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Abstract

We present a foundation for a computational meta-theory of languages with bindings implemented in a
computer-aided formal reasoning environment. Our theory provides the ability to reason abstractly about
operators, languages, open-ended languages, classes of languages,etc. The theory is based on the ideas of
higher-order abstract syntax, with an appropriate induction principle parameterized over the language (i.e.
a set of operators) being used. In our approach, both the bound and free variables are treated uniformly
and this uniform treatment extends naturally to variable-length bindings. The implementation is reflective,
namely there is a natural mapping between the meta-language of the theorem-prover and the object language
of our theory. The object language substitution operation is mapped to the meta-language substitution and
does not need to be defined recursively. Our approach does not require designing a custom type theory; in
this paper we describe the implementation of this foundational theory within a general-purpose type theory.
This work is fully implemented in theMetaPRL theorem prover, using the pre-existingNuPRL-like Martin-
Löf-style computational type theory. Based on this implementation, we lay out an outline for a framework for
programming language experimentation and exploration as well as a general reflective reasoning framework.
This paper also includes a short survey of the existing approaches to syntactic reflection.

1 Introduction

1.1 Reflection

Very generally, reflection is the ability of a system to be “self-aware” in some way. More specifically, by
reflection we mean the property of a computational or formal system to be able to access and internalize some
of its own properties.

There are many areas of computer science where reflection plays or should play a major role. When
exploring properties of programming languages (and other languages) one often realizes that languages have
at least two kinds of properties —semanticproperties that have to do with themeaningof what the language’s
constructs express andsyntacticproperties of the language itself.

∗This is an extended version of the paper accepted to the MERLIN’05 Workshop (September 30, 2005, Tallinn, Estonia). The MERLIN
paper is Copyrightc© 2005 ACM 1-59593-072-8/05/0009. Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Suppose for example that we are exploring some language that contains arithmetic operations. And in
particular, in this language one can write polynomials likex2 + 2x + 1. In this case the number of roots of a
polynomial is a semantic property since it has to do with thevaluationof the polynomial. On the other hand,
the degree of a polynomial could be considered an example of a syntactic property since the most natural way to
define it is as a property of theexpressionthatrepresentsthat polynomial. Of course, syntactic properties often
have semantic consequences, which is what makes them especially important. In this example, the number of
roots of a polynomial is bounded by its degree.

Another area where reflection plays an important role is run-time code generation — in most cases, a
language that supports run-time code generation is essentially reflective, as it is capable of manipulating its
own syntax. In order to reason about run-time code generation and to express its semantics and properties, it is
natural to use a reasoning system that is reflective as well.

There are many different flavors of reflection. Thesyntactic reflectionwe have seen in the examples above,
which is the ability of a system to internalize its own syntax, is just one of these many flavors. Another
very important kind of reflection islogical reflection, which is the ability of a reasoning system or logic to
internalize and reason about its own logical properties. A good example of a logical reflection is reasoning
about knowledge — since the result of reasoning about knowledge is knowledge itself, the logic of knowledge
is naturally reflective [Art04].

In most cases it is natural for reflection to be iterated. In the case of syntactic reflection we might care not
only about the syntax of our language, but also about the syntax used for expressing the syntax, the syntax for
expressing the syntax for expressing the syntax and so forth. In the case of the logic of knowledge it is natural
to have iterations of the form “I know that he knows that I know. . .”.

When a formal system is used to reason about properties of programming languages, iterated reflection
magnifies the power of the system, making it more natural to reason not just about individual languages, but
also aboutclassesof languages, languageschemas, and so on. More generally, reflection adds a lot of additional
power to a formal reasoning system [GS89, Art99]. In particular, it is well-known [Göd36, Mos52, EM71,
Par71] that reflection allows a super-exponential reduction in the size of certain proofs. In addition, reflection
could be a very useful mechanism for implementing proof search algorithms [ACU93, GWZ00, CFW04]. See
also [Har95] for a survey of reflection in theorem proving.

1.2 Uniform Reflection Framework

For each of the examples in the previous section there are manyad-hocways of achieving the specific benefits
of a specific flavor of reflection. This work aims at creating aunifying reflective frameworkthat would allow
achieving most of these benefits in a uniform manner, without having to reinvent and re-implement the basic
reflective methodology every time. We believe that such a framework will increase the power of the formal
reasoning tools, and it may also become an invaluable tool for exploring the properties of novel programming
languages, for analyzing run-time code generation, and for formalizing logics of knowledge.

This paper establishes a foundation for the development of this framework — a new approach to reflective
meta-reasoning about languages with bindings. We present a theory of syntax that:

• in a natural way provides both a higher-order abstract syntax (HOAS) approach to bindings and a de
Bruijn-style approach to bindings, with easy and natural translation between the two;

• provides a uniform HOAS-style approach to both bound and free variables that extends naturally to
variable-length “vectors” of binders;

• permits meta-reasoning about languages — in particular, the operators, languages, open-ended lan-
guages, classes of languagesetc. are all first-class objects that can be reasoned about both abstractly
and concretely;

• comes with a natural induction principle for syntax that can be parameterized by the language being
used;
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• provides a natural mapping between the object syntax and meta-syntax that is free of exotic terms, and
allows mapping the object-level substitution operation directly to the meta-level one (i.e. β-reduction);

• is fully derived in a pre-existing type theory in a theorem prover;

• is designed to serve as a foundation for a general reflective reasoning framework in a theorem prover;

• is designed to serve as a foundation for a programming language experimentation framework.

The paper is structured as follows. Our work inherits a large number of ideas from previous efforts and
we start in Section2 with a brief survey of existing techniques for formal reasoning about syntax. Next in
Section3 we outline our approach to reasoning about syntax and in Section4 we present a formal account of
our theory based on a Martin-Löf style computational type theory [CAB+86, HAB+] and the implementation
of that account in theMetaPRL theorem prover [Hic97, Hic99, Hic01, HNC+03, HNK+, HAB+]. Then in
Section5 we outline our plan for building a uniform reflection framework based on the syntactic reflection.
Finally, in Section6 we resume the discussion of related work that was started in Section2.

1.3 Notation and Terminology

We believe that our approach to reasoning about syntax is fairly general and does not rely on any special
features of the theorem prover we use. However, since we implement this theory inMetaPRL, we introduce
some basic knowledge aboutMetaPRL terms.

A MetaPRL term consists of:

1. An operator name (like “sum”), which is a unique name indicating the logic and component of a term;

2. A list of parameters representing constant values; and

3. A set of subterms with possible variable bindings.

We use the following syntax to describe terms, based on theNuPRL definition [ACHA90]:

opname︸ ︷︷ ︸
operator name

[p1; · · · ; pn]︸ ︷︷ ︸
parameters

{ Ev1.t1; · · · ; Evm.tm}︸ ︷︷ ︸
subterms

In addition,MetaPRL has a meta-syntax somewhat similar to the higher-order abstract syntax presented in
Pfenning and Elliott [PE88]. MetaPRL uses the second-order variables in the style of Huet and Lang [HL78]
to describe term schemas. For example,λx.V[x], whereV is a second-order variable of arity 1, is a schema
that stands for an arbitrary term whose top-level operator isλ.

This meta-syntax requires that every time a binding occurrence is explicitly specified in a schema, all cor-
responding bound occurrences have to be specified as well. This requirement makes it very easy to specify free
variable restrictions — for example,λx.V , whereV is a second-order meta-variable of arity 0, is a schema that
stands for an arbitrary term whose top-level operator isλ andwhose body does not have any free occurrences
of the variable bound by thatλ. In particular, the schemaλx.V matches the termλy.1, but not the termλx.x.

In addition, this meta-language allows specifying certain term transformations, including implicit substitu-
tion specifications. For example, a beta reduction transformation may be specified using the following schema:

(λx.V1[x]) V2↔ V1[V2]
Here the substitution ofV2 for x in V1 is specified implicitly.

Throughout this paper we will use this second-order notation to denote arbitrary terms — namely, unless
stated otherwise, when we write “λx.t[x]” we mean an arbitrary term of this form, not a term containing a
concrete second-order variable named “t”.

As in LF [HHP93] we assume that object level variables (i.e. the variables of the language whose syntax
we are expressing) are directly mapped to meta-theory variables (i.e. the variable of the language that we use
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to express the syntax). Similarly, we assume that the object-level binding structure is mapped to the meta-level
binding structure. In other words, the object-level notion of the “binding/bound occurrence” is a subset of that
in the meta-language. We also considerα-equal terms — both on the object level and on the meta-level — to
be identical and we assume that substitution avoids capture by renaming.

The sequent schema language we use [NH02] contains a number of more advanced features in addition
to those outlined here. However, for the purposes of this presentation, the basic features outlined above are
sufficient.

2 Previous Models of Reflection

In 1931 G̈odel used reflection to prove his famous incompleteness theorem [Göd31]. To express arithmetic in
arithmetic itself, he assigned a unique number (aGödel number) to each arithmetic formula. A G̈odel number
of a formula is essentially a numeric code of a string of symbols used to represent that formula.

A modern version of the G̈odel’s approach was used by Aitkenet al. [ACHA90, AC92, ACU93, Con94]
to implement reflection in theNuPRL theorem prover [CAB+86, ACE+00]. A large part of this effort was
essentially a reimplementation of the core of theNuPRL prover insideNuPRL’s logical theory.

In Gödel’s approach and its variations (including Aitken’s one), a general mechanism that could be used
for formalizing one logical theory in another is applied to formalizing a logical theory in itself. This can be
very convenient for reasoningabout reflection, but for our purposes it turns out to be extremely impractical.
First, when formalizing a theory in itself using generic means, the identity between the theory being formalized
and the one in which the formalization happens becomes very obfuscated, which makes it almost impossible
to relate the reflected theory back to the original one. Second, when one has a theorem proving system that
already implements the logical theory in question, creating a completely new implementation of this logical
theory inside itself is a very tedious redundant effort. Another practical disadvantage of the Gödel numbers
approach is that it tends to blow up the size of the formulas; and iterated reflection would cause the blow-up to
be iterated as well, making it exponential or worse.

