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ABSTRACT 
In order to improve the course design of a CS1 model-driven pro-
gramming course we study potential indicators of success for such a 
course. We explain our specific interpretation of objects-first. 

Of eight potential indicators of success, we have found only two to 
be significant at a 95% confidence interval: math grade from high 
school and course work. The two significant indicators explain 
24.2% of the variation of the exam grade. The result concerning 
math grade contradicts earlier findings. 

We discuss four aspects of our research: the explanation power of 
the potential success indicators, the impact of our findings on teach-
ing, limits of what to conclude from the available data, and the vari-
ety of the notion “objects-first”. 

Because of the variety of interpretations of “objects-first”, the pre-
sent research is necessary as a supplement to earlier research in or-
der to make generalizable results on the success factors for objects-
first programming. 

Categories and Subject Descriptors 
K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information systems 
education. 

General Terms: Experimentation, Human Factors. 

Keywords: Objects-first, CS1, object-oriented programming, 
model-driven programming, predictors of success, course design. 

1. INTRODUCTION 
A substantial amount of research has been conducted in order to 
identify variables that are predictors of success of students aiming 
for a university degree. Investigated variables encompass gender 
[23], the educational level of parents [26], ACT/SAT scores [5, 12, 
23], and emotional factors [25]. Research has been conducted in the 
general context of education, within computer science, and in the 

more topic specific area of introductory programming [4, 6, 13, 17, 
19]. Even in the area of introductory object-oriented programming 
there has been research trying to establish general factors to predict 
success or failure of particular students. Especially the work of Phil 
Venture [27] focuses on a systematic evaluation of hypothesis re-
lated to the factors for success of an introductory programming 
course using an objects-first approach [14]. The results are docu-
mented in [27, 28]. 
Ventura analysed different factors and their influence on the out-
come of participation in an object-first CS1 course. The predictors 
included prior programming experience, mathematical ability, aca-
demic and psychological variables, gender, and measures of student 
effort [27 p. xxi]. Ventura’s conclusion is that there are big differ-
ences between the previous findings in imperative-first program-
ming courses and his object-first programming course. In the studies 
of imperative-first courses the student’s mathematical abilities was 
found to be a predictor of success [17]. Ventura [27], however, 
found that this is not the case in his object-first CS1 course. In the 
imperative-first course, prior programming experience was also a 
predictor for success; Ventura found this was not the case in his ob-
jects-first course. As a curiosity he found that previous knowledge 
of Java was a negative predictor of success: the students with previ-
ous knowledge performed worse than students without [27 p. 73]. 

As always there are some preconditions to the research. One impor-
tant precondition is the characteristics of the course that founded the 
basis for the research. Ventura used a CS1 course with a graphics 
early approach. In [28] he describes the graphics early approach as 
follows: The course focuses primarily on the teaching of problem 
solving using object-oriented design techniques with the following 
features [28 p. 241]:  

Design-centered. Through the introduction of a simplified version 
of UML class diagrams, students are taught to think about problem 
solutions independently of the code. Design once, code anywhere 
has become the motto for the class. Design patterns are introduced 
both in lecture and integrated into the programming assignments. 
These serve as examples of good design as well as vehicles to en-
courage students to think at a higher level of abstraction. 

Graphical. Classroom examples use graphics to motivate and 
ground OO concepts such as encapsulation, inheritance, and poly-
morphism. The programming assignments are also graphical allow-
ing the students to build programs that are like those they are used to 
using. 

Objects-first. Students are taught from the very beginning to think 
in terms of objects and the fundamentals of object-oriented pro-
gramming, encapsulation, inheritance, and polymorphism. These 
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concepts are introduced before traditional language constructs for 
selection and iteration. 

Furthermore, Ventura writes: “Empirical testing was conducted on 
the graphical design-centric objects-first CS1 to identify the predic-
tors of success” [28 p. 127]. Venturas findings are only valid for 
students participating in an introductory programming course simi-
lar to his. In the current research, we look for potential success fac-
tors for an introductory programming using a different approach 
than Ventura’s; our approach is best characterized as a model-based 
approach to programming [1]. 

