
COf'ITRIBUTIONS

COMPUTER SYMBOLIC MATH & EDUCATION: A RADICAL PROPOSAL

David R. Stoutemyer
Electrical Engineering Department

University of Hawaii at Manoa
Honolulu, Hawaii 96822

Abstract

None of the commonly-taught programming languages is
very relevant to the typical elementary-school through col-
lege math curriculum, but computer symbolic math is rele-
vant to most of that curriculum. Consequently, a vast
opportunity for beneficial mutual reinforcement and cross-
motivation between math and computer education is being
squandered. This paper substantiates these claims, explains
their major causes, then proposes remedies.

i. Introduction

I still recall the sharp disappointment felt when I
realized that FORTRAN, my first programming language, was
essentially arithmetic. I also recall my first image of a
numerical analyst as someone sitting on a high stool wear-
ing a green eyeshade and arm garters, endlessly working a
desk calculator and consulting musty volumes of math tables.
I ultimately specialized in numerical analysis, but these
early impressions greatly delayed my appreciation of compu-
ters and of the varied ways that they can be used for
scientific computation. It is undeniably true that most
students are far more intrigued and motivated by the arti-
ficial intelligence and game playing applications of compu-
ters than by the accounting and numerical scientific appli-
cations which account for most computer usage.

Why not exploit this strong preferential interest to
help teach mathematics and computer science? If more good
math, science, and engineering students are attracted to
computers, and vice versa, more will ultimately learn to
use computers effectively for both numeric and non-numeric
scientific computations.

I propose that computer algebra is an ideal introduc-
tory computer programming language for math, science and
engineering students, that it is an ideal principal lan-
guage for these students, and that the means are at hand
for making it fill this role at all levels throughout our
educational system. As indicated in the title, I realize
this idea may seem radical. However, I believe that the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1089170.1089173&domain=pdf&date_stamp=1979-08-01

supporting arguments in the following two sections ought
to make the idea seem not radical at all.

. JlComputer Symbolic Math 0 Math l]
>> Ilcommon Programming Languages D Mathil

Although most university curricula do not yet take ac-
count of the fact, many entering college students have al-
ready had an exposure to computer programming in high school
and/or junior high school. It will probably not be long
before most students receive an exposure in high school or
junior high, and there are even indications of a trend
toward exposure to computer programming in elementary
schools. Thus, there are increasingly numerous opportuni-
ties for mutual reinforcement and cross-motivation between
math and computer education.

Unfortunately, none of the commonly-taught programming
languages is very relevant to the typical elementary-school
through college math curriculum.

Consider:

i. Numbers and arithmetic comprise appreciably less
than half of the entire math curriculum, but num-
bers and arithmetic are about the only mathematical
capabilities built-into all of the commonly-taught
languages.

. Most of these languages do offer arithmetic evalua-
tion of elementary functions, but none offers
algebraic simplification of expressions containing
such functions with non-numeric arguments, via
appropriate identities.

. Some of these languages offer Boolean "arithmetic"
on the constant values TRUE and FALSE, but none
offers Boolean "algebra" involving simplification
of expressions containing unbound Boolean vari-
ables.

. Some of these languages offer some built-in matrix
arithmetic on matrices having numeric element
values, but none offers matrix algebra for which
the elements can contain unbound variables, or for
which the entire matrix can be an unbound variable.

. A few of these languages offer complex arithmetic,
but none offers complex al~ebra involving simpli-
fication of expressions containing ~ and unbound
variables, using the identity i2=-I.

. One of the less-frequently first-learned languages
(PASCAL) offers some built-in set arithmetic on
finite sets of constants, but none offers set
algebra in which sets or their elements can be un-
bound variables, or in which sets can be infinite,
such as the set of all integers or of all positive
real numbers.

. None of the commonly taught languages even supports
all of the above kinds of "arithmetic".

. Even all of the above kinds of arithmetic total
significantly less than half of the entire math
curriculum, as is indicated in Table i.

. Computer symbolic math is relevant to far more of
this curriculum, as is also shown in Table i.

