are easily understood by 

him because they are based in his daily work. There- 

fore I hope to present him a tool with which he may 

obtain his results with more simplicity and more re- 

liability. He will realize that eventually the small 

programs presented here can be linked up into a lar- 

ger computer program. 

The second type of reader I have in mind is the 

formula manipulation systems user. The set of tests, 

when adapted to the system he uses, shows him the 

possibilities of the system. 

Finally my tests set could help the designers 

of formula manipulation systems to characterize and 

test their own differentiation algorithm. For the 

benefit of this type of reader I present in Appendix 

the ALGOL 60 description of the differentiation al- 

gorithm I use. 

The test set is written in the language of my 

own formula manipulation system because, unfortu- 

nately, I do not have access to the most common sys- 

tems in use. As a result of this circumstance the 

reader will find several reserved words which are 

not familiar to him but I hope that this fact will 

not be a serious obstacle to his good understanding 

of the tests. 

The instructions which may lead to mal function 

ing when used in algorithms containing differentia - 

tions are the assignment, the substitution, the at- 

tribution of a name or of an expression to the deri- 

vative of some variable,and the declaration of func- 

tional dependence. 

Assignment are expressions with the pattern 

< LHS > := < RHS >; 

where < LHS > is always an identifier and < RHS > 

an admissible expression. It usually contains symbo- 

lic terms as in the following example: 

F :=A+B* (A- I ); 

The result of an assignment is a formula. If we 

have a formula containing several symbols, we can 

produce a new formula by substituting one or more of 

the symbols by expressions. These substitutions are 

in fact assignments of a special kind. We may, for 

instance,substitute in the formula F defined above 

T + I for A and" 7 for BA.Ie will then have, ac- 

cording to our notation, the instruction 

G := SUBST ( F, A, T + I, B, 7); 

the first argument of SUBST being the identifier 

of the formula it deals with, followed by a list of 

symbols together with the corresponding expressions 

they are substituted by. The final result therefore 

is 

G:=~*T+I; 
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Let us assume now that the manipulation system 

contains a facility for declaring a variable as a 

function of another variable. For instance, assume 

that the statement FUNC (F, X); means that the vari 

able F is a function of the variable X We 

may then declare that two variables X and Y are 

functions of two other variables A and B , intro- 

duce an assignment by which F becomes an expres- 

sion containing X and Y , and we may produceanew 
~F ~F 

formula containing ~ and -~ . With theseelements 

we are able to construct the first test: 

' TEST I ' 

FUNC (X, A);  FUNC (X, B); 

FUNC (Y, A);  FUNC (Y, B); 

F := X + 2 + Y + 2; 

G := DER (F, A) i- 2 + DER (F, B) + 2; 

OUTPUT (F := F); OUTPUT (C := G); 

END; 

In the same way we may create more complex si- 

tuations by introducing several functional depen- 

dences such as, for instance F(X), B(A) and A(X) . 

We may thus write Test 2: 

' TEST 2' 

FUNC (F, X); FUNC (B, A); FUNC (A, X); 

G := DER (F, X); 

P := SUBST (G, F, X ~ 2 + B); 

OUTPUT (P :: P); 

END; 

Consider now the case when the system includes 

the possibility of assigning a name or an expression 

to the derivative of a variable. This is a facility 

sometimes useful in symbolic mathematics.We use this 

kind of attribution when we substitute the second or- 

der differential equation 

d2X 
--+F . X=O 
dT 2 

by the system 

d X = V d__V. =-F • X • 
dT ' dT 

In the f i r s t  o f  these two equat ions  a name is 

ass igned to the d e r i v a t i v e  and in the second an ex-  

p ress ion  is ass igned to  the d e r i v a t i v e .  I f  the formu- 

la man ipu la t i on  system allows assignments of  t h i s  k ind  

to be per formed,  new p o s s i b i l i t i e s  and new advanced 

t e s t s  become a v a i | a b l e .  