2. A MODEL-DRIVEN PROGRAMMING 
COURSE 
This section describes goal, form, and content of the model-driven 
programming course as well as the lab test that constitutes the final 
examination and upon which the grading is based. 

2.1 General Information 
This course constitutes the first half of CS1 at University of Aarhus. 
The course runs for seven weeks, one to two weeks after the course 
there is a lab test with a binary pass/fail grading. 

The grading is based solely upon the behaviour in and result of a lab 
test; suitable performance during the course is a prerequisite for the 
final exam but does not count as part of the grading. 

There are approximately 235 students from a variety of study pro-
grammes, e.g. computer science, mathematics, geology, nano sci-
ence, economy, multimedia, etc. 40% are majors in computer sci-
ence, and they are the only group of students that continue with the 
second half of CS1. The rest of the students proceed to other pro-
gramming courses related to their fields (e.g. multimedia program-
ming, scientific computing, etc.). 

The students are grouped in teams of 18-20 students; in the fall of 
2004 there where 13 teams. Each team has its own Teaching Assis-
tant (TA). 

2.2 Goals 
The purpose of the course is that the student learns the foundation 
for systematic construction of simple programs and through this ob-
tains knowledge about the role of conceptual modelling in object-
oriented programming.  

Furthermore, it is the goal that the student becomes familiar with a 
modern programming language, fundamental programming lan-
guage concepts, and selected class libraries.  

After the course the student will be able to explain and use funda-
mental elements in a modern programming language, use conceptual 
modelling in relation to preparing simple object-oriented programs, 
implement simple OO-models in a modern programming language, 
and use selected class libraries. 

2.3 Form 
The course runs for seven weeks; every week there are four lecture 
hours1, one lab hour with a TA, and three class hours also with a 
TA. Besides scheduled hours, the students are supposed to work ap-
proximately seven hours per week in study groups or on their own. 

                                                                 
1 For scheduled actvities (lectures, labs, classes, etc.) an hour 

means only 45 minutes. 

Every week (except for the first), there is a mandatory assignment 
that must be handed in to the TA. The TA examines the assignments 
and gives personal as well as collective feedback to the students. If 
an assignment is too weak, the student gets a chance to improve it. 
Approval of five out of six weekly assignments is a prerequisite for 
the final exam but does not count as part of the grading. 

The four lecture hours per week are used for presentation and dis-
cussion of general concepts and specific details in the course mate-
rial, but also for live programming. Live programming is program-
ming in front of the students in the lecture theatre using computer 
and projector. The purpose of live programming is to reveal the pro-
gramming process to the students (see [2]). 

The one lab hour per week is unstructured in the sense that the stu-
dents (typically in pairs) work on what they find useful, the purpose 
of the lab is that the students can get help from a TA while working 
on the exercises of the week. 

The three class hours per week are used for discussion of the weekly 
assignment, for discussion of other exercises that the students has 
been working on, as well as for discussion of topics from the text-
book. 

For the coming versions of the course, we are planning to adopt 
closed labs as a more structured form of the lab activities; also we 
are planning to reschedule such that two (or three) hours per week 
are spent on closed labs and two (or one) in the classroom. 

2.4 Contents 
The course content is fundamental programming language concepts, 
object-orientation, and techniques for systematic construction of 
simple programs. 

• Fundamental programming language concepts. Variable, value, 
type, expression, object, class, encapsulation, control structure, 
method/procedure, recursion, type hierarchies. 

• Object-orientation. Modelling; class structures (specialization, 
aggregation and association); use of selected class libraries (in 
particular collection libraries), interfaces and abstract classes. 

• Systematic development of small programs. Modularization, 
stepwise refinement/incremental development, test. 

The above is a logical listing of the course contents; it is not the or-
der in which the content is covered. The content is covered using a 
spiral approach [3]; for further details on the structure and contents 
of the course, see [1, 7, 8]. 

2.5 The Exam 
The exam is organized such that 20 students are tested concurrently. 
The test takes place in a lab; besides the 20 students, five TAs, the 
lecturer and an external examiner are present in the lab. 