Now for the most damnatory indictments of commonly-
taught languages:

i0. The numbers and their arithmetic do not correspond

ii.

to those generally taught in schools!

The numbers and their arithmetic do not correspond
to those used in everyday life!

The limited-precision integer arithmetic of these lan-
guages is bad enough in these regards, even without its
usual overflow asymmetry induced by 2's complement arith-
metic. For the floating-point arithmetic of these languages,
we can add the indictment

12. Few other than the very best numerical analysts
fully understand the implications!

In contrast, the arithmetic that students learn in
elementary school is

i. indefinite-precision rational arithmetic,

. rounded and exact indefinite-precision decimal-
fraction arithmetic.

True, in high-school chemistry or physics students may
learn scientific notation, which could be regarded as
indefinite-magnitude, arbitrary-but-fixed-precision,
rounded-decimal arithmetic. In contrast, the floating-point
arithmetic of commonly-taught languages is finite magnitude,
with only 1 to 3 alternative precisions, usually chopped
nondecimal. All of these internal differences from true

10

math subject

relevance

L=iow
M=medium
H=high~-_ b

m ~-~ .o g

,cl tD lED
r~ o ~

L M H

4J

o ~
o

L M H

nS~er systems ~ I ~
exact integer and rational arithmetic
exact decimal-fraction arithmetic
numeric evaluation of algebraic expressions
transformation of algebraic expressions
exact solution of algebraic equations
evaluation of Boolean expressions
transformation of Boolean expressions
numeric evaluation of geometry formulas
proof of geometry theorems
inductive algebraic proofs
scientific notation for numbers
numeric use of trigonometric functions
proof of trigonometric identities
analytical geometry: plotting
analy[ical geometry: qualitative analysis
analytical geometry: theorem proving
symbolic differentiation and integration
Taylor series
L'Hospital's Rule
symbolic vector algebra & vector calculus
closed-form summation & series convergence
matrix algebra
solution of differential equations
numerical analysis
abstract algebra
number theory and combinatorics
functional analysis
probability
statistics
topology

½

TABLE i, RELEVANCY COMPARISON

Ii

scientific notation have external manifestations which are
baffling to most people.

It is also true that some of the less-frequently
taught languages, such as PL/I, do support decimal-fraction
arithmetic. However,

i. This arithmetic is finite precision.

. This arithmetic does not alter the overall conclu-
sion suggested by Table i.

. Most elementary PL/I texts assiduously avoid
decimal-fraction arithmetic in favor of floating-
point arithmetic.

Admittedly, extended sequences of indefinite-precision
arithmetic operations on experimental data suffers an un-
justifiable growth in digits, but to that one can respond:

i. Render onto floating-point arithmetic that which
one must.

. Render onto more rational arithmetic all that one
can.

Perhaps if floating-point computation becomes a choice
rather than an imposition, users will regard floating-point
with more of the caution it deserves.

Perhaps indefinite-precision rational and decimal-
fraction arithmetic are inevitably less efficient than their
respective finite-precision floating-point and integer
counterparts. However:

i. The difference in efficiency would greatly decrease
if the indefinite-precision arithmetics were micro-
coded or hardwired as are their finite-precision
counterparts in most computers.

. Matula and Kornerup [1979] have been exploring
promising finite-precision rational arithmetic
schemes called fixed-slash and floating-slash
arithmetic, which combine many of the advantages
of floating-point and rational arithmetic.

. Even if the indefinite-precision arithmetic is
substantially slower, computing has become so in-
expensive that for the computational needs of most
people, the cost of indefinite-precision computa-
tion is negligible compared to the labor of

12

assessing results done in an unnatural arith-
metic.

How negligible do computing costs have to become be-
fore software and hardware designers abandon this historical
obsession with efficiency? If a certain computation costs
i0 times as much in rational arithmetic as in floating-
point, and the latter method was deemed worthwhile a few
years ago when computer costs were more than i0 times as
much, is it not worthwhile now to do the computation in a
more humane arithmetic?

