A Computational Approach to Reflective Meta-Reasoning
about Languages with Bindings

Aleksey Nogin Alexei Kopylov Xin Yu
Jason Hickey
Department of Computer Science
California Institute of Technology
M/C 256-80, Pasadena, CA 91125
{nogin,kopylov,xiny, jyh}@cs.caltech.edu

July 19, 2005

Abstract

We present a foundation for a computational meta-theory of languages with bindings implemented in a
computer-aided formal reasoning environment. Our theory provides the ability to reason abstractly about
operators, languages, open-ended languages, classes of languagese theory is based on the ideas of
higher-order abstract syntax, with an appropriate induction principle parameterized over the language (

a set of operators) being used. In our approach, both the bound and free variables are treated uniformly
and this uniform treatment extends naturally to variable-length bindings. The implementation is reflective,
namely there is a natural mapping between the meta-language of the theorem-prover and the object language
of our theory. The object language substitution operation is mapped to the meta-language substitution and
does not need to be defined recursively. Our approach does not require designing a custom type theory; in
this paper we describe the implementation of this foundational theory within a general-purpose type theory.
This work is fully implemented in th&letaPRL theorem prover, using the pre-existiNgPRL-like Martin-

Lof-style computational type theory. Based on this implementation, we lay out an outline for a framework for
programming language experimentation and exploration as well as a general reflective reasoning framework.
This paper also includes a short survey of the existing approaches to syntactic reflection.

1 Introduction

1.1 Reflection

Very generally, reflection is the ability of a system to be “self-aware” in some way. More specifically, by
reflection we mean the property of a computational or formal system to be able to access and internalize some
of its own properties.

There are many areas of computer science where reflection plays or should play a major role. When
exploring properties of programming languages (and other languages) one often realizes that languages have
at least two kinds of properties -semantiqroperties that have to do with theeaningof what the language’s
constructs express asgintacticproperties of the language itself.

*This is an extended version of the paper accepted to the MERLIN'05 Workshop (September 30, 2005, Tallinn, Estonia). The MERLIN
paper is Copyrigh© 2005 ACM 1-59593-072-8/05/0009. Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

Suppose for example that we are exploring some language that contains arithmetic operations. And in
particular, in this language one can write polynomials ket 2x + 1. In this case the number of roots of a
polynomial is a semantic property since it has to do withwhleiationof the polynomial. On the other hand,
the degree of a polynomial could be considered an example of a syntactic property since the most natural way to
define it is as a property of thexpressionthatrepresentshat polynomial. Of course, syntactic properties often
have semantic consequences, which is what makes them especially important. In this example, the number of
roots of a polynomial is bounded by its degree.

Another area where reflection plays an important role is run-time code generation — in most cases, a
language that supports run-time code generation is essentially reflective, as it is capable of manipulating its
own syntax. In order to reason about run-time code generation and to express its semantics and properties, it is
natural to use a reasoning system that is reflective as well.

There are many different flavors of reflection. T@yamtactic reflectionve have seen in the examples above,
which is the ability of a system to internalize its own syntax, is just one of these many flavors. Another
very important kind of reflection ifogical reflection which is the ability of a reasoning system or logic to
internalize and reason about its own logical properties. A good example of a logical reflection is reasoning
about knowledge — since the result of reasoning about knowledge is knowledge itself, the logic of knowledge
is naturally reflective Art04].

In most cases it is natural for reflection to be iterated. In the case of syntactic reflection we might care not
only about the syntax of our language, but also about the syntax used for expressing the syntax, the syntax for
expressing the syntax for expressing the syntax and so forth. In the case of the logic of knowledge it is natural
to have iterations of the form “I know that he knows that | knaw'.

When a formal system is used to reason about properties of programming languages, iterated reflection
magnifies the power of the system, making it more natural to reason not just about individual languages, but
also aboutlasse®f languages, languagehemagsand so on. More generally, reflection adds a lot of additional
power to a formal reasoning systel®389 Art99]. In particular, it is well-known|G6d36 IMos52 [EM77,

Par7] that reflection allows a super-exponential reduction in the size of certain proofs. In addition, reflection
could be a very useful mechanism for implementing proof search algoritd@id93,([GWZ00,ICFW04. See
also [Har9q for a survey of reflection in theorem proving.

1.2 Uniform Reflection Framework

For each of the examples in the previous section there are atkhpcways of achieving the specific benefits
of a specific flavor of reflection. This work aims at creatingréfying reflective frameworthat would allow
achieving most of these benefits in a uniform manner, without having to reinvent and re-implement the basic
reflective methodology every time. We believe that such a framework will increase the power of the formal
reasoning tools, and it may also become an invaluable tool for exploring the properties of novel programming
languages, for analyzing run-time code generation, and for formalizing logics of knowledge.

This paper establishes a foundation for the development of this framework — a new approach to reflective
meta-reasoning about languages with bindings. We present a theory of syntax that:

e in a natural way provides both a higher-order abstract syntax (HOAS) approach to bindings and a de
Bruijn-style approach to bindings, with easy and natural translation between the two;

e provides a uniform HOAS-style approach to both bound and free variables that extends naturally to
variable-length “vectors” of binders;

e permits meta-reasoning about languages — in particular, the operators, languages, open-ended lan-
guages, classes of languagge are all first-class objects that can be reasoned about both abstractly
and concretely;

e comes with a natural induction principle for syntax that can be parameterized by the language being
used;

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

e provides a natural mapping between the object syntax and meta-syntax that is free of exotic terms, and
allows mapping the object-level substitution operation directly to the meta-level.eng-teduction);

is fully derived in a pre-existing type theory in a theorem prover;

is designed to serve as a foundation for a general reflective reasoning framework in a theorem prover;

is designed to serve as a foundation for a programming language experimentation framework.

The paper is structured as follows. Our work inherits a large number of ideas from previous efforts and
we start in Sectiof? with a brief survey of existing techniques for formal reasoning about syntax. Next in
Sectiori3 we outline our approach to reasoning about syntax and in Sé&timnpresent a formal account of
our theory based on a Martindk style computational type theonCAB™ 86, HAB™] and the implementation
of that account in théletaPRL theorem proverHic97, [Hic99, HicO1, IHNCT03, [HNK™, [HAB™]. Then in
SectionS we outline our plan for building a uniform reflection framework based on the syntactic reflection.
Finally, in Sectiorfdwe resume the discussion of related work that was started in SBttion

1.3 Notation and Terminology

We believe that our approach to reasoning about syntax is fairly general and does not rely on any special
features of the theorem prover we use. However, since we implement this thedegdRRL, we introduce
some basic knowledge abdutaPRL terms.

A MetaPRL term consists of:

1. An operator name (like “sum”), which is a unigue name indicating the logic and component of a term;
2. Alist of parameters representing constant values; and
3. A set of subterms with possible variable bindings.

We use the following syntax to describe terms, based oNtHRRL definition [ACHA9Q]:

opname [p1;---; Pnl{v1.ty; -+ ; Um.tm}
~——
operator name parameters subterms

In addition,MetaPRL has a meta-syntax somewhat similar to the higher-order abstract syntax presented in
Pfenning and ElliottPE8Y. MetaPRL uses the second-order variables in the style of Huet and [ldh@q]
to describe term schemas. For exampbe,V[x], whereV is a second-order variable of arity 1, is a schema
that stands for an arbitrary term whose top-level operatbr is

This meta-syntax requires that every time a binding occurrence is explicitly specified in a schema, all cor-
responding bound occurrences have to be specified as well. This requirement makes it very easy to specify free
variable restrictions — for examplex.V, whereV is a second-order meta-variable of arity 0, is a schema that
stands for an arbitrary term whose top-level operatarasnd whose body does not have any free occurrences
of the variable bound by that In particular, the schemex.VV matches the terrhy.1, but not the term.x.x.

In addition, this meta-language allows specifying certain term transformations, including implicit substitu-
tion specifications. For example, a beta reduction transformation may be specified using the following schema:

(AX.V1[X]) V2 < Vi[V2]

Here the substitution d¥, for x in V1 is specified implicitly.

Throughout this paper we will use this second-order notation to denote arbitrary terms — namely, unless
stated otherwise, when we write.X.t[X]” we mean an arbitrary term of this form, not a term containing a
concrete second-order variable named “t”.

As in LF [HHP93 we assume that object level variablég(the variables of the language whose syntax
we are expressing) are directly mapped to meta-theory varidtdethe variable of the language that we use

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

to express the syntax). Similarly, we assume that the object-level binding structure is mapped to the meta-level
binding structure. In other words, the object-level notion of the “binding/bound occurrence” is a subset of that
in the meta-language. We also considegqual terms — both on the object level and on the meta-level — to
be identical and we assume that substitution avoids capture by renaming.

The sequent schema language we IMd(2] contains a number of more advanced features in addition
to those outlined here. However, for the purposes of this presentation, the basic features outlined above are
sufficient.

2 Previous Models of Reflection

In 1931 Gdel used reflection to prove his famous incompleteness the@eédB[l]. To express arithmetic in
arithmetic itself, he assigned a unique numbeG@el numberto each arithmetic formula. A &@lel number
of a formula is essentially a numeric code of a string of symbols used to represent that formula.

A modern version of the Gdel's approach was used by Aitkehal. JACHA90, /AC92, IACU93, [Con94
to implement reflection in th&luPRL theorem provenCABT 86, |ACET0Q]. A large part of this effort was
essentially a reimplementation of the core of bheéPRL prover insideNuPRL'’s logical theory.

In Godel’s approach and its variations (including Aitken’s one), a general mechanism that could be used
for formalizing one logical theory in another is applied to formalizing a logical theory in itself. This can be
very convenient for reasonirepoutreflection, but for our purposes it turns out to be extremely impractical.
First, when formalizing a theory in itself using generic means, the identity between the theory being formalized
and the one in which the formalization happens becomes very obfuscated, which makes it almost impossible
to relate the reflected theory back to the original one. Second, when one has a theorem proving system that
already implements the logical theory in question, creating a completely new implementation of this logical
theory inside itself is a very tedious redundant effort. Another practical disadvantage obdled iambers
approach is that it tends to blow up the size of the formulas; and iterated reflection would cause the blow-up to
be iterated as well, making it exponential or worse.

A much more practical approach is being used in some programming languages, such as Lisp and Scheme.
There, the common solution is for the implementatioexposéts internal syntax representation to user-level
code by thequote constructor (wherguote (t) prevents the evaluation of the expressipnThe problems
outlined above are solved instantly by this approach: there is no blow-up, there is no repetition of structure
definitions, there is even no need for verifying that the reflected part is equivalent to the original implemen-
tation since they ar@entical Most Scheme implementations take this even further:ethel function is
the internal function for evaluating a Scheme expression, which is exposed to the user-level[Spnifs4) |
showed how this approach can achieve an infinite tower of processors. A similar language with the quotation
and antiquotation operators was introducedGiiO03.

This approach, however, violates tbengruence propertwith respect to computation: if two terms are
computationally equal then one can be substituted for the other in any context. For instance, alth@ugh 2
equal to 4, the expressiong+#2” and “4” are syntactically different, thus we can not substite#e by 4 in the
expressiorquote (2*2). The congruence property is essential in many logical reasoning systems, including
theNuPRL system mentioned above and tfietaPRL system|HNC™03,[HNK ™, HAB ™ that our group uses.

