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No abstract received. 

ALGEBRAIC COMPUTAIONS AND STRUCTURES *) 

J. Davenport, Emmanual College, University of 

Cambridge, England. 

This lecture aims to cover the theoretical basis 

of computer algebra: to discuss the objects which 

computer algebra manipulates and the sort of 

manipulations it can perform. We will not go into 

great detail on the algorithms, and we will 

largely be concerned with questions like "Can X 

be computed" rather than "How do we compute X 

efficiently". 

What might we want to compute with? Integers, 

Rational numbers give no real problem - use 

"bignum" arithmetic with no intrinsic limit on 

the size of integers. Numbers mod p (p normally, 

but not necessarily, prime) are easy, and very 

efficient if p is small. Elements of groups (and 

other abstract algebraic structures) are a 

somewhat specialised area. Polynomials 

(univeriate or multivariate, since a multivariate 

polynomial is just a univariate polynomial 

whose coefficients are multivariate polynomials 

in fewer variables. This may not be the most 

efficient way, however): addition and.multipli- 

cation are easy _ g.c.d.s are possible, but 

factorisation is very difficult. (Note that 

this contrasts with non-constructive algebra, 

in which the ability to take g.c.d.s implies 

unique factorisation, and vice versa.) Rational 

functions (which require g.c.d.s of polynomials 

for practically everything) can be very time- 

consuming, and there is great scope for "clever" 

algorithms to minimise the number of g.c.d.s. 

Algebraic Extensions can cause great problems. 

There are many "schoolboy" fallacies to do 

with algebraic numbers and algebraic functions, 

and it is remarkably easy to write computer 

programs to reproduce them. One of the major 

problems with algebraic expressions is ensuring 

uniqueness - not only must we replace /32 by 3, 

1 
but we must also regard as equal to 

/5-2 
/5 + 2, and treat /2/3 -/6 as being zero. 

Further problems arise because algebraic 

extensions of unique factorisation domains are 

in general not unique factorisation domains. 

More general functions (exponentials, logarithms 

etc.) can cause great problems, even in 

apparently trivial matters, since it is not 

obvious how to test two such functions for 
2 2 

equality (why is I- sin x = cos x?). This whole 

area depends on so-called Structure Theorems, 

which describe the possible dependencies between 

such functions. Matrices should not be too 

difficult, but it turns out that classical 

(Gaussian elimination) techniques for 

determinants or inverses rapidly become very 

expensive. 

we can ~proximate expressions by various forms 

of algebraic series (as opposed to numerical 

expressions), such as Taylor, Laurent, Puiseux 

series. The obvious way to do this is to expend 

everything to, say, the 10th. power in x, but 

there are techniques for computing with 

recurrence relations for the series, so that 

another term can always be obtained relatively 

cheaply. If time permits we will also describe 

some applications of the theory of summation 

towards accelerating the convergence of such 

series. 
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Suggested Reading List 

A. C. Norman, Computing with Formal Power Series, 

ACM Transactions on Mathematical Software I 

(1975) pp. 346-356. 

R.E. Zippel, Univariate Power Series Expansions 

in Algebraic Manipulation. Proc. 1976 

Symposium on Symbolic & Algebraic Computation. 

THE ROLE OF THE DAP IN SYMBOL MANIPULATION 

R. Beardsworth, Dept. of Computer Studies, 

University of Leeds, Leeds LS2 9ST, England. 

An overview of the ICL Distributed Array 

Processor is given together with descriptions 

of a data structure and algorithms for a 

simple symbol manipulation system. These are 

followed by a description of a future, more 

general system. 

THE SCRATCHPAD PROJECT: ITS PRESENT STATUS 

J. Davenport, Emmanual College, University 

of Cambridge, England. 

No abstract received. 

ATTEMPTS AT IMPLEMENTING MACSYMA/370 

A.C. Norman, University of Cambridge, Computer 

Laboratory, Corn Exchange Street, Cambridge 

CB2 3QG, England 

In [21 a certain type of bases ("Gr6bner- 

bases") for polynomial ideals has been 

introduced whose usefulness stems from 

the fact that a number of important com- 

putability problems in the theory of 

polynomial ideals are reducible to the 

construction of bases of this type. The key 

to an algorithmic construction of Gr6bner- 

bases is a characterization theorem for 

Gr6bner-bases whose proof in [2] is 

rather complex. We present a simplified 

proof. The simplification is based on two 

new lemmas that are of some interest in 

themselves. The first lemma characterizes 

the congruence relation modu~ a polynomial 

ideal as the reflexive-transitive closure of 

a particular reduction relation ("M-reduction") 

used in the definition of Gr6bner-bases and its 

inverse. The second lemma is a lemma on general 

reduction relations, which allows to guarantee 

the Church-Rosser property under very weak 

assupmtions. 

References 

[13 L. Bachmair and B. Buchberger, A Simplified 

Proof of the Characterization Theorem for 

Gr6bner-Bases, ACM SIGSAM Bulletin vol. 14 

No. 4 (November 1980). 

[21B. Buchberger, A Theoretical Basis for the 

Reduction of Polynomials to canomical 

Forms, ACM SIGSAM Bulletin vol. 10 No 3 

(August 1976), pp. 19-29 

In mid-October 1980 the MACSY~ group at LCS 

sent a tape containing the source code for 

MACSYMA to Cambridge. This talk will discuss 

the problems that surfaced in attempting to 

run the code, and will indicate how much 

progress has been made towards an IBM 

implementation of the system. 

A SIMPLIFIED PROOF OF THE CHARACTERIZATION 

THEOREM FOR GROBNER-BASES 

L. Bachmair and B. Buchberger, Johannes 

Kepler Universit~t, A-4045 Linz, Austria. 

COMPILING ALGEBRAIC ABSTRACT DATA TYPES WITH 

HORN CLAUSES 

M. Bergman, Facult~ des Sciences de Luminy, 

Case 901, F -13009 Marseille, France. 

Our aim is to present the denotational and 

procedural semantics of an Algebraic Abstract 

Data Type (AAT) in first order Logic. An 

AAT is considered as an interpreter, the 

semantical actions of which are rewriting 

rules. The power of the methodology is used 

to construct hierarchical types, including 

genericity. 

We start describing the formal semantics of 
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an AAT in terms of a rewriting rules system. 

After recalling classical results we introduce 

the notion of T-reducibility i.e. local 

reduction via a type T, permitting term- 

normalization for complex types. 

Then we show how the reduction property, 

using substitutions "equals by equals", may 

be programmed with Horn clauses from a 

specification "~ la Guttag". Or more precisely, 

how it may be automatically interpreted in 

Prolog language. 

Finally we describe how this methodology respects 

the independence of the types and how it 

authorizes the implementation of hierarchical 

types in a way which takes its inspiration 

partly from the Martin-LOf's theory of types 

(1972-80) and partly from Burstall and Goguen 

(1977). 

Our work is an attempt to implement SAM as 

constructive mathematics, as in tact suggested 

by R. Loos (EUROSAM 74). This general 

viewpoint may be considered, for both user and 

designer, as an unique programming language. 

These ideas are under implementation, the main 

features are workable. 

