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Abstract

In multidimensional data models intended for online arialptocessing (OLAP), data are viewed as points in a multi-
dimensional space. Each dimension has structure, desthbiea directed graph of categories, a set of members for each
category, and a child/parent relation between members. Mymortant application of this structure is to use it to that is
whether an aggregate view defined for some category can beatlyrderived from a set of precomputed views defined for
other categories. A dimension is called heterogeneousdafr@mbers in a given category are allowed to have ancestors
in different categories. In this paper, we propose a classgrity constraints and schemas that allow us to reascouab
summarizability in general heterogeneous dimensions. nitveduce the notion of frozen dimensions, which are minimal
homogeneous dimension instances representing the diffstreictures that are implicitly combined in a heterogemedi-
mension. Frozen dimensions provide the basis for effigi¢asting implication of dimension constraints, and arefulsaid
to understanding heterogeneous dimensions. We give a souhdomplete algorithm for solving the implication of dimen
sion constraints, that uses heuristics based on the streictfithe dimension and the constraints to speed up its execut
We study the intrinsic complexity of the implication prabjend the running time of our algorithm.

1 Introduction

In multidimensional data models intended for online analgtocessing (OLAP), data are viewed as points in a multi-
dimensional space; for example, a sale of a particular iteenparticular store of a retail chain can be viewed as a point i
a space whose dimensions are items, stores, and time, anubihti is associated with one or maneasuresuch as price
or profit. Dimensions themselves have structure; for exapalbng the store dimension, individual stores may be grdup
into cities, which are grouped into states or provincesgWiare grouped into countries. The relationship from elémana
finer granularity and those at a coarser granularity is datibup; thus we would say that the city “Toronto” rolls up to the
province “Ontario” and, transitively, it also rolls up togtlcountry “Canada.”

1.1 Heterogeneous Dimensions

The traditional approach to dimension modeling requirezhepair of elements of a given category to have ancestors in
the same set of categories, a restriction referred strastural homogeneityror example, in a homogeneous dimension we
cannot have some cities that rollup to provinces and somatess

A number of researchers and practitioners [15, 12, 17, 9 davpped the homogeneity restriction over the past fewsyear
yielding structural heterogeneoudimensions, which are needed to represent more naturadlyckanly many practical
situations.  In addition, heterogeneous dimensions pamiie efficient storage of data by having fewer categories. A
smaller number of categories might exponentially decré&@sa@umber of aggregate views we may need to handle and store
in OLAP systems.

Example 1 The dimension instance of Figure 1, callestation, represents the stores of a retailer. In our hypotheticalsc
nario, the retailer has stores in Canada, Mexico, and USAth stores rollup taC'ity, SaleRegion, andCountry. How-
ever, while the stores in Canada rollup Brovince, the stores in Mexico and USA rollup ate. The cityW ashington is
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Figure 1. The dimension location: (A) hierarchy schema; (B) child/parent relation.
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Figure 2. The dimension product: (A) hierarchy schema; (B) child/parent relation.

an exception to the latter, since it rolls up directly@untry without passing througl'tate. On the other hand, the states
of Mexico and the provinces rollup teale Region, while the states of USA do not necessarily rollugtde Region.

Example 2 Figure 2 depicts a heterogeneous dimension, callesiiuct, which models financial services offered by a bank,
such as: accounts, credit cards, loans. In this dimensitipraducts are classified through the hierarchy path of gatees:
Product-ProdType-ProdCategory-A11. On the other hand, some types of products, like personakl@ad some sorts
of accounts, are handled by branches, whereas other typg®dficts, like mortgage and corporate loans, are handled by
departments. The products that are handled by brancheslacedassified according to the categaBy-anch ProdType.
There is a manager in charge of each branch and departmentlllj it happens that some managers handle products in
only one category, which explains the edge fibnager to ProductCategory.

1.2 Summarizability

Cube viewsare simple aggregate queries that provide the basis for Qyug?y formulation. A single-dimension cube
view on a dimensiod (e.g. thelocation dimension) is specified by picking a category within the &iehy ford (e.g. the
Provincecategory) and a distributiveaggregate function (e.g. sum). This view, applied to a falolet, aggregates the raw
datain it to the level of aggregation specified by the catgdor example, it sums the sales of all stores grouped byipcav

1A distributive aggregate functioaf can be computed on a set by partitioning the set into disgiisets, aggregating each separately, and then
computing the aggregation of these partial results withteraaggregate function we will denotea&’. Among the SQL aggregate functior@UNT, SUM,
MIN, andMAX are distributive. We have th@OUNT® = SUM; and forSUM, MIN, andMAX, af¢ = af.



A key strategy for speeding up cube view processing is toereos-computed cube views. In order to do this, the system
must rewrite a cube view as another query that refers to pmepated cube views. The process of finding such rewritings is
known in the OLAP world asggregate navigatiofiL3]. The notion of summarizability was introduced to studygregate
navigation in statistical objects and OLAP dimensions 15,17, 9]. As originally stated, summarizability referstbether
a simple aggregate query (usually caldnmarizatioror consolidation correctly computes a single-category cube view
from another precomputed single-category cube view, inricodar database instance. In previous work [9] we extende
summarizability to allow the combination of several cubews in the rewriting. The notion we use in this paper is: a
categoryc of dimensiond is summarizable from a set of categories, . . ., ¢,,} of dimensiond if, for every fact table and
every distributive aggregate function, the cube viewdean be computed (by a simple relational algebra expresBimm)
the cube views on the’s. A formal definition is given in Section 3.

Just as database instances are modeled by database satigmasion instances (like the one in Figure 1(B)) are matlele
by dimension schemas (basically the diagram in Figure 1(F&$ting summarizabilitis the problem of deciding, given a
dimension schemds, a category, and a set of categorie$, whetherc is summarizable fronf' in all the dimension
instances represented By. In most dimension models in the literature, the dimensidrema basically consists of the
hierarchy schemathe DAG shown in Figure 1(A). Such models lack a languageléscribing integrity constraints on the
schema other than the ones that are inherent in the hieraottgma. This weakens the ability of OLAP systems to test
summarizability.

Example 3 In the dimensionocation (depicted in Figure 1), we have thétountry is summarizable frojCity}. In-
tuitively, this happens because (i) all the stores rollugteuntry passing througlCity. However, we cannot infer (i) just
by analyzing the hierarchy schema of Figure 1 (A). This higrg schema may allow stores that rollupd@untry passing
throughSale Regions, without going though the catego€yity.