In the early days of computers, scientific computation
was usually done using binary fixed-point fractions having
magnitudes restricted to lie between 0 and i. The wide-
spread acceptance of floating-point brought substantially
greater convenience for a large loss in efficiency. For
most work, computer costs have now decreased enough to
justify another such step in favor of human understanding.
Those who cling to efficiency-worship should defend fixed-
point fractions rather than floating-point.

It is significant that calculator manufacturers, who
must sell directly to the individual end users, are general-
ly more sensitive than are computer manufacturers in this
regard. This is true even between the calculator and com-
puter divisions of companies which manufacture both: Most
calculators at least use rounded decimal floating-point
arithmetic having 8 or more digits, whereas computer manu-
facturers increasingly use chopped non-decimal floating-
point in a dangerously meagre 32-bits.

3. Obstacles to Teaching Computer Symbolic Math

As detailed in the previous section, computer symbolic
math is far more relevant to math education than are the
commonly-taught programming languages. Consequently, it
behooves us to be teaching computer symbolic math -- preferably
as a first programming language, beginning as early as
possible, perhaps distributed throughout the curriculum
rather than concentrated in one course.

There is no doubt in my mind that mathematically-
inclined students are enormously stimulated by the experi-
ence. Wherever I have demonstrated interactive computer
symbolic math to students, witnessing their compelling
excitement has increased mine to such an extent that I am
now determined to help make this educational tool be used
to its full potential throughout our educational system.
Accordingly, during the past several years I have been
teaching the subject at various levels, in various ways, in

13

order to informally identify obstacles and promising
approaches. This teaching experience so far consists of

i. A one-semester graduate course on theory, practice,
and applications of computer symbolic math.
(Taught twice).

. An undergraduate introductory one-semester
scientific-programming course of which about 20%
is devoted to using a computer-algebra system.
(Taught 4 times).

. A one-week intensive enrichment program for gifted
high school students. (Taught once, over spring
vacation).

3.1 Tutorial Obstacles

There is an almost total lack of published tutorial
material about computer symbolic math.

Regarding theory, portions of the books by Borodin and
Munro [1975], Aho, Hopcroft and Ullman [1975], and Knuth
[1968,1969] are appropriate, but none of these is devoted
entirely to the area or to the entire area. It is possible
but difficult for a researcher in the area to teach a
thorough theoretical computer-algebra course to self-
reliant graduate students from these books together with
scattered dissertations, conference proceedings, and journal
articles. Moreover, the fine course notes by Fateman [1978]
greatly ease the burden by collecting together a lot of this
material. Unfortunately, those outside the field will not
know of these notes or of the many relevant scattered refer-
ences. Consequently, there is a great need for a widely-
advertised book of this nature to be published by an aggres-
sive major textbook publisher. Otherwise, few new professors
outside the field will learn of the field and easily assimi-
late enough to introduce such a course at their university.
David Yun and I are working to complete such a text, but it
is a substantial impediment not to have one already avail-
able.

Regarding applications, there is also a wealth of
scattered references and a dearth of material conspicuously
and conveniently collected under one cover. An anthology of
reprints would be a quick and easy remedy, which could
attract many engineers, scientists, and applied mathemati-
cians into the field. In fact, companion volumes of re-
prints on theory and applications would make a nice combi-
nation.

14

Regarding specific computer-algebra systems, MACSYMA
has a great deal of excellent on-line and off-line tutorial
material, as described by Lewis [1977]. Regretably, there
is almost no tutorial material to support any of the other
systems, and it is these other systems which most of the
math students in this country will have to use. If
we really wish to attract math teachers to enrich their
courses with supplementary instruction about one of these
systems, then we must write and publicize a variety of
tutorial aids. Arithmetic, algebra, trigonometry, and cal-
culus teachers each need different material having numerous
exercises and full detail relevant to their particular sub-
ject, preceded by brief coverage of lower levels. These
primers and guides must be written to work well with the
most popular corresponding math texts. Similarly, if we
really wish to attract computer programming teachers to
use a computer-algebra system as a first language, then we
must write and publicize appropriate primers and guides for
them too, in the style of the currently popular programming
texts. This means also including some nonalgebraic appli-
cations, such as approximate numerical computations, data
processing, string processing, games, and list processing,
together with discussion of structured programming, etc.