We schedule one hour per group of 20 students, but only 30 minutes 
are used for the lab test. The rest of the time is used for administra-
tive activities and as a buffer. 
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Figure 1: Sample Lab Test Exercise 

 
Each group of students get a different assignment. In principle the 
assignments are identical (they are all instances of the same generic 
assignment), but the students does not know nor realize this. The 
similarity of the assignments is important for fairness as well as 
comparability of the students’ results. A sample assignment is pre-
sented in figure 1. 

At the beginning of the exam, the students get a sheet of paper with 
the assignment consisting of nine small progressive programming 
tasks, and then they start programming. To ease inspection, we tell 
the students to tile all editor windows on the screen during the test. 

When the first three tasks are finished, the students must demon-
strate what they have achieved for one of the TAs. The lecturer and 
the external examiner evaluate the process as well as the product of 
each student, i.e. the students behaviour as well as the quality of the 
programs they produce counts in the final grading. 

The sample lab test exercise in figure 1 is about tracks and playlists; 
the other exercises are about luggage and flights, employees and de-
partments, side effects and medicine, etc. Although the concepts 
modelled by the classes vary, the assignments have similar structure. 
Because of this similarity, it is very easy for the lecturer and the ex-
ternal examiner without too much effort to evaluate the achieve-
ments of each student.  

2.6 Apprenticeship Inspired Pedagogy 
The course utilizes an apprenticeship-based pedagogy where stu-
dents are exposed to how an expert programmer works. This is im-
plemented by the lecturer behaving as a professional programmer 
(the master). For more information see [11]. 

The master reflects and thinks aloud of the particular action, maing 
them visible and as a source of identification [19]. As such, the ap-
prentice (student) learns from observing the master (teacher) per-
forming the actions embedded in the profession (e.g. coding, testing, 
etc). 

3. RESEARCH METHOD 
This paragraph discusses the methodology utilized in identifying the 
predictors of success for the model based CS 1 course described in 
the previous section. Section 3.1 outlines the research questions to 
be studied. Section 3.2 provides details on the subjects involved in 
the study. Section 3.3 describes the data and how it was provided, 
while Section 3.4 presents the manner in which data were collected 
and calculated. 

3.1 Research Questions 
In our current research, we look for potential success indicators that 
are statistically significant in predicting students’ success when un-
dertaking a model-driven introductory programming course. The 
factors are motivated by previous research in the field [13, 17, 27, 
30]. 

1. What is the relationship of mathematical ability to model-based 
CS1? 

2. What is the relationship of gender to model-based CS1? 

3. What is the relationship of major/intended major to model-based 
CS1? 

4. What is the relationship of course work to model-based CS1? 

5. What is the relationship of years at the university to model-
based CS1? 

6. What is the relationship of the team to model-based CS1? 

Due to technical problems, we did not collect data on the students 
feeling about the course, motivation for the course etc. Due to a 
technical problem, we were not able to use information about the 
students’ previous programming experience. 

3.2 Subjects 
The subjects studied in this paper were students enrolled at the 
course Introduction to Programming at the University of Aarhus, 
Denmark, during the fall of 2004. Only data from students taking 
the course for the first time were used; to exclude the possibility of 

Lab Test Exercise (30 minute test) 

1. Create a class, Track, that represents a piece of music; the Track 
class is specified in the following UML diagram. 

        

Track 
 
String artist 
String songName 
int min 
int sec 
 
String toString() 

 

 
The four field variables must be initialized in a constructor (through 
four parameters of suitable types). The method toString must return 
a string representation for a piece of music, e.g. 

  ”Yesterday: The Beatles (2:05)” 

2. Create a test method named exam in class Driver. The method must 
be static, have return type void, and have no parameters. 

3. Create two Track objects in the exam method using object refer-
ences t1 and t2; print the two Track objects using the toString 
method. 

4. Create a new class, Playlist, representing a collection of Tracks; the 
Playlist class and its relation to the Track class is specified in the 
following UML diagram: 

 

Playlist 
 
String playlistName 
 
void addTrack(Track t) 
void removeTrack(Track t) 
Track findShortestTrack() 

Track 
 
String artist 
String songName 
int min 
int sec 
 
String toString() 

* 

 
5. Implement the method addTrack (and removeTrack) so that it adds 

(removes) the object t to (from) the Playlist object. 