STATE-SPACE SETS, STATE-SPACE GRAPHS AND 

N-PREFIX EXPRESSIONS 

V. KSfalusi and E. Halmay, CSO International 

Computer Education and Information Centre, 

1502 Budapest 112, P.O. Box 146, Hungary. 

We intend to discuss a method for solving a 

crucial problem in formule manipulation. 

This problem arises when a tree is elected 

as the best-fitting data structure - for 

the representation of a formula. 

The usage of trees always involves the 

permanent danger of a combinatorial explosion 

in storage requirement. We outline some 

solutions trying to grasp this problem from 

different points of view. However, these 

solutions are connected to each other by 

their common theoretical background. 

We start introducing some new set theory 

notions we need. 

Then we discuss implementation problems of 

a programming language, PROLOG (see in 

[1,2]), i.e. those theoretical considerations 

which are expected to result considerable 

improvements for PROLOG's implementations. 

Finally we briefly mention a new concept 

mathematical data structure and itsusage. 

References: 

[I] R. Kowalski, Logic for problem solving, 

North-Holland, New York (1979). 

[2] P. Szeredi, I. Fut6, PROLOG reference 

manual (Hungarian), Journal SZAMOLOGEP 

VII No. 3-4 (1977), pp. 5-130. 

[3] V. K6falusi, E. Halmay, State-space sets, 

state-space graphs and N-prefix expressions, 

Report CSO-ICEIC (1980). 

THE FAST-LOADING MODEL FOR SLISP/360 

J.P. Fitch, University of Bath, University 

Computer Unit, Claverton Down, Bath BA2 7AY, 

England. 

In the construction of large packages on top 

of LISP it is necessary to consider how to load 

only those parts of the system that are required 

The presentation considers the way in which 

this is done on the SLISP/360 system, including 

the version written entirely in LISP for system 

bootstrapping. The introduction of this loader 

has led to a simplification in the system 

generation of REDUCE and other packages, and 

will save machine time in future. 

The mechanism has a number of peculiar features 

that are dependent on the IBM 360 architecture 

and the original design of Stanford LISP/360. 

UTILIZATION OF SECONDARY MEMORY IN RUNNING OF 

THE REDUCE-2 

S.G. Kadantsev and V.A. Rostovtsev, Joint 

Institute for Nuclear Research, Dubna, USSR. 

The algebraic computation system REDUCE-2 is 

running on the CDC-6500 and ES-1040 at JINR 

[I]. The host language on CDC-6500 is UT LISP 

4.1. This language and its interpreter was 

designed in the University of Texas to run on 
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the CDC-6 ~0/7000 computer series under CRONOS 

and NOS operating systems. An adaptation of 

the interpreter was needed to get to run the 

REDUCE-2 on CDC-6500 under NOS BE 1.0 and this 

adaptation was done at JINR [2]. 

The REDUCE-2 system occupies a large amount of 

core memory: at least 64K words of CDC-6500. As 

this operating system at JINR allocates only 

48K words for a user's job it makes the REDUCE-2 

difficult for utilization. In this connection 

we dicided to use UT LISP 4.1 means to store 

interpreted functions on the disk and 

dynamically return of them into core memory by 

call [3]. For this purpose it was necessary to 

make further modifications of the interpreter. 

Our works is similar to the work reported by 

P.W. Milne for CYBER-76 under the SCOPE 2.1.4 

operating system [4]. 

The employment of mentioned means of LISP 

enables us to work with the REDUCE-2 system in 

interpreting mode only. Together with an 

intensive exchange with the external memory it 

causes an expence of the machine time. To 

decrease that expence we are planning to 

implement analogous facilities for compiled 

functions in future and to bring them into 

the LISP programming system on the ES computer 

series. 

We also started to study of the problem of 

the BESM-6 [5] paged memory using. For this 

purpose we brought simple means of paged 

external exchange into a LISP interpreter on 

this computer. The preliminary results show 

the little efficiency of those means. We 

intend to test more perfect exchange 

algorithms and above - mentioned means of 

virtual functions. In the case of success we 

shall be able to use the REDUCE-2 system on 

the BESM-6 computer as well. 

References 

[i] R.N. Fedorova, in: International Conference 

on Systems and Techniques of Analitical 

Computing and Their Applications in 

Theoretical Physics, JINR D 11-80-13, 

Dubna,(1980), pp. 46-57. 

[2] V.A. Rostovtsev, in: Meeting on Programming 

and Mathematical Methods for Solving the 

Physical Problems, JINR D I0, 11-11264, 

Dubna,(1978), pp. 175-179. 

[3] LISP Reference Manual CDC-6000. The 

University of Texas at Austin, Computer 

Center, CCUM-2, (1975). 

[43 P.W. Milne, REDUCE on the CDC CYBER 76, 

REDUCE Newsletter, No. 2, (April 1978), 

Univ.of Utah, Symbolic Computation 

Group, pp. 2-3. 

[5] L.N. Korolev, Computers architecture 

and software, Fizmatgiz, Moscow, (1978). 

THE OPTIMISATION OF USER PROGRAMS FOR,AN ALGEBRAIC 

MANIPULATION SYSTEMS 

R.J. Hicks, P.D. Pearce, School of Electronic 

Engeneering & Computer Science, Kingston Polytechnic 

Surrey, England KTi 2EE. 

Users of Algebraic Manipulation Systems frequently 

find that they are unable to obtain answers from. 

programs (written in some user interface language,U) 

that are both syntactically and algorithmically 

correct, through either lack of space or of computer 

time. There are many ways in which programs in U 

may be optimised by transforming them to more 

efficient programs in U. At present no documentation 

exists to guide the inexperienced user in writing 

efficient algebraic programs. In fact, a detailed 

knowledge of the working of the Algebra System 

is necessary to achieve efficiency. It seems 

unreasonable for a physicist, say, with an algebraic 

problem to solve to have to grapple withmore than 

the task of writing a correct program. Even with 

understanding of a particular Algebra System, many 

optimisations would be very tedious to incorporate 

and would obscure the algorithm. Futhermore the 

differences between Algebra Systems means that 

some optimisations are peculiar to a particular 

system. To investigate optimising transformations of 

user programs for Algebraic Manipulations Systems 

a widely available, general purpose system REDUCE 

has been chosen for study. This paper attempts to 

list some optimising transformations for user programs 

These transformations may then be applied manually. 

However the authors hope to automate the process. 

Optimisation for programs written in a numerical 

language, e.g. FORTAN are well documented and 

concentrate on time optimisation, this being 
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the most significant problem in this area. These 

optimising transformations provide a starting point 

for investigating optimisation of algebraic programs. 

When considering the eptimisation of algebraic 

programs space saving is as significant as time 

saving. Currently there is little literature 

available on space optimisation. 

The very nature of algebraic programs also opens 

them up to optimisations that would not be possible 

in a numerical system. With algebraic programs it 

is possible to rearrange the calculations. 

e.g. In ~ xidx 

i=l 

i+l 
x 

We may evaluate xidx as i ~  and 
then 

execute i0 xi+l 
i + i saving nine cal- 

i=l 
culations 

of the integral. 

Other optimisations, such as avoiding gcd calcu- 

lations, are peculiar to algebraic programs and 

these are discussed. 

The dramatic effect of these optimisations is 

illustrated with timings of REDUCE programs. 

