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The ACTS Collection brings together a number of general-purpose computational tools that were
developed by independent research projects mostly funded and supported by the U.S. Depart-
ment of Energy. These tools tackle a number of common computational issues found in many
applications, mainly implementation of numerical algorithms, and support for code development,
execution and optimization. In this article, we introduce the numerical tools in the collection and
their functionalities, present a model for developing more complex computational applications on
top of ACTS tools, and summarize applications that use these tools. Lastly, we present a vision
of the ACTS project for deployment of the ACTS Collection by the computational sciences com-
munity.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming ; Parallel Programming; D.2.2 [Software Engineering]: Design
Tools and Techniques—Software Libraries; User Interfaces; D.2.13 [Software Engineering]:
Reusable Software; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.1.8 [Numerical
Analysis]: Partial Differential Equations; G.4 [Mathematical Software]: —Efficiency ; Parallel

and vector implementations; Reliability and robustness; User interfaces; J.2 [Physical Sciences
And Engineering]: —Astronomy ; Chemistry ; Earth and atmospheric sciences; Physics; Elec-

tronics; K.3.2 [Computers and Education]: Computer and Information Science Education—
Computer Science Education

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Computational Sciences, High Performance Computing

1. MOTIVATION AND INTRODUCTION

As illustrated in Figure 1, large complex application codes have several software

constituents. We use this term to identify a collection of subroutines, programs, sec-
tions of programs or combinations of these that implement a computational service.
We classify these constituents according to their functionalities into three classes:
algorithmic, data manipulation, and I/O implementations. In the first class, we
find implementations of numerical algorithms ranging from basic linear algebra
to complex iterative schemes in which one solves several systems of equations by
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Fig. 1. Main components of a complex computer application

combining different methodologies. Examples of software constituents in this class
are the widely used implementations of the Fast Fourier Transform (FFT), the
Krylov subspace based and multigrid based algorithms, and finite element and vol-
ume discretization techniques. Data manipulation software constituents are those
that implement a strategy for managing data in memory for processing or storage.
Examples of software constituents in this class are the implementations of matrix
storage format, parallel data distribution, and block partitioning techniques. Lastly,
the I/O class includes implementations of software strategies that involve a transfer
of data from a process’ or task’s memory to either disk or the memory of one or
more other processes or tasks. Examples of these constituents are the sequential or
parallel operations to write or read from disk, one-sided communication operations,
and send and receive operations using a message passing system.
Nowadays, there are a good number of computational implementations of scientific

and engineering applications that have followed the software development model in
Figure 1. In this model, a developer or a group of developers realize all the different
software constituents and create control procedures in a main program to link them.
Frequently, the next step for application developers is to devise mechanisms to use
more efficiently the often limited computational resources. This task reoccurs many
times in the life of an application code and it is mostly driven by the changes in
computational resources.
Application developers use combinations of compiler directives, language exten-
sions, specialized library calls and even code rewrites to optimize the performance
of their applications. Code optimization of this kind is referred as system dependent

and tuned kernels in Figure 1. Overall, this part of the application development is
operationally very expensive and with very short term impact on the application.
Furthermore, the cost of optimizing a code render this kind of development almost
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impractical for meeting today’s and future’s computational challenges in emerging
collaborative sciences, in particular when this cost is summed to the costs of the
initial code development and consecutive version upgrades. All these costs increase
as the complexity of the application is also increased and the nature of high-end
computing continues to evolve.
We advocate the use of existing robust, reliable and extendible software libraries for
the development of scientific and engineering codes. Such libraries should provide
high performance and scalability in a variety of computational systems. A basic
model of this development approach is illustrated in Figure 2. In this approach the
application developers try to reuse as much as possible existing software libraries
or routines. In return, the application developers benefit from a faster code imple-
mentation plus portability and system tuned kernels for free. If the libraries are
also scalable, reliable and robust, the application developers will also inherit these
features into their application codes.
To realize code development following the model depicted in Figure 2, we need
to create and maintain a collection of reliable, robust and high quality software
libraries with an infrastructure that guarantees long-term support of the tools, pro-
vides independent tool evaluations to assess their quality, collects and disseminates
relevant feedback on the tools among tool development projects, computer vendors,
compiler developers and research groups in computational sciences.
The Advanced CompuTational Software (ACTS) Collection [Drummond and Mar-
ques 2002a; Marques and Drummond 2001] is a set of computational software tools
that aim at simplifying the solution of common and important computational prob-
lems. The ACTS project is our effort to support users of ACTS tools beyond the
individual tool development programs. To that end, the ACTS project aims to
establish the infrastructure to facilitate the development of high-end computing
applications and software libraries. The ACTS project differs from available soft-
ware repositories by providing a high-level support to tool users during the tool
selection and application development phases. Additionally, tools in the ACTS
Collection are subject to independent tool evaluations to guarantee their func-
tionality and maintain the high quality software standards of tools and different
versions, while delivering fast and robust high performance solutions. Further-
more, the ACTS Collection is one of the results from software implementations
of peer-reviewed research and successful scientific and engineering breakthroughs
using these technologies. ACTS tools are available at no cost to the computational
science community.