3.2 Economic Obs'tacles

Batch processing is fine for certain kinds of computa-
tion, but for typical student exercises batch processing
is liable to give students the lasting impression that the
computing community is making a mountain out of a molehill.
Moreover, most computer-algebra results are so unpredictable
in form that in practice their computation is almost always
exploratory rather than via an a priori discernable sequence
of steps. Consequently, interaction is particularly desir-
able for computer-algebra students.

You can imagine my disappointment when, infused with
missionary zeal to bring interactive computer algebra to
the masses, I discovered that I could not afford to bring
even a batch computer algebra to even one full-size under-
graduate class! Having guest accounts at ARPA-net sites
had kept me blissfully ignorant of the costs involved. On
our campus:

i. Minimal WATFIV, WATBOL, or PL/C batch jobs on our
IBM 370/158 cost about 15¢, which includes cards,
time, and paper.

2. Any other batch job costs a minimum of about 50¢.

15

. If the input expressions are carefully constrained
to require just enough computation to yield impres-
sive results, a typical REDUCE batch job for a
trivial program costs about $2.00. When a program
of more than a page is involved, the cost can
easily be several times this large even for trivial
input expressions. I have no experience running
other systems on our machine, but I am more struck
by the consistency than the disparity of the vari-
ous SIGSAM Bulletin timing comparisons. Moreover,
algebraic efficiency is secondary compared to other
overhead costs for small student jobs. For such
exercises I would be surprised if any other suit-
able existing batch system incurred notably dif-
ferent charges on our computer.

. TSO (or APL) time sharing costs $i.00 per hour of
connect time plus computing charges which average
about $5.00 per hour for students developing
REDUCE programs.

. Time-shared BASIC on our HP-2000 costs only $i.00
per hour of connect time for students developing
BASIC programs.

. For classes of more than about 15 students, univer-
sity computation allowances make WATFIV, WATBOL,
PL/C, or HP BASIC the only affordable programming
languages at these two principal computation re-
sources.

I know that some schools have computer systems or
charge rates or computation allowances which permit inter-
active computing as the norm rather than the exception,
using languages which do not instill bad programming habits.
However, I also know that some schools have systems, rates,
and allowances which are even more inhibitory than ours.

The economy of WATFIV, WATBOL, PL/C, and HP BASIC for
students jobs is largely attributable to compactness and
sharing. Most of the latter system is permanently-resident
reentrant code, so that only the trivially small student
BASIC programs have to be swapped. For each of the other
three languages, our operating system collects together a
number of small student jobs and runs them as one job step,
using a compact resident translator. Thus, here are two
possible ways to make computer symbolic math economically
feasible for the masses at such schools:

i. Encourage Cornell University and the University of
Waterloo0to develop compact resident algebra

16

systems for batch student use.
call theirs WATALG!

(Waterloo could

. Encourage Hewlett-Packard and its competitors to
develop a dedicated time-shared algebra system
intended for student use.

Actually, it was unclear whether or not a sufficiently
compact system was achievable, so to explore this possibi-
lity, I first developed a truncated power series program
and a toy symbolic differentiation program for the HP-67
programmable pocket calculator, as described by Stoutemyer
[1979]. Although those programs are much less than what is
desirable in a minimal educational system, it was encourag-
ing that some symbolic math could be done in a memory capa-
city of only 224 instructions plus 26 numbers. This sug-
gested exploring a third way to make computer symbolic math
economically feasible for the masses.