A new class of constraints is needed to express integritgtcaints in OLAP dimensions, and to turn dimension schemas
into adequate abstractions to model heterogeneity andhfmostithe summarizability testing.

1.3 Related Work

Kimball [14] introduced the ternheterogeneityo refer to the situation where several dimensions reptegethe same
conceptual entity, but with different categories and biiiés, are modeled as a single dimension table. Lehner[ébiland
Pedersen and Jensen [17] account for heterogeneity, apdggalifferent solutions to deal with summarizability. heh
et al. propose transforming heterogeneous dimension$orgeneous dimensions, which they say to bainmensional
normal form(DNF). The transformation is done by treating categoriesitay heterogeneity as attributes for tables outside
the hierarchy. The proposed transformation flattens thkel/glairent relation, limiting summarizability in the dimsaon
instance.

The dimension model of Jagadish et al. [12] allows sever#ibbocategories where members may be placed, which
intuitively allows such members to have ancestors in dffiésets of categories. In this model, the heterogeneitysohama
can be only modeled by splitting the categories of the scharhich may increase exponentially the number of categpories
and may impose unnatural restriction on tha way membersratggd into categories. Their model is subsumed by the
model we present in this paper.

Pedersen and Jensen [18] model a particular class of heterogs dimensions, and propose transforming them into
homogeneous dimensions by adding null members to represssing parents. This solution has several drawbackst, Firs
the transformation algorithm proposed considers a réstridass of heterogeneous dimensions, and does not scelpdcal
heterogeneous dimensions. In some dimensions, we maymp&te several different nulls in some categories, whiatide
to a considerable waste of memory and computational efferttd the increased sparsity of the cube views. As an example,
Figure 3 shows the dimension resulting from an attempt fisfamlocation (Figure 1) by inserting null members. Notice
that the rollup mapping 3/“9?°" hecomes a many-to-many relation, which limits summarligitin the dimension.

Although database researchers have done abundant workemtiiy constraints for a variety of data models, almost
nothing has been said about integrity constraints in théesorof OLAP dimension modeling. In previous work [9], we
introducedsplit constraintswhich are statements about possible categories the menmb&igiven category may rollup to.
Split constraints allow summarizability to be charactedipnly in a particular class of heterogeneous dimensiatk#ep a
notion of ordering between the granularities defined bygmaies. Moreover, split constraints are insufficient for problem
because in the general case heterogeneity would be begtieired by possible hierarchy paths, rather than possiltdece
categories to which members rollup to. Goldstein [6] pr@sa® capture heterogeneity in database relations by méans o
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Figure 3. An attempt to fill missing parents with null values i n the dimension location: (A) hierarchy
Schema; (B) child/parent relation.

disjunctive existential constrainfglec’s). The main idea here is to model a relation as a cortibmaf objects, each one
determined by a set of non-null attributes that appear tegetDec’s represent a particular class of split constsaifihe
constraints introduced by Husemann et al. [11] are also elashof split constraint®ath constraint$l, 4] seem to achieve
the goal of describing certain forms of heterogeneity inisaunctured data. Path constraints characterize theesxstof
paths associated with sequences of labels in semistrdaiata. However, path constraints also lack the entire sgpmeness
needed to characterize summarizability, and do not deserdll the type of heterogeneity arising in OLAP applicatiom
particular, we cannot characterize summarizability wittrh. On the other hand, path constraints are interpreteddawa
which have many fewer restrictions in their structure th&a®\® dimensions, yielding to a different treatment and coswjty/
of their inference.
In Section 7, we present a more detailed study of the related mentioned in this section.

1.4 Contributions

In this paper, we introduce a model for heterogeneous diipesasThe model, formalized with graph-theoretic notions,
yields a new approach to represent the hierarchical streicfidimensions.

We propose a class of constrairdénension constrainigor the purpose of expressing integrity constraints inefision
schemas. We show that the hierarchy schema enriched withndion constraints becomes an adequate abstract model to
infer summarizability. In particular, we show that summalbiility can be characterized using dimension constraintsing
the problem of testing summarizability into an inferencetppem over dimension constraints.

We give a sound and complete algorithm for solving the ingtian of dimension constraints based on the notidinozien
dimensionsFrozen dimensions are minimal homogeneous dimensioarioss representing the different structures that are
implicitly “mixed up” in the schema. They are inferred frolmetdimension schema, and provide a useful representation to
understand heterogeneous schemas. We propose an algthrithoses heuristics based on the structure of the dimension
schema and the constraints to speed up its execution. W tsteidhtrinsic complexity of the implication problem, ariget
running time of the algorithm proposed with experiments.

Finally, we study of the relationship between dimensionst@ints and other known classes of integrity constraints
presented in the database literature.

1.5 Outline

The remainder of this paper is organized as follows. In $ac# we present a model for heterogeneous dimensions,
and formalize cube views and the notion of summarizabil@gction 3 introduces dimension constraints, and dimension



schemas. The implication problem related to dimensiontcaimss is studied in Section 4. The relationship betweemedi-
sion constraints and summarizability is shown in SectiomZection 6 we present the algorithm for testing implicatid
dimension constraints and its implementation. In Sectisreompare dimension constraints with other known claskes o
integrity constraints. Finally, in Section 8 we conclude autline some prospects for future work.

The proofs are presented in appendices.

2 Modeling Heterogeneous Dimensions

In this section, we give formalize heterogeneous dimerssidfe define summarizability and its essential properties.
2.1 Graph Notation

Itis convenientto refresh some elementary graph concégtlirected) grapld- is a pair of set$V, E) whereE C V x V.
Elements € V are calledverticesand pairgu, v) € E (directed)edgesu andv areadjacentvertices. Apathin G fromwv to
w is a sequence of vertices= vy, . . ., v, = w such thafv;, v;+1) € E. We say thav reachesw. Thelengthof the path is
n. A cycleis a path withv = w. A dagis a directed acyclic graph. ginkin a dag is a distinguished vertexreachable from
every other vertex in the graph. gourcein a dag is a distinguished vertexfrom which every other vertex of the graph is
reachable. Ahortcutin a dag is a path of length 1 between two adjacent vertices. Given a veutex G, anupgraphis the
subgraph of7 generated by and all the vertices reachable from it. Given two graghs= (V1, E1) andGy = (Va, E»), a
graph morphisnis a functiong : v, — V5 preserving edges, that i&, v) € E; implies(¢(u), ¢(v)) € Ea. The morphism
¢ is called arisomorphism (resp. monomorphism, epimorphigng)as a function is bijective (resp. injective, onto).