A much more practical approach is being used in some programming languages, such as Lisp and Scheme.
There, the common solution is for the implementation toexposeits internal syntax representation to user-level
code by thequote constructor (wherequote (t) prevents the evaluation of the expressiont). The problems
outlined above are solved instantly by this approach: there is no blow-up, there is no repetition of structure
definitions, there is even no need for verifying that the reflected part is equivalent to the original implemen-
tation since they areidentical. Most Scheme implementations take this even further: theeval function is
the internal function for evaluating a Scheme expression, which is exposed to the user-level; Smith [Smi84]
showed how this approach can achieve an infinite tower of processors. A similar language with the quotation
and antiquotation operators was introduced in [GMO03].

This approach, however, violates thecongruence propertywith respect to computation: if two terms are
computationally equal then one can be substituted for the other in any context. For instance, although 2∗ 2 is
equal to 4, the expressions “2*2” and “4” are syntactically different, thus we can not substitute2*2 by 4 in the
expressionquote(2*2). The congruence property is essential in many logical reasoning systems, including
theNuPRL system mentioned above and theMetaPRL system [HNC+03, HNK+, HAB+] that our group uses.

A possible way to expose the internal syntax without violating the congruence property is to use the so-
called “quoted” or “shifted” operators [AA99, Bar01, Bar05] rather than quoting the whole expression at once.
For any operatorop in the original language, we add thequoted operator(denoted asop) to represent a term
built with the operatorop. For example, if the original language contains the constant “0” (which, presumably,
represents the number 0), then in the reflected language,0 would stand for the term that denotes the expression
“0”. Generally, the quoted operator has the same arity as the original operator, but it is defined on syntactic
terms rather than on semantic objects. For instance, while∗ is a binary operator on numbers,∗ is a binary
operator on terms. Namely, ift1 and t2 are syntactic terms that stand for expressionse1 ande2 respectively,
thent1∗t2 is a new syntactic term that stands for the expressione1 ∗ e2. Thus, the quotation of the expression
1 ∗ 2 would be1∗2.
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In general, the well-formedness (typing) rule for a quoted operator is the following:

t1 ∈ Term . . . tn ∈ Term

op{t1; . . . ; tn} ∈ Term
(1)

where Term is a type of terms.
Note that quotations can be iterated arbitrarily many times, allowing us to quote quoted terms. For instance,

1 stands for the term that denotes the term that denotes the numeral 1.
Problems arise when quoting expressions that contain binding variables. For example, what is the quotation

of λx.x? There are several possible ways of answering this question. A commonly used approach [PE88,
DH94, DFH95, ACM02, ACM03] in logical frameworks such asElf [Pfe89], LF [HHP93], andIsabelle [PN90,
Pau94] is to construct an object logic with a concreteλ operator that has a type like

(Term→ Term)→ Term or (Var→ Term)→ Term.

In this approach, the quotedλx.x might look likeλ(λx.x) and the quotedλx.1 might look likeλ(λx.1). Note
that in these examples the quoted terms have to make use of both the syntactic (i.e. quoted) operatorλ and the
semantic operatorλ.

Exotic Terms. Näıve implementations of the above approach suffer from the well-known problem of exotic
terms [DH95, DFH95]. The issue is that in general we can not allow applying theλ operator to an arbitrary
function that maps terms to terms (or variables to terms) and expect the result of such an application to be a
“proper” reflected term.

Consider for example the following term:

λ(λx. if x = 1 then 1 else2)

It is relatively easy to see that it is not a real syntactic term and can not be obtained by quoting an actual term.
(For comparison, considerλ(λx. if x = 1 then 1 else2), which is a quotation ofλx. if x = 1 then 1 else2).

How can one ensure thatλe denotes a “real” term and not an “exotic” one? That is, is it equal to a result
of quoting an actual term of the object language? One possibility is to requiree to be asubstitution function;
in other words it has to be equal to an expression of the formλx.t[x] wheret is composed entirely of term
constructors (i.e. quoted operators) andx, while usingdestructors(such as case analysis, theif operator used
in the example above,etc) is prohibited.

There are a number of approaches to enforcing the above restriction. One of them is the usage of logical
frameworks with restricted function spaces [PE88, HHP93], whereλ-terms may only contain constructors.
Another is to first formalize the larger type that does include exotic terms and then to define recursively a
predicate describing the “validity” or “well-formedness” of a term [DH94, DFH95] thus removing the exotic
terms from consideration. Yet another approach is to create a specialized type theory that combines the idea
of restricted function spaces with a modal type operator [DPS97, DL99, DL01]. There the case analysis is
disallowed on objects of “pure” typeT , but is allowed on objects of a special type¤T . This allows expressing
both the restricted function space “T1 → T2” and the unrestricted one “(¤T1) → T2” within a single type
theory.

Another way of regarding the problem of exotic terms is that it is caused by the attempt to give a semantic
definition to a primarily syntactic property. A more syntax-oriented approach was used by Barzilayet al.
[BA02, BAC03, Bar05]. In Barzilay’s approach, the quoted version of an operator that introduces a binding
has the sameshape(i.e. the number of subterms and the binding structure) as the original one and the variables
(both the binding and the bound occurrences) are unaffected by the quotation. For instance, the quotation of
λx.x is justλx.x.

The advantages of this approach include:

• This approach is simple and clear.

• Quoted terms have the same structure as original ones, inheriting a lot of properties of the object syntax.
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• In all the above approaches, theα-equivalence relation for quoted terms is inherited “for free”. For
example,λx.x andλy.y are automatically considered to be the same term.

• Substitution is also easy: we do not need to re-implement the substitution that renames binding variables
to avoid the capture of free variables; we can use the substitution of the original language instead.

To prune exotic terms, Barzilay says thatλx.t[x] is a valid term whenλx.t[x] is a substitution function.
He demonstrates that it is possible to formalize this notion in apurely syntacticalfashion. In this setting, the
general well-formedness rule for quoted terms with bindings is the following:

is substk {x1, · · · , xk.t[Ex]} · · · is substl {z1, · · · , zl .s[Ez]}
op{x1, · · · , xk.t[Ex]; · · · ; z1, · · · , zl .s[Ez]} ∈ Term

(2)

whereis substn {x1, · · · , xn.t[Ex]} is the proposition thatt is a substitution function over variablesx1, · · · , xn

(in other words, it is a syntactic version of theValid predicate of [DH94, DFH95]). This proposition is defined
syntactically by the following two rules:

is substn {x1, · · · , xn. xi }
and

is substn+k {x1, · · · , xn, y1, · · · , yk.t[Ex; Ey]} · · · is substn+l {x1, · · · , xn, z1, · · · , zl .s[Ex; Ez]}}
is substn {x1 · · · xn.op{y1 · · · yk.t[Ex; Ey]; · · · ; z1 · · · zl .s[Ex; Ez]}}

In this approach theis substn {} andλ operators are essentiallyuntyped(in NuPRL type theory, the com-
putational properties of untyped terms are at the core of the semantics; types are added on top of the untyped
computational system).

Recursive Definition and Structural Induction Principle. A difficulty shared by both the straightforward
implementations of the(Term→ Term)→ Term approach and by the Barzilay’s one is the problem of recur-
sively defining the Term type. We want to define the Term type as the smallest set satisfying rules (1) and (2).
Note, however, that unlike rule (1), rule (2) is not monotonic in the sense thatis substk {x1, · · · , xk.t[Ex]} de-
pends non-monotonically on the Term type. For example, to say whetherλx.t[x] is a term, we should check
whethert is a substitution function overx. It means at least thatfor everyx in Term,t[x] should be in Term as
well. Thus we need to define the whole type Term before using (2), which produces a logical circle. Moreover,
sinceλ has type(Term→ Term)→ Term, it is hard to formulate the structural induction principle for terms
built with theλ term constructor.

Variable-Length Lists of Binders. In Barzilay’s approach, for each numbern, is substn {} is considered
to be a separate operator — there is no way to quantify overn, and there is no way to express variable-length
lists of binders. This issue of expressing the unbounded-length lists of binders is common to some of the other
approaches as well.

Meta-Reasoning.Another difficulty that is especially apparent in Barzilay’s approach is that it only allows
reasoning aboutconcreteoperators in concrete languages. This approach does not provide the ability to reason
about operatorsabstractly; in particular, there is no way to state and prove meta-theorems that quantify over
operators or languages, much lessclassesof languages.

3 Higher-Order Abstract Syntax with Inductive Definitions

Although it is possible to solve the problems outlined in the previous Section (and we will return to the discus-
sion of some of those solutions in Section6), our desire is to avoid these difficulties from the start. We propose
a natural model of reflection that manages to work around those difficulties. We will show how to give a simple
recursive definitionof terms with binding variables, whichdoes not allowthe construction of exotic terms and
does allowstructural induction on terms.

In this Section we provide a conceptual overview of our approach; details are given in Section4.
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3.1 Bound Terms

One of the key ideas of our approach is how we deal with terms containing free variables. We extend to free
variables the principle thatvariable names do not really matter. In fact, we model free variables asbindings
that can be arbitrarilyα-renamed. Namely, we will writebterm{x1, · · · , xn.t[Ex]} for a termt over variables
x1, · · · , xn. For example, instead of termx∗y we will use the termbterm{x, y.x∗y} when it is considered over
variablesx andy andbterm{x, y, z.x∗y} when it is considered over variablesx, y andz. Free occurrences of
xi in t[Ex] are considered bound inbterm{x1, · · · , xn.t[Ex]} and twoα-equalbterm{} expressions (“bterms”) are
considered to beidentical.

