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Abstract 

None of the commonly-taught programming languages is 
very relevant to the typical elementary-school through col- 
lege math curriculum, but computer symbolic math is rele- 
vant to most of that curriculum. Consequently, a vast 
opportunity for beneficial mutual reinforcement and cross- 
motivation between math and computer education is being 
squandered. This paper substantiates these claims, explains 
their major causes, then proposes remedies. 

i. Introduction 

I still recall the sharp disappointment felt when I 
realized that FORTRAN, my first programming language, was 
essentially arithmetic. I also recall my first image of a 
numerical analyst as someone sitting on a high stool wear- 
ing a green eyeshade and arm garters, endlessly working a 
desk calculator and consulting musty volumes of math tables. 
I ultimately specialized in numerical analysis, but these 
early impressions greatly delayed my appreciation of compu- 
ters and of the varied ways that they can be used for 
scientific computation. It is undeniably true that most 
students are far more intrigued and motivated by the arti- 
ficial intelligence and game playing applications of compu- 
ters than by the accounting and numerical scientific appli- 
cations which account for most computer usage. 

Why not exploit this strong preferential interest to 
help teach mathematics and computer science? If more good 
math, science, and engineering students are attracted to 
computers, and vice versa, more will ultimately learn to 
use computers effectively for both numeric and non-numeric 
scientific computations. 

I propose that computer algebra is an ideal introduc- 
tory computer programming language for math, science and 
engineering students, that it is an ideal principal lan- 
guage for these students, and that the means are at hand 
for making it fill this role at all levels throughout our 
educational system. As indicated in the title, I realize 
this idea may seem radical. However, I believe that the 
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supporting arguments in the following two sections ought 
to make the idea seem not radical at all. 

. JlComputer Symbolic Math 0 Math l] 
>> Ilcommon Programming Languages D Mathil 

Although most university curricula do not yet take ac- 
count of the fact, many entering college students have al- 
ready had an exposure to computer programming in high school 
and/or junior high school. It will probably not be long 
before most students receive an exposure in high school or 
junior high, and there are even indications of a trend 
toward exposure to computer programming in elementary 
schools. Thus, there are increasingly numerous opportuni- 
ties for mutual reinforcement and cross-motivation between 
math and computer education. 

Unfortunately, none of the commonly-taught programming 
languages is very relevant to the typical elementary-school 
through college math curriculum. 

Consider: 

i. Numbers and arithmetic comprise appreciably less 
than half of the entire math curriculum, but num- 
bers and arithmetic are about the only mathematical 
capabilities built-into all of the commonly-taught 
languages. 

. Most of these languages do offer arithmetic evalua- 
tion of elementary functions, but none offers 
algebraic simplification of expressions containing 
such functions with non-numeric arguments, via 
appropriate identities. 

. Some of these languages offer Boolean "arithmetic" 
on the constant values TRUE and FALSE, but none 
offers Boolean "algebra" involving simplification 
of expressions containing unbound Boolean vari- 
ables. 

. Some of these languages offer some built-in matrix 
arithmetic on matrices having numeric element 
values, but none offers matrix algebra for which 
the elements can contain unbound variables, or for 
which the entire matrix can be an unbound variable. 

. A few of these languages offer complex arithmetic, 
but none offers complex al~ebra involving simpli- 
fication of expressions containing ~ and unbound 
variables, using the identity i2=-I. 



. One of the less-frequently first-learned languages 
(PASCAL) offers some built-in set arithmetic on 
finite sets of constants, but none offers set 
algebra in which sets or their elements can be un- 
bound variables, or in which sets can be infinite, 
such as the set of all integers or of all positive 
real numbers. 

. None of the commonly taught languages even supports 
all of the above kinds of "arithmetic". 

. Even all of the above kinds of arithmetic total 
significantly less than half of the entire math 
curriculum, as is indicated in Table i. 

. Computer symbolic math is relevant to far more of 
this curriculum, as is also shown in Table i. 