A possible way to expose the internal syntax without violating the congruence property is to use the so-
called “quoted” or “shifted” operator®NA99, [Bar03],[Bar0 rather than quoting the whole expression at once.

For any operatoop in the original language, we add tljeoted operatofdenoted ap) to represent a term

built with the operatopp. For example, if the original language contains the constant “0” (which, presumably,
represents the number 0), then in the reflected lang@ageuld stand for the term that denotes the expression
“0". Generally, the quoted operator has the same arity as the original operator, but it is defined on syntactic
terms rather than on semantic objects. For instance, whiéea binary operator on numbets,is a binary
operator on terms. Namely, if andt, are syntactic terms that stand for expressienande, respectively,
thentixts is a new syntactic term that stands for the expressione,. Thus, the quotation of the expression

1x 2 would bel % 2.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

In general, the well-formedness (typing) rule for a quoted operator is the following:

11 € Term th € Term
opfty; ...;th} € Term

@)

where Term is a type of terms.

Note that quotations can be iterated arbitrarily many times, allowing us to quote quoted terms. For instance,
1 stands for the term that denotes the term that denotes the numeral 1.

Problems arise when quoting expressions that contain binding variables. For example, what is the quotation
of Ax.x? There are several possible ways of answering this question. A commonly used appBagh [
DH94, IDEH9E IACMO02,[ACMO3] in logical frameworks such &&f [Pfe89, LF [HHP93J, andlsabelle [PN9Q
Pau94is to construct an object logic with a concreteperator that has a type like

(Term— Term) — Term or (Var— Term — Term

In this approach, the quoted.x might look like L(Ax.x) and the quotedx.1 might look likeA(1x.1). Note
that in these examples the quoted terms have to make use of both the syhtadicoted) operatox and the
semantic operatot.

Exotic Terms. Naive implementations of the above approach suffer from the well-known problem of exotic
terms DH95, IDEH95. The issue is that in general we can not allow applyingitaoerator to an arbitrary
function that maps terms to terms (or variables to terms) and expect the result of such an application to be a
“proper” reflected term.

Consider for example the following term:

A(AX.if x = 1then 1else2)

It is relatively easy to see that it is not a real syntactic term and can not be obtained by quoting an actual term.

How can one ensure that denotes a “real” term and not an “exotic” one? That is, is it equal to a result
of quoting an actual term of the object language? One possibility is to regtorbe asubstitution function
in other words it has to be equal to an expression of the foxh[x] wheret is composed entirely of term
constructorsi(e. quoted operators) and while usingdestructorgsuch as case analysis, tii@perator used
in the example abovetd) is prohibited.

There are a number of approaches to enforcing the above restriction. One of them is the usage of logical
frameworks with restricted function spac@H88 HHP9J, where A-terms may only contain constructors.
Another is to first formalize the larger type that does include exotic terms and then to define recursively a
predicate describing the “validity” or “well-formedness” of a tef@H94, DFH9Y thus removing the exotic
terms from consideration. Yet another approach is to create a specialized type theory that combines the idea
of restricted function spaces with a modal type operad®397 [DL99, IDLO1]. There the case analysis is
disallowed on objects of “pure” typ€, but is allowed on objects of a special typd . This allows expressing
both the restricted function spac&;“ — T»” and the unrestricted ong[@T;) — T” within a single type
theory.

Another way of regarding the problem of exotic terms is that it is caused by the attempt to give a semantic
definition to a primarily syntactic property. A more syntax-oriented approach was used by Batzdhy
[BAOZ, BACO3, Bar0. In Barzilay's approach, the quoted version of an operator that introduces a binding
has the samshape(i.e. the number of subterms and the binding structure) as the original one and the variables
(both the binding and the bound occurrences) are unaffected by the quotation. For instance, the quotation of
AX.X IS JUStAX.X.

The advantages of this approach include:

e This approach is simple and clear.

e Quoted terms have the same structure as original ones, inheriting a lot of properties of the object syntax.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

o In all the above approaches, theequivalence relation for quoted terms is inherited “for free”. For
exampleAx.x andAy.y are automatically considered to be the same term.

e Substitution is also easy: we do not need to re-implement the substitution that renames binding variables
to avoid the capture of free variables; we can use the substitution of the original language instead.

To prune exotic terms, Barzilay says that.t[x] is a valid term whenx.t[x] is a substitution function
He demonstrates that it is possible to formalize this notionpair@ly syntacticafashion. In this setting, the
general well-formedness rule for quoted terms with bindings is the following:

is_subsk {X1, - - - , Xk.t[X]} --- is_subst{zy, -, z.S[Z]}

)

whereis_subst {1, - - - , Xn.t[X]} is the proposition that is a substitution function over variablas, - - - , Xn
(in other words, it is a syntactic version of thielid predicate ofIDH94,[DFH95). This proposition is defined
syntactically by the following two rules:

is_subs {X1, - - - , Xn. X}
and
|S,Subsﬁ+k {Xl’ sy X, YL Tt ykt[)?) y]} e IstUbsﬁ‘H {Xl’ X 21,0005 g S[)?’ 2]}}
is_subsh {X1 - - Xn.0p{y1 - - Yk t[X; Y15 -+ 5 z1---21.8[X; 21}

In this approach thés_subst {} and A operators are essentialiytyped(in NuPRL type theory, the com-
putational properties of untyped terms are at the core of the semantics; types are added on top of the untyped
computational system).

Recursive Definition and Structural Induction Principle. A difficulty shared by both the straightforward
implementations of théTerm — Term) — Term approach and by the Barzilay’s one is the problem of recur-
sively defining the Term type. We want to define the Term type as the smallest set satisfyin@)rates).

Note, however, that unlike rul, rule) is not monotonic in the sense thatsubsg {x1, - - - , Xx.t[X]} de-
pends non-monotonically on the Term type. For example, to say whethii] is a term, we should check
whethert is a substitution function ovex. It means at least thédr everyx in Term,t[x] should be in Term as
well. Thus we need to define the whole type Term before uhgvhich produces a logical circle. Moreover,
since\ has type(Term — Term) — Term, it is hard to formulate the structural induction principle for terms
built with the A term constructor.

Variable-Length Lists of Binders. In Barzilay's approach, for each numhberis_subst {} is considered
to be a separate operator — there is no way to quantify myvand there is no way to express variable-length
lists of binders. This issue of expressing the unbounded-length lists of binders is common to some of the other
approaches as well.

Meta-Reasoning.Another difficulty that is especially apparent in Barzilay's approach is that it only allows
reasoning abouwtoncreteoperators in concrete languages. This approach does not provide the ability to reason
about operatorabstractly in particular, there is no way to state and prove meta-theorems that quantify over
operators or languages, much letsssesf languages.

3 Higher-Order Abstract Syntax with Inductive Definitions

Although it is possible to solve the problems outlined in the previous Section (and we will return to the discus-
sion of some of those solutions in Secti@nour desire is to avoid these difficulties from the start. We propose
a natural model of reflection that manages to work around those difficulties. We will show how to give a simple
recursive definitiorof terms with binding variables, whiatoes not allovthe construction of exotic terms and
does allowstructural induction on terms.

In this Section we provide a conceptual overview of our approach; details are given in Ekction

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

3.1 Bound Terms

One of the key ideas of our approach is how we deal with terms containing free variables. We extend to free
variables the principle thatariable names do not really mattein fact, we model free variables amdings
that can be arbitrarilg-renamed. Namely, we will writbterm{xa, - - - , x,.t[X]} for a termt over variables
X1, - -+, Xn. FOr example, instead of terrxy we will use the ternbterm{x, y.xxy} when it is considered over
variablesx andy andbterm{x, y, z.xxy} when it is considered over variablgsy andz. Free occurrences of
Xi in t[X] are considered bound btern{xy, - - - , Xn.t[X]} and twoa-equalbtern{} expressions (“bterms”) are
considered to balentical

Not every bterm is necessarily well-formed. We will define the type of terms in such a way as to eliminate
exotic terms. Consider for example a definition of lambda-terms.

Example 1 We can define a set of reflected lambda-terms as the smallest set such that

e bterm{xi, ---, Xn.Xi}, wherel < i < n, is alambda-term (a variable);
o if bterm{xy, - - - , Xn, Xny1.t[X]} is a lambda-term, then
bterm{xy, - - - , Xn.AXn41.t[X]}

is also a lambda-term (an abstraction);
o if bterm{xy, - - - , Xn.t1[X]} and bternfxy, - - - , X,.t2[X]} are lambda-terms, then
btermixy; - - - ; Xn.apply{t1 [X]; t2[X]}}
is also a lambda-term (an application).

In a way, bterms could be understood as an explicit coding for Barzilay’s substitution functions. And
indeed, some of the basic definitions are quite similar. The notion of bterms is also very similar todicat of
variable context§FPT99.

3.2 Terminology
Before we proceed further, we need to define some terminology.

Definition 1 We change the notion gfubtermso that the subterms of a bterm are also bterms. For example,
the immediate subterms of btepmy.xxy} are bternix, y.x} and bternfx, y.y}; the immediate subterm of
bterm{x.Ay.x} is bterm{x, y.x}.

Definition 2 We call the number of outer binders in a bterm expressiobiitding depth Namely, thévinding
depthof the bterm bterrfxy, - - - , Xn.t[X]} isn.

Definition 3 Throughout the rest of the paper we use the notion of opestiape Theshapeof an operator

is a list of natural numbers each stating how many new binders the operator introduces on the corresponding
subterm. The length of the shape list is therefore the arity of the operator. For example, the shape- of the
operator is[0; 0] and the shape of the operator is[1].

The mapping from operators to shapes is also sometimes cdtiediag signatureof a languageFPT99
Plo9d.

Definition 4 Let op be an operator with shapd;; - - - ; dy], and let btl be a list of btermfy; - - - ; by]. We
say that btl iscompatiblewith op at deptm when,

2. the binding depth of bteri; isn 4 d;j foreachl < j < N.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

3.3 Abstract Operators

Expressions of the formterm{X.op{- - - }} can only be used to express syntax witincreteoperators. In other
words, each expression of this form contains a specific constant opepatéowever, we would like to reason
about operators abstractly; in particular, we want to make it possible to have variables of the type “Op” that can
be quantified over and used in the same manner as operator constants. In order to address this we use explicit
term constructors in addition taterm{X.op{- - - }} constants.

The expressiomk bterm{n; “op’; btl}, where 0p’ is some encoding of the quoted operabgy stands for
a bterm with binding depth, operatoop and subtermbtl. Namely,

mkbterm{n; op; bterm{xy, - - -, Xn, Y1.ta[X; y11} :: - - - - bterm{xq, - - - , Xn, Yk-tk[X; YkI} :: nil}
is bterm{xy, - - - , Xn.0p{V1.t1[X; Y11; - - - ; Vi .[X; YkI}}. Here,nil is the empty list and: is the list cons
operator and therefore the expresdign: - - - :: b, :: nil represents the concrete Ij$k; - - - ; by].