Not every bterm is necessarily well-formed. We will define the type of terms in such a way as to eliminate
exotic terms. Consider for example a definition of lambda-terms.

Example 1 We can define a set of reflected lambda-terms as the smallest set such that

• bterm{x1, · · · , xn.xi }, where1≤ i ≤ n, is a lambda-term (a variable);

• if bterm{x1, · · · , xn, xn+1.t[Ex]} is a lambda-term, then

bterm{x1, · · · , xn.λxn+1.t[Ex]}
is also a lambda-term (an abstraction);

• if bterm{x1, · · · , xn.t1[Ex]} and bterm{x1, · · · , xn.t2[Ex]} are lambda-terms, then

bterm{x1; · · · ; xn.apply{t1[Ex]; t2[Ex]}}
is also a lambda-term (an application).

In a way, bterms could be understood as an explicit coding for Barzilay’s substitution functions. And
indeed, some of the basic definitions are quite similar. The notion of bterms is also very similar to that oflocal
variable contexts[FPT99].

3.2 Terminology

Before we proceed further, we need to define some terminology.

Definition 1 We change the notion ofsubtermso that the subterms of a bterm are also bterms. For example,
the immediate subterms of bterm{x, y.x∗y} are bterm{x, y.x} and bterm{x, y.y}; the immediate subterm of
bterm{x.λy.x} is bterm{x, y.x}.
Definition 2 We call the number of outer binders in a bterm expression itsbinding depth. Namely, thebinding
depthof the bterm bterm{x1, · · · , xn.t[Ex]} is n.

Definition 3 Throughout the rest of the paper we use the notion of operatorshape. Theshapeof an operator
is a list of natural numbers each stating how many new binders the operator introduces on the corresponding
subterm. The length of the shape list is therefore the arity of the operator. For example, the shape of the+
operator is[0;0] and the shape of theλ operator is[1].

The mapping from operators to shapes is also sometimes called abinding signatureof a language [FPT99,
Plo90].

Definition 4 Let op be an operator with shape[d1; · · · ;dN], and let btl be a list of bterms[b1; · · · ; bM ]. We
say that btl iscompatiblewith op at depthn when,

1. N = M;

2. the binding depth of btermb j is n+ d j for each1≤ j ≤ N.
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3.3 Abstract Operators

Expressions of the formbterm{Ex.op{· · · }} can only be used to express syntax withconcreteoperators. In other
words, each expression of this form contains a specific constant operatorop. However, we would like to reason
about operators abstractly; in particular, we want to make it possible to have variables of the type “Op” that can
be quantified over and used in the same manner as operator constants. In order to address this we use explicit
term constructors in addition tobterm{Ex.op{· · · }} constants.

The expressionmk bterm{n; “op” ; btl}, where “op” is some encoding of the quoted operatorop, stands for
a bterm with binding depthn, operatoropand subtermsbtl. Namely,

mk bterm{n; op; bterm{x1, · · · , xn, Ey1.t1[Ex; Ey1]} :: · · · :: bterm{x1, · · · , xn, Eyk.tk[Ex; Eyk]} :: nil}
is bterm{x1, · · · , xn.op{ Ey1.t1[Ex; Ey1]; · · · ; Eyk.tk[Ex; Eyk]}}. Here,nil is the empty list and:: is the listcons
operator and therefore the expressionb1 :: · · · :: bn :: nil represents the concrete list[b1; · · · ; bn].

Note that if we know the shape of the operatoropand we know that themk btermexpression is well-formed
(or, more specifically, if we know thatbtl is compatible withopat depthn), then it would normally be possible
to deduce the value ofn (sincen is the difference between the binding depth of any element of the listbtl and
the corresponding element of the shape(op) list). There are two reasons, however, for supplyingn explicitly:

• Whenbtl is empty (in other words, when the arity ofop is 0), the value ofn can not be deduced this way
and still needs to be supplied somehow. One could consider 0-arity operators to be a special case, but
this results in a significant loss of uniformity.

• When we donot know whether anmk btermexpression is necessarily well-formed (and as we will see
it is often useful to allow this to happen), then a lot of definitions and proofs are greatly simplified when
the binding depth ofmk btermexpressions is explicitly specified.

Using themk btermconstructor and a few other similar constructors that will be introduced later, it becomes
easy to reason abstractly about operators. Indeed, the second argument tomk btermcan now be an arbitrary
expression, not just a constant. This has a cost of making certain definitions slightly more complicated. For
example, the notion of “compatible withop at depthn” now becomes an important part of the theory and will
need to be explicitly formalized. However, this is a small price to pay for the ability to reason abstractly about
operators, which easily extends to reasoning abstractly about languages, classes of languages and so forth.

3.4 Inductively Defining the Type of Well-Formed Bterms

There are two equivalent approaches to inductively defining the general type (set) of all well-formed bterms.
The first one follows the same idea as in Example1:

• bterm{x1, · · · , xn.xi } is a well-formed bterm for 1≤ i ≤ n;

• mk bterm{n; op; btl} is a well-formed bterm whenop is a well-formed quoted operator andbtl is a list of
well-formed bterms that is compatible withopat some depthn.

If we denotebterm{x1, · · · , xl , y, z1, · · · , zr .y} as var{l ; r }, we can restate the base case of the above
definition as “var{l ; r }, wherel andr are arbitrary natural numbers, is a well-formed bterm”. Once we do
this it becomes apparent that the above definition has a lot of similarities with de Bruijn-style indexing of
variables [dB72]. Indeed, one might call the numbersl andr theleft and right indices of the variable var{l ; r }.

It is possible to provide an alternate definition that is closer to pure HOAS:

• bnd{x.t[x]}, wheret is a well-formed substitution function, is a well-formed bterm (thebndoperation
increases the binding depth oft by one by addingx to the beginning of the list oft ’s outer binders).

• mk term{op;btl}, whereop is a well-formed quoted operator, andbtl is a list of well-formed bterms that
is compatible withopat depth 0, is a well-formed bterm (of binding depth 0).
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Other than better capturing the idea of HOAS, the latter definition also makes it easier to express the
reflective correspondence between the meta-syntax (the syntax used to express the theory of syntax, namely
the one that includes the operatorsmk bterm, bnd, etc.) and the meta-meta-syntax (the syntax that is used to
express the theory of syntax and the underlying theory, in other words, the syntax that includes the second-order
notations.) Namely, provided that we define thesubst{bt; t} operation to compute the result of substituting a
closed termt for the first outer binder of the btermbt, we can state that

subst{bnd{x.t1[x]} ; t2} ≡ t1[t2] (3)

(wheret1 andt2 are literal second-order variables). In other words, we can state that the substitution operator
substand the implicit second-order substitution in the “meta-meta-” language are equivalent.

The downside of the alternate definition is that it requires defining the notion of “being a substitution
function”.

3.5 Our Approach

In our work we try to combine the advantages of both approaches outlined above. In the next Section we
present a theory that includes both the HOAS-style operations (bnd, mk term) and the de Bruijn-style ones
(var, mk bterm). Our theory also allows deriving the equivalence (3). In our theory the definition of the basic
syntactic operations is based on the HOAS-style operators; however, the recursive definition of the type of well-
formed syntax is based on the de Bruijn-style operations. Our theory includes also support for variable-length
lists of binders.

4 Formal Implementation in a Theorem Prover

In this Section we describe how the foundations of our theory are formally defined and derived in theNuPRL-
style Computational Type Theory in theMetaPRL Theorem Prover. For brevity, we will present a slightly
simplified version of our implementation; full details are available in the Appendix.

4.1 Computations and Types

In our work we make heavy usage of the fact that our type theory allows us to define computationswithout
stating upfront (or even knowing) what the relevant types are. InNuPRL-style type theories (which some even
dubbed “untyped type theory”), one may define arbitrary recursive functions (even potentially nonterminating
ones). Only when proving that such function belongs to a particular type, one may have to prove termination.
See [All87a, All87b] for a semantics that justifies this approach.

The formal definition of the syntax of terms consists of two parts:

• The definition of untyped term constructors and term operations, which includes both HOAS-style oper-
ations and de Bruijn-style operations. As it turns out, we can establish most of the reduction properties
without explicitly giving types to all the operations.

• The definition of the type of terms. We will define the type of terms as the type that contains all terms
that can be legitimately constructed by the term constructors.

4.2 HOAS Constructors

At the core of our term syntax definition are two basic HOAS-style constructors:

• bnd{x.t[x]} is meant to represent a term with a free variablex. The intended semantics (which will
not become explicit until later) is thatbnd{x.t[x]} will only be considered well-formed whent is a
substitution function.
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Internally,bnd{x.t[x]} is implemented simply as the pair〈0, λx.t[x]〉. This definition is truly internal
and is used only to prove the properties of the two destructors presented below; it is never used outside
of this Section (Section4.2).

• mk term{op; ts} pairsop with ts. The intended usage of this operation (which, again, will only become
explicit later) is that it represents a closed term (i.e. a btermof binding depth 0) with operatorop and
subtermsts. It will be considered well-formed whenop is an operator andts is a list of terms that is
compatiblewith opat depth 0. For example,mk term{λ; bnd{x.x}} is λx.x.

Internally,mk term{op; ts} is implemented as the nested pair〈1, 〈op, ts〉〉. Again, this definition is never
used outside of this Section.

We also implement two destructors:

• subst{bt; t} is meant to represent the result of substituting termt for the first variable of the btermbt.
Internally,subst{bt; t} is defined simply as an application(bt.2) t (wherebt.2 is the second element of
the pairbt).

We derive the following property of this substitution operation:

subst{bnd{x.t1[x]} ; t2} ≡ t1[t2]

where “≡” is the computational equality relation1 and t1 and t2 may be absolutely arbitrary, even ill-
typed. This derivation is the only place where the internal definition ofsubst{bt; t} is used.

Note that the above equality is exactly the “reflective property of substitution” (3) that was one of the
design goals for our theory.