Now for the most damnatory indictments of commonly- 
taught languages: 

i0. The numbers and their arithmetic do not correspond 

ii. 

to those generally taught in schools! 

The numbers and their arithmetic do not correspond 
to those used in everyday life! 

The limited-precision integer arithmetic of these lan- 
guages is bad enough in these regards, even without its 
usual overflow asymmetry induced by 2's complement arith- 
metic. For the floating-point arithmetic of these languages, 
we can add the indictment 

12. Few other than the very best numerical analysts 
fully understand the implications! 

In contrast, the arithmetic that students learn in 
elementary school is 

i. indefinite-precision rational arithmetic, 

. rounded and exact indefinite-precision decimal- 
fraction arithmetic. 

True, in high-school chemistry or physics students may 
learn scientific notation, which could be regarded as 
indefinite-magnitude, arbitrary-but-fixed-precision, 
rounded-decimal arithmetic. In contrast, the floating-point 
arithmetic of commonly-taught languages is finite magnitude, 
with only 1 to 3 alternative precisions, usually chopped 
nondecimal. All of these internal differences from true 
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exact integer and rational arithmetic 
exact decimal-fraction arithmetic 
numeric evaluation of algebraic expressions 
transformation of algebraic expressions 
exact solution of algebraic equations 
evaluation of Boolean expressions 
transformation of Boolean expressions 
numeric evaluation of geometry formulas 
proof of geometry theorems 
inductive algebraic proofs 
scientific notation for numbers 
numeric use of trigonometric functions 
proof of trigonometric identities 
analytical geometry: plotting 
analy[ical geometry: qualitative analysis 
analytical geometry: theorem proving 
symbolic differentiation and integration 
Taylor series 
L'Hospital's Rule 
symbolic vector algebra & vector calculus 
closed-form summation & series convergence 
matrix algebra 
solution of differential equations 
numerical analysis 
abstract algebra 
number theory and combinatorics 
functional analysis 
probability 
statistics 
topology 
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scientific notation have external manifestations which are 
baffling to most people. 

It is also true that some of the less-frequently 
taught languages, such as PL/I, do support decimal-fraction 
arithmetic. However, 

i. This arithmetic is finite precision. 

. This arithmetic does not alter the overall conclu- 
sion suggested by Table i. 

. Most elementary PL/I texts assiduously avoid 
decimal-fraction arithmetic in favor of floating- 
point arithmetic. 

Admittedly, extended sequences of indefinite-precision 
arithmetic operations on experimental data suffers an un- 
justifiable growth in digits, but to that one can respond: 

i. Render onto floating-point arithmetic that which 
one must. 

. Render onto more rational arithmetic all that one 
can. 

Perhaps if floating-point computation becomes a choice 
rather than an imposition, users will regard floating-point 
with more of the caution it deserves. 

Perhaps indefinite-precision rational and decimal- 
fraction arithmetic are inevitably less efficient than their 
respective finite-precision floating-point and integer 
counterparts. However: 

i. The difference in efficiency would greatly decrease 
if the indefinite-precision arithmetics were micro- 
coded or hardwired as are their finite-precision 
counterparts in most computers. 

. Matula and Kornerup [1979] have been exploring 
promising finite-precision rational arithmetic 
schemes called fixed-slash and floating-slash 
arithmetic, which combine many of the advantages 
of floating-point and rational arithmetic. 

. Even if the indefinite-precision arithmetic is 
substantially slower, computing has become so in- 
expensive that for the computational needs of most 
people, the cost of indefinite-precision computa- 
tion is negligible compared to the labor of 
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assessing results done in an unnatural arith- 
metic. 

How negligible do computing costs have to become be- 
fore software and hardware designers abandon this historical 
obsession with efficiency? If a certain computation costs 
i0 times as much in rational arithmetic as in floating- 
point, and the latter method was deemed worthwhile a few 
years ago when computer costs were more than i0 times as 
much, is it not worthwhile now to do the computation in a 
more humane arithmetic? 