Note that if we know the shape of the operaipiand we know that thenk btermexpression is well-formed
(or, more specifically, if we know thditl is compatible withop at depthn), then it would normally be possible
to deduce the value af (sincen is the difference between the binding depth of any element of thbtlianhd
the corresponding element of the shaym list). There are two reasons, however, for supplyirexplicitly:

e Whenbtl is empty (in other words, when the arity apis 0), the value oh can not be deduced this way
and still needs to be supplied somehow. One could consider O-arity operators to be a special case, but
this results in a significant loss of uniformity.

e When we donot know whether ammk btermexpression is necessarily well-formed (and as we will see
it is often useful to allow this to happen), then a lot of definitions and proofs are greatly simplified when
the binding depth omk btermexpressions is explicitly specified.

Using themk btermconstructor and a few other similar constructors that will be introduced later, it becomes
easy to reason abstractly about operators. Indeed, the second arguméiitesmcan now be an arbitrary
expression, not just a constant. This has a cost of making certain definitions slightly more complicated. For
example, the notion of “compatible withp at depthn” now becomes an important part of the theory and will
need to be explicitly formalized. However, this is a small price to pay for the ability to reason abstractly about
operators, which easily extends to reasoning abstractly about languages, classes of languages and so forth.

3.4 Inductively Defining the Type of Well-Formed Bterms

There are two equivalent approaches to inductively defining the general type (set) of all well-formed bterms.
The first one follows the same idea as in Exaniple

e bterm{xq, ---, Xn.X; } is a well-formed bterm for ki < n;

o mkbterm{n; op; btl} is a well-formed bterm wheapis a well-formed quoted operator abt is a list of
well-formed bterms that is compatible witlp at some depth.

If we denotebterm{xy, ---,X,VY, z1,---, 2.y} asvar{l; r}, we can restate the base case of the above
definition as Var{l; r}, wherel andr are arbitrary natural numbers, is a well-formed bterm”. Once we do
this it becomes apparent that the above definition has a lot of similarities with de Bruijn-style indexing of
variableslfiB77]. Indeed, one might call the numbérandr theleft and right indices of the variable v r}.

It is possible to provide an alternate definition that is closer to pure HOAS:

e bnd{x.t[x]}, wheret is a well-formed substitution function, is a well-formed bterm (tm&l operation
increases the binding depthtoby one by adding to the beginning of the list dfs outer binders).

o mkterm{op; btl}, whereopis a well-formed quoted operator, aht is a list of well-formed bterms that
is compatible withop at depth 0, is a well-formed bterm (of binding depth 0).

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

Other than better capturing the idea of HOAS, the latter definition also makes it easier to express the
reflective correspondence between the meta-syntax (the syntax used to express the theory of syntax, namely
the one that includes the operaton& bterm bnd, etc) and the meta-meta-syntax (the syntax that is used to
express the theory of syntax and the underlying theory, in other words, the syntax that includes the second-order
notations.) Namely, provided that we define subs{bt; t} operation to compute the result of substituting a
closed ternt for the first outer binder of the bterbt, we can state that

substbnd{x.t1[x]} ; t2} = t1[t2] 3)

(wheret; andt; are literal second-order variables). In other words, we can state that the substitution operator
substand the implicit second-order substitution in the “meta-meta-" language are equivalent.

The downside of the alternate definition is that it requires defining the notion of “being a substitution
function”.

3.5 Our Approach

In our work we try to combine the advantages of both approaches outlined above. In the next Section we
present a theory that includes both the HOAS-style operationg (mk term) and the de Bruijn-style ones

(var, mk bterm). Our theory also allows deriving the equivalen8g (n our theory the definition of the basic
syntactic operations is based on the HOAS-style operators; however, the recursive definition of the type of well-
formed syntax is based on the de Bruijn-style operations. Our theory includes also support for variable-length
lists of binders.

4 Formal Implementation in a Theorem Prover

In this Section we describe how the foundations of our theory are formally defined and derivedlirPRE-
style Computational Type Theory in thdetaPRL Theorem Prover. For brevity, we will present a slightly
simplified version of our implementation; full details are available in the Appendix.

4.1 Computations and Types

In our work we make heavy usage of the fact that our type theory allows us to define computatimng
stating upfront (or even knowing) what the relevant types ar@&lulARL-style type theories (which some even
dubbed “untyped type theory”), one may define arbitrary recursive functions (even potentially nonterminating
ones). Only when proving that such function belongs to a particular type, one may have to prove termination.
See All87a,/AlIB7D] for a semantics that justifies this approach.

The formal definition of the syntax of terms consists of two parts:

e The definition of untyped term constructors and term operations, which includes both HOAS-style oper-
ations and de Bruijn-style operations. As it turns out, we can establish most of the reduction properties
without explicitly giving types to all the operations.

e The definition of the type of terms. We will define the type of terms as the type that contains all terms
that can be legitimately constructed by the term constructors.
4.2 HOAS Constructors
At the core of our term syntax definition are two basic HOAS-style constructors:

e bnd{x.t[x]} is meant to represent a term with a free variableThe intended semantics (which will
not become explicit until later) is thdand{x.t[x]} will only be considered well-formed whenis a
substitution function.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

Internally, bnd{x.t[x]} is implemented simply as the pdid, Ax.t[x]). This definition is truly internal
and is used only to prove the properties of the two destructors presented below; it is never used outside
of this Section (Sectiod.2).

o mkterm{op; ts} pairsop with ts. The intended usage of this operation (which, again, will only become
explicit later) is that it represents a closed tetire.(a btermof binding depth 0) with operatayp and
subtermds. It will be considered well-formed wheop is an operator ants is a list of terms that is
compatiblewith op at depth 0. For examplenk term{i; bnd{x.x}} is AX.X.

Internally,mk term{op; ts} is implemented as the nested pédir (op, ts)). Again, this definition is never
used outside of this Section.

We also implement two destructors:

e substbt; t} is meant to represent the result of substituting térdor the first variable of the bterrht.
Internally, substbt; t} is defined simply as an applicatight.2) t (wherebt.2 is the second element of
the pairbt).

We derive the following property of this substitution operation:
substbnd{x.t1[x]} ; to} = t1[to]

where ‘=" is the computational equality relatirandt; andt, may be absolutely arbitrary, even ill-
typed. This derivation is the only place where the internal definitiosubk{bt; t} is used.

Note that the above equality is exactly the “reflective property of substituti@nthat was one of the
design goals for our theory.

o weakdest{bt; bcase op, tsmktcasgop; ts]} is designed to provide a way to find out whetltris a
bnd{} or amkterm{op; ts} and to “extract” theop andtsin the latter case. In the rest of this paper we will
use the “pretty-printed” form foweakdest— “match bt with bnd{_} — bcase| mkterm{op; ts} —
mkt.casgop; ts]”. Internally, it is defined a# bt.1 = 0 then bcaseelsemktcasgbt.2.1; bt.2.2].

From this internal definition we derive the following propertiesnafak dest

match bnd{X.t[X]} with
bnd{_} — bcase = bcase
| mkterm{op; ts} — mktcase[op; ts

match mkterm{op; ts} with
bnd{_} — bcase = mkt.casgop; ts]
| mkterm{o; t} — mktcas€o; t]

4.3 \Vector HOAS Operations

As we have mentioned at the end of Seclhsome approaches to reasoning about syntax make it hard or even
impossible to express arbitrary-length lists of binders. In our approach, we address this challenge by allowing
operators where a single binding in the meta-language stands for a list of object-level bindings. In particular,
we allow representingnd{x1.bnd{x,. - - - bnd{Xn.t[X1; ...; Xp]} - - -}} s
vbndn; x.t[nth{1; x} ; ...; nth{n; x}1}, where ‘hth{i; 1}" is the “i-th element of the list” function.

We define the following vector-style operations:

1in NuPRL-style type theories the computational equality relation (which is also sometimes called “squiggle equality” and is some-
times denoted as~¥” or “ «—") is the finest-grained equality relation in the theory. Wiaes b is true,a may be replaced with in an
arbitrary context. Examples of computational equality include beta-reducti@ix] b = a[b], arithmetical equalities (¥ 2 = 3), and
definitional equality (an abstraction is considered to be computationally equal to its definition).

10

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

e vbndn; x.t[x]} represents a “telescope” of nestiendd operations. It is defined by induct@®mon the
natural numben as follows:

vbndO; x.t[X]} := t[nil]
vbndn + 1; x.t[x]} bnd{v.vbndn; x.t[v :: X]}}

We also introducebndn; t} as a simplified notation forbndn; x.t} whent does not have free occur-
rences of.

e vsubsibt; ts} is a “vector” substitution operation that is meant to represent the result of simultaneous
substitution of the terms in thslist for the first|ts| variables of the bterrht (here|l | is the length of the
list1). vsubstbt; ts} is defined by induction on the liss as follows:

vsubstbt; nil} := bt
vsubstbt; t :: ts} vsubstsubsibt; t} ; ts}

Below are some of the derived properties of these operations:

bndv.t[v]} = vbnd1; hd(v)} 4)

vm, n € N.(vbndm + n; x.t[x]} = vbndm; y.vbndn; zt[y@z]}}) (5)

VI € List. (vsubstvbnd]|l|; v.t[v]}; 1} =t[l]) (6)

vl € List.Vn € N.((n > |I|) = (vsubstvbndn; v.t[v]}; 1} = vbndn — |I|; v.bt[@v]})) 7
vn € N.(vbndn; |.vsubstvbndn; v.t[v]}; 1}} = vbndn; 1.t[11}) (8)

where ‘hd” is the list “head” operation, “@” is the list append operatiohj£t” is the type of arbitrary lists
(the elements of a list do not have to belong to any particular tyy&3,the type of natural numbers, and all
the variables that are not explicitly constrained to a specific type stand for arbitrary expressions.

Equivalence[) allows the merging and splitting of vectbnd operations. Equivalenc&) is a vector
variant of equivalencddj. Equivalencel) is very similar to equivalencég) applied in thevbndn;|. - -}
context, except thaBj does not requireto be a member of any special type.

4.4 De Bruijn-style Operations

Based on the HOAS constructors defined in the previous two sections, we define two de Bruijn-style construc-
tors.

e var{i; j} is defined asbndi; bnd{v.vbnd j; v}}}. Itis easy to see that this definition indeed corresponds
to the informalbterm{xy, - -- , X1, ¥, z1, - - - , Z-.y} definition given in SectioB.4

e mkbterm{n; op; ts} is meant to compute a bterm of binding depttwith operatorop, and withts as its
subterms. This operation is defined by induction on natural numbsrfollows:

mkbterm0; op; ts} := mkterm{op; ts}
mkbterm{n + 1; op; ts} := bnd{v.mkbterm{n; op, mapat.subsft; v} ts}}

Note that, iftsis a list ofbndexpressions (which is the intended usage ofrtthkdotermoperation), then
the
bnd{v. - -- mapat.subsft; v} ts- - -}

has the effect of stripping the outendfrom each of the members of thlist and “moving” them into
a single “mergedbndon the outside.

20ur presentation of the inductive definitions is slightly simplified by omitting some minor technical details. See Appendix for complete
details.