• weakdest{bt;bcase; op, ts.mkt case[op; ts]} is designed to provide a way to find out whetherbt is a
bnd{} or amk term{op; ts} and to “extract” theopandts in the latter case. In the rest of this paper we will
use the “pretty-printed” form forweakdest— “matchbt with bnd{ } → bcase| mk term{op; ts} →
mkt case[op; ts]”. Internally, it is defined asif bt.1= 0 then bcaseelsemkt case[bt.2.1; bt.2.2].
From this internal definition we derive the following properties ofweakdest:



matchbnd{x.t[x]} with

bnd{ } → bcase
| mk term{op; ts} → mkt case[op; ts]


 ≡ bcase



matchmk term{op; ts} with

bnd{ } → bcase
| mk term{o; t} → mkt case[o; t]


 ≡ mkt case[op; ts]

4.3 Vector HOAS Operations

As we have mentioned at the end of Section2, some approaches to reasoning about syntax make it hard or even
impossible to express arbitrary-length lists of binders. In our approach, we address this challenge by allowing
operators where a single binding in the meta-language stands for a list of object-level bindings. In particular,
we allow representingbnd{x1.bnd{x2. · · · bnd{xn.t[x1; . . . ; xn]} · · ·}} as
vbnd{n; x.t[nth{1; x} ; . . . ; nth{n; x}]}, where “nth{i ; l }” is the “i -th element of the listl ” function.

We define the following vector-style operations:

1In NuPRL-style type theories the computational equality relation (which is also sometimes called “squiggle equality” and is some-
times denoted as “∼” or “←→”) is the finest-grained equality relation in the theory. Whena ≡ b is true,a may be replaced withb in an
arbitrary context. Examples of computational equality include beta-reductionλx.a[x]b ≡ a[b], arithmetical equalities (1+ 2 ≡ 3), and
definitional equality (an abstraction is considered to be computationally equal to its definition).
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• vbnd{n; x.t[x]} represents a “telescope” of nestedbnd operations. It is defined by induction2 on the
natural numbern as follows:

vbnd{0; x.t[x]} := t[nil]
vbnd{n+ 1; x.t[x]} := bnd{v.vbnd{n; x.t[v :: x]}}

We also introducevbnd{n; t} as a simplified notation forvbnd{n; x.t} whent does not have free occur-
rences ofx.

• vsubst{bt; ts} is a “vector” substitution operation that is meant to represent the result of simultaneous
substitution of the terms in thets list for the first|ts| variables of the btermbt (here|l | is the length of the
list l ). vsubst{bt; ts} is defined by induction on the listtsas follows:

vsubst{bt; nil} := bt
vsubst{bt; t :: ts} := vsubst{subst{bt; t} ; ts}

Below are some of the derived properties of these operations:

bnd{v.t[v]} ≡ vbnd{1; hd(v)} (4)

∀m, n ∈ N.(vbnd{m+ n; x.t[x]} ≡ vbnd{m; y.vbnd{n; z.t[y@z]}}) (5)

∀l ∈ List. (vsubst{vbnd{|l |; v.t[v]} ; l } ≡ t[l ]) (6)

∀l ∈ List.∀n ∈ N.((n ≥ |l |) ⇒ (vsubst{vbnd{n; v.t[v]} ; l } ≡ vbnd{n− |l |; v.bt[l@v]})) (7)

∀n ∈ N.(vbnd{n; l .vsubst{vbnd{n; v.t[v]} ; l }} ≡ vbnd{n; l .t[l ]}) (8)

where “hd” is the list “head” operation, “@” is the list append operation, “List” is the type of arbitrary lists
(the elements of a list do not have to belong to any particular type),N is the type of natural numbers, and all
the variables that are not explicitly constrained to a specific type stand for arbitrary expressions.

Equivalence (5) allows the merging and splitting of vectorbnd operations. Equivalence (6) is a vector
variant of equivalence (3). Equivalence (8) is very similar to equivalence (6) applied in thevbnd{n; l . · · ·}
context, except that (8) does not requirel to be a member of any special type.

4.4 De Bruijn-style Operations

Based on the HOAS constructors defined in the previous two sections, we define two de Bruijn-style construc-
tors.

• var{i ; j } is defined asvbnd{i ;bnd{v.vbnd{ j ; v}}}. It is easy to see that this definition indeed corresponds
to the informalbterm{x1, · · · , xl , y, z1, · · · , zr .y} definition given in Section3.4.

• mk bterm{n; op; ts} is meant to compute a bterm of binding depthn, with operatorop, and withts as its
subterms. This operation is defined by induction on natural numbern as follows:

mk bterm{0;op; ts} := mk term{op; ts}
mk bterm{n+ 1;op; ts} := bnd{v.mk bterm{n; op;mapλt.subst{t; v} ts}}

Note that, ifts is a list ofbndexpressions (which is the intended usage of themk btermoperation), then
the

bnd{v. · · · mapλt.subst{t; v} ts· · ·}
has the effect of stripping the outerbnd from each of the members of thets list and “moving” them into
a single “merged”bndon the outside.

2Our presentation of the inductive definitions is slightly simplified by omitting some minor technical details. See Appendix for complete
details.
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We also define a number of de Bruijn-style destructors,i.e., operations that compute various de Bruijn-
style characteristics of a bterm. Since thevar andmk btermconstructors are defined in terms of the HOAS
constructors, the destructors have to be defined in terms of HOAS operations as well. Because of this, these
definitions are often far from straightforward.

It is important to emphasize that the tricky definitions that we use here are only needed to establish the basic
properties of the operations we defined. Once the basic theory is complete, we can raise the level of abstraction
and no usage of this theory will ever require using any of these definitions, being aware of these definitions, or
performing similar tricks again.

• bdepth{t} computes the binding depth of termt . It is defined recursively using theY combinator as

Y



λ f.λb.matchb with

bnd{ } → 1+ f
(
subst{b;mk term{0; 0}})

| mk term{ ; } → 0


 t

In effect, this recursive function strips the outer binders from a bterm one by one using substitution
(note that here we can use an arbitrarymk btermexpression as a second argument for the substitution
function; the arguments tomk btermdo not have to have the “correct” type) and counts the number of
times it needs to do this before the outermostmk btermis exposed.

We derive the following properties ofbdepth:

∀l , r ∈ N.(bdepth{var{l ; r }} ≡ (l + r + 1)
);

∀n ∈ N.(bdepth{mk bterm{n; op; ts}} ≡ n
)
.

Note that the latter equivalence only requiresn to have the “correct” type, whileop and ts may be
arbitrary. Since thebdepthoperator is needed for defining the type of Term of well-formed bterms, at
this point we would not have been able to express what the “correct” type fortswould be.

• left{t} is designed to compute the “left index” of avar expression. It is defined as

Y




λ f.λb.λl .
matchb with

bnd{ } →
1+ f

(
subst{b;mk term{l ; 0}})(l + 1)

| mk term
{
l ′; }→ l ′




t 0

In effect, this recursive function substitutesmk term{0;0} for the first binding oft , mk term{1;0} for
the second one,mk term{2; 0} for the next one and so forth. Once all the binders are stripped and a
mk term{l ; 0} is exposed,l is the index we were looking for. Note that here we intentionally supply
mk termwith an argument of a “wrong” type (N instead of Op); we could have avoided this, but then the
definition would have been significantly more complicated.

As expected, we derive that
∀l , r ∈ N.(left{var{l ; r }} ≡ l ).

• right{t} computes the “right index” of avar expression. It is trivial to define in terms of the previous two
operators:right{t} := bdepth{t} − left{t} − 1.

• get op{t; op} is an operation such that

∀n ∈ N.(get op
{
mk bterm{n; op; ts} ; op′

} ≡ op
)
,

∀l , r ∈ N.((get op{var{i ; j } ; op} ≡ op
)
.

Its definition is similar to that ofleft{}.
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• subterms{t} is designed to recover the last argument of amk btermexpression. The definition is rather
technical and complicated, so we omit it; see AppendixC for details. The main property of thesubterms
operation that we derive is

∀n ∈ N.∀btl ∈ List.(subterms{mk bterm{n; op; btl}} ≡ mapλb.vbnd{n; v.vsubst{b; v}} btl
)

The right-hand side of this equivalence is not quite the plain “btl” that one might have hoped to see here.
However, whenbtl is a list of bterms with binding depths at leastn, which is necessarily the case for
any well-formedmk bterm{n;op; btl}, equivalence (8) would allow simplifying this right-hand side to
the desiredbtl.

4.5 Operators

For this basic theory the exact representation details for operators are not essential and we define the type of
operators Op abstractly. We only require that operators have decidable equality and that there exist a function
of the type Op→ N List that computes operators’ shapes.

Using this shape function and thebdepthfunction from Section4.4, it is trivial to formalize the “ts is
compatible with op at depthn” predicate of Definition4. We denote this predicate asshapecompat{n; op; ts}
and define it as

|shape{op}| = |btl| ∧ ∀i ∈ 1..|btl|.bdepth{nth{btl; i }} = n+ nth{shape{op}; i }

4.6 The Type of Terms

In this section we will define the type of terms (i.e. well-formed bterms), Term, as the type of all terms that can
be constructed by the de Bruijn constructors from Section4.4. That is, the Term type contains all expressions
of the forms:

• var{i ; j } for all natural numbersi, j ; or

• mk bterm{n; op; ts} for any natural numbern, operatorop, and list of termsts that is compatible withop
at depthn.

The Term type is defined as a fixpoint of the following function from types to types:

Iter(X) := Image(dom(X); x.mk(x)),

where

• Image is a type constructor such thatImage(T; x. f [x]) is the type of all thef [t] for t ∈ T (for it to be
well-formed,T must be a well-formed type andf must not have any free variables except forx);

• dom(X) is a type defined as

(N× N)+ (n:N× op:Op× {ts:X List | shapecompat{n;op; ts}});

• andmk(x) (wherex is presumably a member of the typedom(X)) is defined as

match x with
inl (i, j )→ var{i ; j }
| inr (n,op, ts)→ mk bterm{n;op; ts} .