In the early days of computers, scientific computation 
was usually done using binary fixed-point fractions having 
magnitudes restricted to lie between 0 and i. The wide- 
spread acceptance of floating-point brought substantially 
greater convenience for a large loss in efficiency. For 
most work, computer costs have now decreased enough to 
justify another such step in favor of human understanding. 
Those who cling to efficiency-worship should defend fixed- 
point fractions rather than floating-point. 

It is significant that calculator manufacturers, who 
must sell directly to the individual end users, are general- 
ly more sensitive than are computer manufacturers in this 
regard. This is true even between the calculator and com- 
puter divisions of companies which manufacture both: Most 
calculators at least use rounded decimal floating-point 
arithmetic having 8 or more digits, whereas computer manu- 
facturers increasingly use chopped non-decimal floating- 
point in a dangerously meagre 32-bits. 

3. Obstacles to Teaching Computer Symbolic Math 

As detailed in the previous section, computer symbolic 
math is far more relevant to math education than are the 
commonly-taught programming languages. Consequently, it 
behooves us to be teaching computer symbolic math -- preferably 
as a first programming language, beginning as early as 
possible, perhaps distributed throughout the curriculum 
rather than concentrated in one course. 

There is no doubt in my mind that mathematically- 
inclined students are enormously stimulated by the experi- 
ence. Wherever I have demonstrated interactive computer 
symbolic math to students, witnessing their compelling 
excitement has increased mine to such an extent that I am 
now determined to help make this educational tool be used 
to its full potential throughout our educational system. 
Accordingly, during the past several years I have been 
teaching the subject at various levels, in various ways, in 
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order to informally identify obstacles and promising 
approaches. This teaching experience so far consists of 

i. A one-semester graduate course on theory, practice, 
and applications of computer symbolic math. 
(Taught twice). 

. An undergraduate introductory one-semester 
scientific-programming course of which about 20% 
is devoted to using a computer-algebra system. 
(Taught 4 times). 

. A one-week intensive enrichment program for gifted 
high school students. (Taught once, over spring 
vacation). 

3.1 Tutorial Obstacles 

There is an almost total lack of published tutorial 
material about computer symbolic math. 

Regarding theory, portions of the books by Borodin and 
Munro [1975], Aho, Hopcroft and Ullman [1975], and Knuth 
[1968,1969] are appropriate, but none of these is devoted 
entirely to the area or to the entire area. It is possible 
but difficult for a researcher in the area to teach a 
thorough theoretical computer-algebra course to self- 
reliant graduate students from these books together with 
scattered dissertations, conference proceedings, and journal 
articles. Moreover, the fine course notes by Fateman [1978] 
greatly ease the burden by collecting together a lot of this 
material. Unfortunately, those outside the field will not 
know of these notes or of the many relevant scattered refer- 
ences. Consequently, there is a great need for a widely- 
advertised book of this nature to be published by an aggres- 
sive major textbook publisher. Otherwise, few new professors 
outside the field will learn of the field and easily assimi- 
late enough to introduce such a course at their university. 
David Yun and I are working to complete such a text, but it 
is a substantial impediment not to have one already avail- 
able. 

Regarding applications, there is also a wealth of 
scattered references and a dearth of material conspicuously 
and conveniently collected under one cover. An anthology of 
reprints would be a quick and easy remedy, which could 
attract many engineers, scientists, and applied mathemati- 
cians into the field. In fact, companion volumes of re- 
prints on theory and applications would make a nice combi- 
nation. 
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Regarding specific computer-algebra systems, MACSYMA 
has a great deal of excellent on-line and off-line tutorial 
material, as described by Lewis [1977]. Regretably, there 
is almost no tutorial material to support any of the other 
systems, and it is these other systems which most of the 
math students in this country will have to use. If 
we really wish to attract math teachers to enrich their 
courses with supplementary instruction about one of these 
systems, then we must write and publicize a variety of 
tutorial aids. Arithmetic, algebra, trigonometry, and cal- 
culus teachers each need different material having numerous 
exercises and full detail relevant to their particular sub- 
ject, preceded by brief coverage of lower levels. These 
primers and guides must be written to work well with the 
most popular corresponding math texts. Similarly, if we 
really wish to attract computer programming teachers to 
use a computer-algebra system as a first language, then we 
must write and publicize appropriate primers and guides for 
them too, in the style of the currently popular programming 
texts. This means also including some nonalgebraic appli- 
cations, such as approximate numerical computations, data 
processing, string processing, games, and list processing, 
together with discussion of structured programming, etc. 

