
Position statement for EUROCAL 85 

Computing with Geometric Objects 
J. Nievergelt 

lnformatik, ETH, Zurich 

The notion of "computing" in the course of 
time 

The types of computer applictions dominant at 
different times may be classified into three 
generations according to their influence on the 
development of computing. 

The first generation, characterized by numeri- 
cal computing, led to the development of many 
new algorithms. It transformed numerical 
analysis from a craft to be practiced by every 
applied mathematician into a field for special- 
ists. It soon became obvious that writing good 
(efficient, robust) numerical software requires 
so much knowledge and effort that this task 
cannot be left to the applications progi'ammer. 
The development of large portable numerical 
libraries became one of the major tasks for 
professional numerical analysts. 

The second generation, hatched by the needs 
of commercial data processing, led to the 
development of many new data structures. It 
focused attention on the problem of efficient 
management of large, dynamic data collec- 
tions, mostly under batch processing condi- 
tions. Searching and sorting were recognized 
as basic operations whose time requirements 
turned out to be the bottleneck for many 
applications. 

We are now on the threshold of a third gen- 
eration of applications, dominated by comput- 
ing with pictorial and geometric objects. This 
change of emphasis is triggered by today's ubi- 
quitous interative use of personal computers, 
and their increasing graphics capabilities. It is 
a simple fact that people absorb information 
fastest when it is presented in pictorial form, 
hence computer graphics and the underlying 
processing of geometric objects will play a role 
in the majority of computer applications. The 
field of computational geometry has emerged 
as a scientific discipline during this past 
decade in response to the growing importance 
of processing pictorial and geometric objects. 
It has already created novel and interesting 

algorithms and data structures. Geometric 
computation may well replace the more tradi- 
tional fields of numeric computation and of 
data management as the major research area 
in algorithm analysis. 

Computational geometry - theory and practice 

During the seventies goemetric problems 
caught the attention of researchers in concrete 
complexity theory. They brought to bear the 
finely honed tools of algorithm analysis and 
achieved rapid progress. Elementary problems 
(e.g. determining intersections of simple 
objects such as line segments, aligned rectan- 
gles, polygons) yielded elegantly to general 
algorithmic principles such as divide-and con- 
quer or plane sweep. But in many instances a 
surprisingly large increase of difficulty showed 
up in going from two to three dimensions: for 
example, intersection of polyhedra is still an 
active research topic where major efficiency 
gains are to be expected. The theory of com- 
putational geometry, although well underway, 
has as yet explored only a fraction of its 
potential territory. 

The practice of computational geometry is 
even less well understood. Many important 
geometric problems in computer-aided design, 
in geographical data processing, in graphics do 
not lend themselves to being studied and 
evaluated by the asymptotic performance for- 
mulas that the algorithm analyst cherishes. 
For example, asymptotics does not help in 
answering the question whether we can access 
an object in one disk access or two, thus being 
able to display it "instantaneously" on the 
designer's screen - realistic assumptions about 
the size of today's central memories are 
needed. Nor will asymptotics settle the argu- 
ment raging in the CAD community between 
proponents of boundary representations and 
adherents of constructive solid geometry - 
taste, experience, and type of application are 
the relevant parameters. And below the highly 
visible issues of object representation, data 
structures and algorithms, hide the tantalizing 

(Continued on p. 18) 

19 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1089369.1089377&domain=pdf&date_stamp=1984-05-01


20. A.K. Lenstra, Po~nomial factorization by root 
approximation, report IW 242/83, Mathematisch 
Centrum, Amsterdam. 

21. H.W. Lenstra, Jr., Integer programming with a fixed 
number of variables, Math. Oper. Res. 8 (1983), 538- 
548. 

22. M.O. Robin, Probabilistic algorithms in finite fields, 
SIAM J. Comput. 9 (1980), 273-280. 

23. Palfy, A po~nomial bound for the orders of primitive 
solvable groups. J. of Algebra, July 1982, 127-137. 

24. A. Sch6nhagee, Factorization of univariate integer 
po~nomials by diaphantine approximation and by an 
improved basis reduction algorithm, to appear in 
proceedings llth international colloquium on auto- 
mata, languages and programming, A.lltwerp 1984. 

25. A. Shamir, A po~nomial time algorithm for breaking 
the Merkle-Hellman cryptosytem, Proceedings 23th 
IEEE symposium on foundations of computer sci- 
ence (1982), 145-152. 

26. H. Te Riele, Mertens' conjecture disprtwea~ CWI 
Newsletter 1 (1983), 23-24 (Centrum voor Wiskunde 
en Informaticca, Amsterdam). 

27. P. Van Erode Boas, Another NP.complete partition 
problem and the complexRy of computing short vectors 
in a lattice, Rep. Dep. Math. 81-04, University of 
Amsterdam, April 1981. 

28. J. Von zur Gathen, Hensel and Newton methods in 
valuation rings, Math. Comp., to appear. 

29. J. Von zur Gathen, Factoring sparse multivariate 
po~nomials, Proceedings 24th IEEE symposium on 
foundations of computer science (1983), 172-179. 

(Continued from p. 19) 

details the numerics of computational 
geometry - such as the problems caused by 
braiding straight lines. 

The state of the art: what is it, what should it 
be? 

Today's commercially available software in 
computer graphics and CAD has not yet taken 
into account the results of computational 
geometry. Straightforward algorithms are 
mostly used whose theoretical efficiency is poor 
as compared to known results. Perhaps the 
straightforward algorithms are better in prac- 
tice than theoretically optimal ones, but such 
difficult questions have hardly been investi- 
gated, as CAD systems development today is 
so labor intensive that all resources are 
absorbed by just getting the system to work, 
and algorithm analysis has so far largely res- 
tricted itself to theoretically measurable per- 
formance. 

We know by analogy with numerical analysis 
what the next step should be in the maturing 
process of computational geometry: The 
development of efficient, portable, robust pro- 
gram libraries for the most basic, frequent 
geometric subroutine library of CAD, thus 
exposing theoretical results to a severe practi- 
cal test. The interaction between computa- 
tional geometry and computer-aided design 
promises to be mutually beneficial. 

18 