2. AN OVERVIEW OF THE ACTS COLLECTION

The Collection evolved from the former US Department of Energy (DOE) 2000
Project, which had two main components, the Advanced Computational Testing
and Simulation Toolkit and the National Collaboratory Project. One of the goals
of the project was to change the way scientists work together and address major
challenges of scientific computation by developing and exploring new computational
tools and libraries. Thus, most of the tools currently in the ACTS Collection were
primarily developed at DOE laboratories, and in some cases in collaboration with
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Fig. 2. Development of complex computer application on top of optimized, scalable,
reliable and robust software libraries

universities. In addition, some tools have been co-funded by DOE and other agen-
cies like the US National Science Foundation (NSF) and the US Defense Advanced
Research Projects Agency (DARPA).
The ACTS project gathers years of uncoordinated software development and makes
it available, at no direct costs, to a wide international community of scientists and
engineers through the ACTS Collection. By no direct costs, we mean that the users
do not pay for the use of the tools. However, users may have to devote resources
when prototyping their application using the tools. ACTS tools are mostly open
source and in some cases potential users are required to sign an agreement on the
library use before downloading. Pointers and more information on how to download
the tools can be found at the ACTS Information Center [Marques and Drummond
2001]. The ACTS project complements the library research and development ef-
forts by adding technical support, quality assurance and outreach. The high-level
technical support provided by the ACTS project ensures that development efforts
are better employed. As a result of this effort, ACTS libraries have reached higher
acceptance levels among computational scientists and institutions. In turn, this
outreach provides the necessary means for individual tool projects to interact with
more users, so the tools can gradually mature, becoming both more robust and
portable to state-of-the-art high performance computing environments.
The ACTS project is also actively engaged in education activities, by organizing
and participating in workshops, tutorials and other events related to computational
sciences. Important lessons have emerged from these activities. These lessons are
valuable to the computational science and engineering communities, and in partic-
ular to the software development and support projects. Here we summarize the
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most important ones.
First, there is still a gap between tool developers and application developers which
leads to duplication of efforts. Without projects like ACTS, application develop-
ers will continue to design and implement codes using techniques that are already
available from other sources. In the worst case scenario, duplication of efforts can-
not prevent software developers from falling into pitfalls or shortcomings that have
resulted in software that is unresponsive to present and future computer simulation
needs. Secondly, users demand long-term support of the tools, and have expressed
concern on the longevity of support from tool developers and required evolution
of the software as the hardware technology continues to evolve and the complexity
of the scientific application continues to grow. The ACTS Project has begun to
serve as a mechanism for the development, support, and promotion of quality high
performance software tools. The ACTS project seeks to support users beyond the
software development phase of the ACTS tools. This long-term involve maintain-
ing a solid based of software tools and functionalities, helping users migrate to the
different software versions and software supersedes.
The key component of this long-term user support is the coordination of efforts
between software and hardware vendors, tool developers, users and ACTS. We
have realized that the main parameters for software maturity are portability, ro-
bustness, acceptance, and long-term support. And it is in turn the interactions
between application and tool developers that have made the software tools more
mature, portable, robust and better documented. Therefore, we are working with
commercial software developers and computer vendors to guarantee the long-term
support for the tools and to effectively reach out more user communities. Our work
with commercial software developers will result in software interfaces for their com-
mercial packages to be able to call ACTS tools. For instance, some of the ACTS
numerical tools now provide interfaces that allow them to be called from Matlab
[Choy and Edelman 2002]. Lastly, our work with computer vendors will facilitate
the porting of ACTS tools to emerging computer architectures.
As shown in the Appendix, the numerical tools in the ACTS Collection offer over-
lapping and complementary functionalities. We have learned that application de-
velopers demand a unified interface that will facilitate the porting of applications
from one tool to another, and the interaction between the tools. Several of the
ACTS development teams have been working to deliver fully interoperable inter-
faces. In these lines, the Common Component Architecture (CCA) [Armstrong
et al. 1999] developments are leading towards more flexible interoperable environ-
ments. From our experience with the ACTS project, we have learned that education
of graduate students and postdoctoral fellows provides a viable resource to build
a bridge between computer scientists and domain scientists because there is an in-
creasing demand in computational sciences and engineering for people with dual
backgrounds in computation and a specific applied field of study. Within ACTS,
we actively pursue the education of scientists and engineers in the use of the tools.
As the students have become familiar with the technology, it has also become easier
for their communities to accept, rely and use the technology at a faster rate than
in the past. Thus, they are able to develop codes using state-of-the-art tools, and
minimize the tool selection process, application development time and the time to
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first solution.
Software libraries in the ACTS Collection fall in one of four categories: Numerical

Tools, Tools for Code Development, Tools for Code Execution and Tools for Library