3.2 Economic Obs'tacles 

Batch processing is fine for certain kinds of computa- 
tion, but for typical student exercises batch processing 
is liable to give students the lasting impression that the 
computing community is making a mountain out of a molehill. 
Moreover, most computer-algebra results are so unpredictable 
in form that in practice their computation is almost always 
exploratory rather than via an a priori discernable sequence 
of steps. Consequently, interaction is particularly desir- 
able for computer-algebra students. 

You can imagine my disappointment when, infused with 
missionary zeal to bring interactive computer algebra to 
the masses, I discovered that I could not afford to bring 
even a batch computer algebra to even one full-size under- 
graduate class! Having guest accounts at ARPA-net sites 
had kept me blissfully ignorant of the costs involved. On 
our campus: 

i. Minimal WATFIV, WATBOL, or PL/C batch jobs on our 
IBM 370/158 cost about 15¢, which includes cards, 
time, and paper. 

2. Any other batch job costs a minimum of about 50¢. 
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. If the input expressions are carefully constrained 
to require just enough computation to yield impres- 
sive results, a typical REDUCE batch job for a 
trivial program costs about $2.00. When a program 
of more than a page is involved, the cost can 
easily be several times this large even for trivial 
input expressions. I have no experience running 
other systems on our machine, but I am more struck 
by the consistency than the disparity of the vari- 
ous SIGSAM Bulletin timing comparisons. Moreover, 
algebraic efficiency is secondary compared to other 
overhead costs for small student jobs. For such 
exercises I would be surprised if any other suit- 
able existing batch system incurred notably dif- 
ferent charges on our computer. 

. TSO (or APL) time sharing costs $i.00 per hour of 
connect time plus computing charges which average 
about $5.00 per hour for students developing 
REDUCE programs. 

. Time-shared BASIC on our HP-2000 costs only $i.00 
per hour of connect time for students developing 
BASIC programs. 

. For classes of more than about 15 students, univer- 
sity computation allowances make WATFIV, WATBOL, 
PL/C, or HP BASIC the only affordable programming 
languages at these two principal computation re- 
sources. 

I know that some schools have computer systems or 
charge rates or computation allowances which permit inter- 
active computing as the norm rather than the exception, 
using languages which do not instill bad programming habits. 
However, I also know that some schools have systems, rates, 
and allowances which are even more inhibitory than ours. 

The economy of WATFIV, WATBOL, PL/C, and HP BASIC for 
students jobs is largely attributable to compactness and 
sharing. Most of the latter system is permanently-resident 
reentrant code, so that only the trivially small student 
BASIC programs have to be swapped. For each of the other 
three languages, our operating system collects together a 
number of small student jobs and runs them as one job step, 
using a compact resident translator. Thus, here are two 
possible ways to make computer symbolic math economically 
feasible for the masses at such schools: 

i. Encourage Cornell University and the University of 
Waterloo0to develop compact resident algebra 
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systems for batch student use. 
call theirs WATALG! 

(Waterloo could 

. Encourage Hewlett-Packard and its competitors to 
develop a dedicated time-shared algebra system 
intended for student use. 

Actually, it was unclear whether or not a sufficiently 
compact system was achievable, so to explore this possibi- 
lity, I first developed a truncated power series program 
and a toy symbolic differentiation program for the HP-67 
programmable pocket calculator, as described by Stoutemyer 
[1979]. Although those programs are much less than what is 
desirable in a minimal educational system, it was encourag- 
ing that some symbolic math could be done in a memory capa- 
city of only 224 instructions plus 26 numbers. This sug- 
gested exploring a third way to make computer symbolic math 
economically feasible for the masses. 