6. Create a Playlist object in the exam method in the Driver class; as-
sociate the two existing Track objects with the Playlist object. 

7. Implement the method findShortestTrack. The method must return a 
shortest (measured in playing time) Track object from a Playlist ob-
ject. You can assume a non-empty Playlist object. In other words: 
You need not worry about the playlist being empty. 

8. Use the methods findShortestTrack (from class Playlist) and 
toString (from class Track) to print the shorter of the two Track ob-
jects that was created and associated with the Playlist object in the 
exam method. 

9. Let the Track class implement the Comparable interface. The natu-
ral order of Track objects is defined as alphabetical order of artist 
(secondary of songName). 
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an extended practice effect, we decided to exclude from our investi-
gations the students who followed the course for the second or third 
time. 

3.3 Data 
Several different data sources were used in this study. Information 
comes from the administrative system at the university (gender, en-
rollment date, major), the course web-site (team number), the teach-
ing assistants (the score of the different lab-assignments), the final 
exam and the authors (the score in the exam) and a questionnaire 
(the math score for their high school exam). 

Mathematical ability. The students score from their high school 
exam is used as an indicator of the students’ mathematical abilities. 
The high schools in Denmark offer different levels of mathematical 
exams (A, B, and C where C is the lowest level). The students are 
required to have a high school math exam at the A level in order to 
take the introductory programming course. However, three students 
did not have the required A level but a B level. In our analysis, we 
observe that these three persons are outliers very far from the normal 
distribution, so they are excluded from the analysis. The students 
themselves in a questionnaire gave the score after the exam. A few 
students did not answer the questionnaire; they are also excluded 
from the analysis. 

Course work. During the course, the students are required to com-
plete five out of six weekly exercises in order to participate in the fi-
nal exam. The teaching assistants evaluate the exercises and the 
score for each exercise is encoded as one of the numbers 1, 2, or 4. 
The interpretation of the encoding is:  

Value Meaning 

1 Perfect, no significant errors 

2 OK, small errors 

4 Not accepted/Not handed in 
Table 1: The scores for the weekly exercises 

In case a student got a “4”, he had the possibility of resubmitting the 
exercise once. 

We have used the sum of these scores as a description of the stu-
dents work during the course. We have excluded from our analysis 
the students who were not allowed to take the final exam. 

Final exam score. The final exam is a practical test as described in 
section 2. The official result of the exam is a binary grading (pass or 
fail). In order for this research to be able to analyse the results at a 
finer grain, one author has post-marked all the students’ solutions. 
The result of the more fine-grained marking is a grade in the interval 
[00...13] (see [10]). In order to pass an exam, a student needs a 
grade of 6 or more. 

The official description of the grades is [10]: 

13: Is given for the exceptionally independent and excellent per-
formance.  

11: Is given for the independent and excellent performance.  

10: Is given for the excellent but not particularly independent  per-
formance.  

9: Is given for the good performance, a little above average.  

8: Is given for the average performance.  

7: Is given for the mediocre performance, slightly below average.  

6: Is given for the just acceptable performance.  

5: Is given for the hesitant and not satisfactory performance.  

03: Is given for the very hesitant, very insufficient and unsatisfactory 
performance.  

00: Is given for the completely unacceptable performance. 

The results of the post-marking is equivalent to the official results of 
the exam in the sense that all the students who passed the exam got a 
grade of six or more and the students who failed the exam got a 
grade of five or less. In order to ensure that the marking was fair, the 
co-author marked ten randomly selected answers. The results were 
identical. 

In all the statistical tests, the result of the marking is used as the in-
dicator of success—higher grade means more success. 

3.4 Statistical Analysis 
In order to test the hypotheses a covariance analysis is used. The 
analysis shows which (if any) of the independent variables that are 
correlated with the exam result.  

The goal is furthermore to find how much impact (if any) the vari-
ables have on the result of the examination. One way to obtain this 
is to use a multiple regression analysis based on an as simple as pos-
sible model using the variables in question and the relevant interac-
tion variables (i.e. combination of the variables). 