Re ference : 

R.J. Hicks, P.D. Pearce, The Optimization of 

User Programs for an Algebraic Manupulation 

System, Internal Report RJH/PDP/I, Kingston 

Polyttechnic (1980). 

FORMAL MANIPULATIONS : GRAMMARS AND PROGRAMS 

J. Beney, G. Ceplat and L. Fr~con, INSA, 

20 Avenue Albert Einstein, 

F~ 69621Villeurbanne Cedex, France. 

It is well known that optimizations during 

compilation (in fact a kind of formal 

manipulations) can be described as rewriting 

contextual rules. Affix grammars (in particular 

2 level gran~nars) allow to write down these 

contextual transformations. Koster [9] has 

established that programming languages can be 

built with reference to these grammars, the 

rules of which describe the algorithmic 

structure of the translation process. Such a 

language (LET: Langage d'Ecriture de 

Transducteurs) has been implemented [1,2,3] 

and is actually compiled using PL/i. 

We intend to show how to pass from rewriting 

contextual rules to a program LET via an 

affix grammar. Two examples illustrate this 

process. The first deals with compiling 

optimization technices like canomical form 

setting and simplification of arithmetic 

expressions; the second, which is more 

"symbol manipulation" oriented, concerns 

the transformation of a rational function 

into continued fractions [4,8]. 

In both cases the resulting program is a 

compiled program which applied desired 

rewriting rules after a syntactical 

recognition defined in a wider frame, the 

Backus/Naur form. 

References: 

J. Beney, Langage d'Ecriture de transducteurs, 

Thesis Universit4 de Lyon I. 

J. Beney, L. Fr~con, Manuel de reference LET, 

Internal Report INCA (1979). 

J. Beney, L. Fr~con, Langage et Syst~me 

d'Ecriture de Transducteurs, to appear. 

G. Caplat, Arithmetique d'intervalles, Internal 

Report INSA (1979). 

A. Colmerauer, Metamorphosis Grammars, in 

Natural Language Communication with Computers 

Springer Verlag (1978). 

R.M. Cowan, M.L. Griss, Hashing - the key to 

rapid pattern matching, Symbolic and Algebraic 

manipulation, Springer Verlag (1979). 

R. Floyd, An algorithm for coding efficient 

arithmetic operations, CACM (Jan. 1961). 

P. Henrici, Einige Anwendungen der Kreisschrei- 

ben arithmetik in der Kettenbruchtheorie, in 

Interval Mathematics, Springer Verlag (1975). 

C.H.A. Koster, Affix Grammars, Algol 68 

implementation, North Holland Pub. Company 

(1971). 

ALGORITHMS FOR SOLVING DIFFERENTIAL EQUATIONS 

IN FINITE TERMS*) 

B.F. Caviness, General Electric Company, 

Corporate Research and Development, Schenectady, 

N.Y. 12345, U.S.A. and Rensselaer Polytechnic 

Institute, Troy, N.Y. 12181, U.S.A. 
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This talk will survey the current status of 

algorithmic methods for performing indefinite 

integration and solving differential equations 

in closed form. The capabilities built into 

the MACSYMA, REDUCE, and SCRATCHPAD computer 

algebra systems will be described and a few 

computational examples will be presented. 

Some of the mathematical underpinnings of the 

integration and ODE (Ordinary Differential 

Equation) algorithms implemented in computer 

algebra systems will be presented including 

aspects of the Liouvillian theory of elementary 

functions, the Risch integration algorithm, 

recent work on th integration of algebraic 

functions, structure theorems for simplifi- 

cation of transcendental functions, Kovacic's 

algorithm for the algebraic solution of second 

order linear homogeneous ODE's with rational 

function coefficients, and Singer's method for 

elementary function solutions of general linear 

homogeneous ODE's. 

If time permits, a small problem, typical of 

this research area, will be treated in some 

depth. An example is the problem of finding an 

efficient algorithm to compute the minimal 

algebraic extension of Q(x) that contains the 

arguments of the logarithmic terms in the 

integral of a given rational function. 

Reading List 

Sections 10 and 5 of Lecture Notes in Computer 

Science, No. 72: Symbolic and Algebraic 

Computation, E.W. Ng (editor), Springer-Verlag, 

(1979). 

H.I. Epstein and B.F. Caviness, "A Structure 

Theorem for the Elementary Functions and Its 

Application to the Identity Problem", Int. J. 

of Comp. and Info. Sciences 8 (Feb. 1979) 

pp. 9-37. Especially sections I-3 for an 

introduction to some basic material. 

J. Moses, "Symbolic Integration: The Stormy 

Decade", Comm. ACM 14, 8, (Aug, 1971 ) pp. 548- 

560. This is a survey paper on the status of 

integration in finite terms up to 1971. 

R.H. Risch, "The Problem of Integration in 

Finite Terms", Trans. AMS, 139, (May 1969) 

pp. 167-189. 

M. Rosenlicht, "On Liouville's Theory of 

Elementary Functions", Pacific J. Math. 65, 

2 (1976) pp. 485-492. 

M. Rothsein, "Aspects of Symbolic Integration 

and Simplification of Exponential and Primitive 

Functions", Ph.D. Thesis, Univ. of Wisconsin, 

(197~.Especially section 8. This thesis is 

available fromUniversity Microfilms International 

in Ann Arbor, Michigan and London, England. 

FORMAL SOLUTIONS OF DIFFERENTIAL EQUATIONS 

IN THE NEIGHBOURHOOD OF SINGULAR POINTS 

(REGULAR AND IRREGULAR) 

J. Della Dora and E. Tournier, IMAG, B.P. 53, 

F - 38041 Grenoble Cedex, France. 

We consider the differential operator 

N d i 
L=[a. 

i=0 i dx I 

where the ales [[x]] are formal series. 

Let 0 be a singularity of L, i.e. aN(0)=0. 

Suppose that at least for one index j 

(0 ~ j ~ N -i) holds a.(0) ~ 0. 
3 

If 0 is a s~ngularity of the solutions of 

L the form of the formal solutions of L in 

the neighbourhood of 0 depends on the nature 

of the singularity of the operator L at 0. 

If 0 is a regular singularity (or of a Fuchs 

type), we propose a Frobenius-like algorithm 

to generate the solutions, which are of the 

form: 

y = x (~0(x) + ~l(X) log (x) + Q Q l 

+ ~k(X) (log(x) k) 

If 0 is ~n irregular singularity we first 

extract the solutions of L which may be regular. 

we require 2 steps: 

- Application of a Newton-Ramis-Malgrange 

algorithm giving the number of these solution. 

- Application of the previous Frobenius 

algorithm. 

Then , we have to find the irregular solutions 

of the form: 

e P (~) Y= xl(~0(x) + ~I (x) log (x) + .... 

+ ~k(X) (log(x)k) , 
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where P~ Ix] and ~i 6 ~ [[x]] 

To achieve this we use a "blow-up" of the N-R-M 

polygone associated with the previously 

mentioned algorithm, allowing to determine ~ and 

the polynomial P. 

Then the solutions are completed by usinq the 

Frobenius-algorithm. 

We can also determine the formal solutions of L 

by the Ramis-Thoman algorithms. In generic cases 

these algorithms allow a resummation of the 

solutions. 