Development. The tools are selected, considered for inclusion and evaluated using
the tool’s efficiency, scalability, reliability, portability, flexibility and ease-of-use as
metrics to define the quality of the software ([Drummond and Marques 2002b]).
Efficiency refers to the optimal use of computational resources in the system. Scal-
ability is the ability to increase the number of processes and processors as the size
and complexity of the problem being solved is also increased without compromis-
ing efficiency. Reliability refers to the failure free features of the library and proper
handling of error bounds. Portability refers to the almost adaptability of the li-
braries to a wide variety of computational environments. Flexibility is the feature
that allows users to construct new routines, libraries and codes from well defined
tool modules. Therefore, the use of flexible software automatically breeds exten-
sible software. Ease-of-use delivers interfaces that users outside the community of
developers can adopt and become familiar with. All these goals make ACTS tools
valuable assets for a wide spectrum of applications.
ACTS tools are targeted for distributed computing and use different mechanisms
for interprocess communication.1 One of the advantages of this model is that it
facilitates the implementation of applications and solutions of problems on small
clusters, and then porting to bigger systems when necessary, providing an attrac-
tive and cost-effective solution to many research groups.
In this article, we focus primarily on the numerical tools in the ACTS Collection
and their functionalities. In this category we find software libraries that implement
linear and nonlinear solvers for various types of systems of equations using direct
and iterative techniques, eigenvalue solvers, and numerical optimization solvers. In
addition to the numerical tools, we present a short description of ATLAS [Whaley
et al. 2001], which is a library that belongs to the Library Development category but
is included here because of its relevance to the numerical tools. ATLAS is widely
used for automatic tuning of basic linear algebra kernels on different computational
platforms.
Tables III-V (see Appendix) summarizes the functionalities provided by the numer-
ical tools available in the ACTS Collection. In the following nine subsections we
introduce the eight numerical tools currently in the Collection as well as ATLAS.

2.1 Hypre

This is a library for solving large, sparse linear systems of equations on massively
parallel computers [Chow et al. 1998]. It has been developed by the Scalable
Algorithms group of the Center of Applied Scientific Computing (CASC) at the
Lawrence Livermore National Laboratory (LLNL). The main features of Hypre are
scalable preconditioners, a suit of common iterative methods including conjugate
gradient and GMRES for symmetric and unsymmetric matrices, respectively, in-
tuitive grid-centric interfaces, and dynamic configuration of parameters. Hypre
provides user-defined interfaces for multiple languages, and targets users with dif-
ferent level of expertise. As it will be discussed in Section 3, Hypre provides four

1Some of the tools are also available for sequential architectures.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



The Advanced CompuTational Software (ACTS) Collection · 7

different types of conceptual interfaces, which free up users from having to express
their system of equations in a matrix, row-column, form. Thus, these interfaces
provide a more natural way for expressing the system of equations being solved,
while internally Hypre benefits from more efficient storage representations and com-
putational kernels to deliver scalable performance.

2.2 OPT++

This library is intended for the efficient solution of nonlinear optimization problems
[Meza 1994]. Its development started in 1992 at the Sandia National Laboratories
(SNL) and its philosophy has been to provide a nonlinear optimization toolkit in
which the problem is expressed in terms that the application user understands
rather than forcing the application users to understand the mathematical concepts
behind the algorithms. Additionally, OPT++ interfaces can easily accommodate
changes to the algorithms and the components that are used in the solution of a
problem previously set up with OPT++. OPT++ offers three types of nonlin-
ear optimization solvers: direct search, conjugate gradient and newton-type meth-
ods. It targets four major classes of problems: problems with a basic non-linear
function and without derivative information available, nonlinear function with first
derivative information available, nonlinear function with approximated first deriva-
tive, and nonlinear function with first and second derivative information available.
OPT++ handles boundary constraints, linear and nonlinear inequality constraints,
and linear and nonlinear equations constraints.

2.3 PETSc

PETSc stands for Portable, Extensible Toolkit for Scientific computation and has
been developed mainly by members of the Mathematics and Computer Science Di-
vision (MCS), at the at the Argonne National Laboratory (ANL) ([Balay et al.
1997; Balay et al. 2002; 2001]). This toolkit provides primarily a comprehensive
set of tools to support the parallel numerical solution of PDEs that require solving
large-scale, sparse linear and nonlinear systems of equations. Although its parallel
implementation is based on MPI, PETSc users rarely need to invoke MPI because
the communication is efficiently and transparently handled inside the PETSc rou-
tines. Therefore, PETSc’s programming environment allows its users to focus more
on the implementation details of their applications.
The basic elements of PETSc are indices, vectors and matrices. Indices are objects
containing lists of natural numbers that are used for indexing matrices, vectors
and arrays. Vectors are objects for storing data from right-hand side vectors, field
variables, etc. Matrices are the objects for storing linear operators and PETSc
supports a wide variety of matrix formats. For distributed vectors and matrices,
PETSc distributes the data among the participating processes. These tasks are
handled internally by the library but users can still perform data assignments and
computations on these objects from their applications, independently of the inter-
nal and actual PETSc distribution.
PETSc’s linear solvers interface is called KSP, which implements a variety of Krylov
subspace methods and a family of preconditioning techniques to accelerate the con-
vergence of Krylov based solvers. PETSc’s non-linear solver interface is called
SNES (for Scalable Nonlinear Equation Solver). In addition to KSP and SNES,
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PETSc provides support for the iterative solution of time dependent partial dif-
ferential equations of the form Ut = F (U, Ux, Uxx, t) through the interface TS (for
Time-Stepping solvers). In this case, the user provides a routine to evaluate F and
a routine to compute its Jacobian. As in the SNES interface, the user can alter-
natively apply a finite difference approximation to compute the Jacobian, or use
PETSc’s interface to ADIC ([Bischof et al. 1997] and ADIFOR [Bischof et al. 1992],
which implement automatic differentiation strategies. Currently, PETSc supports
Euler, backward Euler and pseudo-transient continuation time-stepping solvers, and
it can interface to PVODE [Byrne and Hindmarsh 1998]. Lastly, PETSc provides a
very elaborated set of tools for profiling, tracing and viewing information relevant
to any of its objects, from a vector to a non-linear solver. This is a feature that
greatly facilitates the fast prototyping of applications while providing great insight
on the behavior of a PETSc object inside an application program.
PETSc has been built around the concept of extensibility and it has a growing
number of application users and development projects that re-use some its func-
tionalities. Examples of these are the software tools TAO [Benson et al. 2003] and
SLEPc ([Hernández et al. 2003]) for the solution of optimization and eigenvalue
problems, respectively.