Microcomputers based on the INTEL-8080 and competitive
chips are becoming increasingly prevalent in schools, be-
cause they are so incredibly inexpensive. Including a ter-
minal and a means of saving programs externally, prices range
from about $600 for a stripped-down model with 4K bytes of
memory and one cassette-tape drive, to about $4,000 for one
with 64K bytes of memory and dual 8-inch floppy-disk drives.
(There are, of course, expensive imitations which cost several
times as much.) These prices are so low that it is not worth
setting up an accounting system for their use. These prices
are so low that increasing numbers of our students and faculty
have purchased one for their own education and recreation.
At $4,000 each, our campus could purchase 20 of these for the
amount that our HP 2000 users are billed per year, or we could
purchase 400 of these for the amount that our IBM 370/158
users are billed per year.

Despite the mere 64K bytes of address space, powerful
versions of APL, COBOL, FORTH, FORTRAN, LISP, PASCAL, and
PL/M have been implemented for microcomputers. The struc-
tured implementation language muSIMP-77 tm developed by Albert
Rich is particularly suitable for implementing computer-
algebra systems. Consequently, bootstrapping from that sys-
tem, we developed the symbolic math system briefly summarized
in the appendix. The system is successful beyond our fondest
expectations, so now we have an economically feasible way to
provide computer algebra to large numbers of students. More-
over, the compactness of the system provides encouraging
evidence that the other two alternative solutions suggested
above are also worth pursuing.

The system is, of course, nowhere near as powerful as
the largest systems. However it could greatly help popularize
computer algebra, leading many more people to become aware of the

17

more powerful systems such as MACSYMA, which could help
them with their research.

3.3 Attitude Obstacles

How do math teachers and computer-programming teachers
feel about the idea of teaching computer algebra?

Most of them do not know about computer algebra, so a
tremendous amount of encouragement, support, and teacher
education is necessary from those who know about computer
algebra and about usage of specific systems.

How then do math teachers and computer-programming
teachers who have been exposed to computer algebra feel
about teaching it?

Probably, until enough of their peers are involved so
that they begin to feel left out, most will express courte-
ous admiration, but decline to get involved. It is more a
question of human nature than perceived merit. Perhaps the
reasons include

i. Many university math professors are relatively in-
different to calculus and to constructive mathemat-
ics in general. These subjects are not at the
prestigious forefront of pure math research, so
there is a strong incentive to devote most effort
elsewhere.

. Those who have never learned about computers may
feel that it is too late to take the plunge because
they anticipate a humiliating period of publicly-
revealed ignorance. I have heard that personal
computers available for checking out overnight and
over the weekend are helping overcome this cause
of reluctance.

. Many people have a strong brand loyalty to a par-
ticular programming language, which the proposed
computer-algebra language does not syntactically
resemble. Probably they know only one programming
language, and their expertise was too painfully
acquired to contemplate enduring another learning
period assumed to be of comparable length. This
is actually a variant of the abovementioned phobia
about learning a first programming language, but it
is less well founded because the first language is
generally by far the hardest to learn. Neverthe-
less, this obstacle is most easily overcome by

18

.

providing a large selection of surface languages
which resemble those which are currently most
popular at the elementary school through college
levels. It is notable that none of the major
computer-algebra languages, including the system
described in the appendix, resembles either of
the two languages most widely taught in our
schools: BASIC and FORTRAN. Admittedly, to couch
computer symbolic math in either syntax is making
a sow's ear out of a silk purse, and it is onerous
to help perpetuate archaic programming style.
However, perhaps by giving the customers what they
want, their perspectives will become sufficiently
broadened to permit weaning to more modern syntax.
It is wishful thinking to imagine that this group
of potential beneficiaries is a minority. For
example, given a choice between APL and BASIC on
their IBM 5100 personal computers, a vast majority
of the customers choose the latter.

Some educators are concerned that students will not
master algebraic operations if computers perform
them for the students. This is a variant of the
concern that numerical pocket calculators will de-
stroy children's ability to do arithmetic. There
are many arguments against this concern:

(a) Similar concerns were undoubtedly expressed
about Arabic numerals, multiplication tables,
logarithms, and Laplace transforms; but we
have survived their convenience.

(b) Automatic computations free humans for higher
pursuits.