2.2 Dimensions

Definition 1 Assume the existence of (possibly infinite) €e{sategories), andM (members). Lef C C andM C M.
1. Ahierarchy schems adagH = (C, ') having a distinguished categoag1 € C which is a sink.

2. Ahierarchy domains adagh = (M, <) having a distinguished membelLl € M which is a sink, and without
shortcuts. & will denote the transitive closure &f; its reflexive and transitive closure, denoted is calledrollup
relation)

3. Adimension instancé over a hierarchy schem@', ,”) is a graph morphisma : (M, <) — (C, /) such that: (a)
(M, <) is a hierarchy domain; (bji(all) = A11; and (c) for allz andy # z, if + < y A ¢ < z thend(y) # d(z).

The last condition in item 2 (no shortcuts) avoids redundengransitive edges) in the representation of the date fadt
thatd is a graph morphism in item 3 states that whenever we havatomshipm,; < mo between some pair of members
my € c; andmes € co, then there is an edge o in the hierarchy schema representing links between cag=ggrand
Co.

Condition c of item 3 is a basic restriction in OLAP data mamig[5, 10, 12, 15], and states that the rollup relatiors
functional (i.e., single valued) between every pair of gatées. This motivates to introduce tf@lup mappingbetween two
categories; andc; of a dimension/, denoted™¢?(d), which is the restriction of to d~*(c1) andd ! ().

2.3 Summarizability

We will formalize summarizations using relational algetith bag semantics extended with tgeneralized projection
operator[7, 2], to express aggregation. Besides the usual operators, x, etc.), the algebra includes thdditive uniony
which adds the multiplicity of the tuples. The generalizeajg@ction operatodl 4, is an extension of the duplicate-eliminating
projection, whered can include both regular and aggregate attributes.

Given a dimension, we assume the existence of distinguish categgfy, calledbase categorywhich contains all the
members that are in the bottom categoried.dfor every category for every categargf d we have:

C

I'G,...(d) = Wevery bottom category, of d ', (d)-



A single-category cube view can be specifiecCaseView, .¢()(d, F'), whered is a dimension}" is a fact table con-
taining facts at the base categery,. of d; c is a category ofl; af is an aggregate function; amd is a measure of'. The
cube viewCubeView, ,:(m)(d, F') represents the following aggregate Viehl;; ¢,y (F < (I, (d))).

Chase

Our definition of summarizability is based on the equivaieattwo queries, the cube view and the summarization.

Definition 2 (Summarizability) Given a dimension instaneg a set of categorie§ = {¢1,...,¢,}, and a category, cis
summarizabléom S in d iff for every fact table”, and distributive aggregate functiaif, we have CubeView, u¢(m) (F, d) =
e age (m) (Lﬂielmn(wmnfgid D CubeVieWci,af(m)(F, d;))).

The following proposition gives a characterization of suanizability that avoids the mention of fact tables.

Proposition 1 (Summarizability) A categoryc is summarizable from a set of categori€sn a dimension instance iff

c

Pcbasc = LﬂciGS ﬂ—cbascxc(]‘—‘g;as@ (d) > ]'—‘21 (d))
The next corollary follows from Proposition 1.

Corollary 1 (Summarizability and Bottom Categories) A categoryc is summarizable from a set of categorigsn a di-
mension instancé iff for every bottom category, of d we havel’;, (d) = .. g 7e, (L6 (d) > T, (d)).

The corollary easily follows from Proposition 1, and defmitof I'¢; ~ for a category:..

Example 4 Consider the dimensigproduct depicted in Figure 2. In this dimensioRyodCategory is summarizable from
{BranchProdType, Department}.
However, in the dimensigsroduct, ProdCategory is not summarizable from
{ProdType, Department}

because we would twice add ferodCategory the sales of products that rollup tBrodCategory passing through
ProdType and Department at the same time.

By making|S| = 1 in Corollary 1, we have that a categarys summarizable from a single categesyin a dimensioni
iff for every bottom category;, of d we havel's, (d) = 7., .(I'ct (d) = T'g ().

3 Dimension Constraints
In our framework, a dimension schema consists of a hieraschgma along with a set dfmension constraints

3.1 Dimension Constraint Language

Definition 3 (Dimension Constraint) Let H = (C, /') be a hierarchy schema, € C, K C M. The language of con-
straints (with rootc) has the following atoms: (1) Path atom&:, ¢4, - - -, ¢,), Where thez; must satisfy thate; - - - ¢, is a
path in H; (2) Equality atoms{c, ..., ¢ = k), wherec’ is such that there is a path fronto ¢/, andk € K.

A dimension constraint with roatis a Boolean combinatios of atoms of the above kind.

Dimension constraints consider the usual connectives Vv, =, <, and® for exclusive disjunction. As usual, (resp.
T) will denote the false (resp. true) proposition. In additigiven a set of atomd, (-) , denotes that there is exactly one
true atom inA.

Definition 4 (Semantics of Constraints)Letd : (M, <) — (C, /) be a dimension instance, agda constraint with root
c. Thend [= ¢ if and only if

forallm € d=1(c), d = ¢[c/m],
whered = ¢[c/m] is defined recursively as follows:

1. d={c,c,...,cn)c/m]iff thereis a pathnzy - - -z, In (M, <) withd(z;) € ¢;.
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2. dE{c,...,d =k)[e/m]iff d(k) € ¢ andm < k.
3. d = (p A)[e/m]iff d = ¢[c/m] andd = ¢[c/m]. Similarly forv and the other Boolean connectives.

A composed path atom an expression of the forka, .., ¢;) which is a shorthand for the following expression: = ¢;,
{c,..,c;) represents ; else,(c, .., ¢;) represents the disjunction of all the path atoms with rabit end withe;. Intuitively,
the atom(c, .., ¢;) expresses that every root member roll ugto

Example 5 Consider the dimensiolovcation (Figure 1). The dimension constraint
(Store, .., SaleRegion)

asserts that all the stores rollup t8ale Region.

Given a hierarchy schenfd and two sets of constrainis X’ over H, we say thak is equivalent ta’, if for all dimension
instancesl overH itholds: d = X iff d E X',

3.2 Dimension Schema

Now we are ready to introduce the concept of Dimension Sché&imafollowing definition extends Definition 1 (1) in the
presence of constraints.

Definition 5 (Dimension Schema)A dimension schemis a pair (H, ) whereH is a hierarchy schema ard is a set of
constraints.

Adimension instancé over a dimension schenia = (H, ¥) is a dimension instancaéover H such thatl |= X. The set
of dimensions instances ovBrwill be denoted by (D).