2.4 ScaLAPACK

ScaLAPACK [Blackford et al. 1997] is a library of high-performance linear alge-
bra routines for distributed-memory message-passing Multiple Instruction Multiple

Data (MIMD) computers and networks of workstations. It is complementary to
the LAPACK library [Anderson et al. 1999], which provides linear algebra routines
for workstations, vector supercomputers, and shared-memory parallel computers.
The ScaLAPACK library contains routines for solving systems of linear equations,
least squares, eigenvalue problems and singular value problems. It also contains
routines that handle computations related to those, such as matrix factorizations
or estimation of condition numbers. We refer the reader to [Blackford et al. 1997]
for a list of the functionalities currently provided by the library, implementation
details, working notes and references.
The ScaLAPACK routines are based on block-partitioned algorithms in order to
minimize the frequency of data movement. The fundamental building blocks of the
library are the Basic Linear Algebra Subroutines (BLAS), distributed versions of
those (PBLAS), and a set of Basic Linear Algebra Communication Subprograms
(BLACS). The BLACS handles communication tasks that arise frequently in par-
allel linear algebra computations and supports MPI and PVM. In the ScaLAPACK
routines, the majority of interprocessor communication occurs within the PBLAS,
so the source code of the top software layer of ScaLAPACK looks similar to that
of LAPACK.
The software design practices adopted by the ScaLAPACK team leads to routines
that are efficient, reliable, scalable, portable, flexible and easy to use. Efficiency
is achieved by means of optimize computation and communication engines, as well
as block-partitioned algorithms (level 3 BLAS operations) for good node perfor-
mance. Reliability is achieved by using well proved LAPACK algorithms and error
bounds whenever possible. Scalability is achieved as the problem size and number
of processors grow (LAPACK algorithms that did not scale well were replaced).
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Portability is achieved by isolating machine dependencies to the BLAS and the
BLACS. Flexibility is achieved by building upon a rich set of linear algebra tools
(i.e. BLAS, BLACS and PBLAS). Finally, ease-of-use is achieved by defining sub-
routines calling interfaces similar to the ones available in LAPACK.
While an infrastructure for high level specification of parallel dense linear algebra
algorithms has been proposed by the PLAPACK Project [Van de Geijn 1997], to
date, ScaLAPACK provides the most comprehensive set of routines intended for
parallel dense linear algebra calculations. The library has been ported to a great
number of computer architectures, more recently to Linux clusters, has provided a
solid infrastructure for the development of interactive supercomputer environments
[Choy and Edelman 2002], as well as facilitated research on software development
intended for computational grids environments [UTK 2000].

2.5 SUNDIALS

The SUite of Nonlinear and DIfferential/Algebraic equation Solvers (SUNDIALS),
developed at LLNL, is a family of closely related numerical solvers for systems of or-
dinary differential equations (CVODE [Cohen and Hindmarsh 1994] and CVODES
[Hindmarsh and Serban 2002]), nonlinear equations (KINSOL [Taylor and Hind-
marsh 1998]), and differential-algebraic equations (IDA [Hindmarsh and Taylor
1999]). The different solvers in SUNDIALS share some common modules that
contain the vector kernel, generic linear solvers, and are suitable for parallel and
sequential computing environments.
CVODE contains methods for the solution of both stiff and nonstiff initial value
problems. Integration methods include variable-coefficient forms of the Adams-
Moulton and backward differentiation formula methods for serial computers and
Krylov-based methods, GMRES in particular, for parallel environments. CVODES
is a variant of CVODE with added features for sensitivity analysis, in case the user
is concerned with computing the derivative of the solution or related quantities with
respect to parameters appearing in the equations. Kinsol has been developed for
systems of nonlinear equations and uses inexact Newton methods with linear-search
strategies to accelerate the convergence. Lastly, IDA targets the solution of sys-
tems of differential-algebraic equations and uses backward differentiation formula
methods.