The fixpoint ofIter is reached by defining
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• Term0 := Void (an empty type)

• Termn+1 := Iter(Termn)

• Term :=
⋃

n∈N
Termn

We derive the intended introduction rules for the Term type:

i ∈ N j ∈ N
var{i ; j } ∈ Term

and
n ∈ N op∈ Op ts∈ TermList shapecompat{n;op; ts}

mk bterm{n;op; ts} ∈ Term
.

Also, the structural induction principle is derived for the Term type. Namely, we show that to prove that
some propertyP[t] holds for any termt , it is sufficient to prove

• (Base case)P holds for all variables, that is,P[var{i ; j }] holds for all natural numbersi and j ;

• (Induction step)P[mk bterm{n;op; ts}] is true for any natural numbern, any operatorop, and any list of
termsts that is compatible withopat depthn, providedP[t] is true for any elementt of the listts.

Note that the type of “terms overn variables” (wheren = 0 corresponds to closed terms) may be trivially
defined using the Term type and the “subset” type constructor —{t : Term | bdepth{t} = n}.

5 Conclusions and Future Work

In Sections3 and4 we have presented a basic theory of syntax that is fully implemented in a theorem prover.
As we mentioned in the introduction, the approach is both natural and expressive, and provides a foundation for
reflective reasoning about classes of languages and logics. However, we consider this theory to be only the first
step towards building a user-accessible uniform reflection framework and a user-accessible uniform framework
for programming language reasoning and experimentation, where tasks similar to the ones presented in the
POPLMARK challenge [ABF+05] can be performed easily and naturally. In this section we provide an outline
of our plans for building such frameworks on top of the basic syntactic theory.

5.1 Higher-Level User Interface

One obvious shortcoming of the theory presented in Sections3 and4 is that it provides only the basic low-level
operations such asbnd, var, subterms, etc. It presents a very low-level account of syntax in a way that would
often fail to abstract away the details irrelevant to the user.

To address this problem we are planning to provide user interface functionality capable of mapping the
high-level concepts to the low-level ones. In particular, we are going to provide an interface that would allow
instantiating general theorems to specific collections of operators and specific languages. Thus, the user will
be able to write something like “reflect language [λx.·; apply{·; ·}]” and the system will create all the
components outlined in Example1:

• It will create a definition for the type

Language[λx.·;apply{·; ·}]

of reflected lambda-terms (where Language[l ] is a general definition of a language over a list of operators
l );
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• It will state and derive the introduction rules for this type;

• It will state and derive the elimination rule for this type (the induction principle).

Moreover, we are planning to support even more complicated language declarations, such as

t := int | t → t; e := v | λx : t.e[x] | apply{e;e}
that would cause the system to create mutually recursive type definitions and appropriate rules.

Finally, we are also planning to support “pattern bindings” that are needed for a natural encoding of ML-like
pattern matching (such as the one sketched in thePOPLMARK challenge [ABF+05]). As far as the underlying
theory goes, we believe that the mechanisms very similar to the “vector bindings” presented in Section4.3will
be sufficient here.

5.2 “Dereferencing” Quoted Terms

As in Barzilay’s work, the quoted operator approach makes it easy to define the “unquoting” (or “dereferenc-
ing”) operator[[]]unq. If t is a syntactic term, then[[t]]unq is the value represented byt . By definition,

[[op{t1; . . . ; tn}]]unq = op{[[t1]]unq; . . . ; [[tn]]unq}.
For instance,[[2∗3]]unq is 2∗ 3 (i.e. 6).

In order to define unquoting on terms with bindings, we need to introduce the “guard” operation〈p p〉 such
that[[〈pt p〉]]unq is t for an arbitrary expressiont . Then[[]]unq can be defined as follows:

[[op{x1, · · · , xk.t[x1; . . . ; xk]; · · · ; z1, · · · , zl .s[z1; . . . ; zl ]}]]unq =
op{x1, · · · , xk.[[t[〈px1p〉 ; . . . ; 〈pxkp〉]]]unq; · · · z1, · · · , zl .[[s[〈pz1p〉 ; . . . ; 〈pzl p〉]]]unq}.

For example,[[λx.2∗x]]unq = λx.[[2∗ 〈pxp〉]]unq = λx.[[2]]unq ∗ [[〈pxp〉]]unq = λx.2 ∗ x.
The unquote operation establishes the identity between the original syntax and the reflected syntax, making

it a “true” reflection.
Note that the type theory (which ensures, in particular, that only terminating functions may be shown to

belong to a function type) would keep the[[ ]]unq operation from introducing logical paradoxes.3

Also, since the notion of the quoted operators is fully open-ended, each new language added to the system
will automatically get to use the[[ ]]unq operation for all its newly introduced operators.

5.3 Logical Reflection

After defining syntactic reflection, it is easy to definelogical reflection. If we consider the proof system open-
ended, then the logical reflection is trivial — whenP is a quotation of a proposition, we can regard “[[P]]unq”
as meaning “P is true”. The normal modal rules for the[[]]unq modality are trivially derivable. For example
modus ponens

[[P⇒ Q]]unq ⇒ [[P]]unq ⇒ [[Q]]unq

is trivially true because if we evaluate the first[[]]unq (remember,

[[P⇒ Q]]unq =
([[P]]unq ⇒ [[Q]]unq

)

by definition of[[]]unq), we get an obvious tautology

([[P]]unq ⇒ [[Q]]unq) ⇒ [[P]]unq ⇒ [[Q]]unq.

In order to consider a closed proof system (in other words, if we want to be able to do induction over
derivations), we would need to define a provability predicate for that system. We are planning to provide user
interface functionality that would allow users to describe a set of proof rules and the system would generate
appropriate proof predicate definitions and derive appropriate rules (in a style similar to the one outlined in
Section5.1for the case of language descriptions).

3This is, obviously, not a proper argument. While a proper argument can be made here, it is outside of the scope of this particular paper.
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6 Related Work

In Section2 we have already discussed a number of approaches that we consider ourselves inheriting from.
Here we would like to revisit some of them and mention a few other related efforts.

Our work has a lot in common with the HOAS implemented in Coq by Despeyroux and Hirschowitz
[DH94]. In both cases, the more general space of terms (that include the exotic ones) is later restricted in a
recursive manner. In both cases, the higher-order analogs of first-order de Bruijn operators are defined and
used as a part of the “well-formedness” specification for the terms. Despeyroux and Hirschowitz use functions
over infinite lists of variables to define open terms, which is similar to our vector bindings.

There are a number of significant differences as well. Our approach is sufficiently syntactical, which allows
eliminating all exotic terms, even those that are extensionally equal to the well-formed ones, while the more
semantic approach of [DH94, DFH95] has to accept such exotic terms (their solution to this problem is to
consider an object term to be represented by the wholeequivalence classof extensionally equal terms); more
generally while [DH94] states that “this problem of extensionality is recurrent all over our work”, most of
our lemmas establish identity and not just equality, thus avoiding most of the issues of extensional equality. In
our implementation, the substitution on object terms is mapped directly toβ-reduction, while Despeyrouxet
al. [DFH95] have to define it recursively. In addition, we provide auniformapproach to both free and bound
variables that naturally extends to variable-length “vector” bindings.

While our approach is quite different from the modalλ-calculus one [DPS97, DL99, DL01], there are some
similarities in the intuition behind it. Despeyrouxet al. [DPS97] says “Intuitively, we interpret¤B as the type
of closedobjects of typeB. We can iterate or distinguish cases over closed objects, since all constructors are
statically known and can be provided for.” The intuition behind our approach is in part based on the canonical
model of theNuPRL type theory [All87a, All87b], whereeachtype is mapped to an equivalence relations over
the closed terms of that type.

Gordon and Melham [GM96] define the type ofλ-terms as a quotient of the type of terms with concrete
binding variables overα-equivalence. Michael Norrish [Nor04] builds upon this work by replacing certain
variable “freshness” requirements with variable “swapping”. This approach has a number of attractive prop-
erties; however, we believe that the level of abstraction provided by the HOAS-style approaches makes the
HOAS style more convenient and accessible.

Ambler, Crole, and Momigliano [ACM02] have combined the HOAS with the induction principle using
an approach which in some sense is opposite to ours. Namely, they define the HOAS operators on top of
the de Bruijn definition of terms usinghigher order pattern matching. In a later work [ACM03] they have
described the notion of “terms-in-infinite-context” which is quite similar to our approach to vector binding.
While our vector bindings presented in Section4.3are finite length, the exact same approach would work for
the infinite-length “vectors” as well.
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Appendix

This Appendix is a printout of the relevantMetaPRL theories and was generated automatically by theMetaPRL
system. TheMetaPRL notation used in this Appendix is partially explained in [NH02, HAB+, HNK+]. Rules
and rewrites marked with a “*[n1,n2]” are derived (n1 andn2 provide a measure of the proof size) and the
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“![. . .]” marker means that the rule/rewrite is an axiom. Most of the operators are presented in their pretty-
printed forms.

A Itt hoasbase module

TheItt hoas base module defines the basic operations of the Higher Order Abstract Syntax (HOAS).

A.1 Parents

ExtendsBase theory
ExtendsItt fun
ExtendsItt union
ExtendsItt prod

A.2 Terms

The expressionB x.t[x] represents a “bound” term (“bterm”) with a potentially free variablex. In order for it
to be well-formed,t must be a “substitution function”.

TheT(op; subterms) expression represents a term with the operatorop and subtermssubterms. In order
for it to be well-formed, the length ofsubtermsmust equal the arity ofop and each subterm must have
the “binding depth” (i.e. the number of outer binds) equal to the corresponding number in the shape ofop
(remember, the shape of an operator is a list of natural numbers and the length of the list is the operator’s arity).