In order to test the multiple regression model normally six prerequi-
sites need to be fulfilled: 

1. Linearity 

2. Normal distribution 

3. Homoscedasticity – the conditional distribution of Y has con-
stant standard deviation throughout the range of values of the 
explanatory variables. 

4. No collinearity – two or more variables have a strong linear rela-
tionship (i.e. explains the same). 

5. No problematic outliers – an observation falls far from the rest 
of the data and the mean is highly influenced. 

6. No autocorrelation - some observations are dependent. 

Being population data, the requirements are not as important as if 
they were test samples. The team and the intended major have a cor-
relation. This is to be expected since the teams are made up mostly 
of students with the same intended major. Team is therefore ex-
cluded from the analysis. The data fail on the test for normal distri-
bution, but the test for 3, 4, and 5 is fine. Test 6 is only relevant for 
time series data. It is therefore possible to use multiple regression 
analysis in order both to check the hypotheses and furthermore to 
evaluate the impact the selected factors have on the actual exam re-
sult. 

We start by running the complete multiple regression model with all 
variables including all the interaction variables. We find that the 
model explains 36.1% of the variation in the dependent variable at a 
95% confidence interval. In order to meet the criteria of parsimony 
we compare the complete model with all interaction variables with a 
simple model i.e. a model without interaction variables. We find that 
we lose 34.4% explanation power since the simple model only ex-
plains 23.6% of the variation in the dependent variable. Because of 
the severe loss of explanation power in the simple model, we cannot 
ignore the model with all interaction variables. We want all vari-
ables in the model to be significant; this leads us to eliminate one by 
one all insignificant variables at a 95% confidence interval accord-
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ing to the hierarchical principle; we end up with a reduced model 
that explains 24.2% of the variance. 

In the following, a 95% confidence interval is used to test the hy-
potheses (i.e. the probability of the hypotheses being true is 95%). 

The analysis of the data is performed in SPSS version 13.0. The fol-
lowing variables are used: 

Name Description 
GRADE The result of the programming exam. Integer 

value from 00 – 13. 

MATH The score from the high school math exam. 
Integer value from 00 – 13. 

COURSEWORK The results of the assignments during the 
course. Integer value from 0-8. The variable is 
translated in the following way: 

Sum of the results of the 
weekly assignments 

Value 

6 8 

7 7 

8 6 

9 5 

10 4 

11 3 

12 2 

13 1 

14 0 

For an explanation of the results of the weekly 
assignments, see Table 1. If the sum of the as-
signments is 6, the student has handed in six 
perfect answers. If the value is 14 the student 
has handed in five acceptable assignments and 
one not acceptable/not handed in. 

STUDYAGE The number of years the student has been en-
rolled at the university. Integer value from 0 – 
20. Students enrolled in 1984 or earlier were 
coded as 20. 

COMPSCIENCE The student intends to major in computer sci-
ence (1=intended major in computer science, 
0 otherwise). 

GEOLOGY The student intends to major in geology 
(1=intended major in geology, 0 otherwise). 

MATHEMATICS The student intends to major in math 
(1=intended major in math, 0 otherwise). 

NANOSCIENCE The student intends to major in nanoscience 
(1=intended major in nonoscience, 0 other-
wise). 

SEX 1= female, 0=male. 

Table 2: Description of the variables 

4. RESULTS 
In this section the result of the multiple regressions is given. 

4.1 Non significant variables 
The variables NANOSCIENCE, MATHEMATIS, GEOLOGY, 
COMPSICENCE, SEX and STUDYAGE were not significant with 
respect to explaining the exam result using a 95% confidence inter-
val. This was also the case with the interaction variables.  

4.2 Multiple regression formula 
The result of the regression analysis is presented in Table 3. The de-
rived regression formula is: 

 
GRADE =  1.118 +  

 0.589*MATH +  

 0.341*COURSEWORK 

 

Unstandardised  
coefficients 

Variable 

B Std. Error 

Significance 

COURSEWORK 0.341 0.097 0.000 

MATH 0.589 0.107 0.001 

Table 3: Coefficients of the regression analysis 

The multiple regression formula (The reduced model with just two 
variables) explains 24.2 % of the variation of the exam grades. As 
described above the model with all the interaction variables explains 
36.1% of the variation. The loss of explanation power in the reduced 
formula is 32.69%. 