2.6 SuperLU

SuperLU [Demmel et al. 2003] is a library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance machines. It was
originally developed at the UC Berkeley Computer Science Division and at the Na-
tional Energy Research Scientific Computing (NERSC) Center.
The library performs an LU decomposition with numerical pivoting and triangu-
lar system solves through forward and back substitution. The LU factorization
routines can handle non-square matrices but the triangular solves are performed
only for square matrices. The user may preorder the matrix before performing the
factorization. The matrix columns may be preordered either through library or
user supplied routines. SuperLU provides iterative refinement subroutines, in the
working precision, to improve backward stability. SuperLU also provides routines
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to equilibrate the system, estimate the condition number, calculate the relative
backward error, and estimate error bounds for the refined solutions.
The factorization algorithm uses a graph reduction technique to reduce graph
traversal time in the symbolic analysis, and data movement between levels of the
memory hierarchy is reduced through loop ordering and the use of dense matrix
operations in the numerical kernel. For the distributed memory implementation,
a two-dimensional block cyclic matrix distribution is used to enhance scalability.
SuperLU contains a collection of three related subroutine libraries: sequential Su-
perLU for uniprocessors, the multithreaded version SuperLU MT for medium-size
SMPs, and the MPI version SuperLU DIST for large distributed memory machines.
All these implementations are portable across many different platforms. SuperLU
has been successfully used in the solution of large number of scientific and engi-
neering problems.

2.7 TAO

The Toolkit for Advanced Optimization (TAO) has been developed at ANL/MCS.
It supports the solution of large-scale optimization problems, including nonlinear
least squares, unconstrained minimization, bound constrained optimization, and
general nonlinear optimization. The implementation of the algorithms in TAO
places a strong emphasis on software reusability, and it uses external robust ser-
vices provided by other tools, like PETSc, where appropriate. TAO’s design has
been strongly motivated by the needs of many scientists who develop codes for high
performance computing environments and in many cases work with legacy codes.
TAO works in parallel and single processor environments. Its high-level program-
ming interfaces allows the expression of complex problems with very few statements
(TAO calls) and flexibility to test different parameters in the code or at execution
time.

2.8 Trilinos

Trilinos is a project that targets the development of parallel solver algorithms and
libraries within an object-oriented software framework. The target applications
are from science and engineering that involve the solution of large-scale, complex
multi-physics. Trilino’s design respects the autonomy of its component software
packages.2 Thus, each of its packages is a self-contained, independent piece of
software with its own set of requirements, development team and base of users.
Additionally, Trilinos offers a set of tools to other tool development teams for in-
tegrating their packages to the software framework. These tools provide support
for building installations in multiple computer platforms, generation of documen-
tation and regression testing across a set of platforms. Trilinos is being primarily
developed at Sandia National Laboratories. AztecOO is one of the package cur-
rently present in Trilinos. It superseded Aztec, which was originally included as a
stand-alone package in the ACTS Collection.

2The Research and Development magazine awarded Trilinos one of the 2004 R&D Awards for
being one of the 100 most technological significant products of 2003.
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2.9 Atlas

ATLAS (Automatically Tuned Linear Algebra Software) [Whaley et al. 2001], de-
veloped at the University of Tennessee, Knoxville, is a toolkit for the automatic
generation of optimized numerical kernels for a variety of computer architectures
and compilers. Atlas focuses on level three BLAS operations (matrix-matrix mul-
tiplications), and also a few routines from LAPACK that have high potential for
optimization. As discussed in Section 1, the hand-optimization and hand-tuning
of these kernels is generally very tedious and requires rigorous testing and results
in many of the aforementioned drawbacks. The optimized libraries generated by
ATLAS have been able to meet and even exceed the performance of the vendor
supplied, hand-optimized BLAS, on a range of platforms.
ATLAS superseded PHiPAC, which was a related project developed primarily at
the University of California, Berkeley. Both ATLAS and PHiPAC achieve perfor-
mance through loop unrolling, explicit removal of unnecessary dependencies in code
blocks, and use of machine sympathetic C constructs. Code generators are param-
eterized and scripts are used to find the optimal choice of parameters for a given
architecture and compiler.

3. USING ACTS TOOLS

Before using any of the tools in the ACTS Collection, the user needs to identify
the computational problem. For the identification of common problems and the
available numerical tools in ACTS we have produced Tables III-V (see Appendix).
Secondly, the user must determine whether the tool has been previously installed
in his or her computational environment. If the tool has not been installed the
user can download it from the developers site. Most of the numerical tools provide
automatic configuration scripts that easily guide the users through the installation.
ACTS tools provide different types of interfaces. We start reviewing the most ba-
sic one and walk our way to more sophisticated interfaces. The basic interfaces
form a set of routines that can be called by either C or Fortran programs. Some
libraries like Hypre, PETSc, TAO, and OPT++ specifically provide support for
C++. Other libraries can be called from C++ programs but they do not provide
any specific object-oriented support. Some of the the tools that are not written in
C++ use context variables to extend the semantics of the basic variable types in
Fortran, C, and C++. The context contains relevant information attached to the
behavior of a particular variable. For instance information about the solution of a
linear system, matrix or iterative scheme. This information is particularly useful
for the beginner to understand the behavior of the numerical solver or schemes
being used.
A higher level of support is provided by Hypre, for example, through its four differ-
ent interfaces. This approach aims at bringing a more natural view of the problem
being prototyped and user friendlier interface. The four interfaces in Hypre are:
structured-grid Interface, for applications with rectangular grids; semi-structure
grid interface, for applications that involve block-structure, structure-AMR, and in
general semi-structure grids; finite element interface, for finite element applications
in which the grids are unstructured; and linear-algebraic interface, for applications
with linear systems expressed in a sparse matrix format. Hypre users have to first
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determine the conceptual interface that they are interested in developing, then
choose among Hypre’s preconditioners and iterative solvers, and lastly chose a ma-
trix format that is compatible with their first two choices. As for other tools, users
have to call a sequence of Hypre routines to properly setup their problem solutions.
In many instances, application developers have to experiment with their choices of
preconditioners, matrix representations, iteration schemes, stopping criteria, etc.
This itself turns into an iterative process that requires code rewriting, running,
verification and analysis of results. This suggests the need for a higher level of user
interface that renders the initial prototyping more agile. PETSc offers a feature
that allows the user to write a program with a generic or default object, like a
generic choice of solver, matrix representation, etc., that will be specified at run
time. This feature greatly speeds-up the process of selecting the right set of pa-
rameter to solve a particular problem. Since TAO and SLEPc have been built on
top of PETSc, they also inherited this feature. Therefore, this is a good example
of how to build robust, extensible, and reliable software on top of existing software
with similar qualities.
We are currently working on the development of a Python [Lutz 2001] based user
interface called PyACTS [Kang and Drummond 2003] to bring equally high-end
interfaces to other tools in the ACTS Collection. PyACTS will not target high
performance but rather intends to help the users familiarize themselves with the
multiple functionalities available in the ACTS Collection.