11

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

We also define a number of de Bruijn-style destructoes, operations that compute various de Bruijn-
style characteristics of a bterm. Since e and mk btermconstructors are defined in terms of the HOAS
constructors, the destructors have to be defined in terms of HOAS operations as well. Because of this, these
definitions are often far from straightforward.

Itis important to emphasize that the tricky definitions that we use here are only needed to establish the basic
properties of the operations we defined. Once the basic theory is complete, we can raise the level of abstraction
and no usage of this theory will ever require using any of these definitions, being aware of these definitions, or
performing similar tricks again.

o bdeptHht} computes the binding depth of tetmit is defined recursively using thé combinator as

Af.Abmatchb with
Y bnd_} — 1+ f(substb; mkterm{0; 0}}) | t
| mkterm{_; .} - O

In effect, this recursive function strips the outer binders from a bterm one by one using substitution
(note that here we can use an arbitraxlg btermexpression as a second argument for the substitution
function; the arguments tmk btermdo not have to have the “correct” type) and counts the number of
times it needs to do this before the outermogtbtermis exposed.

We derive the following properties didepth

vl,r e N.(bdeptivar{l;r}} = (I +r1 + 1));
vn € N.(bdeptimk bterm(n; op; ts}} = n).

Note that the latter equivalence only requireso have the “correct” type, whilep andts may be
arbitrary. Since thddepthoperator is needed for defining the type of Term of well-formed bterms, at
this point we would not have been able to express what the “correct” tygeviauld be.

o left{t} is designed to compute the “left index” ofvar expression. It is defined as

Af.Ab.Al
matchb with
Y bnd{_} — to
1+ f(substb; mkterm{l; 0}})(+ 1)
| mkterm{l’; -} — I’

In effect, this recursive function substitutes term{0; 0} for the first binding oft, mkterm{1; 0} for

the second onankterm{2; O} for the next one and so forth. Once all the binders are stripped and a
mk term{l; O} is exposed] is the index we were looking for. Note that here we intentionally supply
mk termwith an argument of a “wrong” typeN instead of Op); we could have avoided this, but then the
definition would have been significantly more complicated.

As expected, we derive that
vl,r € N.(left{var{l;r}} =1).

e right{t} computes the “right index” of aar expression. It is trivial to define in terms of the previous two
operatorsright{t} := bdeptHt} — left{t} — 1.

e getop(t; op} is an operation such that

vn € N.(getop{mkbterm(n; op; ts} ; op'} = op),
vl,r e N.((getop{varfi; j}; op} = op).

Its definition is similar to that offeft{}.

12

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

e subtermét} is designed to recover the last argument ofilabtermexpression. The definition is rather
technical and complicated, so we omit it; see Appef@ifor details. The main property of tteeibterms
operation that we derive is

vn € N.vbtl € List.(subtermSnkbtern”{n; op; btl}} = mapaib.vbndn; v.vsubstb; v}} th)

The right-hand side of this equivalence is not quite the plhtif that one might have hoped to see here.
However, wherbtl is a list of bterms with binding depths at leastwhich is necessarily the case for
any well-formedmk bterm{n; op; btl}, equivalencel) would allow simplifying this right-hand side to
the desiredtl.

4.5 Operators

For this basic theory the exact representation details for operators are not essential and we define the type of
operators Op abstractly. We only require that operators have decidable equality and that there exist a function
of the type Op— NList that computes operators’ shapes.

Using this shape function and thelepthfunction from Sectiod.4 it is trivial to formalize the fts is
compatible with op at depth” predicate of Definitiodl We denote this predicate akapecompatn; op; ts}
and define it as

|shapégop}| = |btl] A Vi € 1..|btl|.bdeptHnth{btl; i}} = n + nth{shapdop}; i}

4.6 The Type of Terms

In this section we will define the type of termse(well-formed bterms), Term, as the type of all terms that can
be constructed by the de Bruijn constructors from Seéidn That is, the Term type contains all expressions
of the forms:

e var{i; j} for all natural numbersg j; or

o mkbterm{n; op; ts} for any natural numbar, operatoop, and list of termgsthat is compatible witlop
at depth.

The Term type is defined as a fixpoint of the following function from types to types:
Iter(X) := Image(dom(X); x.mk(x)),
where

e Image is a type constructor such thatage(T; X. f[X]) is the type of all thef [t] fort € T (for it to be
well-formed, T must be a well-formed type andmust not have any free variables except{ir

e domX) is a type defined as

(N x N) + (n:N x op:Op x {ts:X List | shapecompatn; op; ts}});

e andmk(x) (wherex is presumably a member of the tygem(X)) is defined as

match X with
inl (i, j) — var{i; j}
| inr (N, op, ts) — mkbterm{n; op; ts} .

The fixpoint oflter is reached by defining

13

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

e Termy := Void (an empty type)
e Termy;1 := lter(Termy)

e Term:= U Term,
neN
We derive the intended introduction rules for the Term type:
i eN j eN
var{i; j} € Term

and

neN opeOp tse TermList shapecompatn; op;ts}
mkbterm{n; op; ts} € Term '

Also, the structural induction principle is derived for the Term type. Namely, we show that to prove that
some propertyP[t] holds for any ternt, it is sufficient to prove

o (Base casep holds for all variables, that i®2[var{i; j}] holds for all natural numbeiisandj;

e (Induction stepP[mkbterm{n; op; ts}] is true for any natural number, any operatoop, and any list of
termststhat is compatible witlop at depthn, providedP[t] is true for any elemerttof the listts.

Note that the type of “terms overvariables” (wheren = 0 corresponds to closed terms) may be trivially
defined using the Term type and the “subset” type construct¢r —Ferm | bdeptht} = n}.

5 Conclusions and Future Work

In Sectiongd anddlwe have presented a basic theory of syntax that is fully implemented in a theorem prover.
As we mentioned in the introduction, the approach is both natural and expressive, and provides a foundation for
reflective reasoning about classes of languages and logics. However, we consider this theory to be only the first
step towards building a user-accessible uniform reflection framework and a user-accessible uniform framework
for programming language reasoning and experimentation, where tasks similar to the ones presented in the
PorPLMARK challenge/ABET05] can be performed easily and naturally. In this section we provide an outline

of our plans for building such frameworks on top of the basic syntactic theory.

5.1 Higher-Level User Interface

One obvious shortcoming of the theory presented in SedBams{4is that it provides only the basic low-level
operations such amd var, subtermsetc It presents a very low-level account of syntax in a way that would
often fail to abstract away the details irrelevant to the user.

To address this problem we are planning to provide user interface functionality capable of mapping the
high-level concepts to the low-level ones. In particular, we are going to provide an interface that would allow
instantiating general theorems to specific collections of operators and specific languages. Thus, the user will
be able to write something likeréflect language [AX.-; apply-; -}1” and the system will create all the
components outlined in Example

o It will create a definition for the type

Languag@ix.-; apply-; -}1

of reflected lambda-terms (where Langufgis a general definition of a language over a list of operators

1);

14

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

o It will state and derive the introduction rules for this type;
o It will state and derive the elimination rule for this type (the induction principle).
Moreover, we are planning to support even more complicated language declarations, such as
t ;= int |t —>1t; e := v|Aix:t.eX]]|applye; €}

that would cause the system to create mutually recursive type definitions and appropriate rules.

Finally, we are also planning to support “pattern bindings” that are needed for a natural encoding of ML-like
pattern matching (such as the one sketched iPtheLMARK challengelABET05]). As far as the underlying
theory goes, we believe that the mechanisms very similar to the “vector bindings” presented in[&&atitin
be sufficient here.

5.2 “Dereferencing” Quoted Terms

As in Barzilay's work, the quoted operator approach makes it easy to define the “unquoting” (or “dereferenc-
ing”) operator|[Jlung. If t is a syntactic term, thefftlunq is the value represented byBy definition,

[opfts; .. .; ta}llung = OP{[tallung; - - - ; [tnTlung}-

For instance[2 3]lung is 2 3 (i.e. 6).
In order to define unquoting on terms with bindings, we need to introduce the “guard” operatsuch
that[[(t) Tung is t for an arbitrary expressian Then[[Tung can be defined as follows:

fop{Xa, - -+, Xk.t[Xes oo Xy -+ 520, - -+, 2.8[Za5 - . .5 21} lung =
op{Xy, - -+, Xk [ELXad 5 .. o5 (Xkdlungs -+ 22, - -+, Z.[S[{zad 5 . -5 (2 Tlung}-

For example[[AX.2 #xJlung = AX.[2% (X)Tunqg = AX.[2]lung * [{X)ung = AX.2 % X.

The unquote operation establishes the identity between the original syntax and the reflected syntax, making
it a “true” reflection.

Note that the type theory (which ensures, in particular, that only terminating functions may be shown to
belong to a function type) would keep tlidlung Operation from introducing logical parado@s.

Also, since the notion of the quoted operators is fully open-ended, each new language added to the system
will automatically get to use thig Junq Operation for all its newly introduced operators.

5.3 Logical Reflection

After defining syntactic reflection, it is easy to defiogical reflection If we consider the proof system open-
ended, then the logical reflection is trivial — whenis a quotation of a proposition, we can regafidPlung”
as meaning P is true”. The normal modal rules for tHelunq modality are trivially derivable. For example
modus ponens

[P= Qllung = [Pllung = [Qllung

is trivially true because if we evaluate the fif$fng (remember,
[P = Qllung = (IPJung = [Qllunq)
by definition of[[Tlung), We get an obvious tautology
([PTung = [Qlung) = [Plung = [Qllung-

In order to consider a closed proof system (in other words, if we want to be able to do induction over
derivations), we would need to define a provability predicate for that system. We are planning to provide user
interface functionality that would allow users to describe a set of proof rules and the system would generate
appropriate proof predicate definitions and derive appropriate rules (in a style similar to the one outlined in
Sectiorl5. I for the case of language descriptions).

3This is, obviously, not a proper argument. While a proper argument can be made here, it is outside of the scope of this particular paper.

15

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

6 Related Work

In Sectior2 we have already discussed a number of approaches that we consider ourselves inheriting from.
Here we would like to revisit some of them and mention a few other related efforts.

Our work has a lot in common with the HOAS implemented in Cog by Despeyroux and Hirschowitz
[DH94]. In both cases, the more general space of terms (that include the exotic ones) is later restricted in a
recursive manner. In both cases, the higher-order analogs of first-order de Bruijn operators are defined and
used as a part of the “well-formedness” specification for the terms. Despeyroux and Hirschowitz use functions
over infinite lists of variables to define open terms, which is similar to our vector bindings.

There are a number of significant differences as well. Our approach is sufficiently syntactical, which allows
eliminating all exotic terms, even those that are extensionally equal to the well-formed ones, while the more
semantic approach ofDH94, [DFH9H has to accept such exotic terms (their solution to this problem is to
consider an object term to be represented by the whaglévalence classf extensionally equal terms); more
generally while [DH94] states that “this problem of extensionality is recurrent all over our work”, most of
our lemmas establish identity and not just equality, thus avoiding most of the issues of extensional equality. In
our implementation, the substitution on object terms is mapped direciyr&mluction, while Despeyroust
al. [DEH9H have to define it recursively. In addition, we providemiformapproach to both free and bound
variables that naturally extends to variable-length “vector” bindings.