In order to find the importance of the different variables we have 
calculated the squared partial correlation coefficients (r2). These de-
scribe the impact of one of the variables when the other variables are 
held fixed; in other words the amount of the variation of the exam 
grade that one of the variables is responsible for. 

 r r2 

COURSEWORK 0.264 0.069696 = 7 % 

MATH 0.393 0.154449 = 15,4 %  

Table 4: Partial correlation coefficients 

In order to get a model that explains more of the variation of the 
exam grades we have tested the complete model using a 90% confi-
dence interval for the individual variables. The reason is that it is 
population data. This gives the following formula:  
GRADE =  -13.58 + 2.575*COURSEWORK + 

1.856*MATH + 3.564*COMPSCIENCE + 
6.668*GEOLOGY – 
0.673*MATH*GEOLOGY+ 
0.064*MATH*STUDYAGE-
0.192*COURSEWORK*MATH – 
0.515*COURSEWORK*COMPSCIENCE -
0.111*COURSEWORK*STUDYAGE. 

This formula accounts for 29.9% of the variation of the exam grade. 
In order to be compatible with the references, we will only discuss 
the model with a 95% confidence interval for the individual vari-
ables. 

4.3 The hypotheses 
In the following, we will discuss the research questions. 
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4.3.1 Mathematical ability 
In the multiple regression formula, we can see that the math score 
from high school has a positive impact on the exam grade. We there-
fore accept the hypothesis that there is a positive correlation be-
tween the final exam score and the grade from the math exam in 
high school (95% confidence interval).  

The squared partial correlation coefficient in the multiple regression 
was 15.4% saying that math grade alone accounts for over 15% of 
the variance of the final grade. This is almost the same that Leeper 
& Silver [17] found in their analysis; they found that math ac-
counted for 14.3% of the variation. 

4.3.2 Gender 
The variables SEX was not significant, neither at the 95% confi-
dence interval nor at the 90% confidence interval. We can therefore 
not accept the hypothesis that gender has an impact on the exam 
score. This corresponds with the findings of Ventura [28] “The tests 
fail to reveal any gender bias for course success.” (p. 98), and the 
findings of [22]. 

4.3.3 Major/intended major 
Neither of the variables indicating the intended major of the students 
were significant at the 95% confidence interval. This implies that we 
must reject the hypothesis of a positive impact of majoring in com-
puter science. In the less accurate model, where the variables only 
were significant at the 90% confidence interval, the variables 
COMPSCIENCE and GEOLOGY were significant. At this level we 
can accept the hypothesis of a positive impact of majoring in com-
puter science (it accounts for 3,6% of the variance), but since the 
variable GEOLOGY is significant but the variables 
NANOSCIENCE and MATHEMATICS are not, we can not say 
anything about the students not majoring in computer science. The 
finding corresponds with the findings in [27]. 

4.3.4 Course work 
From the multiple regression formula, we can see that the variable 
COURSEWORK is significant at the 95% confidence interval and it 
has a positive impact on the exam grade. We can therefore accept 
the hypothesis that students who work harder get better grades. 

The squared partial correlation coefficient in the linear regression 
was 7.0% indicating that course work alone accounts for 7% of the 
variance of the final grade; only half the impact of the math grade 
from high school. 

4.3.5 Study age 
The variable STUDYAGE was not significant at the 95 % confi-
dence interval. We must therefore reject the hypothesis that there is 
a correlation between how many years the students have spend at the 
university and the result of the introductory programming course. 
Using a 90 % confidence interval, the variable is not significant in 
itself but in combination with the math grade, it has a positive im-
pact; with course work, it has a negative impact. These two combi-
nations of variables accounts for 2% of the variation each, but this is 
only at the 90% level. 

4.3.6 Team 
There is an a priori correlation between team and intended major 
because of the way students are allocated to teams, so the variable 

team was excluded from the model. Since intended major is not sig-
nificant, the same is true for team. 

5. Discussion 
In this section, we discuss four aspects of our investigation: the ex-
planation power of the variables, the impact of our findings on 
teaching, limits of what to conclude from the available data, and the 
variety of the notion “objects-first”. 