AN ALGEBRAIC APPROACH TO THE FUNCTIONAL 

EXPANSIONS OV THE SOLUTIONS OF FORCED 

DIFFERENTIAL SYSTEMS 

M. Fliess, F. Lamnabhi and M. Lamnabhi, Lab. des 

Signaux et Syst~mes E.S.E., Plateau du Moulon, 

F-91190 Gif-sur-Yvette, France. 

In engineering and in physics the difficulties 

related to the computation of the functional 

expansions of the solutions of forced non- 

linear differential systems have been often 

studied. Here a new approach is proposed 

which uses non-commutative variables which 

were introduced in computer science by M.P. 

Sch0tzenberger more than twenty years ago. 

This approach gives a non-linear generali- 

zation of Heaviside operational calculus 

which is well known among engineers and can 

be used to get Volterra kernels by constructive 

methods. 

OBTAINING PROLONGATION STRUCTURES FOR NON- 

LINEAR EVOLUTION EQUATIONS 

I. Cohen and I. Frick, University of Stockholm, 

Institute of Theoretical Physics, Vanadisv~gen 9 

S-I1346 Stockholm, Sweden 

The method for investigating soliton type 

equations invented by Wahlquist and Estabrook 

is briefly discussed. 

How computer algebra could be of assistance 

is pointed out. Of especial interest is the 

automatization of the process of extending 

Lie algebras which is central to the 

prolongation method. 

ALGEBRAIC OPERATOR, A POWERFUL FEATURE OF 

REDUCE AND ITS APPLICATION IN NON COMMUTATIVE 

ALGEBRAS 

P. Gragert, Twente University of Technology, 

Department of Applied Mathematics, 

P.O. Box 217, 7500 AE Ensehede, The Netherlands 

The aim is to use ALGEBRAIC OPERATORS in non 

commutative algebras. This can partly be done 

with the help of the LET-statement or by 

flagging the relevant operator as NONCOM and 

others. 

The new idea is, to use a PROCEDURE analogue 

to the already existing COEFF-PROCEDURE now with 

respect to an operator, which may occur in an 

expression with several different parameters. 

This is done with the help of a special purpose 

PROCEDURE. To show the correctness of this 

PROCEDURE a grammar is given for the relevant 

input parameter. Thereafter it is easy to show 

that the PROCEDURE will work correctly. 

This new OPCOEFF-PROCEDURE is used to implement 

abstrct LIE-algebra and the algebra of 

differential forms together with exterior 

differentiation. 

THE ROLE OF COMPUTER ALGEBRA IN ELECTRON AND 

LIGHT OPTICS 

P.W. Hawkes, Laboratoire d'Optique Eleetronique 

du C.N.R.S.B.P. 4347, F-31055 TOULOUSE CEDEX. 

Evaluation of the aberrations of optical systems 

and the search for lens combinations optimized 

with respect to one or several parameters are 

laborious tasks. In particular, very heavy algebra 

is required to establish analytic formulae for the 

numerous aberration coefficients and so 

tedious are such calculations that, in electron 

optics, they very rarely go beyond the primary 

aberrations. The individual operations involved 

in such calculations are, however, extremely simple: 

series expansions, substitutions, rearrangements, 

differentiation(optional). The problem is that the 

expressionSto be manipulated are so very bulky. 

The use of a computer algebra language is thus very 

tempting and at least two attemps to use such 

languages have been made: CAMAL by Ohiwa and by 

the present author and REDUCE by Goto and colleagues 
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in Japan. CAMAL is also being used by Lannes in 

connection with an optical interpolation problem. 

There has been some interest over the years in 

developing systematic procedures for obtaining 

higher-order aberration coefficients in both optical 

and electron optics. The work of Buchdahl in 

Australia and Rose and colleagues in Germany shows 

convincingly how this can be done and the vast 

amount of algebra involved when explicit formulae 

are required. It is clear that computer algebra 

is virtually essential here, although it has not 

yet been invoked, so far I am aware. 

Finally, we mention the use of model fields. The 

distributions of refractive index encountered in 

electron optics can often be usefully represented 

by simple mathematical models, which allow the 

aberration coefficients to be evaluated explicit~ 

usually by integrating expressior~sinvolving 

circular functions. This too is a task that can 

be confided to an algebra language, though the 

author has found that the programming effort 

required is somewhat greater than might have 

been expected given the elementary appearance 

of the integrals: 

f/sin mxlP ~sin nx~q...dx 
Uos kcos 

USE OF SYMBOLIC CALCULUS IN TESTING A PRIORI 

IDENTIFIABILITY OF COMPARTMENTAL SYSTEMS 

A. Bossi, Centro di Calcolo-Sez. Scientifica, 

Via Belzoni, 1-35100, Padova, Italy, 

L. Colussi, Istituto di Aicebra e Geometrica, 

Univ. di Padova, 

C. Cobelli and G. Romanin Jacur, Lab. per 

Richerche di Dinamica dei Sistemi e di 

Bioingegneria del CNR, Padova. 

The problem of a priori or structural 

identiafibility of compartmental systems is of 

remarkable practical importance in several 

disciplines of science and industry. We 

approched and solved it by employinq methods 

of symbolic calculus [117. 

Many classes of biological systems, e.g. in the 

field of endocrinology and metabolism [1,2,3], 

pharmacokinetics [4,5], ecology [6,7] etc. are 

usefully represented by means of compartmental 

methods; in fact the use of these models permits 

to determine numerically some parameters of 

direct biological interest, otherwise not 

measureable, by means of properly designed 

input-output experiments. The structural or a 

priori identifiability problem is a neccessary 

preliminary step of the overall modelling and 

identification process in evaluating, before 

the performing of the chosen experiment, 

whether it is possible, at least from a 

theoretical point of view, to estimate all 

the unknown model parameters of interest [8,9]. 

The class of compartmental models can be 

dynamically described in the usual system 

theory notation as: 

x = Ax + Bu 

X = c£ 

where x, u, y are the state vector (amount of 

material in the compartments), the input vector 

(injection of material) and the output vector 

(measurements of one or more compartments) 

respectively, where matrices 

A= [aij] , B= ~il~' C= [Cmi I are 

constrained as follows: 

a..=k., i~j 
13 13 

where kij is the transport rate parameter 

from compartment j to i; 

a.. = - ~ k. 
ii j~i 3~ 

where koi is the transport rate parameter 

from i to the environment; 

bil k 0 and c . a 0 
ml 

The model input-output relation may be 

expressed in Laplace transform: 

G(s) = Y(s)/U(s) = C(sI-A)-IB . 

G(s) is a matrix of rational functions in s which 

contains all the informations supplied by the 

experiment. Every coefficient of the generic 

Gml(S) numerator or denomenator is a 

polynomial in the kij's , bil,S, c .'s: if it 
ml 

is equated to the respective numerical value 

obtained from the experiment, then a system of 

nonlinear equations in the parameters can be 

written. If this system of equations admits a 

finite number of solutions then the original 

compartment model is said to be system identi- 

fiable. 

19 



System identifiability is guaranteed if the 
~E 

Jacobian matrix J=~ is of full rank (where E 

is the symbolic coefficient vector and P is 

the parameter vector). 

Parameter identifiability is achieved only 

if the considered system of equations admits 

one and only one solution. 