We shall now introduce some examples of dimension schemasf{ilGt schemalocationSch,, provides an abstract
model for location (Figure 1), and is depicted in Figure 4. Notice that the aaiirst (a) of LlocationSch, is aninto
constraint.

The next schema we introducdcationSch, makes use of equality atoms to differentiate the struatfitbe stores in
each country ofocation. This schema is depicted in Figure 5.

Finally, we give a dimension schemgroductSch, that models the product dimension of Figure 2. This schema i
depicted in Figure 6.

We end this section by investigatisgtisfiabilityin our setting. Formally, we say that a dimension schémia satisfiable
if 1(D) # 0.

Proposition 2 (Satisfiability) Every dimension schema is satisfiable.
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3.3 Classes of Dimension Schemas

The model we have presented subsumes the dimension modstnped in the literature. The following definition for-
malizes two classes of dimension schemas that arise in OLAP.

Definition 6 (Classes of Dimension Schemad)et D = (H, %) be a hierarchy schema.
1. D is canonicalf H has no shortcuts antl is equivalent to{{c, ) | ¢ /" ¢'}.
2. D is balancedf D is canonical andd has a source.

Example 6 Figure 7 shows a canonical schema dimension that modelsahie froducts.

A dimension instancé is homogeneoui for every pair of categories; " c; it holds that the rollup mappingg:d is
a total function. Note that the constraifat ¢’) wherec ' ¢’ forces the rollup mapping fromto ¢’ to be total. Therefore,
canonical schemas convey all the homogeneous instancegolieerarchy schema. In this sense, in canonical schemas,
captures exactly homogeneity. Also notice that we have eéfncanonical schema to be shortcut-free, because oteetwis
would force the categories from which the shortcut startt@impty in every dimension conveyed by the schema.

Given two classes of schemé&s, S», we defineS; C Ss iff for each schema i, there is an equivalent schemads.
Then it holds Balanced Schemas Canonical Schemas. Dimension Schemas.

4 Implication

A dimension schem® logically impliesa dimension constraint, written D = «, if every dimension instancé over
D satisfiesa. In our context, themplication problemis the problem of determining, given a dimenion schefhand a
dimension constraint, whetherD = a.



All

ProdType

ProdClass
Dept&AsaMI& BranchManager
/\ (€) {(c,c’), for all edgeq(c, ¢’) in the hierarchy schema.

Department  AsiaBranch Branch

DeptProduct AsiaBranchProduct BranchProduct

Figure 7. A canonical schema for the bank products.

4.1 Frozen Dimension

Intuitively, a frozen dimensiois a minimal dimension instance conveyed by a dimensionmsaheThey are minimal
because they contain at most one member per each categohaaad single bottom category. Each frozen dimension
shows a structure (upgraph of some bottom category of thraret®y schema), along with some constants that appear in the
schema and other arbitrary members (we refer the readeetiopis work [10] for details.)

Frozen dimension are important because, as we will showineRis section, in order to test implication of a constraint
(with root isc) from a dimension schema, we only need to test whether th&tiant holds for each of the frozen dimensions
of the schema (whose upgraph start frgm

Let D be a dimension schema and constant of itConstp(c) be the set of constanksthat occur in atoms of the form
(ciy..,c=k)inD.

Definition 7 (Frozen Dimension) Given a dimension schemiaandc € C, afrozen dimensiomwith rootc is a dimension
instanced : (M, <) — (C, <) of D such that:

1. dis injective (i.e., each category has at most one member)

2.d*(c) is a source of M, <);

There could be infinitely many frozen dimensions, but theeeoaly finitely many up to isomorphism, where isomorphism
is defined as followsd is iso tod’ iff there exists a graph mapping: (M, <) — (M’,<’) such thatd = d’' o f, and if
k € Constp(c;) andd(k) = ¢; = d'(k), thenf(z) = x.

From now one, we will consider frozen dimensions up to isqgghiam. We introduce an injective functiax : C — M
which assigns a fix member to each category which does notehewastant member in a frozen dimension.

We denote byFrozen(D, c) the set of frozen dimension db (up to isomorphism) with root, and byFrozen(D) the
union of allFrozen(D, ¢) for all categories of D.

Frozen dimensions tell us a great deal about the semantitimehsion schemas, as the following example shows.

Example 7 Consider the dimension schemias:ationSch,. The set
Frozen(locationSchy, Store)

consists of the dimensions depicted in Figure 8. The figuosvstithe subgraphs induced by the nonempty edges in the
child/parent relation of each frozen dimension.

The setFrozen(locationSch, Store) contains the dimensions of Figure 9. Here, we present theefralimensions
similarly to Figure 8 but we depict the member in a categarwhenever the category has associated some constant that
appears in the constraints. Notice that this set illustsatge different structures stores M exico, USA, andCanada have.

The seFrozen(productSch, Store) is depicted in Figure 10.
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4.2 Dimension Tuples

Just as a relational table can be viewed as a set of tuplesl.AR @imension may be viewed as a set of small pieces of
data we will calldimension tuplesThe notion of dimension tuple will serve to simplify sevigreoofs in this thesis.

Definition 8 (Dimension Tuple) A dimension tuple of a dimension instankie the restriction ofi to the upgraph oflom(d)
defined by a particular memberin dom(d).

10



It is easily verified that the preceding definition is sound,,iany dimension tuple satisfies conditions of Definition 1
Notice that every memberof a dimensioni defines a dimension tuple which will be denotediyiTuple(d, ). Moreover,
we can view a dimension as a set having one dimension tupksaftdr leaf member.

The following lemma says that in order to test if a dimensimstancel satisfies a dimension constraint with reptve
just need to check whether the dimension tuple of each memblembSet, satisfies the dimension constraint.

Lemma 1 (Dimension Constraints and Dimension Tuples)Given a dimension instaneéand a dimension constraift
with rootc, d = « iff for every member € d=1(c), DimTuple(d, z) | o

Another result we will need to simplify further proofs is tfe¢lowing:

Lemma 2 (Dimension Constraints and Dimension Tuples)Given a dimension instanaéand a dimension constraint
such thaid = «, then for every memberof d, DimTuple(d, z) = a.

From a dimension tupleover a dimension scheniawe can obtain a frozen dimensionBf denoted byfFrozen(D, t),
as follows: for every member of ¢, let ¢ be the category to which belongs, ifx ¢ Constp(c), then replace with nk(c)

4.3 Category Satisfiability

A categoryc is said to besatisfiablein a schemaD (we assume that is a category ofD) if there exists a dimension
instancel € I(D) such thati—!(c) # 0.