Microcomputers based on the INTEL-8080 and competitive 
chips are becoming increasingly prevalent in schools, be- 
cause they are so incredibly inexpensive. Including a ter- 
minal and a means of saving programs externally, prices range 
from about $600 for a stripped-down model with 4K bytes of 
memory and one cassette-tape drive, to about $4,000 for one 
with 64K bytes of memory and dual 8-inch floppy-disk drives. 
(There are, of course, expensive imitations which cost several 
times as much.) These prices are so low that it is not worth 
setting up an accounting system for their use. These prices 
are so low that increasing numbers of our students and faculty 
have purchased one for their own education and recreation. 
At $4,000 each, our campus could purchase 20 of these for the 
amount that our HP 2000 users are billed per year, or we could 
purchase 400 of these for the amount that our IBM 370/158 
users are billed per year. 

Despite the mere 64K bytes of address space, powerful 
versions of APL, COBOL, FORTH, FORTRAN, LISP, PASCAL, and 
PL/M have been implemented for microcomputers. The struc- 
tured implementation language muSIMP-77 tm developed by Albert 
Rich is particularly suitable for implementing computer- 
algebra systems. Consequently, bootstrapping from that sys- 
tem, we developed the symbolic math system briefly summarized 
in the appendix. The system is successful beyond our fondest 
expectations, so now we have an economically feasible way to 
provide computer algebra to large numbers of students. More- 
over, the compactness of the system provides encouraging 
evidence that the other two alternative solutions suggested 
above are also worth pursuing. 

The system is, of course, nowhere near as powerful as 
the largest systems. However it could greatly help popularize 
computer algebra, leading many more people to become aware of the 
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more powerful systems such as MACSYMA, which could help 
them with their research. 

3.3 Attitude Obstacles 

How do math teachers and computer-programming teachers 
feel about the idea of teaching computer algebra? 

Most of them do not know about computer algebra, so a 
tremendous amount of encouragement, support, and teacher 
education is necessary from those who know about computer 
algebra and about usage of specific systems. 

How then do math teachers and computer-programming 
teachers who have been exposed to computer algebra feel 
about teaching it? 

Probably, until enough of their peers are involved so 
that they begin to feel left out, most will express courte- 
ous admiration, but decline to get involved. It is more a 
question of human nature than perceived merit. Perhaps the 
reasons include 

i. Many university math professors are relatively in- 
different to calculus and to constructive mathemat- 
ics in general. These subjects are not at the 
prestigious forefront of pure math research, so 
there is a strong incentive to devote most effort 
elsewhere. 

. Those who have never learned about computers may 
feel that it is too late to take the plunge because 
they anticipate a humiliating period of publicly- 
revealed ignorance. I have heard that personal 
computers available for checking out overnight and 
over the weekend are helping overcome this cause 
of reluctance. 

. Many people have a strong brand loyalty to a par- 
ticular programming language, which the proposed 
computer-algebra language does not syntactically 
resemble. Probably they know only one programming 
language, and their expertise was too painfully 
acquired to contemplate enduring another learning 
period assumed to be of comparable length. This 
is actually a variant of the abovementioned phobia 
about learning a first programming language, but it 
is less well founded because the first language is 
generally by far the hardest to learn. Neverthe- 
less, this obstacle is most easily overcome by 
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. 

providing a large selection of surface languages 
which resemble those which are currently most 
popular at the elementary school through college 
levels. It is notable that none of the major 
computer-algebra languages, including the system 
described in the appendix, resembles either of 
the two languages most widely taught in our 
schools: BASIC and FORTRAN. Admittedly, to couch 
computer symbolic math in either syntax is making 
a sow's ear out of a silk purse, and it is onerous 
to help perpetuate archaic programming style. 
However, perhaps by giving the customers what they 
want, their perspectives will become sufficiently 
broadened to permit weaning to more modern syntax. 
It is wishful thinking to imagine that this group 
of potential beneficiaries is a minority. For 
example, given a choice between APL and BASIC on 
their IBM 5100 personal computers, a vast majority 
of the customers choose the latter. 