While our approach is quite different from the modatalculus oneDPS97/DL99,IDL01T], there are some
similarities in the intuition behind it. Despeyroexal. [DPS9] says “Intuitively, we interpreflB as the type
of closedobjects of typeB. We can iterate or distinguish cases over closed objects, since all constructors are
statically known and can be provided for.” The intuition behind our approach is in part based on the canonical
model of theNuPRL type theorylAlI87a, /All87b], whereeachtype is mapped to an equivalence relations over
the closed terms of that type.

Gordon and MelhamGM96] define the type ofi-terms as a quotient of the type of terms with concrete
binding variables ovew-equivalence. Michael NorristNor0O4] builds upon this work by replacing certain
variable “freshness” requirements with variable “swapping”. This approach has a number of attractive prop-
erties; however, we believe that the level of abstraction provided by the HOAS-style approaches makes the
HOAS style more convenient and accessible.

Ambler, Crole, and MomigliandACMO02] have combined the HOAS with the induction principle using
an approach which in some sense is opposite to ours. Namely, they define the HOAS operators on top of
the de Bruijn definition of terms usinigigher order pattern matchingin a later work [ACMO03] they have
described the notion oftérms-in-infinite-conteXtwhich is quite similar to our approach to vector binding.
While our vector bindings presented in Secfff are finite length, the exact same approach would work for
the infinite-length “vectors” as well.

Acknowledgments

The authors are grateful to Eli Barzilay whose ideas were an inspiration for some of the work that lead to this
paper. We are also grateful for his comments on an early draft of this paper.

We are grateful to the MERLIN 2005 anonymous reviewers for their very thorough and fair feedback and
many helpful suggestions.

Appendix
This Appendix is a printout of the relevakltetaPRL theories and was generated automatically byMeea PRL

system. ThévletaPRL notation used in this Appendix is partially explainedNMH0Z, IHAB |, [HNK*]. Rules
and rewrites marked with a<{n1, no]” are derived (1 andny provide a measure of the proof size) and the

16

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

“1[...]" marker means that the rule/rewrite is an axiom. Most of the operators are presented in their pretty-
printed forms.

A Itt _hoasbase module

TheItt_hoas_base module defines the basic operations of the Higher Order Abstract Syntax (HOAS).

A.1 Parents

ExtendsBase theory]
Extends[Itt_funl

Extends[ITT unionl
Extends[Itt_prod|

A.2 Terms

The expressioB x.t[X] represents a “bound” term (“bterm”) with a potentially free variakldn order for it
to be well-formedt must be a “substitution function”.
TheT (op; subterm$ expression represents a term with the operapoand subtermsubterms In order
for it to be well-formed, the length ofubtermsmust equal the arity obp and each subterm must have
the “binding depth” (i.e. the number of outer binds) equal to the corresponding number in the slugpe of
(remember, the shape of an operator is a list of natural numbers and the length of the list is the operator’s arity).
The expressiobt@t represents the result of substitutinfpr the first binding inbt.
Finally, theweak_dest_bterm operator allows testing whether a term isind or amk_term and to get
theopandsubtermsn the latter case.

defineunfold bind :

Itt_hoas_base!bind{x. ’t[’x]}
(displayed as* B x.t[X]") «—
inl (AX.t[X])

defineunfold mk_term :

Itt_hoas_base!mk term{’op; ’subterms}
(displayed as*T (op; subtermg’) <—
inr (op, subterms

declareItt hoas_base!illegal_subst
(displayed as“illegal _subst)
defineunfold_subst :

Itt_hoas_base!subst{’bt; ’t} (displayed as'bt@t") «—
match bt with

inlf—> ft
| inr opt— > illegal_subst
defineunfold_wdt :

Itt_hoas_base!weak dest_bterm
{’bt;

’bind_case;
op, sbt. ’mkterm _case[’op; ’sbt]}
(displayed as
“match bt with
B _— > bind.case

17

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

| T(op; sbf) — > mktermcasgop; sbf]”) «—
match bt with
inl f — > bind_case
| inr opt— > let
(op, sby = opt
in
mktermcasgop; sbf]

A.3 Rewrites

*[1, 11] rewrite reduce_subst {| reduce|} :
(B x.bt[x]) @t < bt[t]
*[1, 9] rewrite reduce_wdt_bind {| reduce]|} :
match B x.t[x] with
B . — > bind.case
| T(op; sb) — > mktermcasgop; sbf]
<—>
bind_case
*[1, 11] rewrite reduce_wdt_mk_term {| reduce|} :
match T (op; subterm3with
B _— > bind_case
| T(o; sb) — > mktermcasgo; sbf
<—>
mktermcasgop;, subterm$

B Itt _hoasvector module

TheItt_ hoas_vector module defines the “vector bindings” extensions for the basic ITT HOAS.

B.1 Parents

Extends[Itt hoas basel
ExtendsItt natl
ExtendsITt Iist?
ExtendsItT_fun?

B.2 Terms

The B" x.t[x] expression, wherg is a natural number, represents a “telescope’i obstedbind operations.
Namely, it stands foB vo.B v1.... (B v_.n.t[[Vo; v1; ...; v_n]]).

We also provide an input forrhind{n; t} for the important case of a vector binding that introduces a
variable that does not occur freely in the bterm body.

Thebt @, t expression represents the result of substituting tfomthen + 1-st binding of the bterrbt.

The bt@)tl expression represents the result of simultaneous substitution of tie(thmust be a list) for
the first| tl | bindings of the bternit.

defineunfold_bindn :

18

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

Itt_hoas_vector!bind{’n; x. ’t[’x]}
(displayed as*B" x.t[x]") «—
(Ind(n) wherelnd(n) =
n = 0= Ind(n) = Af.f[]
n> 0= Ind(n) = Af.Bv.Ind(n—1) (AL.f v:: 1)) (AXt[X])
defineunfold_substn :
Itt_hoas_vector!subst{’n; ’bt; ’t}
(displayed as"bt @y t") «—
(Ind(n) wherelnd(n) =
n = 0= Ind(n) = Abt.bt@t
n> 0= Ind(n) = Abt.Bv.Ind(n — 1) (bt@v)) bt
defineunfold_substl :
Itt_hoas_vector!substl{’bt; ’tl1}
(displayed as"bt@,tl") «—
matchtl with []— > (Ab.b) | h: .f — > (Ab.f (b@h)) bt
define iform simple_bindn :
Itt_hoas_vector!bind{’n; ’t}
(displayed as"bind{n; t}") «—
BN .t

B.3 Rewrites

*[1, 19] rewrite reduce_bindn_base {| reduce]|} :
BO x.t[x] <> t[[]]
*[1, 15] rewrite reduce bindn_ up {| reduce|} :
neN-—
B"*1Ltl] «— BV.B"Lt[v::]
*[1, 35] rewrite bind_into_bindone : B v.t[v] «— Bl [.t[hd{l}]
*[7, 642 rewrite split_bind sum :
me N—
neN-—
BM+TN[t[l] «— BMI1.B" IL.t[l1 @ 5]
*[1, 9] rewrite merge bindn {| reducel} :
meN—
neN—
B™.B".t<— B™T"t
*[1, 17] rewrite reduce_substn_base {| reduce|} :
bt @yt <— bt@t
*[1, 13] rewrite reduce_substn_case {| reduce|} :
neN—
bt @, + 1t «— B x.bt@x @, t
*[1, 9] rewrite reduce_bindn_subst {| reduce|} :
neN—
B"*+ 1 v.btjv]@t «— B"v.bt[t :: V]
*[8, 1527] rewrite reduce_substn_bindnl bind(X.bt[X]):
me N—
neN—
n=m-—
(Bv.B"I.bt[v:: 1]) @mt «<— B"l.bt[insert_at(l, m, t)]

19

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

*[1, 17] rewrite reduce_substn_bindn2 {| reduce|} :
meN—

neN-—

n>=m-—

B"* 11.bt{l] @nt < B"l.bt[insert_at(l, m, t)]
*[1, 9] rewrite reduce_substl_base {| reduce|} : bt@[] < bt
*[1, 11] rewrite reduce_substl_step {| reduce|} :

bt@ h :: t «—— bt@h@t
*[1, 13] rewrite reduce_substl_stepl {| reduce|} :

(B v.btiv)@h:: t «<— bt[h]@t
*[1, 69] rewrite reduce_substl _step2 {| reducel} :

neN—

B+ 1vbtvi@h::t <« B"v.bt[h:: v]@t
*[3, 85] rewrite reduce_substl_bindni {| reduce|} :

| € List—

Bl v.btivi@ | < btl]

*[3, 3334 rewrite reduce_substl_bindn2 :

| € List—

neN—

n>l|—

B" v.bt{vi@ | «<— B"~ I v.bt[{l @ V]

*[2, 103] rewrite reduce_bsb1 {| reduce|} :
neN—

B" v.B" w.btiw]@ v <— B" w.bt[w]

*[1, 19] rewrite reduce_bsb2 {| reduce]|} :
neN-—

meN—

B"v.B"t+ Mw.btiw]@,v <— B" T Mw.bt[w]

*[1, 15] rewrite unfold_bindnsub :
neN-—
B"*+ 1 v.btv@Vv <— B u.B"v.bt[u :: vV|@Qu@V

C Itt _hoasdebruijn module

The Itt_hoas_debruijn module defines a mapping from de Bruijn-like representation of syntax into the
HOAS.

C.1 Parents

Extends[Itt hoas basel
Extends[Itt hoas vector]
ExtendsItt natl
ExtendsItt Iist?]

20

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

C.2 Terms
C.2.1 A de Bruijn-like representation of syntax

Our de Bruijn-like representation of (bound) terms consists of two operatars(left, right) represents a
variable bterm, whose “left index” ikeft and whose “right index” igight. Namely, it represent the term
Bx.... (BxleftBy.Bz.... (Bzrightv) ...)