Example 8 Suppose we add the constraimSale Region, Country) to LocationSch. Then,Sale Region would become
unsatisfiable in the resulting schema, because every mémbe&limension must reacil1, and consequently, every dimen-
sion instance of the hierarchy schemaletationSch should satisfy(Sale Region, Country).

The category satisfiabilityproblem is the problem of determining whether a categoiy satisfiable in a dimension
schemaD. Unsatisfiable categories can be dropped from the schenkdngna cleaner representation of the data. However,
the fundamental importance of testing category satisfiglidl its connection with testing implication.

Theorem 1 (Cat. Satisfiability and Implication) Given a dimension schema and a dimension constraint with root c,
D E «iff cis unsatisfiable ilD’ = (H, X U {—a}).

In view of Theorem 1, any algorithm for solving category s#ibility can be used to solve implication. The converse
is also true; however, it requires expressing the theoreittla bit differently. Next, we show the importance of fraze
dimensions for testing category satisfiability and impima.

4.4 Testing Category Satisfiability

The following theorem proves that frozen dimensions arammhmodels [3] for testing category satisfiability.

Theorem 2 (Cat. Satisfiability and Frozen Dimensions)Given a dimension schenia and a category: of D, c is satisfi-
able inD iff Frozen(D, c) # 0.

Given a dimension schenfa = (H, ) and a category, a candidate frozen dimension Bfwith root ¢ can be built by
first choosing a subgraph éf, and then selecting the members using the functienst p, andnk. The number of candidate
frozen dimensions generated in this way is finite, and thedfeshether one of them is a frozen dimension can be done in
polytime. Consequently, Theorem 2 establishes an algotithsolve category satisfiability. In Section 6 we presenhsan
algorithm in details.

Similarly, frozen dimensions can be directly used to tegflication, as the following theorem shows.

Theorem 3 (Implication and Frozen Dimensions)Given a dimension schenia, and a dimension constraiat with root
¢, D = « iff for every frozen dimensiof € Frozen(D, ¢), f | «

We now give the intrinsic complexity of implication and ogbey satisfiability.
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Theorem 4 (Complexity) Category satisfiability is NP-complete, implication is G&€omplete.

From the proof of Theorem 4 it is easily verified that inclugitomposed path atoms into dimension constraints does not
add extra complexity to the problems.
In canonical schemas, category satisfiability becomesitsince all the categories are satisfiable.

Proposition 3 (Cat. Satisfiability in Canonical Schemas)Every category of a canonical scheruis satisfiable inD.

5 Reasoning about Summarizability

In this section, we give a characterization of summarizighiit terms of dimension constraints. In this form, we tune t
problem of testing summarizability into testing implieatiinside our class of constraints.

In order to characterize summarizability, we will use thersihand(c, .., ¢;, .., ¢;), wherec, ¢;, andc; are categories.
Formally,(c, .., ¢;, .., ¢;) is defined as follows:

o If ¢ # ¢; # cjthen(c, .., c;, .., c;) represents the disjunction of all the path atoms that stdint &y end withc;, and
containg;.

o If c =¢; =c¢jthen(c, .., ¢, .., c;) represents .

o If ¢ =¢; andc, ¢c; # ¢; then(c, .., ¢;, .., ¢;) representd..

o If c=¢; andc, ¢; # ¢j then(c, .., ¢;, .., ¢;) representéc, .., c;).

o Finally, if ¢ # ¢;, ¢; andc; = ¢; then(c, .., ¢;, .., ¢;) representse, .., ¢;).

Intuitively, the dimension constraift, .., c;, .., ¢;) means that for all member € MembSet,, « rolls up toc; passing
throughe;.

Theorem 5 (Summarizability and Dimension Constraints) A categoryc is summarizable from a set of categorigén a
dimension instancé iff for every bottom categony, of d we havel = (cy, .., ¢) = O, cg(Cb; -+ Cis -+, ).

The intuition behind Theorem 5 is that, in order foto be summarizable fror, it must be the case that every base
member (i.e., a member in a bottom category) that rolls uptolls up toc passing trough one and only one of the categories
in S. Notice that Theorem 5 shows that summarizability can beaci@rized as a property of dimension instances themselves
avoiding the mention of fact tables.

Example 9 In the dimensioproduct (Figure 2), we have thaProdCategory is summarizable from
{BranchProdType, Department}
because

product = (Product, .., ProdCategory) =
({Product, .., BranchProdType, .., ProdCategory) ® (Product, .., Department, .., ProdCategory)).

Example 10 We have tha€ountry is summarizable froniCity} in location (Figure 1) because
location = (Store, .., Country) = (Store, .., City, .., Country).
HoweverCountry is not summarizable frofiState, Province} in location because
location [~ (Store, .., Country) = ({Store, .., State, .., Country) & (Store, .., Province, .., Country)).

This is because the stores that belong to Washington rolitgettly to Country without passing through states or
provinces.

From Theorem 5, it follows that a categarys summarizable from a set of categorie a dimension schema iff for
every bottom category, of D we haveD |= (cp, .., c) = O, cg{cb, -, Ci, .-, ¢). Therefore, testing summarizability reduces
to testing implication of the preceding constraint, forleottom category.

We now study the intrinsic complexity of testing summariligh

12



Theorem 6 (Complexity of Testing Summarizability) Testing summarizability is coNP-complete.

Proposition 4 (Summarizability and Canonical Schemas)Given a canonical schema = (H, Y.), a category: of D, and
a set of categorie§ of D, ¢ is summarizable fron$ in D iff for every bottom category, of D, if ¢, * ¢, then there is
exactly one category € S such thaie, ,/* ¢ and¢’ ™ cin H.

From Proposition 4 it easily follows that testing summabifity in cannonical schemas is in polytime.
6 The DIMSAT Algorithm

In this section, we provide an algorithm, callBTMSAT, to solve category satisfiability efficiently.
6.1 Description of the Algorithm

In order to describe the algorithm we need to introduce thmnof subhierarchy

Definition 9 (Subhierarchy) Given a hierarchy schem&:
e asubhierarchyf H with rootc is a subgraph off whose source ig and whose sink is11.

e let D = (H,X) be a dimension schema, apdbe a subhierarchy of/, we say thay induces a frozen dimensiam D
iff there exists a frozen dimensigrof D such thaly = ran(f).