Therefore an identifiability test is constructed 

in three steps: 

I) The symbolic expression for G(s) is 

generated. 

2) The symbolic expression for J is generated. 

3) J is checked for full rank. 

The coefficients of the symbolic expression for 

G (s) are computed by resorting, according to 

a rule derived from Mason's formule [i0]. This 

rule binds the coefficients to cycles and paths 

of the compartmental graph. Their specific 

structure, multilinear monomials, allows an 

efficient representation via binary strings, 

inLDlying that the differentiation operations, 

required during step 2, are particulary 

simple. 

Step 3 is dominated by determinant calculations. 

Consequently, the string representation must 

allow efficient multiplication (resulting in 

nonlinear monomials) and addition (thus 

sorting). We derived a representation which, 

for instance, gives an O(n'm')-complexity 

for a multiplication, where n' and m' are the 

string-lengths of the operands. 

The program is written in PASCAL. Running it 

on a CDC 6600, about 25 sec. CPU were required 

for computing a determinant of a I0 x i0 

matrix, which proved to consist of about 3000 

monomials. 
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THE ACTIVITY ON ALGEBRAIC COMPUTATION AT JINR 

V.A. Rostovstev, Joint Institute for Nuclear 

Research, Dubna, USSR. 

Individual works on using computers for 

obtaining analitical results of tasks took 

place at JINR since 1962 [1,2,3]. Regular 

activity in application of algebraic computation 

to physics and applied mathematics have been 

starting at JINR since 1976. It was caused 

mainly by the needs of theoreticians of the 

Institute. 
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By that time we had received the programming 

system SCHOONSCHIP from CERN. The system was 

installed on the CDC-6500 and become used by 

physicists [6,7]. Then the system was somewhat 

improved and afterwards replaced by the new 

version developed by Strubbe [8]. 

During his first visit to Dubna in 1976 

professor A. Hearn had placed at our disposal 

the LISP interpreter for CDC 6000 computers 

series, the LISP compiler and the programming 

system REDUCE. In 1977 the LISP interpreter 

was adapted to the operating system NOS BE 1.0 

[9]. In september 1977 professor A. Hearn had 

visited Dubna for the second time. He took 

part in the Meeting on programming and 

mathematical methods for solving the physical 

problems [10] and helped us in the initial 

state of the installation of new REDUCE version 

on the CDC-6500. Besides this version we also 

got the LISP interpreter for IBM system 360. In 

1978 the REDUCE system was running on the 

CDC-6500 with the operating system NOS BE 1.0 

and on the ES-1040 with the operating system 

with fixed tasks. 

Due to kindness of the authors and holders of 

the systems we also received CLAM, SYMBAL, 

CAMAL systems and not long ago -FORMAC/PL i 

system. The first two are running on CDC-6500 

and the last two -on ES-1040. We have also two 

algebraic computation systems developed in USSR 

on the BESM-6 computer [11,12]. 

Now the system SCHOONSCHIP is used most 

intensively. It was applied tot the solution of 

problems in physics, mathematics and engineering 

[5]. Essential results were obtained by 

O.V. Tarasov, A.A. Vladimirov and A.Ju. Zharkov 

[13,14], D.Ju. Bardin with his colleagues [15] 

and V.P. Gerdt [16]. V.P. Gerdt used also the 

SYMBAL and REDUCE systems in his investigations. 

We think its reasonable to quote final words 

of the article [15]: "...analitical computations 

became for us as necessary and daily as numeric 

calculations by FORTRAN. At present we do not 

carry out any of our investigations without 

using both of these methods in combination". 

We also try to stimulate an interest in using 

of algebraic computations among scientists, 

especially among physicists. The most complete 

of today survey of the works in this field was 

published in the journal "Uspekhi Fiz. Nauk" 

by the scientists of JINR [17]. The program of 

the traditional meeting on programming and 

mathematical methods for solving the physical 

problems in 1977 [4] includes five reports on 

this theme. In 1979 the international 

conference on systems and techniques of 

analitical computing and their applications 

in theoretical physics was held at JINR. 

20 reports were presented to the conference. 

The representatives from seven member- 

countries of JINR and the representatives 

from twenty four soviet institutes amongst 

them took part in this conference. The 

conference has shown the great interest and 

active work on this scope carried by the 

scientists of the member-countries of JINR. 

The conference showed also that not only 

existing systems are used and are developed 

but new researches carried out. 

We intend to carry out the research on this 

scope at JINR both using algebraic 

computation and in further development of 

programming systems for algebraic computation. 

From the point of view their development 

systems based on the high level languages 

especially REDUCE seem to be the most 

perspective. Separate article presented 

to this meeting describes our efforts in 

solving one of the urgent tasks on the 

improvement of operational factors of the 

REDUCE system. 
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A NEW APPROACH TO "PROVABLE" SOLVING A SYSTEM 

OF NON-LIneAR EQUATIONS 

S.M. Rump, Institut for Angewandte Mathematik, 

Universit~t Karlsruhe, Kaiserstrasse 12, 

D-7500 Karlsruhe, W-Germany 

n Let f: ~ + IR be a continuously differentiable 

function. We consider the problem of finding 

regions of n containing exactly one solution 

of the equations f(x)=0 and show that it can be 

"provable" solved using single-precision 

arithmetic only, assume one assembler-routine 

for a rounded scalar-product is available. 

Reference: 

S.M. Rump, Kleine Fehlerschranken bei Matrix 

problemen, Dr-Dissertation, Institut f0r 

Angewandte Mathematik, Universit~t Karlsruhe 

(Febr. 1980). 

SYMBOLIC-NUMERIC INTERFACE 

P. Kemp, Computing Lab., University of 

Newcastle upon Tyne, Claremont Road, 

Newcastle upon Tyne, NEi 7RU England, 

No abstract received. 

FACTORIZATION OF UNIVARIATE POLYNOMIALS: A 

STATISTICAL STUDY 

M. Mignotte, Centre de Calcul de l'Esplanade, 

Universit~ Louis Pasteur, 7 Rue Rent Descartes, 

F-67084 Strasbourg, France. 

In order to obtain information about the 

average cost of the current algorithms to 

factorize univariate integral polynomials, 

we study the statistical behaviour of several 

natural functions on univariate polynomials 

over finite fields. 

Reference 

M. Mignotte, Faetorization of Univariate 

polynomials: a statistical study, ACM SIGSAM 

Bulletin Vol. 14. No.4 (November 1980). 

CAN RABIN'S PROBABILISTIC FACTORIZATION FOR 

LARGE FINITE FIELDS REPLACE THE HENSEL 

CONSTRUCTUION? 

J. Calmet and R. Loos, Universit~t Karlsruhe, 

Institut f~r Informatik I, D-7500 Karlsruhe 1, 

Postfach 6380, West Germany. 

Rabin has given a probabilistic algorithm for 

polynomial factorization in large finite fields 

which makes precise the ideas of Berlekamp. One 

would like to see whether the expensive Hensel 

construction in factoring integral polynomials 

can be replaced by Rabin's algorithm. 

AN ANALYSIS OF QUANTIFIER ELIMINATION 

ALGORITHMS FOR THE THEORIES OF DENSE ORDER 

AND DENSE ORDER WITH ADDITION 

R. Loos and R. Ottmann, Universit~t Karlsruhe, 

Institut f~r Informatik I, D-7500 Karlsruhe I, 

Postfach 6380, West Germany. 