The expressionbt@t represents the result of substitutingt for the first binding inbt.
Finally, theweak dest bterm operator allows testing whether a term is abind or amk term and to get

theopandsubtermsin the latter case.

defineunfold bind :
Itt hoas base!bind{x. ’t[’x]}

(displayed as“ B x.t[x]” )←→
inl (λx.t[x])

defineunfold mk term :
Itt hoas base!mk term{’op; ’subterms}

(displayed as“T(op; subterms)” )←→
inr (op, subterms)

declareItt hoas base!illegal subst
(displayed as“ i llegal subst” )

defineunfold subst :
Itt hoas base!subst{’bt; ’t} (displayed as“bt@t” )←→

match bt with
inl f − > f t
| inr opt− > i llegal subst

defineunfold wdt :
Itt hoas base!weak dest bterm
{’bt;
’bind case;
op, sbt. ’mkterm case[’op; ’sbt]}

(displayed as
“match bt with

B − > bind case
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| T(op; sbt) − > mktermcase[op; sbt]” )←→
match bt with

inl f − > bind case
| inr opt− > let

(op, sbt) = opt
in

mktermcase[op; sbt]

A.3 Rewrites

*[1, 11] rewrite reduce subst {| reduce |} :
(B x.bt[x])@t←→ bt[t]

*[1, 9] rewrite reduce wdt bind {| reduce |} :
match B x.t[x] with

B − > bind case
| T(op; sbt) − > mktermcase[op; sbt]

←→
bind case

*[1, 11] rewrite reduce wdt mk term {| reduce |} :
match T(op; subterms) with

B − > bind case
| T(o; sbt) − > mktermcase[o; sbt]
←→

mktermcase[op; subterms]

B Itt hoasvector module

TheItt hoas vector module defines the “vector bindings” extensions for the basic ITT HOAS.

B.1 Parents

ExtendsItt hoas base
ExtendsItt nat
ExtendsItt list2
ExtendsItt fun2

B.2 Terms

The Bn x.t[x] expression, wheren is a natural number, represents a “telescope” ofn nestedbind operations.
Namely, it stands forB v0.B v1. . . . (B v n.t[[v0; v1; . . . ; v n]]).

We also provide an input formbind{n; t} for the important case of a vector binding that introduces a
variable that does not occur freely in the bterm body.

Thebt @n t expression represents the result of substituting termt for then + 1-st binding of the btermbt.
The bt@l tl expression represents the result of simultaneous substitution of termstl (tl must be a list) for

the first| tl | bindings of the btermbt.

defineunfold bindn :
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Itt hoas vector!bind{’n; x. ’t[’x]}
(displayed as“ Bn x.t[x]” )←→
(Ind(n) whereInd(n) =

n = 0⇒ Ind(n) = λf .f []
n> 0⇒ Ind(n) = λf .B v.Ind(n− 1) (λl.f v :: l)) (λx.t[x])

defineunfold substn :
Itt hoas vector!subst{’n; ’bt; ’t}

(displayed as“bt @n t” )←→
(Ind(n) whereInd(n) =

n = 0⇒ Ind(n) = λbt.bt@t
n> 0⇒ Ind(n) = λbt.B v.Ind(n− 1) (bt@v)) bt

defineunfold substl :
Itt hoas vector!substl{’bt; ’tl}

(displayed as“bt@l tl” )←→
matchtl wi th [] − > (λb.b) | h :: .f − > (λb.f (b@h)) bt

define iform simple bindn :
Itt hoas vector!bind{’n; ’t}

(displayed as“bind{n; t}” )←→
Bn .t

B.3 Rewrites

*[1, 19] rewrite reduce bindn base {| reduce |} :
B0 x.t[x] ←→ t[[]]

*[1, 15] rewrite reduce bindn up {| reduce |} :
n ∈ N −→
Bn + 1 l.t[l] ←→ B v.Bn l.t[v :: l]

*[1, 35] rewrite bind into bindone : B v.t[v] ←→ B1 l.t[hd{l}]
*[7, 642] rewrite split bind sum :

m ∈ N −→
n ∈ N −→
Bm+ n l.t[l] ←→ Bm l1.Bn l2.t[l1 @ l2]

*[1, 9] rewrite merge bindn {| reduce |} :
m ∈ N −→
n ∈ N −→
Bm .Bn .t←→ Bm+ n .t

*[1, 17] rewrite reduce substn base {| reduce |} :
bt @0 t←→ bt@t

*[1, 13] rewrite reduce substn case {| reduce |} :
n ∈ N −→
bt @n + 1 t←→ B x.bt@x @n t

*[1, 9] rewrite reduce bindn subst {| reduce |} :
n ∈ N −→
Bn + 1 v.bt[v]@t←→ Bn v.bt[t :: v]

*[8, 1527] rewrite reduce substn bindn1 bind(x.bt[x]):
m ∈ N −→
n ∈ N −→
n≥ m−→
(B v.Bn l.bt[v :: l]) @m t←→ Bn l.bt[insert at(l, m, t)]
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*[1, 17] rewrite reduce substn bindn2 {| reduce |} :
m ∈ N −→
n ∈ N −→
n≥ m−→
Bn + 1 l.bt[l]@m t←→ Bn l.bt[insert at(l, m, t)]

*[1, 9] rewrite reduce substl base {| reduce |} : bt@l [] ←→ bt
*[1, 11] rewrite reduce substl step {| reduce |} :

bt@l h :: t←→ bt@h@l t
*[1, 13] rewrite reduce substl step1 {| reduce |} :

(B v.bt[v])@l h :: t←→ bt[h]@l t
*[1, 69] rewrite reduce substl step2 {| reduce |} :

n ∈ N −→
Bn + 1 v.bt[v]@l h :: t←→ Bn v.bt[h :: v]@l t

*[3, 85] rewrite reduce substl bindn1 {| reduce |} :
l ∈ List −→
B|l| v.bt[v]@l l←→ bt[l]

*[3, 3334] rewrite reduce substl bindn2 :
l ∈ List −→
n ∈ N −→
n≥| l | −→
Bn v.bt[v]@l l←→ Bn − |l| v.bt[l @ v]

*[2, 103] rewrite reduce bsb1 {| reduce |} :
n ∈ N −→
Bn v.Bn w.bt[w]@l v←→ Bn w.bt[w]

*[1, 19] rewrite reduce bsb2 {| reduce |} :
n ∈ N −→
m ∈ N −→
Bn v.Bn + m w.bt[w]@l v←→ Bn + m w.bt[w]

*[1, 15] rewrite unfold bindnsub :
n ∈ N −→
Bn + 1 v.bt[v]@l v←→ B u.Bn v.bt[u :: v]@u@l v

C Itt hoasdebruijn module

The Itt hoas debruijn module defines a mapping from de Bruijn-like representation of syntax into the
HOAS.

C.1 Parents

ExtendsItt hoas base
ExtendsItt hoas vector
ExtendsItt nat
ExtendsItt list2
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C.2 Terms

C.2.1 A de Bruijn-like representation of syntax

Our de Bruijn-like representation of (bound) terms consists of two operators.var(left, right) represents a
variable bterm, whose “left index” isleft and whose “right index” isright. Namely, it represent the term
B x1. . . . (B x left.B y.B z1. . . . (B z right.v) . . .) . . ..

The mk bterm(n; op; btl) represents the compound term of depthn. In other words,
mk bterm(n; op; [Bn v.bt1[v]; . . . ; Bn v.bt k[v]]) is Bn v.T(op; [bt1[v]; . . . ; bt k[v]]).
defineunfold var :

Itt hoas debruijn!var{’left; ’right}
(displayed as“var(left, right)” )←→
Bleft x.B v.Bright x.v

defineunfold mk bterm :
Itt hoas debruijn!mk bterm{’n; ’op; ’btl}

(displayed as“mk bterm(n; op; btl)” )←→
(Ind(n) whereInd(n) =

n = 0⇒ Ind(n) = λbtl.T(op; btl)
n> 0⇒ Ind(n) = λbtl.B v.Ind(n− 1) (map(bt.bt@v;btl))) btl

C.2.2 Basic operations on syntax

D bt is the “binding depth” (i.e. the number of outer bindings) of a btermbt.
l v andr v provide a way of computing thel andr indeces of a variablevar(l, r).
try get op bt with Not found -> op returns thebt’s operator, ifbt is amk bterm and returnsop if bt is

a variable.
subterms bt computes the subterms of the btermbt.

defineunfold bdepth :
Itt hoas debruijn!bdepth{’bt} (displayed as“D bt” )←→

f i x(f .λbt.match bt with
B − > 1 + (f (bt@T(·; [])))
| T(,1; ) − > 0) bt

defineunfold left :
Itt hoas debruijn!left{’bt} (displayed as“l bt” )←→

f i x(f .λbt.λl.match bt with
B − > f (bt@T(l; [])) (l + 1)
| T(op; ) − > op) bt 0

defineunfold right :
Itt hoas debruijn!right{’bt} (displayed as“r bt” )←→
(D bt) − (l bt) − 1

defineunfold get op :
Itt hoas debruijn!get op{’bt; ’op}

(displayed as
“ try get op bt with Not found -> op” )←→
f i x(f .λbt.match bt with
B − > f (bt@T(op; []))
| T(op; ) − > op) bt

declareItt hoas debruijn!not found
(displayed as“not f ound” )
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define iform unfold get op1 :
Itt hoas debruijn!get op{’bt}

(displayed as“get op{bt}” )←→
try get op bt with Not found -> not f ound

defineunfold num subterms :
Itt hoas debruijn!num subterms{’bt}

(displayed as“num subterms{bt}” )←→
f i x(f .λbt.match bt with
B − > f (bt@T(·; []))
| T(; btl) − > | btl |) bt

defineunfold nth subterm :
Itt hoas debruijn!nth subterm{’bt; ’n}

(displayed as“nth subterm{bt; n}” )←→
f i x(f .λbt.match bt with
B − > B v.f (bt@v)
| T(; btl) − > btln) bt

defineunfold subterms :
Itt hoas debruijn!subterms{’bt}

(displayed as“subterms bt” )←→
list o f f un
{n. nth subterm{bt; n};
num subterms{bt}}