The algorithmDIMSAT builds subhierarchies and tests whether each of them isdaickeast one frozen dimension in
the dimension schema given. When a subhierarchy is budh path atonp in the constraints is replaced by a truth value
given by whethep appears in the subhierarchy; the equality atoms over caésgiinat do not appear in the subhierarchy
are replaced by.. In this form,Y is reduced to a set of constraints that do not mention pathsatdhis set is then tested
over the candidate frozen dimensions induced by the sudoielgy. In addition, the algorithm prunes the subhierasctidoe
explored by taking into account shortcuts, cycles, iamalconstraintsinto constraints are dimension constraints of the form
(¢, ¢'); intuitively, aninto constraint states that all the memberg bfave a parent in’. We conjecture that this optimization
should be useful in practice, since in many situations bggmeity may arise as an exception, having most of the edges o
the schema associated wittio constraints.

The following definition is useful, as we wish to discard tlamstraints inX that are irrelevant when finding a frozen
dimension. Given a dimension scheffla= (H, X), and a category of D, Prop(D, ¢) is the set containing the dimension
constraintsy of X such that the roat’ of « satisfiesc ™ ¢'.

The DIMSAT algorithm uses a procedure calléHECK, that tests whether a subhierarchy induces a frozen dioensi
The main idea behindHECK is as follows: when a subhierarclyis built, all the path atoms that appear in the dimension
expressiorProp(D, ¢) are replaced by their truth valuesgn Doing this,Prop(D, ¢) is turned into a dimension expression
that mentions only equality atoms that refer to the categdn the subhierarchy. In order to test whether a candidareff
dimensionf built overg is a frozen dimension, we need only to test whether the assghof constants to categoriesjfin
satisfiesProp(D, ¢). In this form, we evaluate the path atoms (and some of theliggatoms as well) only once for all the
candidate frozen dimension built over the same subhieyarch

We next define the circle operator, that replaces the trulihevaf each path atom in a set of dimension constraints,
according to whether exists in a given subhierarchy.

Definition 10 Given a set of dimension constrairiis and a subhierarchy of H, ¥ o g is the set of dimension constraints
resulting fromX by: (a) renaming every path atoprwith T if p is a path ing, and with_L otherwise; and (b) renaming every
equality atonr;.c; = k, such that there is no path from to ¢; in g, with L.

Example 11 The dimension constrainBrop(locationSch, Store) are depicted in Figure 11 (left). Now, lgtbe the
subhierarchy represented g6 in Figure 5. The dimension constraintsop(locationSch, Store) o g are depicted in
Figure 11 (right).
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Prop(locationSch, Store) Prop(locationSch, Store) o g

(a) (Store, City) @T

(b) (Store, .., SaleRegion) (b)) T

(c) (City = Washington) = (City, Country) (c) (City = Washington) = L

(d) (City = Washington) = (City, .., Country = | (d) (City = Washington) = (City.Country =
USA) USA)

(e) (State, .., Country = | (e) (State,..,Country = Mexico) V
Mexico(V{State, .., Country = USA) (State, .., Country = USA)

(f) (State, .., Country = Mezico) = | (f) (State, .., Country = Mezico) = L

(State, SaleRegion)

(9) (Province, .., Country = Canada) (9) (Province, .., Country = Canada)

Figure 11. (Left) Prop(locationSch, Store). (Right) Prop(locationSch, Store) o g.

Notice that the dimension constrairisop(D, c) o g contain only equality atoms. Now, given a dimension schema
D = (H,Y) and a subhierarchy = (C’, /) of H, a c-assignment faj is a injective functiorca : C’ — Const U {nk}
such that for alt! € C’, ca(¢’) = k implies that the there is an atom of the fo(m..,c = k) in X.

We say that a c-assignmeri satisfies a set of dimension constraBtthat mention only equality atoms, denoted= ¥,
if 3 is true when we replace each equality atonxiwith its truth value given bya. For example, if an equality atomis
(c,..,c; = k), and we have thata(c;) = k then we replace with T.

Lemma 3 Given a dimension schenia = (H, ¥), and a subhierarchy of H with rootc¢, g induces a frozen dimension iff
(a) g has no cycles or shortcuts, and (c) there exists a c-assigheaeof g such thatca = Prop(D, c) o g.

The proof of the lemma is straightforward, so we skip it.

We are now able to introduce tb&MSAT algorithm.DIMSAT, depicted in Figure 12, is basically a backtracking aldyonit
that explores subhierarchies. The procedKBAND constructs subhierarchies &f with root ¢, that have no cycles or
shortcuts and satisfy the into constraints giveXinWhen one of such subhierarchigs built, EXPAND calls CHECK(g) to
decide whethep induces a frozen dimension. If SCHECK makesFIND = true, andEXPAND exits, aborting all previous
calls toEXPAND, and returning the control of the executionD@MSAT. If not, EXPAND returns, and backtracks to a previous
state in the search; we assume that when this ocgisggestored to the form it had befoF&PAND was called.

Let us now explain some aspectsEXPAND. The subhierarchy being built is kept in the variaglewhich has four
componentsy.C, containing the categories ¢f g.0ut, which contains for every categoey € ¢.C, the categories directly
abovec in g; g.Top, which has the categories inC' with no edges from them ig; and g.In*, which keeps for every
categoryc’ € ¢g.C, the categories that reach directly or indireetlyn g. As we will see,g.In* is essential for recognizing
shortcuts. In each step in the recursiBRPAND is called with parameterg ¢, and R, wherec is a category, an® is a set of
categories. InitiallyEXPAND is called byDIMSAT with R = §); in this case{c} is kept agy. Top. In an execution cEXPAND,
Line (6) detects whether. Top = {A11}. If so, CHECK(g) is called. If not,EXPAND chooses a top categoeyop € g.Top,
and tries all possible callsXPAND(g, ¢, R), whereR is any combination of categories directly abavep in H such that the
following hold: R does not produce shortcuts or cycles (note that the categthrat potentially cause shortcuts and cycles
are computed in lines (11) and (12), respectively); &cbntains all categories such that theénto constraint(ctop, ¢’) is
in 3. In this form,EXPAND takes into account thiato constraints in order to prune the subhierarchies to be exgl@and
shortens the loop of Line (16).

Example 12 Consider the execution of
DIMSAT(locationSch, Store).

Figure 13 showg in the successive instancesEXPAND. The subhierarchy with whichEXPAND calls CHECK the first
time is delimited by a box. Notice thatTop is the category written with a large font in each subgraph.