We have implemented and analyzed a decision 

procedure of Ferrante and Rackoff for the 

first order theory of dense order (without 

constants) and a quantifier elimination 

algorithm of Collins for the first order 

theory of dense order under addition (with 

constants). Both algorithms belong to an 

algebraic simplifier. 

COMPUTATIONAL GROUP THEORY 

J. NeubOser, RWTH Aachen, Lehrstuhl D f~r 

Mathematik, Templergraben 64, D-5100 Aachen, 

West Germany 
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In the talk I shall try to give: 

a) a short overview of existing general-purpose 

implementations of methods for the investiga- 

tion of finite and finitely presented groups, 

b) some idea of the underlying thoughts for only 

some selected of these methods. 

Here are some references on the topic, taken, 

together with keywords, from a bibliograpghy of 

the field kept current by and available from: 

Dr. V. Felsch, Lehrstuhl D fur Mathematik, Tem- 

plergraben 64, D-5100 Aachen. 

M.D. Atkinson, An algorithm for finding the 

blocks of a permutation group, Math. Comput. 

29 (1975), pp. 911-913. 

H. Brown, An algorithm for the determination 

of space groups, Math. Comput. 23 (1969), 

pp. 499-514. 

[Zassenhaus Algorithm] 

G. Butler, The Schreier algorithm for matrix 

groups, S~SAC '76, proceedings of the 1976 

ACM Symposium on symbolic and algebraic 

computation (Yorktown Heights, N.Y.,1976) 

edited by R.D. Jenks, ACM, New York (1976), 

pp. 167-170. 

J. Cannon, Construction of defining relators 

for finite groups, Discrete Math. 5 (1973), 

pp. 105-129. 

J. Cannon, A general purpose group theory 

program, Proceedings of the second international 

conference on the theory of groups (Austral. 

Nat. Univ. Canberra, 1973), edited by M.F. 

Newman, Lecture Notes in Math., Vol 372, 

Springer, Berlin (1974), pp. 204-217. 

J. Cannon, A draft description of the group 

theory language CAYLEY, SYMSAC '76, proceedings 

of the 1976 ACM Symposium on Symbolic and 

algebraic computation (Yorktown Heights, N.Y., 

1976), edited by R.D. Jenks, ACM, New York 

(1976), pp. 66-84. 

j.J. Cannon; A.L. Dimind, G. Havas, 

J.M. Watson, Implementation and analysis of 

the Todd-Coxeter algorithm. Math. Comput. 27 

(1973), pp. 463-490. 

H.S.M. Coxeter; W.O.J. Moser, Generators and 

relations for discrete groups. Ergebnisse der 

Mathematik und ihrer Grenzgebiete, Band 14, 

Springer, Berlin (1957) Third Edition(1972) 

A. Dietze; M. Schaps, Determining subgroups 

of a given finite index in a finitely presented 

group, Canad. J. Math. 26 (1974), pp.769-782. 

[Low index subgroups]. 

J.D. Dixon, High speed computation of group 

characters. Numer. Math. i0 (1967), pp.446- 

450. 

V. Felsch, A machine independent implementation 

of a collection algorithm for the multiplication 

of group elements. SYMSAC '76 proceedings of 

the 1976 ACM Symposium on symbolic and algebraic 

computation (Yorktown Heights, N.Y., 1976), 

edited by R.D° Jenks, ACM New York (1976), 

pp. 159-166. 

V. Felsch, J. NeubOser, Uber ein Program zur 

Berechnung der Automorphismengruppe einer 

eindlichen Gruppe. Numer. Math. Ii (1968), 

pp. 277-292. 

V. Felsch, J. NeubOser, An algoritm for the 

computation of conjugacy classes and centra ~ 

lizers in p-groups. Symbolic and algebraic 

computations (proceedings of Eurosam '79, 

an international symposium on symbolic and 

algebraic manipulation, Marseille, 1979), 

edited by E.W. Ng, Lecture Notes in Computer 

Science, Vol. 72, Springer, Berlin (1979), 

pp. 452-465. 

Th. Gabrysch, Ein Computerprogramm zur Berech- 

nung von Charactertafeln. Beschreibung des 

Programms "Charac". Mimeographed Notes, Version 

78-2, Fakult~t for Mathematik, Univ. Bielefeld, 

(1978), 42 pages. 

G. Havas, A Reidemeister-Schreier Program. 

Proceedings of the second international 

conference on the theory of groups (Austral. 

Nat. Univ., Canberra, 1973), edited by M.F. 

Newman, Lecture Notes in Math., Vol 372, 

Springer, Berlin (1974) pp. 347-356. 

G. Havas, M.F. Newman, Application of computers 

to questions like those of Burnside. Burnside 

groups (Proceedings of a workshop, Univ. 

Bielefeld, Germany, 1977), eidted by J.L. 

Mennicke, pp. 211-230. Lecture Notes in Math., 

Vol. 806, Springer, Berlin, 1980. 

[Nilpotent Quotient] 

G. Havas, T. Nicholson, Collection, SYMSAC '76, 

Proceedings of the 1976 ACM Symposium on 

symbolic and algebraic computation (Yorktown 
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Heights, N.Y., 1976), edited by R.D. Jenks, 

ACM, New York (1976), pp. 9 - 14. 

[Nilpotent quotient]. 

G. Havas; L.S. Sterling, Integer matrices and 

abelian groups. Symbolic and algebraic 

computations (Proceedings of Eurosam '79, an 

international symposium on symbolic and algebraic 

manipulation, Marseille, 1979), edited by 

Edward W. NG, Lectures Notes in Computer Science, 

Vol. 72, Springer, Berlin (1979), pp. 431-451. 

[Elementary divisor algorithm (abelian decompo- 

sition)~. 

J. Leech, Coset enumeration, Computational 

problems in abstract algebra (Proc. Conf., 

Oxford, 1967), edited by J. Leech, Pergamon, 

Oxford (1970) , pp.21-35 [Todd-Coxeter]. 

J. Leech, Computer proof of relations in groups. 

Topics in group theory and computation (Proc. 

summer school, Univ. College, Galway, 1973), 

edited by Michael P.J. Curran, 

Academic Press, London (1977), pp. 38-61. 

[Application of Todd-Coxeter]. 

J.S. Leon, On an algorthim for finding a base 

and strong generating set for a group given 

by generating permutations. To appear in 

Math. of Comp. 

J.S. Leon, Finding the order of a permutation 

group, to appear in Proc. Sympos. Pure Math., 

Vol. 37. [Schreier Todd-Coxeter Sims method, 

Held group]. 

J.S. Leon; V. Pless, CAMAC 1979, Symbolic and 

algebraic computations (Proceedings of EUROSAM 

'79, an international symposium on symbolic 

and algebraic manipulation, Marseille, 1979), 

edited by Edward W. M~, Lectures Notes in 

Computer Science, Vol. 72, Springer, Berlin 

(1979), pp. 249-257. 

I.D. MacDonald, A computer application to finite 

p-groups. J. Austral. Math. Soc. 17 (1974), 

pp. 102-112. [Nilpotent quotient3 

J. McKay, The construction of the character 

table of a finite group from generators and 

relations, Computational problems in 

abstract algebra (Proc.Conf., Oxford, 1967), 

edited by J. Leech, Pergamon, Oxford (1970), 

pp. 89-100. 