5.1 Explanation power of variables 
The regression formula presented in section 4.2 accounts for 24.2% 
of the variation of the exam grade. One way to interpret this is that 
there is 75.8% not accounted for by these variables, so we cannot 
predict the actual grade from the two variables. This is the same 
conclusion that Leeper & Silver [17] reached; they used the regres-
sion formula on the students in next year’s course and found they 
were only correct for 39 out of 106 students. On the other hand, we 
have only used two variables and using these, we can explain 24.2% 
of the variation of the exam grade – quite a large portion with only 
two variables. The variables considered here definitely have a large 
impact on the result of the exam. 

5.2 Impact on teaching 
The two variables we have found to be significant are math grade 
from high school and course work. The math grade counts for 2/3 of 
the explanation power of the two variables but unfortunately the 
students cannot improve it. Course work counts for 1/3 of the expla-
nation power of the two variables, but opposite to the math grade, 
course work is improvable in the course and therefore interesting 
when designing the pedagogy of the course. 

The significance of the course work variable indicates, not surpris-
ingly, that students who follow the pace of the course performs bet-
ter at the final exam. We discuss this aspect further in section 6 on 
future work. 

5.3 Limits of conclusions 
Prediction of success is difficult. Ventura [27] reached the conclu-
sion that math score was not a success factor, we have found it to 
be! 

This difference, of course, is a result of the origin of the data. Ven-
tura’s [27] and our data come from two different implementations of 
an objects-first CS1 programming course; we can only draw conclu-
sions for each particular implementation, we cannot draw conclu-
sions about success factors for objects-first programming courses in 
general. In order to answer the more general question of success fac-
tors of an object-first CS1 course we need data from various differ-
ent implementations of this teaching strategy. 

5.4 Objects-first 
Objects-first is not a well-defined term. It seems that every CS1 
teacher has his or her own interpretation of the term (e.g. 9, 15, 16, 
24]. In [14] the description of objects-first is: “an objects-first ap-
proach that emphasizes early use of objects and object-oriented de-
sign” (p. 28). What does early mean, and what is meant by object-
oriented design? 

In [18] the author discuss nine myths about object-orientation and 
its pedagogy; one is that the phrase “objects first” is well.defined. 
The author writes: “No matter what your definition of objects first 
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is, it is likely to be different from that of the person next to you.” (p. 
247), and “The phrases ‘objects first’ and ‘objects early’ are bandied 
about in a variety of contexts. When discussing a CSI course they 
are often used to convey the general idea that objects are discussed 
early in the course and established as a fundamental concept. Be-
yond that, however, these phrases seem to take on a variety of mean-
ings, with important implications.” (p. 246). 

Because of the variety of interpretations of “objects-first”, it is im-
possible to make conclusions about this approach in general. 

6. FUTURE WORK 
In the current research, we have investigated the relationship be-
tween the student’s achievements in the final exam of the introduc-
tory programming course and mathematical prerequisites, gender, 
study program, student team, maturity, and the student’s achieve-
ments in the mandatory weekly exercises during the course. 

Identifying success factors is relevant, and has been done in many 
fields with many different hypotheses of success factors for educa-
tion in specific fields and for education in general. Wang & Hertel 
[29] abstracted over more than 11.000 statistical findings in order to 
identify the most influential factors for learning. They found that 
“the students metacognitive processes that is, a student’s capacity to 
plan, monitor, and, if necessary, re-plan learning strategies—had the 
most powerful effect on his or her learning.” (p.75). Even though 
their research was based on students in primary and lower secondary 
schools, other research have found factors related to student aptitude 
or classroom management to be important as well in a university set-
ting. For references, see [21]. 

The explanation power of the variables we have studied is rather 
small. However, more important is the fact that the most influential 
of the variables from our study, math grade from high school, is out-
side our control—we cannot do anything to improve it by changing 
the course design, and the students cannot do anything about it by 
changing their attitude in the CS1 course. We would like to identify 
success factors within our control, i.e. success factors that we can 
promote by changing aspects of our course design. 