C.3 Rewrites

*[1, 17] rewrite reduce mk bterm base {| reduce |} :
mk bterm(0; op; btl)←→ T(op; btl)

*[1, 13] rewrite reduce mk bterm step {| reduce |} :
n ∈ N −→
mk bterm(n + 1; op; btl)←→
B v.mk bterm(n; op; map(bt.bt@v;btl))

*[2, 62] rewrite reduce mk bterm empty {| reduce |} :
n ∈ N −→
mk bterm(n; op; [])←→ Bn x.T(op; [])

*[1, 11] rewrite reduce bdepth mk term {| reduce |} :
D T(op; btl)←→ 0

*[1, 15] rewrite reduce bdepth bind {| reduce |} :
D (B v.t[v])←→ 1 + (D t[T(·; [])])

*[5, 4061] rewrite reduce bdepth var {| reduce |} :
l ∈ N −→
r ∈ N −→
D var(l, r)←→ (l + r) + 1

*[4, 82] rewrite reduce bdepth mk bterm {| reduce |} :
n ∈ N −→
D mk bterm(n; op; btl)←→ n

*[4, 140] rewrite reduce getop var {| reduce |} :
l ∈ N −→
r ∈ N −→
try get op var(l, r) with Not found -> op←→ op
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*[2, 93] rewrite reduce getop mkbterm {| reduce |} :
n ∈ N −→
try get op mk bterm(n; op; btl) with Not found -> op′←→
op

*[2, 120] rewrite num subterms id {| reduce |} :
btl ∈ List −→
n ∈ N −→
num subterms{mk bterm(n; op; btl)} ←→ | btl |

*[2, 159] rewrite nth subterm id {| reduce |} :
n ∈ N −→
m ∈ N −→
k ∈ N −→
k < m−→
nth subterm
{mk bterm(n; op; list o f f un{x. f [x]; m});
k} ←→

Bn v.f [k]@l v
*[2, 838] rewrite subterms id {| reduce |} :

btl ∈ List −→
n ∈ N −→
subterms mk bterm(n; op; btl)←→map(bt.Bn v.bt@l v;btl)

*[6, 732] rewrite left id {| reduce |} :
l ∈ N −→
r ∈ N −→
l var(l, r)←→ l

*[2, 997] rewrite right id {| reduce |} :
l ∈ N −→
r ∈ N −→
r var(l, r)←→ r

*[1, 9] rewrite subst var0 {| reduce |} :
r ∈ N −→
var(0, r)@t←→ Br x.t

*[1, 13] rewrite subst var {| reduce |} :
l ∈ N −→
r ∈ N −→
var(l + 1, r)@t←→ var(l, r)

*[1, 15] rewrite subst mkbterm {| reduce |} :
bdepth ∈ N −→
mk bterm(bdepth+ 1; op; btl)@t←→
mk bterm(bdepth; op; map(bt.bt@t; btl))

*[1, 11] rewrite bind var {| reduce |} :
l ∈ N −→
r ∈ N −→
B x.var(l, r)←→ var(l + 1, r)

*[1, 47] rewrite lemma {| reduce |} :
btl ∈ List −→
map(bt.bt@v;map(bt.(B x.bt); btl))←→ btl

*[1, 13] rewrite bind mkbterm {| reduce |} :
bdepth ∈ N −→
btl ∈ List −→
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B x.mk bterm(bdepth; op; btl)←→
mk bterm(bdepth+ 1; op; map(bt.(B x.bt);btl))

D Itt hoasoperator module

TheItt hoas operator module defines a typeOperatorof abstract operators.

D.1 Parents

ExtendsItt nat
ExtendsItt list2

D.2 Terms

TheOperator type is an abstract type with a decidable equality. We only require that an operator have a fixed
shape.

As in the case of concrete quoted operators, the shape of an abstract operator is a list of numbers, each
stating the number of bindings the operator adds to the corresponding subterm; the length of this list is the arity
of an operator.

declareItt hoas operator!Operator
(displayed as“ Operator” )

declareItt hoas operator!shape{’op}
(displayed as“shape(op)” )

declareItt hoas operator!is same op{’op 1; ’op 2}
(displayed as“ is sameop(op1; op2)” )

D.3 Rules

Operator is an abstract type.

![〈0〉 ` ·] rule op univ {| intro [] |} :
〈0〉 ` Operator ∈ U′l

*[1, 7] rule op type {| intro [] |} :
〈0〉 ` OperatorType

Equal operators must be identical.

![〈0〉 ` ·] rule op sqeq {| nth hyp |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` op1 ≡ op2

is same op decides the equality ofOperator.

![〈0〉 ` ·] rule is same op wf {| intro [] |} :
〈0〉 ` op1 ∈ Operator −→
〈0〉 ` op2 ∈ Operator −→
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〈0〉 ` is sameop(op1; op2) ∈ B
![〈0〉 ` ·] rule is same op eq {| intro [AutoMustComplete]|} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` ↑ is sameop(op1; op2)

![〈0〉 ` ·] rule is same op rev eq :
[w f ] 〈0〉 ` op1 ∈ Operator −→
[w f ] 〈0〉 ` op2 ∈ Operator −→
〈0〉 ` ↑ is sameop(op1; op2) −→
〈0〉 ` op1 = op2 ∈ Operator

*[1, 14] rule is same op elim
{| elim [ThinOption thinT] |} 0:
[w f ] 〈0〉 ; x : ↑ is sameop(op1; op2); 〈1[x]〉 ` op1〈|0|〉[] ∈ Operator −→
[w f ] 〈0〉 ; x : ↑ is sameop(op1; op2); 〈1[x]〉 ` op2〈|0|〉[] ∈ Operator −→
[main]

1. 〈0〉
2. x : ↑ is sameop(op1; op2)

3. op1 = op2 ∈ Operator
4. 〈1[x]〉
` C[x] −→

〈0〉 ; x : ↑ is sameop(op1; op2); 〈1[x]〉 ` C[x]

Each operator has ashape — a list of natural numbers that are meant to represent the number of bindings in
each of the arguments. The length of of the list is the operator’s arity.

define iform unfold arity :
Itt hoas operator!arity{’op}

(displayed as“ari ty{op}” )←→
ari ty(op)

![〈0〉 ` ·] rule shape nat list {| intro [] |} :
〈0〉 ` op ∈ Operator −→
〈0〉 ` shape(op) ∈ N List

*[1, 24] rule shape list {| intro [] |} :
〈0〉 ` op ∈ Operator −→
〈0〉 ` shape(op) ∈ List

*[1, 45] rule shape nat list eq {| intro [] |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` shape(op1) = shape(op2) ∈ N List

*[2, 56] rule shape int list {| intro [] |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` shape(op1) = shape(op2) ∈ int List

*[1, 54] rule arity nat {| intro [] |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` ari ty(op1) = ari ty(op2) ∈ N

*[1, 54] rule arity int {| intro [] |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` ari ty(op1) = ari ty(op2) ∈ int

*[3, 51] rule shape int list sq {| intro [] |} :
〈0〉 ` op1 = op2 ∈ Operator −→
〈0〉 ` shape(op1) ≡ shape(op2)
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E Itt hoasdestterm module

TheItt hoas destterm module defines destructors for extracting from a bterm the components correspond-
ing to the de Bruijn-like representation of that bterm.

E.1 Parents

ExtendsItt hoas base
ExtendsItt hoas vector
ExtendsItt hoas operator
ExtendsItt hoas debruijn

E.2 Terms

The is var operator decides whether a bterm is avar or a mk bterm. In order to implement theis var
operator we assume that there exist at least two distinct operators (for any concrete notion of operators this
would, of course, be trivially derivable but we would like to keep the operators type abstract at this point).

Thedest bterm operator is a generic destructor that can extract all the components of the de Bruijn-like
representation of a bterm.

declareItt hoas destterm!op1 (displayed as“op1”)
declareItt hoas destterm!op2 (displayed as“op2”)
defineunfold isvar :

Itt hoas destterm!is var{’bt}
(displayed as“is var(bt)” )←→
¬bis sameop(try get op bt with Not found -> op1; try

get op bt
with Not found ->

op2)
defineunfold dest bterm :

Itt hoas destterm!dest bterm
{’bt;
l, r. ’var case[’l; ’r];
bdepth, op, subterms. ’op case[’bdepth;

’op; ’subterms]}
(displayed as
“match bt with

var(l, r) − > var case[l; r]
| mk bterm(bdepth; op; subterms) − > op case[bdepth;

op;
subterms]” )←→

if is var(bt) then var case[l bt; r bt] elseop case[D
bt;
try get op bt with Not found -> ·;
subterms bt]

E.3 Rules

![〈0〉 ` ·] rule op1 op {| intro [] |} :
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〈0〉 ` op1 ∈ Operator
![〈0〉 ` ·] rule op2 op {| intro [] |} :
〈0〉 ` op2 ∈ Operator

E.4 Rewrites

![] rewrite ops distict {| reduce |} :
is sameop(op1; op2)←→ f alse

*[1, 13] rewrite same op id {| reduce |} :
op ∈ Operator−→
is sameop(op; op)←→ true

*[1, 21] rewrite is var var {| reduce |} :
m ∈ N −→
n ∈ N −→
is var(var(m, n))←→ true

*[1, 19] rewrite is var mk bterm {| reduce |} :
op ∈ Operator−→
n ∈ N −→
is var(mk bterm(n; op; btl))←→ f alse

*[1, 37] rewrite dest bterm var {| reduce |} :
l ∈ N −→
r ∈ N −→
match var(l, r) with

var(l, r) − > var case[l; r]
| mk bterm(d; o; s) − > op case[d; o; s] ←→

var case[l; r]
*[1, 27] rewrite dest bterm mk bterm {| reduce |} :

n ∈ N −→
op ∈ Operator−→
subterms∈ List −→
match mk bterm(n; op; subterms) with

var(l, r) − > var case[l; r]
| mk bterm(bdepth; op; subterms) − > op case[bdepth;

op;
subterms] ←→

op case[n; op; map(bt.Bn v.bt@l v; subterms)]

F Itt hoasbterm module

TheItt hoas bterm module defines the inductive typeBTerm and establishes the appropriate induction rules
for this type.