J. McKay, Subgroups and permutation charactersL 

Computers in algebra and number theory (Proc. 

Sympos. Appl. Math., New York, 1970), edited by 

Garrett Birkhoff and Marshall Hall, Jr., 

SIAM-AMS Proc., Vol.4, Amer. Math. Soc., 

Providence, R.I. (1971), pp. 177-181. 

N.S. Mendelsohn, An algorithmic solution for a 

word problem in group theory; Canad. J. Math. 

16 (1964), pp. 509-516. Correction: Canad. 

J. Math. 17 (1965), pp. 505. 

[Todd-Coxeter3. 

J. NeubOser, Untersuchungen des Untergruppen- 

verbandes endlicher Gruppen auf einer pro- 

grammgesteuerten elektronischen Dualmaschine. 

Numer. Math. 2 (1960), pp. 280-292 

J. NeubOser, Investigations of groups on 

computers. Computational problems in abstract 

algebra (Proc. Conf., Oxford, 1967), edited 

by J. Leech, Pergamon, Oxford,(1970)pp. 1-19. 

[Survey, Todd-Coxeter, subgroups, characters, 

reprentations]. 

J. NeubOser, Computing moderately large 

groups: some methods and applications, 

Computers in algebra and number theory (Proc. 

Sympos. appl. Math., New York, 1970), edited 

by Garrett Birkhoff and Marshall Hall, Jr., 

~IAM-AMS Proc., Vol. 4, ~mer. Math. Soc., 

Providence, R.I. (1971), pp. 183-190. 

J. NeubOser, Some computational methods in 

group theory, Third international colloquium 

on advanced computing methods in theoretical 

physics (Proc. Conf., Marseille, 1973), pp. 

B-II-I - B-II-35. Centres de physique 

theorique C.N.R.S., Marseille, 1973. 

[Survey, Todd-Coxeter, low index subgroups, Rei- 

demeister-Schreier, defining relations, nilpotent 

quotient, characters]. 

M.F. Newman, Calculating presentations for 

certain kinds of quotient groups, SYMSAC '76, 

Proceedings of the 1976 ACM Symposium on symbolic 

and algebraic computation (Yorktown Heights, 

N.Y., 1976), edited by R.D. Jenks, ACM, 

New York (1976), pp.2-8. [Nilpoint quotient3. 

M.F. Newman, Determination of groups of prime- 

power order. Group theory (Proc. Miniconf., 

Austral. Nat. Univ., Canberra, 1975), edited 

by R.A. Bryce, J. Cossey and M.F. Newman, 

Lecture Notes in Math., Vol. 573, Springer, 

Berlin, (1977), pp. 73-84. 
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[p-groups, application of nilpotent 

quotient]. 

Ch.C. Sims, Computational methods in the 

study of permutation groups, Computational 

problems in abstract algebra (Proc. Conf., 

Oxford, 1967), edited by J. Leech, 

Pergamon, Oxford (1970), PP. 169-183. 

Ch.C. Sims, Determining the conjugacy 

classes of a permutation group, Computers 

in algebra and number theory (Proc. Sympos. 

appl. Math., New York, 1970), edited by 

Garrett Birkhoff and Marshall Hall, Jr., 

SI~-~S Proc., Vol.4, Amer. Math. Soc., 

Providence, R.I. (1971), pp. 191-195. 

Ch.C. Sims, Computation with permutation 

groups. Proceedings of the second symposium 

on symbolic and algebraic manipulation 

(Los Angeles, Calif., 1971), edited by S.R. 

Petrick, ACM, New York (1971), pp. 23-28. 

Ch.C. Sims, Some group-theoretic algorithms, 

Topics in algebra (Proc. 18th summer research 

Inst., Austral. Math. Soc., Austral. Nat. 

Univ., Canberra, 1978), edited by M.F. Newman, 

Lectures Notes in Math., Vol. 697, Springer, 

Berlin (1978), pp. 108-124. 

Ch. C. Sims, Group-theoretic algorithms, a 

survey, Proceedings of the international 

congress of mathematicians (Helsinki, Finland, 

1978), edited by Olli Lehto, pp. 979-985. 

[Elementary divisor algorithm (abelian 

decomposition), Todd-Coxeter, nilpotent 

quotient, low index subgroups, Reidemesiter- 

Schreier, subgroup lattice, permutation 

group algorithms, Schreier-Todd-Coxeter]. 

Coxeter]. 

J.A. Todd; H.S.M. Coxeter, A practical method 

for enumerating cosets of a finite abstract 

grou~ Proc. Edinburgh Math. Soc. (2) 5 (1936), 

pp. 26-34.[Todd-Coxeter]. 

J.W. Wamsley, Computation in nilpote~t groups 

(theory), Proceedings of the second inter- 

national conference on the theory of groups 

(Austral. Nat. Univ., Canberra, 1973), edited 

by M.F. Newman. Lecture notes in Math., 

Vol. 372, Springer, Berlin (1974), 

pp. 691-700.[Nilpotent quotient]. 

J.W. Wamsley, Computing soluble groups, Group 

theory (Proc. Miniconf., Austral. Nat. Univ., 

Canberra, 1975), edited by R.A. Bryce, 

J. Cossey and M.F. Newman. Lecture Notes in 

Hath., Vol. 573, Springer, Berlin, (1977), 

pp. 118-125. 

LINEARIZATION OF PRODUCTS OF STRUCTURE 

FACTORS IN CRISTALLOGRAPHY 

Chr. de Polignac, Inst. Von Laue-Langevin, 

Avenue des Martyrs, F-38000 Grenoble, France 

and 

J. Dulac, Lab. de Cristallographie, CNRS, 

Grenoble, France. 

A statistical method in crystallography for 

the determination of the structure factor 

F(~) = [ exp2zi C x requires the formal 
3 

derivation of successive powers (up to 4) 

of this quantity. 

This talk shows how these computations have 

been performed using full possibilities of 

REDUCE including its symbolic mode to take 

into account the symmetry rules relevant to 

the space group considered. 

Because of core limitations, this talk gives 

some tricks to split critical examples. All 

these results are given for space group 201 

(according to the International tables for 

X-ray crystallography). 

SOME BASIC PROCEDURES IN COMPUTATIONAL NUMBER 

THEORY 

H.G. Zimmer, Universit~t des Saarlandes, 

Fachbereich Mathematik, D-6600 Saarbrficken, 

West Germany. 

A famous unsolved problem in algebraic number 

theory is Fermat's conjecture asserting that 

the diophantine equation 

n n n 
x +y =z 

has no solutions in nonzero rational integers 

x, y, z when n is a positive integer greater 

than 2. This problem concerns the solutions 

of a diophantine equation in the ring Z of 

rational integers or, more generally, in the 

field Q of rational numbers. However, an 

attempt to prove Fermat's conjecture 
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immediately leads to the necessity of looking 

at the diophantine equation over the subring 

R of integers of an algebraic number field K 

instead of merely the subring Z of Q. With this 

new setting of the problem some basic questions 

arise about the field K and its subring R. 

(I) How to represent the elements of R; in 

other words, does R have an integral 

basis? 