4. HOW CAN ACTS WORK FOR YOU?

In this section we summarize some exemplar utilization of the tools in important
scientific and engineering applications from an international pool of users. Tables I
and II list these applications and showcase not only the benefits from the use of the
numerical tools in the ACTS Collection, but also provide guidance on how the tools
work in different application areas. We compile and maintain a more comprehensive
list of these applications in The ACTS Application Matrix and Performance [Drum-
mond et al. 2005] that is available on line [Drummond and Marques 2003]. The
matrix is resourceful for all levels of users of the tools and even more for prospec-
tive users. User can find in this matrix a gallery of examples of the proper use of
the functionality available in the collection and choices made by other application
developers. In every case, we highlight the impact of the tool in the application’s
computational performance as well as in the algorithmic formulation and field con-
tributions.

5. THE ACTS COLLECTION: ROAD MAP AND CONCLUSIONS

This introductory paper on the ACTS Collection discussed some of the main issues
related to the deployment of a software infrastructure for the development of engi-
neering and scientific simulation codes. Tools in the ACTS Collection are the prod-
ucts of peer-reviewed research published in computational science and engineering
communities. These tools have been used inside many scientific and engineering
applications addressing current grand challenges. ACTS tools brings a plethora of
high quality and robust services to the hands of high-end computing users at no di-
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Application
Computational ACTS Some

Problem Functionality Higlights
MADCAP [Borrill
1999] A Microwave
Anisotropy Dataset
Computational
Analysis Package.
From: NERSC.

Area: Cosmology.

Determine power
spectra of the
Cosmic Microwave
Background.

Uses ScaLAPACK to
factorize and perform
several subsequent
triangular solves
of a dense angular
correlation matrix.

—Has been easily
ported to many
platforms.

—Near perfect scalabil-
ity (IBM SP)

—Scientific Break-
through, cover of
Nature in 2000

Simulation of Col-
lisional Breakup
in a Quantum
System of Three
Charged Particles.
[Rescigno et al.
1999] From LLNL,
LBNL, and Univ.
of CA Davis.

Area: Quantum
Chemistry. The
complete solution
of electron-impact
ionization of hy-
drogen. Finite
difference approx-
imations, solving
large, complex,
nonsymmetric
linear systems.

Uses SUPERLU to
build precondition-
ers for a conjugate
gradient squared
algorithm.

—Solves linear systems
of order 8.4 millions.

—Realized computa-
tions that were not
possible before.

—Scientific Break-
through made the

Cover of Science in
1999.

FLAPW [Canning
et al. 2000] Parallel
Full-potential Lin-
earized Augmented
Plane-Wave. From:
LBNL/NERSC.

Area: Material Sci-
ences. Electronic
structure calcula-
tions based on solv-
ing Schrdinger’s
equation.

Uses ScaLAPACK
to diagonalize a
Hamiltonian matrix,
finding the lowest
5-10% eigenvalues
and eigenfunctions
that correspond to
wave functions and
energies of the elec-
trons.

—Code has been
ported to many
platforms.

—Most accurate and
heavily used in mate-
rials science.

—Gordon Bell Prize
1998.

—Allowed simula-
tion containing 700
atoms.

FUN3D [Anderson
et al. 2003] Com-

puting turbulent
flows on unstruc-
tured grids. From:
NASA-Langley.

Area: CFD. Solu-
tion of compressible
and incompressible
Euler and Navier-
Stokes equations.

Uses PETSc to par-
allelize solvers [Keyes
et al. 1997]

—Won the Gordon Bell
Prize. 1999

—Example of a legacy
code promptly paral-
lelized.

NIMROD [Sovinec
et al. 2004] Non-
linear phenomena
in fusion reactor
plasmas. From
OFES, LANL, U.
of WI, Utah State,
CO Univ. Bolder,
SAIC, UCLA,
SNL, GA, and
NASA-JSC

Area: High Energy
Physics. High-
order finite element
representation of
the poloidal plane
and a finite Fourier
series representa-
tion of the toroidal
direction.