The d i f f e r e n t i a l  equa t ion  system g iven above is 

specified in our system by the statement: 

SPECDER (T, X, V, V, - F , X); 

in which the first symbol of the list is theindepen- 

dent variable and the following symbols are the as- 

signments to the derivatives. Vie may use SPECDER 

in Test I and Test 2 but there are other more more 

powerful tests which are based on this word. 

Let us consider now the homogeneous dlffere~ial 

equation 

y, _ X + Y 

X - Y 

We may solve this equation by substituting the 

dependent and the independent variables through the 

substitution 

Y = R sin A 

X = R cos A 

in which R and A are respectively the new depen- 

dent and the new independent variables. In order to 

transform the equation we take advantage of the rela- 

tionship: 

d Y  dY / d_X 
dX dA dA 

and, us ing the reserved word SPECDER , we s t a t e :  

SPECDER (X, Y, DER (Y, A) / DER (X, A ) ) ;  

We are now ab le  to  w r i t e  our t e s t :  

'TEST 3' 

FUNC (X, A); FUNC (Y, A); FUNC (R, A); 

SPECDER (X, Y, DER (Y, A) / DER (X, A ) ) ;  

F : :  DER (Y, X) - (X + Y) / (X - Y); 

G := SUBST (F, X, R , COS(A), Y, R , SIN(A)); 

OUTPUT (G := G); 

END; 

We may use the above declarat ion SPECDER as a 

d e f i n i t i o n  in order to compute the der iva t ives  of Y 

with respect to X. 

'TEST 4' 

SPECDER (X, Y, DER (Y, A) / DER (X, A)) ;  

FO := DER (Y, X); 

F1 := DER (FO, X); 

F2 := DER (FI, X); 

F3 := DER (F2, X); 

END; 

OUTPUT (FO := FO); 

OUTPUT (FI := F I ) ;  

OUTPUT (F2 : :  F2); 

OUTPUT (F3 := F3); 

The last test we present is very similar to but 
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much more powerful than test 4. When a differential 

equation does not involve explicitly the independent 

variable it is possible to reduce its order through 

a transformation of variables. If we call Y the old 

dependent variable and X the old independent vari- 
dY 

able we may take P =.~.~ as the new dependent vari- 

able and Y as the new independent variable. The 

test consists in computing with these new variables 

the successive derivatives of Y with respect to X: 

'TEST 5' 

SPECDER (X, Y, P); 

R := DER (Y, X); 

R := DER (R, X); 

R := DER (R, X); 

R := DER (R, X) 

END; 

DER (P, Y); 

OUTPUT (DF / DX := R); 

OUTPUT (D2F/DX2 := R); 

OUTPUT (D3F/DX3 := R); 

OUTPUT (D4F/DX4 := R); 

APPENDIX - The procedure of differentiation which is 

presented next is an element of a very large system 

written in ALGOL 60. This system, whose listing will 

be supplied under request, may be considered a devel- 

opment of this one proposed by R. P. Van de Riet (For 

mula Manipulation in ALGOL 60 - Mathematisch Centrum, 

Amsterdam). 

In this system the symbols and the numbers are 

stored in arrays, the formulae are represented as bi- 

narytrees with information stored in the nodes and 

where its elements are collected in a stack. Each ele- 

ment of the stack contains the information of the 

node and two pointers, one pointing to the LHS and 

the other to the RHS of the formula. The elements 

of the formula are stored through the procedure STORE 

and are analysed by the procedure TYPE I (TYPE % pro- 

vides only the information contained in the node) . 

The terminal nodes have pointers pointing to the ar- 

rays where the symbols and the numbers are collected. 

Each symbol is contained in the array IDLIST. This 

array has a pointer pointing to the position in the 

Stack where the symbol is represented as a formula. 

The word SPECDER performs the loading of the 

SPECD array in such a way that the item SPECD [I, 0] 

stores the symbol of the independent variable. The 

word FUNC loads the three arrays DLIST, of which 

DLIST I contains the dependent variable, DLIST 2 con- 

tains the independent variable and DLIST 3 contains 

a pointer showing the position where the derivative 

is represented in the stack as a formula. 