(2) What are the units and what the irreducible 

elements of R? 

(3) Do the elements of R uniquely factor into 

products of a unit and irreducible elements; 

in other words, is R a unique factorization 

domain? 

(4) If R is not a unique factorization domain, 

can the irreducible elements of R be replaced 

by the prime ideals of R in order to obtain 

unique factorization into prime ideals as a 

substitute for unique factorization into 

irreducible elements; in other words, is R 

a Dedekind domain? 

(5) If R is a Dedekind domain containing Z, how 

to implement unique factorization into prime 

ideals for the ideals of R as well as those 

of Z; in other words, what is the 

decomposition law in R? 

(6) How to decide for a given ideal of R whether 

or not it is principal? 

(7) How many ideal classes do exist in the ring 

R; in other words, what is the class number 

of R? 

(8) Do the ideal classes of R form an abelian 

group under multiplication and, if so, what 

is the structure of this group? 

These questions constitute the main objective of 

algebraic number theory, and answers are provided 

by the theory. From a computational point of view, 

however, constructive answers are required. For 

carrying out actual calculations some very effec- 

tive basis procedures are needed by which it is 

possible to determine e.g. an integral basis, the 

unit group, the class number and the decomposition 

law of R in K. The corresponding problems are only 

briefly discussed. 

In a more detailed manner a special diophantine 

equation is considered over an algebraic number 

field K for which the basic procedures just 

mentioned are available. We start out with the 

special case n = 3 of Fermat's equation. This 

equation can be birationally transformed into an 

elleptic curve, that is, a plane cubic curve E 

having no singularities. Elliptic curves are of 

special interest because the set E(K) of points 

of E with coordinates in K forms an additive 

abelian group. The rational point group E(K) 

enjoys the highly important property of being 

finitely generated. Hence E(K) is the direct sum 

of a finite group Etor(K), the torsion group of 

points of finite order in E(K), and a free 

group Efr(K) with finitely many independent 

generators of infinite order whose number r 

is called the rank of E over K. 

Our attention focuses on the problems of 

dertermining, for any given elliptic curve E 

over a certain algebraic number field K, the 

torsion group Etor(K) and the rank r. The tasks 

of finding elliptic curves E over K having 

nontrivial torsion groups Etor(K) and of 

constructing elliptic curves E over K with 

high ranks are also dfscussed. It is interesting 

to notice that the rank of E over K depends in 

some way on the class number of K. Solving these 

problems in a computational manner involves the 

basic procedures for carrying out calculations 

in the number field K mentioned in connection 

with the above questions (i)-(8). 

ON THE COMPUTATION OF LATTICE VECTORS OF 

MINIMAL LENGTH, SUCCESSIVE MINIMA AND REDUCED 

BASES WITH APPLICATIONS 

M. Pohst, Mathematisches Institut, Universit~t 

zu K61n, Weyertal 86-90, 5 K61n 41, 

West Germany. 

Abstract. The problem of determining shortest 

vectors and reduced bases or successive minima 

of latticeS often occurs in algebra and number 

theory. Nevertheless, computational methods for 

the solution hardly exist in the literature. It 

is our aim to discuss how to develop efficient 

algorithms for this purpose. 

We start with an algorithm for the deter- 

mination of shortest vectors in a lattice, or - 

slightly more general - in a residue class of 
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an IR-linear space modulo a sublattice of equal 

dimension. Then we use the theory of reduction 

and this algorithm to develop a method for the 

computation of a reduced basis of a lattice, and 

-closely related- the computation of successive 

minima. Finally we present some examples of 

succesful application of these new algorithms 

taken from entirely different fields, i.e. 

lattice theory, integral matrix groups and 

algebraic number theory. 

Reference: 

M. Pohst, On the computation of lattice vectors 

of minimal length, successive minima and reduced 

bases with applications, ACM SIGSAM Bulletin 

Vol. 14 No.4 (November 1980). 
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ALGORITHMS ON MONOMIAL CURVES 

F. Mora, Istituto di Matematica, Universit~ 

di Genova, Via L.B. Alberti 4, 1-16132 

Genova, Italy. 

Applying results in numerical group theory 

allowed Herzog [2] to give a characterization 

of the ideal of monomial curves 

xi=tnl, x2=tn2, x3=tn3. 

Using these results of Herzog in combination 

with some numerical observations about the 

equations of the curve, allows to characterize 

its tangent core by applying an algorithm which 

is based on the cartesian equation of the 

curve. This leads to a classification of all 

curves 

xl=tnl , x2=tnll+n2 , x3=tnlH+n 3 

where nl,n2,n 3 are natural numbers and ~,~ 

are natural parameters. First we survey 

some of our theoretical results conserning 

the classification of monomial curves [3], 

leading to a classification algorithm [4]. 

Then we discuss the algorithm for the 

computation of the tangent cone [4]. 

Both algorithms are implemented in BASIC on a 

PDP-Vo3. In this context it is worthwhile 

mentioning related work of Graetz [i] 

*)'-~e6~ lectures were also part of the short AMS 

course on Computer Algebra (see ACM SIGSAM 

Bulletin Vol 14 No°2 (May 1980)). The notes of 

this course will appear as AMS monograph. 
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Late abstract of presentation to be included in 

session 7: 

BRIEF INFORMATION ON ALGEBRAIC MANIPULATION 

IN CSEcHOSLOVAKIA 

Z. Kalina, Czech. Acad. of Sciences, 

Astronomial Institute, Bude~sk~ 6, 

12023 PRAHA 2, Czechoslovakia. 

The first experiments in algebraic manipulation 

by computer were performed in Czechoslovakia 

at the beginning of 1970s. 

At first, they were not algebraic systems but 

only special solutions of particular problems. 

For instance the question of pillars elasticity 

in construction was solved at the University 

of Brno. A simple system for polynomial 

manipulation was designed at the Faculty of 

the electrical enigneering in Prague. 

The FORMAC, version PL/I was the first general 

algebraic system installed in Czeschoslovakia. 

It is used in the Institute of the Information 

Theory and Automation in Prague. Another 

algebraic system called ALITA is used for 

Poisson series manipulation. It is used by 

scientists from the Institute of Plasma 

Physics in the computer centre of the Academy 

of Sciences. 

In 1977 the algebraic system REDUCE-2 was 

implemented in the Astronomical Institute of 

Czechoslovak Academy of Sciences in Ond~ejov. 

I should like to express our thanks to the 

REDUCE author - professor Hearn from the 

University of Utah. 

The REDUCE system is implemented in batch 

processing version and works under operating 

system OS on computer machine EC 1040. In the 

first stage we learned how to use the system 

and we got acquai;nted with the algebraic 

manipulation by computer in general. Later we 

began to use REDUCE system for solving 

particular tasks, mainly the tasks from 

celestial mechanics. 

In 1979 we obtained the latest version of 

REDUCE from professor Hearn. At present, the 

display terminals are established in the 

Astronomical Institute computer center and we 

are getting ready to carry on the Time Sharing 

Option system. 

In connection with TSO, we want to rewrite 

batch processing version of REDUCE to 

interactive version under TSO. We expect better 

possibilities in programming and algorithm 

debugging, better testing and control of 

complicated algebraic expressions and 

manipulations. 
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