Uses SUPERLU to
replace legacy code
based on precon-
ditioned conjugate
gradient (PCG)
solver.

—The single proces-
sor code that uses
SUPERLU is a 100
times faster than the
PCG one.

—The improved code
performance is of
order 5-fold, which
equates to 3-5 years
progress hardware.

Table I. Example of Scientific and Engineering Applications that use ACTS. The new institutional
acronyms used in this table are LBNL for Lawrence Berkeley National Laboratory, OFES for the
Office of Fusion Energy Sciences, SAIC for Science Applications International Corporation, GA
for General Atomics, and NASA-JSC for NASA Johnson Space Center.
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Application
Computational ACTS Some

Problem Functionality Higlights
M3D [Park et al.
1999] Multilevel,
3D, parallel,
plasma simulation
code. From Prince-
ton Plasma Physics
Laboratory

Area High Energy
Physics. Nonlinear
calculations of
plasmas in toroidal
topologies includ-
ing Tokamaks and
Stellarators

Uses PETSc for
the manipulation of
unstructured meshed
problems and solu-
tion of linear systems
of equations.

—Reduced develop-
ment time.

—From PETSc, easily
test different precon-
ditioners available in
PETSc and Hypre.

CAVIRES [Roman
2002] Electromag-
netic analysis of
cavities. From Uni-
versity Polytechnic
of Valencia (UPV).

Area: High Energy
Physics. Gener-
alized algebraic
eigenvalue prob-
lem. Solving
Maxwell eqs. in a
bounded volume.

Uses SLEPc to com-

pute the eigenvec-
tors corresponding to
a few of the small-
est positive nonzero
eigenvalues,

—Scalable and
Portable code.

—Use in addressing
problems in the
order of millions.

Time-dependent
Neutron Diffusion
Equation [Garćıa
et al. 2004] Fast
transient analysis
code. From UPV.

Area: Nuclear
Physics. Large
system of linear
stiff Ordinary Dif-
ferential Equations
(ODE).

Uses SUNDIALS to
solve the ODEs. —Fast and efficient

code development.

—Superlinear
speedups.

Model Reduction
[Guerrero et al.
2002]. From UPV.

Area: Control
Problems. Reduc-
tion of a linear
control system
model.

Uses ScaLAPACK to
implement parallel
model reduction
methods based on
balancing techniques.

—Code included in
the parallel SLICOT
[Benner et al. 1999].

—Scales to a moderate
number of processes.

Omega3P [Sun
2003] modeling and
analysis of acceler-
ator cavities. From
Stanford Linear
Accelerator.

Area: Nuclear
Physics. Calcu-
lates cavity mode
frequencies and
field vectors by
solving a gener-
alized eigenvalue
problem from finite
element discretiza-
tion of Maxwell’s
equations.

Uses SuperLU and
PARPACK [Lehoucq
et al. 1998] to im-
plement a parallel
exact shift-invert
eigensolver.

—Previous code had
poor convergence
and problem size
could not be scaled.

—Has been easily
ported to many
platforms.

—Solves problem of or-
der 7.5 million.

Analysis of Lambda
Modes for safety
of nuclear reactors
[Hernandez et al.
2003] From UPV.

Area: Nuclear
Physics. Differ-
ential eigenvalue
problem derived
from the Neutron
Diffusion equation.
The problem is dis-
cretized by means
of a collocation
method.

Uses SLEPc for solv-
ing the eigenvalue
problem combined
with PETSc for solv-
ing the linear system.

—Several benchmark
reactors have been
used for validation,
typical problem sizes
ranging from 20,000
to 500,000.

—Scalable code

Table II. Example of Scientific and Engineering Applications that use ACTS (cont.)
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rect cost. The ACTS project implements a viable solution to bring all these efforts
to the computational science community while exploring mechanisms for extending
the longevity of the software beyond their development phase. Thus, the ACTS
project is cardinal for maintaining a high quality software collection by not only
attesting the quality of tools but also ensuring that users select the more suitable
tools and tool functionalities, and make proper use of these. Clearly, this higher
level support differentiates the ACTS project from other main software repositories.
In Figure 3, we show how we envision the multiple interactions and roles played by
the ACTS project within the computational science community. the ACTS project
has been working with a basic set of reliable tools and is paying close attention
to tools being developed by other initiatives in order to incorporate them into the
ACTS Collection. In the figure, the tools to be tested and eventually accepted into
ACTS are produced by developers working with and in the User Community and
in the ACTS project. We plan to continue expanding the current infrastructure
and bringing new software development into ACTS. The expanded infrastructure
for the ACTS project is able to accumulate expertise from tool developers, users
and application scientists and produce relevant feedback and knowledge to be dis-
seminated inside the computational sciences community.
As depicted in Figure 3, the strong components of the ACTS Collection and its in-
frastructure are the unique coordination of high-level support to the User Commu-