Correctness ddIMSAT is proved in Appendix D.
We end this section by giving the asymptotic time compleaftpIMSAT. Let N be the number of categories in, and
let N be the number of constant in the schema. In additién stand for the size af.
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ProcedureEXPAND(g, ¢, R)

Algorithm DIMSAT(D, c) Input: a category;, and a list of categorieB
Input: A dimension schem® = (H,X) and a cate- Local Vars: ctop, Ss, S¢, S, P, S’
gory Global Vars: H, FIND
ceC. (1) If R # () then
Output: Whetherc is satisfiable inD. (2) g.Top := (g9.Top \ {c}) U (R\ ¢.C)
(1) FIND := false, Pr := Prop(c, D) 3) ¢.C:=9.CUR;g.0ut(c):=R
(2) g.C = {c}, g.0ut(c) := 0, g.Top := {c}, (4) Forevery' € Rdog.In*(¢') := g.In*(c)
g.In*(c) =10 (5) EndIf
(3) EXPAND(g, ¢, D) (6) If Top = {A11} then
(4) return(FIND) (7) CHECK(g)
endDIMSAT (8) If FIND then exit() else return()

(9) EndIF
Procedure&€HECK(g) (10) Choose a categoryop # A1l € g. Top
Input: A subhierarchy of H (11) Ss := {¢’ € H.Out(ctop) |
Local Vars: Pr', ca g.In(c') N g.In*(ctop) # 0}
Global Vars: FIND (12) Sc := H.O0ut(ctop) N g.In*(ctop)
(1) Pr':=Prog (13) S := H.Out(ctop) \ (SsU Sc))
(2) For every c-assignment of g do (14) Into := {¢’ € H.Out(ctop) | {ctop, ') € ¥}
(3) FIND:=(caf Pr') (15) If ((Into € S) or (S = ()) then return()
(4) If FIND then return() (16) For every non-empty sét C (S \ Into) do
(5) endFor (17) EXPAND(g, ctop, S’ U Into)
endCHECK (18) endFor

endEXPAND

Figure 12. Algorithm DIMSAT.

Proposition 5 (Complexity of DIMSAT) DIMSAT runs in timeQ(2N "+ log Nx N3 \y.).

From the proof of Proposition 5, it follows that the time cdexity of DIMSAT can be expressed in terms of the number
of subhierarchies of the schema which match the into cansdraLetW be this number, then we have tldMSAT runs in
time O(W2N lee N 3 Ny, If the schema does not have equality atoms, the complexitgtoO(W N? Ny,).

6.2 Implementation

To assess the performanceddfMSAT we implemented it using Java, and performed experimentsRengium IV com-
puter, with CPU clock rate of 2.4 GHz, 512MB RAM, and runninindbws XP.

Firstly, we performed experiments with the three dimensidmemas introduced in SectionIdicationSch, (Figure 4);
locationSch (Figure 5); ancdbroductSch (Figure 6). We ramIMSAT to test category satisfiability of the bottom categories
of the aforementioned schemas.

For each of the schemas we also ran a variationI®fSAT, calledFROZEN, used to compute the whole set of frozen
dimension. Recall thatIMSAT halts when a particular frozen dimension is found, which meguire the exploration of
a particular subset of subhierarchies of the schema. Irasmiwhen the algorithm returifgise, it builds the entire set
of subhierarchies of the schema. Consequently, there dmuliifferences between the running timeDaofSAT when it
returnstrue and when it returngalse. SinceFROZEN does no halt until all the frozen dimensions are found, itsimg time
approximates the timpIMSAT would take in its worst-case executions. The results of ¥peements are shown in Figure
14. The first column shows the time (seconds) spent to loadithension schema,; the last two columns show the remaining
times taken bypIMSAT andFROZEN. It can be seen that the overall cost of computing the froz@edsions was less than .1
second in all of the three schemas.

To study scalability oDIMSAT, we performed similar experiments with five more complexalision schemas. Their
hierarchy schemas are lattices of adjacent squares, wihereategories are placed in the corners of them. The schemas
have disjunctive constraints which do not impose any &8in on how members rollup to the categories directly above
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Figure 13. A series of subhierarchies in an execution of

DIMSAT(locationSch, Store).
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Figure 14. Running times (seconds) of

DIMSAT for the schemas introduced in Section 3.

16



Num Cat. | Size ¥ | Num Frozen Dims. | Time Load | DIMSAT | FROZEN
latticel 8 9 15 .05 .01 .01
lattice?2 12 18 207 .05 .01 .08
lattice3 16 27 2895 .06 .01 7
lattice4 20 36 40735 .09 .01 12.8
latticeb 24 45 573951 A .01 368.1

Figure 15. Running times (seconds) of

DIMSAT for the schemas 1latticel-latticeb.

Num Frozen Dims. | Time Load | DIMSAT | FROZEN | Gain FROZEN
latticel’ 15 .05 .01 .01 0
lattice?2’ 153 .05 .01 .07 .01
latticed’ 1494 .07 .01 3 il
latticed’ 13657 1 .01 4.6 8.2
latticeb’ 120038 12 .01 56.7 311.1

Figure 16. Running times (seconds) of  DIMSAT for the schemas latticel’-lattice5’.

them. Because of this, the number of frozen dimensions oéthemas are the same as their numbers of subhierarchies.
The schemas, callethtticel, lattice2, lattice3d, lattice4, andlatticeb, have respectively§, 12, 16, 20 and24
categories.

The results of the experiments are shown in Figure 15. Theedfizach set of constraints is measured as the number of
atoms and logic operators that arise in the constraintsicéltitat the number of frozen dimensions grows exponewntiall
by a factor of4 between two consecutive schemas in the table. The computatithe frozen dimension for schemas
latticel-lattice4 take less than a second. This time considerably increashs last schema (6 minutes aprox.).

From Figure 15 and the analytic study of the complexitp DifiSAT we conjecture that in a lattice of 28 categories with
structure similar tdatticel-lattice5, the algorithnFROZEN would take more than two hours, and it would take around
five days in a lattice 082 categories. Nevertheless, it is important to notice thaswitild be very unusual to have schemas
with such amounts of subhierarchies in real-world applicest But even if those schema aroB&MSAT may be improved to
allow handling schemas with high degree of complexity. hstanceDIMSAT may be speed up by precomputing and storing
the set of frozen dimensions, turning the algorithm to poigton the number of frozen dimensions of the schema.