Some educators are concerned that students will not 
master algebraic operations if computers perform 
them for the students. This is a variant of the 
concern that numerical pocket calculators will de- 
stroy children's ability to do arithmetic. There 
are many arguments against this concern: 

(a) Similar concerns were undoubtedly expressed 
about Arabic numerals, multiplication tables, 
logarithms, and Laplace transforms; but we 
have survived their convenience. 

(b) Automatic computations free humans for higher 
pursuits. 

(c) A demonstration that an operation can be done 
automatically by computer can encourage average 
and poor students that the flashes of inspira- 
tion given only to brilliant students are un- 
necessary for that operation. There is re- 
vealed hope for the methodical but non- 
brilliant students. 

(d) Provided they are written in the surface pro- 
gramming language, inspection of the underly- 
ing algorithms can help students learn the 
methods for accomplishing the operations. 

(e) Programming extensions to the built-in opera- 
tions can reinforce understanding of both the 
built-in and new operations. 
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(f) Computer algebra enables students to experi- 
mentally investigate larger examples than is 
otherwise practical. Patterns thus revealed 
may suggest useful theorems to the students. 
Conjectured patterns thus broken provide 
counterexamples against false hypotheses. 

(g) A symbolic math system can be used by a 
computer-aided-instruction system in order to 
provide far more flexible math, drill, prac- 
tice, and question answering than is other- 
wise possible. 

(h) A built-in trace facility can allow students 
to see each step of a computation, rather than 
merely the final result. 

The above attitude obstacles are formidable, despite 
the mentioned remedies and arguments. Fortunately, there 
are more than enough enthusiastic and receptive educators 
to precipitate widespread computer-algebra usage, so it is 
unnecessary to waste time and good will exhorting their 
reluctant colleagues. Almost every math department, no 
matter how pure, has at least one closet computer enthusi- 
ast. Almost every engineering and science department has 
several proclaimed computer enthusiasts. Almost every 
computer science department has at least one faculty member 
who is bored with or dissatisfied with the language taught 
in the introductory course. Almost every high school and 
junior high school has at least one math, science, or pro- 
gramming teacher who is enthusiastic and anxious to try new 
ideas. These people are not hard to find. A few phone 
calls to likely departments will usually lead to them. 

4. The Proposal 

For reasons outlined in section 2, it is highly desir- 
able for math, science and engineering students to have 
computer algebra as a principal and a first exposure to 
programming. As explained in section 3, past obstacles to 
accomplishiDg this objective now have been or can be over- 
come. Consequently, the time is ripe to launch a well- 
organized national or international effort to develop, test, 
and disseminate educational materials which are necessary 
to take advantage of this educational opportunity. 

There is much that each of us can do informally to help 
accomplish these objectives: 
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I. 

. 

. 

. 

. 

. 

. 

. 

. 

I0. 

Introduce computer-algebra courses at our own re- 
search, development, or educational institutions, 
perhaps as special continuing-education courses 
outside the ordinary curriculum and time schedule. 

Introduce computer-algebra exposure in an enrich- 
ment or supporting role within appropriate existing 
courses. 

Locate adventuresome colleagues at the same or 
nearby institutions, and help them introduce com- 
puter algebra in their courses. 

Volunteer to give lectures and demonstrations at 
neighboring departments, colleges, high schools, 
and local or national math, engineering, science, 
and educational professional meetings. 

Take the initiative on acquiring, establishing 
access to, and publicizing some of the general- 
purpose systems which run on machines available at 
our institutions and at neighboring ones. (Because 
of the widely varying computational facilities, 
needs, and personal tastes present at various in- 
stitutions, it behooves us to adopt an ecumenical 
attitude and become proficient with more than one 
system.) 