nity, the independent Testing and Acceptance of software tools and the the constant
interactions with Scientific Computer Centers and Computer Vendors. The high
level support is geared towards minimizing the application development time, from
the first prototype code to the production code. The testing and acceptance of new
tools into the ACTS Collection ensures the tool quality and expansion of available
functionality. In the inclusion of tools to the collection, Interoperability is play-
ing a major role to guarantee software reusability, incremental development, and a
ready-to-use wide variety of services to the end users. Further, the combination of
high-level tool support and the collection of high quality software tools in all opti-
mizes the computational production time of the application. In addition, securing
the long-term support for the tools and its portability to today’s and tomorrow’s
computational platforms also secures the life of the computational applications that
use these tools. ACTS also plays an active role at keeping application developers
abreast with the tool developments, evolutions and innovations.
The organization of workshops, the design and maintenance of educational tools,
such as the ACTS Information Center and PyACTS have ensured the visibility of
the tools in the computational science community. This effort continues to promote
software reusability, over duplication of efforts, while set higher standards for high
performance computing software. Within ACTS we have learned that the exposure
of the tools to a wide variety of applications and contexts has not only made the
tools more mature and widely accepted but also has brought up new challenges and
research directions in computational sciences.
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Fig. 3. ACTS interactions within the computational science community
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Appendix - ACTS Collection: Numerical Tools and their Functionalities

Computational
Methodology Algorithms Library

Problem

Linear Equations

Direct Methods

LU Factorization ScaLAPACK (dense)
SuperLU (sparse)

Cholesky fact. ScaLAPACK
LDLT (Tridiag A) ScaLAPACK
QR Factorization ScaLAPACK
QR factorization ScaLAPACK
QR + Col Pivoting ScaLAPACK
LQ factorization ScaLAPACK
Full Orthogonal ScaLAPACK
factorization
Generalized QR ScaLAPACK
factorization

Iterative
Methods

Conjugate AztecOO (Trilinos)
Gradient (CG) PETSc
GMRES AztecOO

Hypre
PETSc

CG Squared AztecOO
PETSc

Bi-CG-Stab AztecOO
PETSc

QMR AztecOO
Transpose Free AztecOO
QMR PETSc
SYMMLQ PETSc
Preconditioned AztecOO
CG Hypre

PETSc
Richardson PETSc

Block Jacobi AztecOO
preconditioner Hypre

PETSc
Point Jacobi AztecOO
preconditioner
Least-squares AztecOO
polynomials
SOR precond. PETSc
Overlapping
ASM precond.

PETSc

Approx. Inverse Hypre
Sparse LU AztecOO
preconditioner Hypre

PETSc
Incomplete LU AztecOO
preconditioner Hypre

PETSc

Table III. Summary of the numerical functionalities currently available in the ACTS Collection
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Computational
Methodology Algorithms Library

Problem

Linear Equations Multigrid (MG)

MG preconditioner Hypre
PETSc

Algebraic Multigrid ML (Trilinos)
Hypre

Semicoarsening Hypre

Linear Least
Squares

Least Squares minx‖b − Ax‖2 ScaLAPACK

Minimum norm minx‖x‖2 ScaLAPACK
Minimum norm
least squares

minx‖x‖2 and
minx‖b − Ax‖2

ScaLAPACK

Standard Symmetric Az = λz for ScaLAPACK (dense)
Eigenvalue Eigenvalue A = AT or A = AH SLEPc(sparse)

Singular Value Singular Value A = UΣV T ScaLAPACK (dense)
Decomposition A = UΣV H SLEPc (sparse)

Generalized
Eigenproblem

Az = λBz, ScaLAPACK (dense)
Symmetric Definite ABz = λz, SLEPc (sparse)
Eigenproblem BAz = λz

Non-
linear
Equations
Problems

Newton-based

Line Search PETSc
KINSOL (SUNDIALS)

Trust Regions PETSc
Pseudo-transient

continuation
PETSc

Matrix free PETSc

Non-linear
Optimization

Newton-based

Newton OPT++
TAO

Finite Differences OPT++
Quasi Newton OPT++

TAO (LMVM)
Nonlinear Interior OPT++
Point TAO

CG

Standard nonlinear CG OPT++
TAO

Limited memory OPT++
BFGS
Gradient Projection TAO

Direct Search
Without derivative OPT++
information

Semismooth
Infeasible semismooth TAO
Feasible semismooth TAO

Ordinary
differential
equations
(ODEs)

Integration
Variable coefficient CVODE (SUNDIALS)
Adams-Moulton

Backward Direct Solvers CVODE
Differential Iterative Solvers CVODE

ODEs with
Sensitivity
Analysis

Integration
Variable coefficient CVODES (SUNDIALS)
Adams-Moulton

Backward Direct Solvers CVODES
Differential Iterative Solvers CVODES

Table IV. Summary of the numerical functionalities currently available in the ACTS Collection
(continued)
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Computational
Methodology Algorithms Library

Problem

Differential
Algebraic
Equations

Backward
Differential

Formula

Direct solvers IDA (SUNDIALS)

Iterative solvers IDA

Nonlinear
Equations +
Sensitivity
Analysis

Inexact
Newton Line search

SensKINSOL
(SUNDIALS)

Tuning and
Optimization

Automatic BLAS and ATLAS
code generators some LAPACK
and compilations routines

Table V. Summary of the numerical functionalities currently available in the ACTS Collection
(continued)
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