The mk bterm(n; op; btl) represents the compound term of depth In other words,
mk_bterm(n; op; [B"v.bty[V];...; B"v.btk[V]]) is B" v.T (op; [bty[V];...; btk[V]]).

defineunfold_var :
Itt_hoas_debruijn!var{’left; ’right}
(displayed as*var(left, right)”) «—
Bleft x. B v. BNt x v
defineunfold mk_bterm :
Itt_hoas_debruijn!mk bterm{’n; ’op; ’btl}
(displayed as‘mk_bterm(n; op; bt))") «—
(Ind(n) wherelnd(n) =
n = 0= Ind(n) = Abtl.T (op; btl)
n> 0= Ind(n) = Abtl.B v.Ind(n — 1) (map(bt.bt@v; btl))) btl

C.2.2 Basic operations on syntax

D btis the “binding depth” (i.e. the number of outer bindings) of a btetm

1 vandr v provide a way of computing tHeandr indeces of a variablear(l, r).

try get_op btwith Not_found -> opreturns thebt's operator, ifbtis amk_bterm and return®pif btis
a variable.

subterms bt computes the subterms of the bteloin

defineunfold_bdepth :
Itt_hoas_debruijn!bdepth{’bt} (displayed as‘D bt") «—
fix (f.Abt.match bt with
B.—> 1+ (f (bt@T(; (D))
| T(1;)— > 0)bt
defineunfold_left :
Itt_hoas_debruijn!left{’bt} (displayed as‘l bt’) «—
fix(f.Abt.Al.match bt with
B.—> fbt@Td) + 1)
| T(op;) — > op) btO
defineunfold right :
Itt_hoas_debruijn!right{’bt} (displayed as‘r bt") «—
(Obt) — (1bt) — 1
defineunfold get _op :
Itt_hoas_debruijn!get_op{’bt; ’op}
(displayed as
“try get_op btwith Not_found ->op’) «—
fix (f.Abt.match bt with
B_— > f (bt@T(op; [1)
| T(op;) — > op) bt
declareItt hoas_debruijn!not_found
(displayed as“not_found’)

21

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

define iform unfold_get_opl :
Itt_hoas_debruijn!get_op{’bt}
(displayed as‘get op{bt}") «—
try get_op btwith Not_found ->not_found
defineunfold num_subterms :
Itt_hoas_debruijn!num subterms{’bt}
(displayed as*numsubtermgbt}”) «—
fix (f.Abt.match bt with
B_—> f (bt@T(; [1)
| TG bth) — > | btl|) bt
defineunfold_nth_subterm :
Itt_hoas_debruijn!nth_subterm{’bt; ’n}
(displayed as“nth_subternibt; n}") «—
fix (f.Abt.match bt with
B_— > Bvf (bt@v)
| T(bth) — > btl,) bt
defineunfold_subterms :
Itt_hoas_debruijn!subterms{’bt}
(displayed as*subterms bt”") «—
list_of _fun
{n. nth_subternibt; n};
numsubtermgbt}}

C.3 Rewrites

*[1, 17] rewrite reduce_mk_bterm_base {| reduce]|} :
mk_bterm(0; op; btl) «— T(op; btl)

*[1, 13] rewrite reduce mk_bterm_step {| reducel} :
neN-—
mk_bterm(n + 1; op; btl) «—
B v.mk_bterm(n; op; map(bt.bt@v; btl))

*[2, 62] rewrite reduce mk bterm_empty {| reduce|} :
neN-—
mk_bterm(n; op; []) «<— B"x.T(op; [])

*[1, 11] rewrite reduce_bdepth mk_term {| reduce|} :
D T(op; btl) «— 0

*[1, 15] rewrite reduce bdepth_bind {| reduce|} :
D (BV.t[V]) «— 1 + (DtT(; [DD

*[5, 4061 rewrite reduce_bdepth_var {| reduce|} :
|l e N—
re N—
Dvar(l,r) «<— (+ 1) + 1

*[4, 82] rewrite reduce_bdepth mk _bterm {| reducel|} :
neN—
D mk_bterm(n; op; btl) «—n

*[4, 140] rewrite reduce_getop_var {| reduce|} :
|l €e N—
re N—
try get_op var(l, r) with Not_found ->0op «<— 0Op

22

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

*[2, 93] rewrite reduce_getopmkbterm {| reduce|} :
neN—
try get_op mk_bterm(n; op; btl) with Not_found ->op «—
op
*[2, 120] rewrite num_subterms_id {| reduce]|} :
btl € List —
neN—
numsubtermg¢mk_bterm(n; op; bth)} <— | btl |
*[2, 159 rewrite nth_subterm_id {| reduce|} :
neN—
meN—
ke N—
Kk < m—
nth_subterm
{mk_bterm(n; op; list_of _fun{x. f[x]; m});
K} «—
B"v.f[Kl@ Vv
*[2, 838] rewrite subterms_id {| reduce]|} :
btl € List —
neN—
subterms mk_bterm(n; op; btl) «<— map(bt.B" v.bt@v; btl)
*[6, 732] rewrite 1left_id {| reduce]|} :
|l e N—
re N—
1lvar(l,r) < |
*[2, 997] rewrite right_id {| reducel|} :
|l €e N—
re N—
rvar(l,r) «<—r
*[1, 9] rewrite subst_var0 {| reduce|} :
re N—
var(0, @t < Bf xt
*[1, 13] rewrite subst_var {| reduce|} :
|l €e N—
re N—
var(l + 1, @t <— var(l,r)
*[1, 15] rewrite subst_mkbterm {| reducel|} :
bdepthe N —
mk_bterm(bdepth+ 1; op; bth)@t «—
mk_bterm(bdepth op;, map(bt.bt@t; btl))
*[1, 11] rewrite bind_var {| reduce]|} :
|l €e N—
re N—
B x.var(l,r) < var(l + 1,r)
*[1, 47] rewrite lemma {| reduce|} :
btl € List —
map(bt.bt@v; map(bt.(B x.bt); btl)) «— btl
*[1, 13] rewrite bind_mkbterm {| reduce|} :
bdepthe N —
btl € List —

23

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

B x.mk_bterm(bdepth op; btl) «—
mk_bterm(bdepth+ 1; op; map(bt.(B x.bt); btl))

D Itt _hoasoperator module

TheItt hoas_operator module defines a typ® peratorof abstract operators.

D.1 Parents

Extends[Itt nat]
ExtendsItt Iist?2

D.2 Terms

TheOperator type is an abstract type with a decidable equality. We only require that an operator have a fixed
shape.

As in the case of concrete quoted operators, the shape of an abstract operator is a list of numbers, each
stating the number of bindings the operator adds to the corresponding subterm; the length of this list is the arity
of an operator.

declareItt_hoas_operator!Operator
(displayed as*Operator’)
declareItt hoas_operator!shape{’op}
(displayed as*shapé&op)”)
declareItt_hoas_operator!is_same_op{’op_1; ’op_2}
(displayed as‘is_sameop(op;; 0p,)”)

D.3 Rules

Operatoris an abstract type.

'C) = -Jrule op_univ {| intro[] |} :
(') = Operator € Uy

*[1, 7] rule op_type {| intro[] |} :
(') = OperatorType

Equal operators must be identical.

'[(T") + -]rule op_sqeq {| nth.hyp |} :
(') - op, = op, € Operator —
(') = op, = op,

is_same_op decides the equality dD perator.

'(T) = -]rule is_same_op_wf {| intro[] |} :
(') + op, € Operator —
('Y - op, € Operator —

24

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

(I') + is_sameop(op;; opy) € B
'[(T) = -]rule is_same_op_eq {| intro [AutoMustComplete]|} :
(' - opy = op, € Operator —
(') + 1 is_.sameop(op;; op,)
'[(T) = -]rule is_same_op_rev_eq :
[wf]l (I') - op; € Operator —
[wfl (I') - op, € Operator —
(') + 1 is_sameop(op;; opy) —>
(I') = opy = op, € Operator
*[1, 14] rule is_same_op_elim
{| elim [ThinOption thinT] |} T':
[wfl (I'); x: 1 is_sameop(opy; 0py); (A[X]) + opyrpll € Operator —
[wfl (T); x: 1 is_sameop(opy; opy); (A[X]) F opyrpll € Operator —
[main]
(r)
X: 1 is_.sameop(op;; 0py)
op; = op, € Operator
(A[XD)
F C[x] —
(T'); x: 1 is_sameop(opy; opy); (A[X]) = CIX]

1
2.
3.
4.

Each operator hasshape — a list of natural numbers that are meant to represent the number of bindings in
each of the arguments. The length of of the list is the operator’s arity.

define iform unfold_arity :
Itt_hoas_operator!arity{’op}
(displayed as"arity{op}") <—
arity(op)
'[(T") & -]rule shape nat_list{| intro[] |} :
('Y - op € Operator —
(') + shapdop) € N List
*[1, 24] rule shape_list {| intro[] |} :
(') - op € Operator —
('Y = shape&op) € List
*[1, 45] rule shape nat_list_eq{| intro[] |} :
('’ - opy = op, € Operator —
(I') = shape&op;) = shapgop,) € N List
*[2, 56] rule shape_int_list {| intro[] |} :
(') v op, = op, € Operator —
(') - shape&op;) = shap&op,) € int List
*[1, 54] rule arity nat {| intro[] |} :
('’ - op, = op, € Operator —
(') + arity(opy) = arity(opy) € N
*[1,54] rule arity_int {| intro[] |} :
('Y v opy = op, € Operator —

(') = arity(op;) = arity(op,) € int
*[3, 51] rule shape_int_list_sq{| intro[] |} :
(I'' = op, = op, € Operator —

(I') + shapdop;) = shapé€op,)

25

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

E Itt _hoasdestterm module

TheItt hoas_destterm module defines destructors for extracting from a bterm the components correspond-
ing to the de Bruijn-like representation of that bterm.

E.1 Parents

ExtendsItt hoas basel
ExtendsItt hoas vector]
Extends[Ttt_hoas_operator]
Extends[Itt_hoas_debruijn

E.2 Terms

The[ls_varl operator decides whether a bterm ig=m or almk bterm In order to implement thEs vaxrl
operator we assume that there exist at least two distinct operators (for any concrete notion of operators this
would, of course, be trivially derivable but we would like to keep the operators type abstract at this point).

Theldest bterml operator is a generic destructor that can extract all the components of the de Bruijn-like
representation of a bterm.

declareItt hoas destterm!opl (displayed as‘opl”)
declareItt_hoas_destterm!op2 (displayed as‘op2”)
defineunfold_isvar :
Itt_hoas_destterm!is_var{’bt}
(displayed as"is_var(bt)") «—
—piS_sameop(try get_op btwith Not_found ->opl; try
get_op bt
with Not_found ->
op2)
defineunfold_dest_bterm :
Itt_hoas_destterm!dest_bterm
{’bt;
1, r. ’var_case[’l; ’r];
bdepth, op, subterms. ’op_case[’bdepth;
’op; ’subterms]}
(displayed as
“match bt with
var(l,r) — > var_casql; r]
| mk_bterm(bdepth op; subtermy— > op_cas¢bdepth
op;
subterm§’) «—
if is_var(bt) then var_casgl bt; r bt] elseop.cas¢D
bt;
try get_op btwith Not_found -> -
subterms bf]

E.3 Rules
'[(C) + -Jrule oplop{] intro[] |} :

26

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

(T') = opl € Operator
'[(T) + -]rule op2_op {| intro[] |} :
(') = op2 € Operator

E.4 Rewrites

'[] rewrite ops_distict {| reducel} :
is_.sameop(opl; op2) <« false
*[1, 13] rewrite same_op_id {| reducel} :
op € Operator—
is_sameop(op; op) < true
*[1, 21] rewrite is_var_var {| reduce|} :
meN—
neN—
is_var(var(m, n)) <— true
*[1, 19] rewrite is_var_mk_bterm {| reducel} :
op € Operator—
neN-—
is_var(mk_bterm(n; op; btl)) «— false
*[1, 37] rewrite dest_bterm_var {| reduce|} :
|l e N—
re N—
match var(l, r) with
var(l,r) — > var_casql; r]
| mk_bterm(d; 0; S) — > op.casdd; o; S| «<—
var_casél; r]
*[1, 27] rewrite dest_bterm_mk_bterm {| reduce|} :
neN-—
op € Operator—
subtermse List —
match mk_bterm(n; op; subtermgwith
var(l,r) — > var_casél; r]
| mk_bterm(bdepth op; subtermy— > op_casg¢bdepth
op;
subterm$ «<—
op_casen; op; map(bt.B" v.bt@v; subtermsy

F Itt _hoasbterm module

TheItt_hoas bterm module defines the inductive tyderm and establishes the appropriate induction rules
for this type.