F.1 Parents

ExtendsItt hoas destterm
ExtendsItt image
ExtendsItt tunion
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F.2 Terms

defineunfold compatible shapes :
Itt hoas bterm!compatible shapes{’bdepth; ’op; ’btl}

(displayed as“compatible shapes(bdepth;op; btl)” )←→
(ari ty(op) = | btl | ∈ int)
∧ ∀i : I ndex(btl)
(D btli = (bdepth+ shape(op)i) ∈ int)

defineunfold dom :
Itt hoas bterm!dom{’BT} (displayed as“dom{BT}” )←→
(N × N) + (depth: N × op : Operator × {subterms: BT List | compatible shapes(depth; op; subterms)})

defineunfold mk :
Itt hoas bterm!mk{’x} (displayed as“mk{x}” )←→

match x with
inl v− > let (left, right) = v in var(left, right)
| inr t − > let

(d, v) = t
in

let (op, st) = v in mk bterm(d; op; st)
defineunfold dest :

Itt hoas bterm!dest{’bt} (displayed as“dest{bt}” )←→
match bt with

var(l, r) − > inl (l, r)
| mk bterm(d; op; ts) − > inr (d, (op, ts))

defineunfold Iter :
Itt hoas bterm!Iter{’X} (displayed as“ I ter{X}” )←→

Img(x : dom{X}.mk{x})
defineunfold BT :

Itt hoas bterm!BT{’n} (displayed as“ BT{n}” )←→
Ind(n) whereInd(n) =

n = 0⇒ Ind(n) = V oid
n> 0⇒ Ind(n) = I ter{Ind(n− 1)}

defineunfold BTerm :
Itt hoas bterm!BTerm (displayed as“BTerm” )←→
∪n : N.BT{n}

F.3 Rules

*[1, 15] rewrite bt reduce base {| reduce |} : BT{0} ←→ V oid
*[1, 11] rewrite bt reduce step {| reduce |} :

n ∈ N −→
BT{n + 1} ←→ I ter{BT{n}}

*[1, 82] rule bt elim squash {| elim [] |} 0:
[w f ] 〈0〉 ; 〈1〉 ` n〈|0|〉[] ∈ N −→
[base] 〈0〉 ; 〈1〉 ; l : N; r : N ` [P[var(l, r)]] −→
[step]

1. 〈0〉
2. 〈1〉
3. depth: N
4. op : Operator
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5. subterms: BT{n〈|0|〉[]} List
6. compatible shapes(depth; op; subterms)
` [P[mk bterm(depth; op; subterms)]] −→

〈0〉 ; t : BT{n + 1}; 〈1〉 ` [P[t]]
*[8, 296] rule bt wf and bdepth wf {| intro [] |} :
〈0〉 ` n ∈ N −→
〈0〉 ` BT{n} Type ∧ ∀t : BT{n}. (D t ∈ N)

*[1, 14] rule bt wf {| intro [] |} :
〈0〉 ` n ∈ N −→
〈0〉 ` BT{n} Type

*[1, 13] rule bterm wf {| intro [] |} :
〈0〉 ` BTerm Type

*[2, 74] rule bdepth wf {| intro [] |} :
〈0〉 ` t ∈ BTerm −→
〈0〉 ` D t ∈ N

*[4, 146] rule compatible shapes wf {| intro [] |} :
〈0〉 ` bdepth ∈ N −→
〈0〉 ` op ∈ Operator −→
〈0〉 ` btl ∈ BTerm List −→
〈0〉 ` compatible shapes(bdepth;op; btl) Type

*[1, 73] rule compatible shapes sqstable :
〈0〉 ` btl ∈ List −→
〈0〉 ` [compatible shapes(bdepth;op; btl)] −→
〈0〉 ` compatible shapes(bdepth;op; btl)

*[2, 29] rule bt subtype bterm {| intro [] |} :
〈0〉 ` n ∈ N −→
〈0〉 ` BT{n} v BTerm

*[4, 216] rule bt monotone {| intro [] |} :
〈0〉 ` n ∈ N −→
〈0〉 ` BT{n} v BT{n + 1}

*[5, 122] rule var wf {| intro [] |} :
〈0〉 ` l ∈ N −→
〈0〉 ` r ∈ N −→
〈0〉 ` var(l, r) ∈ BTerm

*[3, 185] rule mk bterm bt wf {| intro [] |} :
〈0〉 ` n ∈ N −→
〈0〉 ` depth ∈ N −→
〈0〉 ` op ∈ Operator −→
〈0〉 ` subterms∈ BT{n} List −→
〈0〉 ` compatible shapes(depth;op; subterms) −→
〈0〉 ` mk bterm(depth; op; subterms) ∈ BT{n + 1}

*[7, 141] rule mk bterm wf {| intro [] |} :
〈0〉 ` depth ∈ N −→
〈0〉 ` op ∈ Operator −→
〈0〉 ` subterms∈ BTerm List −→
〈0〉 ` compatible shapes(depth;op; subterms) −→
〈0〉 ` mk bterm(depth; op; subterms) ∈ BTerm

*[10, 1387] rule bt elim squash2 {| elim [] |} 0:
[w f ] 〈0〉 ; 〈1〉 ` n〈|0|〉[] ∈ N −→
[base] 〈0〉 ; 〈1〉 ; l : N; r : N ` [P[var(l, r)]] −→
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[step]
1. 〈0〉
2. n > 0
3. 〈1〉
4. depth: N
5. op : Operator
6. subterms: BT{n〈|0|〉[] − 1} List
7. compatible shapes(depth; op; subterms)
` [P[mk bterm(depth; op; subterms)]] −→

〈0〉 ; t : BT{n}; 〈1〉 ` [P[t]]
*[5, 576] rule bterm elim squash {| elim [] |} 0:
〈0〉 ; 〈1〉 ; l : N; r : N ` [P[var(l, r)]] −→

1. 〈0〉
2. 〈1〉
3. depth: N
4. op : Operator
5. subterms: BTerm List
6. compatible shapes(depth; op; subterms)
` [P[mk bterm(depth; op; subterms)]] −→
〈0〉 ; t : BTerm; 〈1〉 ` [P[t]]

*[9, 715] rewrite bind eta {| reduce |} :
bt ∈ BTerm −→
(D bt) > 0−→
B x.bt@x←→ bt

*[5, 3289] rewrite lemma1 {| reduce |} :
r ∈ N −→
n ∈ N −→
r ≥ n−→
Bn gamma.Br x.t@l gamma←→ Br x.t

*[4, 3140] rewrite lemma2 {| reduce |} :
l ∈ N −→
r ∈ N −→
n ∈ N −→
((l + r) + 1) ≥ n−→
Bn gamma.var(l, r)@l gamma←→ var(l, r)

*[6, 2934] rewrite lemma3 {| reduce |} :
m ∈ N −→
n ∈ N −→
m≥ n−→
Bn gamma.mk bterm(m; op; btl)@l gamma←→
mk bterm(m; op; btl)

*[3, 689] rewrite bind vec eta {| reduce |} :
n ∈ N −→
bt ∈ BTerm −→
(D bt) ≥ n−→
Bn gamma.bt@l gamma←→ bt

*[12, 3520] rewrite subterms lemma {| reduce |} :
n ∈ N −→
subterms∈ BTerm List −→
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∀i : I ndex(subterms). ((D subtermsi) ≥ n) −→
map(bt.Bn v.bt@l v; subterms)←→ subterms

*[6, 1875] rewrite dest bterm mk bterm2 {| reduce |} :
n ∈ N −→
op ∈ Operator−→
subterms∈ BTerm List −→
compatible shapes(n;op; subterms) −→
match mk bterm(n; op; subterms) with

var(l, r) − > var case[l; r]
| mk bterm(bdepth; op; subterms) − > op case[bdepth;

op;
subterms] ←→

op case[n; op; subterms]
*[1, 83] rewrite mk dest reduce {| reduce |} :

t ∈ BTerm −→
mk{dest{t}} ←→ t

*[1, 87] rule dest bterm wf {| intro [] |} :
〈0〉 ` bt ∈ BTerm −→
〈0〉 ; l : N; r : N ` var case[l; r] ∈ T −→

1. 〈0〉
2. bdepth: N
3. op : Operator
4. subterms: BTerm List
5. compatible shapes(bdepth; op; subterms)
` op case[bdepth; op; subterms] ∈ T −→

1. 〈0〉
`
match bt with

var(l, r) − > var case[l; r]
| mk bterm(bdepth; op; subterms) − > op case[bdepth;

op;
subterms] ∈

T
*[1, 101] rule dest wf {| intro [] |} :
〈0〉 ` t ∈ BTerm −→
〈0〉 ` dest{t} ∈ dom{BTerm}

*[4, 146] rule bterm elim {| elim [] |} 0:
〈0〉 ; 〈1〉 ; l : N; r : N ` P[var(l, r)] −→

1. 〈0〉
2. 〈1〉
3. bdepth: N
4. op : Operator
5. subterms: BTerm List
6. compatible shapes(bdepth; op; subterms)
` P[mk bterm(bdepth; op; subterms)] −→
〈0〉 ; t : BTerm; 〈1〉 ` P[t]
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