The listing of the procedure for differentia 

tion follows below. It is simplified and it includes 

several auxiliar procedures which were introduced in 

order to simplify its understanding. 
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APPENDIX 

' iNTEGER" "PROCEDURE" DER (F, X)!  "VALUE" Fp X! "INTEGER" FF, Xl 
'~EGIN" "iNTEGER" Ti L HSp RH$, I t  D~.p D2, DRVI 

"ZF" F • POINTER (X) "THEN" DRVI= 3. "ELSE" 
"BEGIN" DRV I= Ol T I= TYPE~ (F~ LHS= RHS)I 

" I F "  T • DIFFERENTIAL "OR" T = VARIABLE "THEN" 
"BEGIN" " I F "  X = SPECD E~O~] "THEN" 

"BEGIN*' **COMMENT, 
THE INDEPENDENT VARIABLE IS THE SAME AS IN 5PECDERi 

*'FOR** I I = ~. "STEP" % "UNTIL** NOFSDER "DO" 
DRV 1= ADD (DRV, MUL (OER (F* SPECDE~pI~)p SPECO~2* I ] ) ) I  

"END" ; 
"GOMMENT" THE PROGRAM TESTS ALL THE FUNCTIONAL DEPENDENCESI 
"FOR" ! I= ~ "STEP" ~ "UNTIL" KD "DO" 
"BEGIN*' *=IF*' X • DLIST2 ~I~ "THEN" 

DRV 1= ADD ( DRV, MUL (DER (F,  DLIST%EI~)~ D L I S T 3 [ I ] ) ) !  
"END" I 
" IF* '  T = DIFFERENTIAL "AND*, DRV • 0 "THEN" 
"BEGIN" D~. I •  DER (RHS, X ) l  
*'IF*' O~. "NE" 0 "THEN" DRVI• *'IF'* TYPE2 (0~.) •DIFFERENTIAL 
"THEN'! STORE (LHS~ DIFFERENTIAL, D~) *'ELSE" DER(D~ LHS)) 
"END" 

llEND" **ELSE" " I F "  OPERAT|ON (T) "THEN" 
~BEGIN" D1 I TM DER (LHSo X) l  D2 I= DER (RHS, X) ;  

DRV I= " I F "  T • MULTIPLICATION "THEN" 
ADD( MUL (RHSp D~), MUL (LH5, ~2)) 

"ELSE" "IF" T = DIVISION "THEN" 
DIV { SUB (0%p MUL(F, 0 2 ) ) ,  RHS) 

'*ELSE" '* IF" T • ADDITION "THEN** ADD {D%i D2) 
"ELSE" SUB (D2~ D2)I  

,END" "ELSE, " IF* '  T • FUNCTION *'OR*' T • POWER N "THEN" 
MBEGIN" D~. |= DER (RHS I X ) l  

" IF* '  D~ "NE" 0 "THEN" 
DRV I= *'IF'* T•POWER N '*THEN*' 

MUL (IN(LHS), MUL (INTPOW (RHS~ LHS-i), O~.) 
"ELSE" "IF" LHS • EXPONENTIAL "THEN" MUL (FD D%) 
"ELSE" " I F "  LHS • LOGARITHM "THEN"DIV (D~.t F) 
"ELSE" "IF" LHS = SINUS "THEN" MUL (FCOS (RMS), D~.) 
"ELSE" "IF" LHS • COSSINUS "THEN" 

MUL (HINUSp HUE (FSIN (RH5), D~.)) 
"ELSE" " I F "  LHS • ARCTAN "THEN" 

DIV (O~, ADD (ONE, INTPOW (RHS! 2)}) 
"ELSE" " I F "  LHS =SQROOT "THEN" 

DIV (MUL (HALF, D~.), F) 

"END" "ELSE" "IF" T • POWER X *'THEN** 
DRV I= MUL(F~ DER(MUL(LOG(LHS), RMS)e X } ) l  

"END"I DER l •  DRV! 
t~NDII OF DER! 
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