(c) A demonstration that an operation can be done
automatically by computer can encourage average
and poor students that the flashes of inspira-
tion given only to brilliant students are un-
necessary for that operation. There is re-
vealed hope for the methodical but non-
brilliant students.

(d) Provided they are written in the surface pro-
gramming language, inspection of the underly-
ing algorithms can help students learn the
methods for accomplishing the operations.

(e) Programming extensions to the built-in opera-
tions can reinforce understanding of both the
built-in and new operations.

19

(f) Computer algebra enables students to experi-
mentally investigate larger examples than is
otherwise practical. Patterns thus revealed
may suggest useful theorems to the students.
Conjectured patterns thus broken provide
counterexamples against false hypotheses.

(g) A symbolic math system can be used by a
computer-aided-instruction system in order to
provide far more flexible math, drill, prac-
tice, and question answering than is other-
wise possible.

(h) A built-in trace facility can allow students
to see each step of a computation, rather than
merely the final result.

The above attitude obstacles are formidable, despite
the mentioned remedies and arguments. Fortunately, there
are more than enough enthusiastic and receptive educators
to precipitate widespread computer-algebra usage, so it is
unnecessary to waste time and good will exhorting their
reluctant colleagues. Almost every math department, no
matter how pure, has at least one closet computer enthusi-
ast. Almost every engineering and science department has
several proclaimed computer enthusiasts. Almost every
computer science department has at least one faculty member
who is bored with or dissatisfied with the language taught
in the introductory course. Almost every high school and
junior high school has at least one math, science, or pro-
gramming teacher who is enthusiastic and anxious to try new
ideas. These people are not hard to find. A few phone
calls to likely departments will usually lead to them.

4. The Proposal

For reasons outlined in section 2, it is highly desir-
able for math, science and engineering students to have
computer algebra as a principal and a first exposure to
programming. As explained in section 3, past obstacles to
accomplishiDg this objective now have been or can be over-
come. Consequently, the time is ripe to launch a well-
organized national or international effort to develop, test,
and disseminate educational materials which are necessary
to take advantage of this educational opportunity.

There is much that each of us can do informally to help
accomplish these objectives:

20

I.

.

.

.

.

.

.

.

.

I0.

Introduce computer-algebra courses at our own re-
search, development, or educational institutions,
perhaps as special continuing-education courses
outside the ordinary curriculum and time schedule.

Introduce computer-algebra exposure in an enrich-
ment or supporting role within appropriate existing
courses.

Locate adventuresome colleagues at the same or
nearby institutions, and help them introduce com-
puter algebra in their courses.

Volunteer to give lectures and demonstrations at
neighboring departments, colleges, high schools,
and local or national math, engineering, science,
and educational professional meetings.

Take the initiative on acquiring, establishing
access to, and publicizing some of the general-
purpose systems which run on machines available at
our institutions and at neighboring ones. (Because
of the widely varying computational facilities,
needs, and personal tastes present at various in-
stitutions, it behooves us to adopt an ecumenical
attitude and become proficient with more than one
system.)

Become known to computer-center consulting staffs
and likely departments as an expert willing to help
others use the locally available systems correctly
and effectively.

Expose new audiences to computer algebra by pub-
lishing survey, tutorial, and application articles
in journals and popular magazines where a computer-
algebra article has never before appeared.

Help and encourage newcomers to publish their
computer-algebra research in their professional
journals.

Alert newcomers to relevant professional meetings,
users' groups, and professional organizations.

Write users' guides, supplements, or other tutorial
material, and share it with our colleagues in return
for their suggested improvements. Such material can
be publicized or distributed via announcements in
the SIGSAM Bulletin, via specific user-group news-
letters, and ultimately via published textbooks.

21

Besides these informal means, I propose that those who are
interested join the SIGSAM education committee for the purpose
of cooperative development, testing, and dissemination of
computer-algebra educational material.