F.1 Parents
Extends[ITt hoas destternl
Extends[TEt Tnagd
Extends[ItTT _tunionl

27

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

F.2 Terms

defineunfold _compatible_shapes :
Itt_hoas_bterm!compatible_shapes{’bdepth; ’op; ’btl}
(displayed as‘compatible_shapes(bdepth op; btl)") «—
(arity(op) = | btl | € int)
A Vi Index(btl)
(D btl; = (bdepth+ shap€op);) € int)
defineunfold dom :
Itt_hoas_bterm!dom{’BT} (displayed as‘dom{BT}") «—
(N x N) 4+ (depth: N x op: Operator x {subterms BT List | compatible_shapes(depth op; subtermg})
defineunfold mk :
Itt_hoas_bterm!mk{’x} (displayed as‘'mk{x}") «—

match x with
inl v— > let (left, right) = vin var(left, right)
| inrt— > let
d,v) =t

in
let (op, st) = vin mk_bterm(d; op; st)
defineunfold_dest :
Itt_hoas_bterm!dest{’bt} (displayed as‘destbt}") «—
match bt with
var(l,r) — > inl (I,r)
| mk_bterm(d; op; ts) — > inr (d, (op, ts))
defineunfold_Iter :
Itt_hoas_bterm!Iter{’X} (displayed as"Iter{X}") «—
Img(x : dom{X}.mk{x})
defineunfold BT :
Itt_hoas_bterm!BT{’n} (displayed as*BT{n}") «—
Ind(n) wherelnd(n) =
n = 0= Ind(n) = Void
n> 0= Ind(n) = Iter{Ind(n— 1)}
defineunfold BTerm :
Itt_hoas_bterm!BTerm (displayed as‘BTerm”) «—
un: N.BT{n}

F.3 Rules

*[1, 15] rewrite bt_reduce_base {| reduce|} : BT{0} «— Void
*[1, 11] rewrite bt_reduce_step {| reducel|} :

neN—

BT{n + 1} «<— Iter{BT{n}}
x[1,82] rule bt_elim squash {| elim[] |} T:

fwfl (T); (A) - ngryll €e N —

[basd (I'); (A); l: N; r: N F [Plvar(,r)]] —
[step
1)

2. (A)
3. depth: N
4.op: Operator

> 1

28

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

5. subterms BT{ngrp[l} List
6. compatible_shapes(depth op; subterms
F [Plmk_bterm(depth op; subterms]] —
(C): t: BT{n + 1} (A) = [PIt]
*[8, 296 rule bt _wf_and _bdepth_wf {| intro[] |} :
MFneN —
(I') - BT{n}Type A Vt: BT{n}. Ot € N)
*[1, 14] rule bt_wf {| intro[] |} :
MYF neN —
(') = BT{n} Type
*[1, 13] rule bterm_wf {| intro[] |} :
(') = BTerm Type
*[2, 74] rule bdepth_wf {| intro[] |} :
(' - t € BTerm —
('Y H Dt e N
*[4, 146] rule compatible_shapes_wf {| intro[] |} :
') + bdepthe N —
) = op € Operator —
F btl € BTerm List —

) = btl € List —

) F [compatible_shapes(bdepthop; btl)] —
) = compatible_shapes(bdepth op; btl)
9

)

Yy = BT{n} C BTerm

16] rule bt_monotone {| intro[] |} :

yF neN —

) = BT{n} C BT{n + 1}

22 rule var_wf {| intro[] |} :

Y1l e N —

Yy reN —

)y + var(,r) € BTerm

85] rule mk_bterm_bt_wf {| intro[] |} :

) neN —

) depthe N —

) op € Operator —

) subtermse BT{n} List —

) compatible_shapes(depth op; subtermy —
) mk_bterm(depth op; subterm$ € BT{n + 1}

TTTTTT

depthe N —
op € Operator —
subtermse BTerm List —
compatible_shapes(depth op; subtermy —
mk_bterm(depth op; subterm$ € BTerm
*[10, 1387 rule bt_elim_squash2 {| elim[] |} T:
[wfl (I'); (A) - ngrpll e N —
[basd (I); (A); |: N;r: N [Plvar(,nl]

53333
TTTTT

|

29

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

[step
1.(r
2n>20
3. (A)
4. depth: N
5.0p: Operator

6. subterms BT{ngrp[l — 1} List
7. compatible_shapes(depth op; subtermy
+ [P[mk_bterm(depth op; subterms]] —
(); t: BT{nk (A) = [PIt]]
*[5,576] rule bterm_elim squash {| elim[] |} T:
(T)y; (A); I: Ny r: N+ [Pvard,n]] —

wbh e
Q ~ ~

4.0p: Operator
5. subterms BTerm List
6. compatible_shapes(depth op; subterms
F [P[mk_bterm(depth op; subterms]] —
(T'); t: BTerm; (A) + [P[t]]
*[9, 715] rewrite bind_eta {| reduce]|} :
bt € BTerm —
Dbt) > 0—
B x.bt@x «<— bt
*[5, 3289 rewrite 1lemmal {| reduce|} :
re N—
neN—
r=n—
B" gammaB' x.t@ gamma<«— B' x.t
*[4, 3140 rewrite 1lemma2 {| reduce|} :
|l e N—
re N—
neN—
{ad+nrn+1H>n—
B" gammavar(l, r)@ gamma<«— var(l, r)
*[6, 2934 rewrite 1lemma3 {| reduce|} :
me N—
neN—
m>n—
B" gammamk_bterm(m; op; btl)@ gamma<«—
mk_bterm(m; op; btl)
*[3, 689 rewrite bind_vec_eta {| reduce|} :
neN—
bt € BTerm —
DObt)y>n—
B" gammabt@ gammas<«— bt
*[12, 3520 rewrite subterms_lemma {| reduce|} :
neN—
subtermse BTerm List —

30

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

Vi : Index(subterms. ((D subtermg > n) —
map(bt.B" v.bt@, v; subtermy «— subterms
*[6, 1879 rewrite dest_bterm_mk_bterm2 {| reduce|} :
neN-—
op € Operator—
subtermse BTerm List —
compatible_shapes(n; op; subtermg —
match mk_bterm(n; op; subtermswith
var(l,r) — > var_casdl; r]
| mk_bterm(bdepth op; subtermy— > op_casgbdepth
op;
subterm$ «<—
op_cas€¢n; op; subterm$
*[1, 83] rewrite mk_dest_reduce {| reduce|} :
t € BTerm —
mk{desft}} «—t
*[1, 87] rule dest_bterm_wf {| intro[] |} :
('Y + bt € BTerm —>
(TY; 1: N;r: N+ varcasgl; r] e T —

1. (I)

2. bdepth: N

3.0p: Operator

4. subterms BTerm List

5. compatible_shapes(bdepth op; subterms
F op.casgbdepth op; subterm$ ¢ T —>

1.()
|_
match bt with
var(l,r) — > var_casdl; r]
| mk_bterm(bdepth op; subtermy— > op_casgbdepth
op;
subterms$ ¢
T

*[1, 101 rule dest_wf {| intro[] |} :
('Y H t € BTerm —
(') + destt} € dom{BTerm}
*[4, 146] rule bterm_elim {| elim[] |} T:
(T); (A); I: N;r: N+ Plvar(,r)] —

1. (I

2. (A)

3. bdepth: N

4.0p: Operator

5. subterms BTerm List

6. compatible_shapes(bdepth op; subterms
F Plmk_bterm(bdepth op; subterm§] —
('); t: BTerm; (A) + P[t]

31

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

References

[AA99]

[ABF+05]

[AC92]

[ACE+00]

[ACHA90]

[ACMO2]

[ACMO3]

[ACU93]

[AlI87a]

[AII87b]

[Art99]

[Art04]

[BAO2]

[BACO3]

Eric Aaron and Stuart Allen. Justifying calculational logic by a conventional metalinguistic se-
mantics. Technical Report TR99-1771, Cornell University, Ithaca, New York, September 1999.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: PR¥Lmark challenge. Available frorattp: //www.
cis.upenn.edu/group/proj/plclub/mmm/, 2005.

William Aitken and Robert L. Constable. Reflecting NaPRL : Lessons 1-4. Technical report,
Cornell University, Computer Science Department, Ithaca, NY, 1992.

Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo. NTir&RL

open logical environment. In David McAllester, editétroceedings of the 17 International

Conference on Automated Deductiorolume 1831 ofLecture Notes in Artificial Intelligence
pages 170-176. Springer Verlag, 2000.

Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The semantics of
reflected proof. IrProceedings of the! Symposium on Logic in Computer Sciengages 95—
197. IEEE Computer Society Press, June 1990.

Simon Ambler, Roy L. Crole, and Alberto Momigliano. Combining higher order abstract syntax
with tactical theorem proving and (co)induction. TRHOLSs '02: Proceedings of the 15th Interna-
tional Conference on Theorem Proving in Higher Order Logpages 13—-30, London, UK, 2002.
Springer-Verlag.

S.J. Ambler, R. L. Crole, and Alberto Momigliano. A definitional approach to primitive recursion
over higher order abstract syntax. Proceedings of the 2003 workshop on Mechanized reasoning
about languages with variable bindingages 1-11. ACM Press, 2003.

William Aitken, Robert L. Constable, and Judith Underwood. Metalogical Frameworks II: Using
reflected decision procedure®urnal of Automated Reasonirgp(2):171-221, 1993.

Stuart F. Allen. A Non-type-theoretic Definition of Martin3f’s Types. In D. Gries, editor,
Proceedings of the™ |EEE Symposium on Logic in Computer Scienuages 215-224. |[EEE
Computer Society Press, June 1987.

Stuart F. Allen.A Non-Type-Theoretic Semantics for Type-Theoretic LanguagP thesis, Cor-
nell University, 1987.

Sergei Artemov. On explicit reflection in theorem proving and formal verification. In Ganzinger
[Gan99, pages 267-281.

Sergei Artemov. Evidence-based common knowledge. Technical Report TR-2004018, CUNY
Ph.D. Program in Computer Science Technical Reports, November 2004.

Eli Barzilay and Stuart Allen. Reflecting higher-order abstract syntaXudRRL. In Victor A.
Carrdio, Cezar A. Moz, and Sopléine Tahar, editord;heorem Proving in Higher Order Logics;
Track B Proceedings of the #5International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2002), Hampton, VA, August 2Qi#yes 23—-32. National Aeronautics and Space
Administration, 2002.

Eli Barzilay, Stuart Allen, and Robert Constable. Practical reflectioNuRRL. Short paper
presented at 18th Annual IEEE Symposium on Logic in Computer Science, June 22-25, Ottawa,
Canada, 2003.

