
What Programmers Should Know

by J. T. Schwartz

In this short sermon, I will sum-
marize some of the views concern-
ing the programming process to
which I have been led by my in-
volvement with the design and use
of very high level programming
languages, formulating these views
as recommendations concerning
the intellectual equipment and cast
of mind which a creative, high
level programmer should attempt
to acquire.

I have in mind here program-
mers (or designers) who originate
programs, rather than program-
mers (alas! the vastly more nu-
merous group) whose work is the
extension and repair of programs
poorly done and documented in the
first place, and the adaptation of
these programs to shifting system
interfaces. And I will stress the
'higher' rather than the common-
place aspects of the programmers
intellectual armament.

A programmer should under-
stand:

1. Algorithms, i.e. various im-
portant algorithmic inventions us-
ing which significant processes can
be performed with special effi-
ciency. Examples are heapsort, fast
Fourier transform, parsing tech-
niques, fast polynomial factoriza-
tion methods, etc. He should
understand that a formal concept
of l~rogram performance exists, and
have some familiarity with the
combinatorial techniques used to
analyze algorithm performance. In
this connection, it is also import-
ant to understand that there exist
processes which no program can
carry out rapidly, and others which
no program can carry out at all.

2. Semanlie frameworks, which
allow individual algorithms to be
organized into large program struc-
tures. He should understand the
use and significance of such funda-
mental semantic inventions as sub-
routine linkages, space allocation,
garbage collection, recursion, co-
routines, and various structures
useful for organizing processes act-
ing in parallel. He should be fa-
miliar with ob jec t /opera tor alge-
bras which are of general signifi-
cance or which play an important
role in significant application areas:

sets and mappings, strings and patr
terns, Curry combinator and lambda
calculus, etc. He should understand
the way in which semantically sig-
nificant languages make these
frameworks and algebras available,
and the way in which the syntactic
features of a language facilitate the
use of its underlying semantic
capabilities.

3. The programmer should have
a conscious view of the program-
ming process, understand the way
in which programs, in their earli-
est origins, coalesce out of less
organized intellectual structures,
and understand the object ive/psy-
chological influences which can
either facilitate the development of
a final, efficient and reliable pro-
gram version o/ abort this develop-
ment.

Accumulating complexity should
be understood as a central peril
to successful program construc-
tion, and techniques for managing
and minimizing this accumulation
should be appreciated. Particularly
important among these techniques
are the orderly multilevel develop-

ment of more and more efficient
program versions through a se-
quence of progressively less high
language levels, and also pre-speci-
fication, for each major application,
of a well-tailored set of application-
specific primitives, expressed as
macros, structure declarations, or
auxil iary.subroutine definitions.

Simple clean logical structure
should be perceived as a central
goal "of programming; and each
simplification seen as a victory,
each complication as a defeat. The

p rog ra mme r should learn to struc-
ture his programs in spare, logic-
ally clean ways which keep open
the possibility of subsequent func-
tional expansion.

4. The step which leads f rom a
high-level program representation
to a lower level and" more efficient
version of the same program should
be seen and approached as a proc-
ess of manual optimization to be
carried out in a mechanical spirit.
For use in this process, the pro-
grammer should have knowledge
of a wide variety of optimizat ion
approaches and optimizing trans-
formations, adapted to the various
language levels at which optimiza-
tion will" be directed, and ranging
from high level global program
restructurings to machine level in-
ner-loop bit-tricks.

5. The manner in which the
global properties of an algori thm
determine the data structures ap-
propriate for the representation of
the objects which it manipulates
should be understood. The pro-
grammer should have a wide variety
of data structures at his disposal,
and understand the efficiency with

26

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1088309.1088318&domain=pdf&date_stamp=1975-08-01

which these structures can repre-
sent more abstract data objects
and operations.

6. The fact that very small inner
loops are often critical for program
efficiency, and that conversely most
of a program lies outside its effi-
ciency critical paths, should be
understood, which implies it is im-
portant to measure actual program
behavior before committing to the
optimization of any part icular
section of code. (Note that the
optimization of large noncritical
program sections represents an un-
warranted expenditure of program
resource.) He should be familiar
with the tools for measuring pro-
gram behavior which various lan-
guages, operat ing systems, pre-
processors, and program editors
provide.

7. The programmer should un-
derstand the techniques which can
be used to adapt programs to run
well in specific operating environ-
merits; this implies knowledge of
data staging, overlay, paging, and
virr;al memory techniques. The
principal factors which affect pro-
gram performance in these envi-
ronments should be understood, as
should the way in which programs
can be structured to isolate envi-
ronment dependencies and pre-
serve inter-environment portability.

8. The correctness of a program
rests on a web of logical relations,
implicit in and guiding the pro-
gram's development; this set of re-
lationships, if made manifest and
formally complete, would consti-
tute a formal proof of the pro-
gram's correctness. An essential
part of program development is to

guard the integrity of this web as
successively more specific program
versions are developed, to struc-
ture programs so that the logical
assumptions on which it rests do
not become unmanageably com-
plex, and to check the logical in-
tegrity td the program systematic-
ally and repeatedly as it is
developed.

The l e t that some programming
language constructs aid in the
preservation of logical integrity,
while other more dangerous tools
tend to lear a program's underlying
web, should be appreciated.

The process of debugging is that
of searching, in the possibly very
large execution-event space of an
ill-behaved program, for pr imary
anomalies, i.e., places at which
good input leads immediately to
bad output; these are the events
which point to program errors. The
debugging tools should be mastered;.
bugs should be recognized as inevi-
table and programs prepared in
ways which facilitate their detec-
tion and removal; but debugging

s h o u l d be seen as a process for
repair of a relatively small number
of tears in an extended and deli-
cate fabric, rather than a process
which can bring order into a heap
of disconnected strands.

During program debugging, the
programmer should always under-
stand the degree to which the tests
which he has administered 'cover '
all the possible lurking-places of
bugs, and should design tests sys-
tematically for maximum coverage.
The types of program constructs
likely to give rise to bugs, and the
types of bugs typically to be ex-

peered, should be understood, and
the kinds of static and dynamic
consistency-checking likely to un-
cover bugs rapidly understood also.

Finally, the several techniques
of formal program-correctness
proof should be known, and the
implications of these techniques for
the construction of relatively bug-
free programs and for bug detec-
tion comprehended.

9. Finally, we list various im-
portant hand-skills and habits of
an elementary but important sort
which the programmer should
have. He should know the inter-
active, editing, and program main-
tenance aids available to him;
program carefully, check consci-
entiously, and document scrupu-
lously, always remaining aware of
himself as a team member whose
expensive product must reliably
serve others.

He must realize that program-
ming is a highly unstable process,
in which a disorganized effort can
consume ten times, or even a
hundred times, more resource than
a well-devised effort with the same
goal, and that especially in pro-
gramming, work is a signed quan-
tity, and mere activity, no matter
how energetic, is no proof of sig-
nificant contribution to a goal.

(E d i t o r ' s N o t e : P r o f e s s o r
Schwartz is a member of the Com-
puter Science Depar tment at the
Courant Institute of Mathematical
Sciences, NYU. This article is
printed with permission of the
Jotlrnal o/ Programming Lan-
guages, where it will appear shortly.
It was written with support from
the office of Comput ing Activities,
NSF, GJ-1202X3.) []

27