Hopefully, such a committee would include

i. members knowledgeable about computer-aided in-
struction, math curriculum, and computer-science
curriculum spanning all levels;

. authors willing to draft written material collec-
tively covering all suitable computer-algebra
systems;

. teachers at all educational levels who are willing
and able to test the material;

. representatives from industry or government re-
search labs interested in developing material for
self-study or in-house courses;

After an initial exchange of ideas, the committee
could draft and undertake a plan of action. For example,
the committee could submit joint funding proposals to
appropriate agencies.

After years of relative anonymity, computer algebra
is ready to emerge as a widely known and widely used bene-
ficial tool for education and research. We can do much to
assist and hasten this emergence.

. Appendix: Summary of an Educational Computer Symbolic
Math System Implemented on the intel 8080

This algebra system has

i. A user-oriented high-level programming language
in which all of the underlying math algorithms
are written.

. Interactive console I/0 and batch I/0 for sequen-
tial files on a storage medium such as floppy
disks.

. Bignums and exact rational arithmetic, with user
control over the I/0 radix and display format.

. Automatic algebraic simplification including iden-
tity operations and collection of similar terms or
factors.

22

. Optional algebraic simplifications including
multinomial expansion, expansions of products of
sums, common denominators, and content factoriza-
tion.

. Optional simplifications for elementary functions,
including expansion of logarithms of powers and/
or products, trigonometric multiple-angle and/or
angle-sum expansions, and the opposite logarithmic
or trigonometric transformations.

7. Symbolic differentiation.

. Symbolic integration, using derivatives-divides
rules together with linearity of the integration
operator.

9. Symbolic summation.

I0. Matrix algebra.

ii. Exact solution of a nonlinear algebraic equation.

12. An extendable Pratt parser-deparser.

13. A primitive pattern matcher.

The system is modular so that space can be saved by
loading only the packages which are needed for a particular
application.

In one minute on an 8080 running at 2 megahertz with
48 kilobytes, the system can expand 290!, (l+x) 20, sin(16x),
(Xl+X2+...+x9)2, or sin (Xl+X2+...+x5). Thus, the speed
and capacity are clearly sufficient for typical textbook
problems. In fact, we suspect that, as with hand-held cal-
culators, the system will prove useful for much research,
despite the existence of significantly more powerful but
less accessible or less personal systems.

The algebra system was developed by Albert Rich and
me, with support from NSF.* The source listing of the
algebra system, written in muSIMP-77, is public domain,
and it is being submitted for publication. That listing
may be freely copied, modified, or adapted to other imple-
mentation languages.

The Soft Warehouse maintains a version of that algebra
system, under the name muMATH-78tm, which it distributes
together with its muSIMP-77 implementation software. The

*Grant MCS7802234

23

distribution charges are low, in keeping with the educa-
tional and personal-computing objectives of the software.
The address of The Soft Warehouse is P.O. Box 11174,
Honolulu, Hawaii 96828.

6. Bibliography

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., [1975]:
The Design andAnalysis of Computer Algorithms, Addison-Wesley
Pub. Co., Reading, Mass.

Borodin, A.B. and Munro, I. [1975] : The Computational Complexity
of Algebraic and Numeric Problems, American Elsevier, N.Y.

Fateman, R.J., [1978]: unpublished notes on computer
algebra, Computer Science Dept., Berkeley, Calif.

Knuth, D.E. , [1968] : The Art of Computer Programming, Vol. l,
Fundamental Algorithms, Addison-Wesley Pub. Co., Reading,
Mass.

Knuth, D.E., [1969] : The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Addison-Wesley Pub. Co., Reading,
Mass.

Lewis, V.E., [1977]: "User Aids for MACSYMA," Proceedings
of the 1977 MACSYMA Users' Conference, NASA CP-2012,
pp. 277-290.

Matula, D.W. and Kornerup, P., [1979]: "An approximate
rational arithmetic system with intrinsic recovery of
simple fractions during expression evaluation,"
Proceedings of the 1979 European SymposiumonSymbolic and
Algebraic Manipulation, Springer-Verlag.

Stoutemyer D.R., [1979]: "Symbolic math on a programmable
hand-held calculator, " submitted.

24