Become known to computer-center consulting staffs 
and likely departments as an expert willing to help 
others use the locally available systems correctly 
and effectively. 

Expose new audiences to computer algebra by pub- 
lishing survey, tutorial, and application articles 
in journals and popular magazines where a computer- 
algebra article has never before appeared. 

Help and encourage newcomers to publish their 
computer-algebra research in their professional 
journals. 

Alert newcomers to relevant professional meetings, 
users' groups, and professional organizations. 

Write users' guides, supplements, or other tutorial 
material, and share it with our colleagues in return 
for their suggested improvements. Such material can 
be publicized or distributed via announcements in 
the SIGSAM Bulletin, via specific user-group news- 
letters, and ultimately via published textbooks. 
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Besides these informal means, I propose that those who are 
interested join the SIGSAM education committee for the purpose 
of cooperative development, testing, and dissemination of 
computer-algebra educational material. 

Hopefully, such a committee would include 

i. members knowledgeable about computer-aided in- 
struction, math curriculum, and computer-science 
curriculum spanning all levels; 

. authors willing to draft written material collec- 
tively covering all suitable computer-algebra 
systems; 

. teachers at all educational levels who are willing 
and able to test the material; 

. representatives from industry or government re- 
search labs interested in developing material for 
self-study or in-house courses; 

After an initial exchange of ideas, the committee 
could draft and undertake a plan of action. For example, 
the committee could submit joint funding proposals to 
appropriate agencies. 

After years of relative anonymity, computer algebra 
is ready to emerge as a widely known and widely used bene- 
ficial tool for education and research. We can do much to 
assist and hasten this emergence. 

. Appendix: Summary of an Educational Computer Symbolic 
Math System Implemented on the intel 8080 

This algebra system has 

i. A user-oriented high-level programming language 
in which all of the underlying math algorithms 
are written. 

. Interactive console I/0 and batch I/0 for sequen- 
tial files on a storage medium such as floppy 
disks. 

. Bignums and exact rational arithmetic, with user 
control over the I/0 radix and display format. 

. Automatic algebraic simplification including iden- 
tity operations and collection of similar terms or 
factors. 
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. Optional algebraic simplifications including 
multinomial expansion, expansions of products of 
sums, common denominators, and content factoriza- 
tion. 

. Optional simplifications for elementary functions, 
including expansion of logarithms of powers and/ 
or products, trigonometric multiple-angle and/or 
angle-sum expansions, and the opposite logarithmic 
or trigonometric transformations. 

7. Symbolic differentiation. 

. Symbolic integration, using derivatives-divides 
rules together with linearity of the integration 
operator. 

9. Symbolic summation. 

I0. Matrix algebra. 

ii. Exact solution of a nonlinear algebraic equation. 

12. An extendable Pratt parser-deparser. 

13. A primitive pattern matcher. 

The system is modular so that space can be saved by 
loading only the packages which are needed for a particular 
application. 

In one minute on an 8080 running at 2 megahertz with 
48 kilobytes, the system can expand 290!, (l+x) 20, sin(16x), 
(Xl+X2+...+x9)2, or sin (Xl+X2+...+x5). Thus, the speed 
and capacity are clearly sufficient for typical textbook 
problems. In fact, we suspect that, as with hand-held cal- 
culators, the system will prove useful for much research, 
despite the existence of significantly more powerful but 
less accessible or less personal systems. 

The algebra system was developed by Albert Rich and 
me, with support from NSF.* The source listing of the 
algebra system, written in muSIMP-77, is public domain, 
and it is being submitted for publication. That listing 
may be freely copied, modified, or adapted to other imple- 
mentation languages. 

The Soft Warehouse maintains a version of that algebra 
system, under the name muMATH-78tm, which it distributes 
together with its muSIMP-77 implementation software. The 

*Grant MCS7802234 
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distribution charges are low, in keeping with the educa- 
tional and personal-computing objectives of the software. 
The address of The Soft Warehouse is P.O. Box 11174, 
Honolulu, Hawaii 96828. 
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