32

http://www.cis.upenn.edu/group/proj/plclub/mmm/
http://www.cis.upenn.edu/group/proj/plclub/mmm/

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

[Bar01]

[Bar05]

[CAB+86]

[CFWO04]
[Con94]

[dB72]

[DFHO5]

[DH94]

[DHY5]

[DL99]

[DLO1]

[DPS97]

[EM71]

[FT86]

Eli Barzilay. Quotation and reflection iNuPRL and Scheme. Technical Report TR2001-1832,
Cornell University, Ithaca, New York, January 2001.

Eli Barzilay. Implementing Reflection iNuPRL. PhD thesis, Cornell University, 2005. In prepa-
ration.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F.
Smith. Implementing Mathematics with tié&:PRL Proof Development Systeirentice-Hall, NJ,

1986.

Luis Crus-Filipe and Freek Weidijk. Hierarchical reflection. In Slind e{2BG04, pages 66—81.

Robert L. Constable. Using reflection to explain and enhance type theory. In Helmut Schwichten-
berg, editorProof and Computation/olume 139 oNATO Advanced Study Institute, International
Summer School held in Marktoberdorf, Germany, July 20-August 1, NATO Sepiagds 65—100.
Springer, Berlin, 1994.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church-Rosser theorémdagaciones Mathematis-

che 34:381-392, 1972. This also appeared in the Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen, Amsterdam, series A, 75, No. 5.

Jcelle Despeyroux, Amy Felty, and AngliHirschowitz. Higher-order abstract syntaxGog. In
M. Dezani-Ciancaglini and G. Plotkin, editoBroceedings of the International Conference on
Typed Lambda Calculus and its Applicatiprslume 902 of_ecture Notes in Computer Science
pages 124-138. Springer-Verlag, April 1995. Also appealBIB$A research report RR-2556

Jcelle Despeyroux and AndrHirschowitz. Higher-order abstract syntax with inductiofiny. In

LPAR '94: Proceedings of the 5th International Conference on Logic Programming and Automated
Reasoningvolume 822 ofLecture Notes in Computer Sciengages 159-173. Springer-Verlag,
1994. Also appears dBIRIA research report RR-2292

James Davis and Daniel Huttenlocher. Shared annotations for cooperative learRirgzdadings
of the ACM Conference on Computer Supported Cooperative Lear@amember 1995.

Jcelle Despeyroux and Pierre Leleu. A modal lambda calculus with iteration and case constructs.
In T. Altenkirch, W. Naraschewski, and B. Reus, editdgges for Proofs and Programs: Interna-
tional Workshop, TYPES '98, Kloster Irsee, Germany, March 1988 me 1657 ot.ecture Notes

in Computer Sciencgages 47-61, 1999.

Jcelle Despeyroux and Pierre Leleu. Recursion over objects of functional tyfaghematical
Structures in Computer Sciencel(4):555-572, 2001.

Jczlle Despeyroux, Frank Pfenning, and Carsteni@&ciann. Primitive recursion for higher—order
abstract syntax. In R. Hindley, editétroceedings of the Third International Conference on Typed
Lambda Calculus and Applications (TLCA'9%plume 1210 of_ecture Notes in Computer Sci-
ence pages 147-163. Springer-Verlag, April 1997. An extended version is availebéchsical
Report CMU-CS-96-172Carnegie Mellon University.

Andrzej Ehrenfeucht and Jan Mycielski. Abbreviating proofs by adding new axi@ul¢etin of
the American Mathematical Socie/7:366—367, 1971.

Solomon Feferman et al., editor&Kurt Godel Collected Worksvolume 1. Oxford University
Press, Oxford, Clarendon Press, New York, 1986.

33

http://www.inria.fr/rrrt/rr-2556.html
http://www.inria.fr/rrrt/rr-2292.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

[FPT99]

[Gan99]

[GM96]

[GMOO03]

[God31]

[G6d36]

[GS89]

[GWZ00]

[HAB*]

[Har95]

[HHPO3]

[Hico7]

[Hic99]
[Hic01]

[HL78]

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable bindirgroin
ceedings of 1# IEEE Symposium on Logic in Computer Scienuages 193+. IEEE Computer
Society Press, 1999.

Harald Ganzinger, editorProceedings of the 1% International Conference on Automated De-
duction volume 1632 ol ecture Notes in Artificial Intelligen¢eBerlin, July 7-10 1999. Trento,
Italy.

A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In J. von Wright, J. Grundy,
and J. Harrison, editor§heorem Proving in Higher Order Logics: 9th International Conference,
Turku, Finland, August 1996: Proceeding®lume 1125 oLecture Notes in Computer Science
pages 173-190. Springer-Verlag, 1996.

Jim Grundy, Tom Melham, and John O’Leary. A reflective functional language for hardware
design and theorem proving. Technical Report PRG-RR-03-16, Oxford Univerity, Computing
Laboratory, 2003.

Kurt Godel. Uber formal unentscheidbaratge der principia mathematica und verwandter systeme
I. Monatsheftelir Mathematik und Physjid8:173-198, 1931. English version WH67].

K. Godel. Uber die Lange von beweiseiErgebnisse eines mathematischen Kolloquiufrz3—24,
1936. English translation ilF[~86], pages 397-399.

F. Giunchiglia and A. Smaill. Reflection in constructive and non-constructive automated reasoning.
In H. Abramson and M. H. Rogers, editofgeta-Programming in Logic Programmingages
123-140. MIT Press, Cambridge, Mass., 1989.

H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational reasoning via partial reflection. In J. Har-
rison and M. Aagaard, editor§heorem Proving in Higher Order Logics: ¥3International
Conference, TPHOLs 2000olume 1869 ol ecture Notes in Computer Scienpages 162—-178.
Springer-Verlag, 2000.

Jason J. Hickey, Brian Aydemir, Yegor Bryukhov, Alexei Kopylov, Aleksey Nogin, and Xin Yu. A
listing of MetaPRL theorieshttp://metaprl.org/theories.pdfl

J. Harrison. Metatheory and reflection in theorem proving: A survey and critiqgue. Technical
Report CRC-53, SRI International, Cambridge Computer Science Research Centre, Millers Yard,
Cambridge, UK, February 1995.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining loglosirnal of
the Association for Computing Machines0(1):143-184, January 1993. A revised and expanded
verion of 87 paper.

Jason J. HickeyNuPRL-Light: An implementation framework for higher-order logics. In William
McCune, editor,Proceedings of the 1% International Conference on Automated Deduction
volume 1249 ofLecture Notes in Artificial Intelligencepages 395-399. Springer, July 13-17
1997. An extended version of the paper can be foundap: //www.cs.caltech.edu/~ jyh/
papers/cadel4_nl/default.html.

Jason J. Hickey. Fault-tolerant distributed theorem proving. In Ganzit@er39, pages 227-231.

Jason J. HickeyThe MetaPRL Logical Programming EnvironmenfPhD thesis, Cornell Univer-
sity, Ithaca, NY, January 2001.

Gérard P. Huet and Bernard Lang. Proving and applying program transformations expressed with
second-order patternécta Informatica 11:31-55, 1978.

34

http://metaprl.org/theories.pdf
http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html
http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey
A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

[HNCT03] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, Yegor

[HNK]

[Mos52]

[NHO2]

[Nor04]

[Par71]

[Pau94]

[PESS]

[Pfe89]

[Plo90]

[PN9O]

[SBGO04]

[Sch01]

[Smig4]

[VHE7]

Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir N. Krup-
ski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin YuMetaPRL — A modular logical
environment. In David Basin and Burkhart Wolff, editoPspceedings of the 16 International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 20@B)yme 2758 of ecture
Notes in Computer Sciengeages 287-303. Springer-Verlag, 2003.

Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et BletaPRL home pagehttp://metaprl.
org/|

Andrzej Mostowski.Sentences undecidable in formalized arithmetic: an exposition of the theory
of Kurt Godel Amsterdam: North-Holland, 1952.

Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Victor AnGa@azar A.
Mufioz, and Sopléine Tahar, editor®roceedings of the 1% International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2002yolume 2410 ofLecture Notes in Computer
Sciencepages 281-297. Springer-Verlag, 2002.

Michael Norrish. Recursive function definition for types with binders. In Slind efSBG04,
pages 241-256.

R. Parikh. Existence and feasibility in arithmeti€he Journal of Symbolic Logi&6:494-508,
1971.

Lawrence C. Paulson.sabelle. A Generic Theorem Provewolume 828 oflecture Notes in
Computer ScienceSpringer-Verlag, New York, 1994.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax.Prisceedings of the ACM
SIGPLAN '88 Conference on Programming Language Design and Implementation (RbDe
23(7) of SIGPLAN Noticespages 199-208, Atlanta, Georgia, June 1988. ACM Press.

Frank Pfenning. Elf: a language for logic definition and verified metaprogramming.Pio-
ceedings of thed IEEE Symposium on Logic in Computer Sciemuages 313—-322, Asilomar
Conference Center, Pacific Grove, California, June 1989. IEEE Computer Society Press.

Gordon Plotkin. An illative theory of relations. In R. Cooper, K. Mukai, and J. Perry, editors,
Situation Theory and Its Applications, Volumenumber 22 in CSLI Lecture Notes, pages 133-
146. Centre for the Study of Language and Information, 1990.

L. Paulson and T. Nipkow.lsabelle tutorial and user's manual. Technical report, University of
Cambridge Computing Laboratory, 1990.

Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan, edi®rsceedings of the 17
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 200#)me
3223 ofLecture Notes in Computer Scien&pringer-Verlag, 2004.

Carsten Sclrmann. Recursion for higher-order encodings. In L. Fribourg, ed@omputer
Science Logic, Proceedings of thé@nnual Conference of the EACSIolume 2142 of ecture
Notes in Computer Sciengeages 585-599. Springer-Verlag, 2001.

B.C. Smith. Reflection and semantics in Lisprinciples of Programming Languagepages
23-35, 1984.

J. van Heijenoort, editoFrom Frege to @del: A Source Book in Mathematical Logic, 1879-1931
Harvard University Press, Cambridge, MA, 1967.

35

http://metaprl.org/
http://metaprl.org/

	Introduction
	Reflection
	Uniform Reflection Framework
	Notation and Terminology

	Previous Models of Reflection
	Higher-Order Abstract Syntax with Inductive Definitions
	Bound Terms
	Terminology
	Abstract Operators
	Inductively Defining the Type of Well-Formed Bterms
	Our Approach

	Formal Implementation in a Theorem Prover
	Computations and Types
	HOAS Constructors
	Vector HOAS Operations
	De Bruijn-style Operations
	Operators
	The Type of Terms

	Conclusions and Future Work
	Higher-Level User Interface
	``Dereferencing'' Quoted Terms
	Logical Reflection

	Related Work
	Itt_hoas_base module
	Parents
	Terms
	Rewrites

	Itt_hoas_vector module
	Parents
	Terms
	Rewrites

	Itt_hoas_debruijn module
	Parents
	Terms
	A de Bruijn-like representation of syntax
	Basic operations on syntax

	Rewrites

	Itt_hoas_operator module
	Parents
	Terms
	Rules

	Itt_hoas_destterm module
	Parents
	Terms
	Rules
	Rewrites

	Itt_hoas_bterm module
	Parents
	Terms
	Rules