From our experience, we conjecture that other factors also are likely 
to be indicators of success than the ones investigated in the research 
reported in this paper. Numerous other factors might be success in-
dicators in an introductory model-driven programming course, e.g. 
motivation, effort, power of abstraction, prior programming experi-
ence, social course context, emotional and social health, family 
background, ethnic background, financial situation, and computer 
literacy. In order to improve the learning situation, we would like to 
pursue those factors we believe to be dominant in predicting success 
and which we can do something about by changing our course de-
sign, and this rules out family background, ethnic background, fi-
nancial situation and computing literacy. 

Motivation. How motivated is the student? Presumably, a CS major 
is more motivated than a math major or chemistry major; and of 
course some CS students are more motivated than others. 

Effort. How hard does the student work with the subject during the 
quarter/semester? Programming is a contact-sport, and the hard-
working students are likely to perform vastly better than the less 
hard-working students are. In this research, we have used a simpli-
fied description of the effort the students puts in the course namely 
the result of the mandatory assignments. 

Power of abstraction. We believe that the student’s power of ab-
straction —the students ability to cope with abstract concepts and 
their detailed realization in a modern programming language which 
is a task spanning several orders of magnitude— plays a dominant 
role as indicator of success in any introductor programming course, 
also a model-driven course as ours. 

Prior programming experience. All other things being equal, we 
expect prior programming experience to be an indicator of success. 
However, one often sees that students with prior programming ex-
perience rely too much on their prior experience and eventually find 
themselves (lost) far behind the students that approach their study 
with a more humble and hard-working attitude. This indicator has 
been shown in several studies [13, 30] to be an indicator of success, 
even though Ventura [28] could not confirm this. 

Social course context. We believe the social context of the learning 
environment, i.e. the lecturer, the TA, and the fellow students, to be 
an indicator of success; however, it is probably a more moderate 
success indicator than the other four mentioned above. 

Emotional and social health. [21] found that “both emotional and 
social health factors related to student performance and retention” 
(p24). In their study they have used a wide range of tests to deter-
mine college students emotional and social health. It would be inter-
esting to see if these factors have the same impact on students par-
ticipating in a model-based programming course. 

It is not a trivial task to measure the parameters mentioned above; 
consequently, a major part of the indicated future work will be to 
identify trustworthy techniques of establishing quantitative measures 
of these parameters. 

In section 5.3 we concluded: “In order to answer the more general 
question of success factors of the object-first CS1 course we need 
data from various different implementations of this teaching strat-
egy.” Therefore, we would like to extend the investigation to other 
institutions (other teachers, other interpretations of objects-first, 
etc.). 

7. CONCLUSIONS 
We have studied eight potential indicators of success for a model-
driven CS1 course at university level: math grade from high school, 
course work, study age, major in CS, major in math, major in geol-
ogy, major in nano science, and gender. 

We have explained our specific interpretation of objects-first by pre-
senting a detailed description of the course design including goal, 
form, content, exam, and pedagogy. 

We have presented our research method including research ques-
tion, data, statistical method (multiple regression analysis). 

Of the eight potential indicators of success, we have found only two 
to be significant at a 95% confidence interval: math grade from high 
school and course work. The two significant indicators explain 
24.2% of the variation of the exam grade. Math is the more domi-
nant of the two, it accounts for 2/3 of the variation. The result con-
cerning math grade contradicts the findings of Ventura [27]. 

We have discussed four aspects of our research: 

1. The explanation power of the variables: the variables considered 
here definitely have a large impact on the result of the exam. 

2. The impact of our findings on teaching: the significance of the 
course work variable indicates, not surprisingly, that students 
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who follow the pace of the course performs better at the final 
exam. 

3. Limits of what to conclude from the available data: data from 
various different implementations of this teaching strategy is 
needed in order to answer the more general question of success 
factors of an object-first CS1 course. 

4. The variety of the notion “objects-first”: because of the variety 
of interpretations of “objects-first”, it is impossible to make con-
clusions about this approach in general. 

Further work need to be done in order to make generalizable results 
on the success factors for objects-first programming; we suggest six 
potential indicators of success that we believe to be dominant in 
predicting success and which we can do something about by chang-
ing our course design. 
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