Finally, we investigated the effect of the pruning heucistn the running time ddIMSAT. As explained in Section 6.1, ho-
mogeneous edgesintticeb properly modeled witinto constraintsnay considerably reduce the number of subhierarchies
explored byDIMSAT andFROZEN. In order to assess this claim we tested the algorithm whles@slatticel’-lattice¥’,
which are obtained fromatticel-lattice5 by adding into constraints to some of their edges. In padicuve add
one-fiveinto constraintg¢o the schemasatticel’-lattice’’, respectively. The results, shown in Figure 16, provide ev-
idence that the running times of the algorithms reduce Sagmitly. In particular, the usage ofto constraintsfor pruning
yields a speed up &f.2 seconds and minutes for schemaksattice4’ andlattice®’, respectively. Notice that the frozen
dimensions of the schemas reduces w.r.t. scheasicel-lattice5. Because of the pruning strategy, the algorithm

avoid the cost of building subhierarchies that violate tite tonstraints and it only builds subhierarchies that ¢ediiozen
dimensions.

7 Related Database Constraints

In this section we briefly compare dimension constraintd wither classes of constraints known in the database world.
As explained in several papers (e.g., [12]) OLAP dimensiay ilme modeled as a set of normalized tables, one for each
category, containing the rollup mappings that start froencategory, along with the the attributes of the categorerdtore
the framework presented in this paper may be formalizedyusirelational database setting.
Let us first clarify the relationship between dimension ¢rists and First Order Logic (FOL) constraints, that may
expressed over the relational representation descrilmaalBn important property of the relatienof a dimension instance
is that the size of its largest path should be smaller tharsiteeof the largest path without cycle in the hierarchy sciiem
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This turns the ancestor/descendant relatiorio be FOL definable. Consequently, the conditions that a d&oa must
satisfy given in Definition 1 can be defined with FOL sentermess the relational representation. In addition, it is lgasi
verified that dimension constraints are FOL constrainexdfore, our entire framework is a fraction of FOL. Essdiytithe
partitioning property (Condition c of Definition 1 (3)) twlrirozen dimensions into minimal models for testing impica
of dimension constraints, which makes the inference tastable and coNP-complete.

Abiteboul et al. [1] study a class of FOL constraints cakedbedded constrainthat formalizes a wide variety of con-
straints studied in the database literature. Embeddedradmts essentially say that the presence of some tuplbsinstance
implies the presence of some tuples in the instance or ishi certain tuple components are equal. Dimension @intr
cannot be expressed with embedded constraints, since wetaapress with them constraints that assert dependencies s
as “some tuples or some other tuples appear in the instance”.

Example 13 Consider the dimension constraiit c1) V (¢, c2). This constraint is equivalent to the following FOL expres-
sion:

Vz(MembSet.(z) = Jz1 a2 (T (x, 21) VT2 (2, 22))).

This constraint cannot be expressed with an embedded edmistsince an embedded constraint is an expression of the
form

Va1, .o Tn(P(@r, ..o xn) = 321, 260(Y1, -+ - YUm))s

where{z1,..., 2z} = {y1,.- - ym} — {x1,..., 2, }, @and¢ and are conjunctions of atoms.

Dimension Constraints restrict data in a similar fashioraasass of constraints (which are not embedded constraints)
called disjunctive existential constraints (dec’s) [6heTmain idea here is to model a relation as a combination &fotdj
each one determined by a set of non-null attributes thataapjogether. Disjunctive existential constraints are uged
characterize the possible sets of non-null attributesrttaat occur in the tuples of a relation; and hence, the posstijkcts
that are mixed in the relation. Formally, a dec has the féfht {Y7,...,Y,}, and means that whenever a tuple is non-null
for the set of attributeX, it must be non-null for all the attributes in at least oneddetttributesys, ..., Y,,.

In order to clarify this relationship, let us sssume thatdhmension is represented as a single relational table,emver
each category is an attribute, and the base categgryis the key of the table. The partitioning restriction (Cdiafi ¢ of
Definition 1 (3)) causes the base category to be a key in thus, talso, the edges in the hierarchy schema may be regarded
as functional dependences, properly interpreted to dehlmuill values. It is important to note that this represeatais not
always possible, as shown in [8], because of heterogeneity.

AdecX F {Y3,...,Y,} over this table can be expressed with the following dimemsmnstraint oved:

(Aiex(bases -+ €i)) = Vier n(Veey, (Coases - €))

All

A

c
| < > C
C
Figure 17. Graphical representation of a path constraint in terpreted in a dimension instance.

By definition, a dec of the fornX - () meansT . Therefore, we cannot express split constraints of the f&/m v ~(csase> -+, ¢;)),
because the absence of positive atoms in the clauses obtbdis makes their corresponding de€’s In particular, the
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constraintcpgse, -, ¢) = (7{Cpase, -, €1) V {Cpase, ., C2)) States that every memberaf,.. that rolls up ta: does not rollup
toc; ande; atthe same time. This constraint cannot be expressed with déoreover, as shown by Hurtado and Mendelzon
[9], we need constraints of this form to characterize sunmahility of ¢ from {¢1, c2} in a hierarchical dimension instance.

The dimension schemas introduced by Husemann et al. [11peamasily represented with split schemas. However, the
converse is not true. Consider a hierarchy schema with cgesg:, 1, co, such that:  ¢;, andc  ¢o. The model of
Husemann et al. allows us to express only one of the followpiig constraints{c, c1) A {c, c2) (the categories are optional),
or (c,c1) ® (c,co) (the categories are alternatives). There are a varietytwdtgins in between that cannot be expressed
with them. For instance, we may have stores that rolluptovince and do not rollup taState, and stores that rollup to
Province andState, yielding the following split constraint{Store, .., State) = (Store, .., Province). Here Province
andState are neither optional nor alternative categories. We catecthat, unlike the constraints introduced by Husemann
et al. [11], split constraints incorporate the whole expramness of the boolean connectives.

We turn now to study the relationship between path congtrdihh 4] and dimension constraints. A path constraint
is interpreted over a semistructured data instance (sdghytiollowing Buneman et al. [4], can be abstracted as a pair
o = (r, E), wherer is a constant denoting the “root” of the data instance, &nsl a a finite set of binary relations denoting
the edge labels. We can represent a dimension insiangéh a sdi by making- = A11, and reversing the child/parent
relation<, to represent the edges @f In path constraints, patha(z, y) is a predicate that states the existence of a path
fromz toy in o. In the dimension instance representingy can be viewed as a sequence of categories. Path constraints a
expressions of the form:

VaVy(A(r,z) A B(z,y) = C(z,y),

whereA, B, C are pathg. This constraint (see Figure 17) basically states thagifefis a pathd from a1l to a member: in

¢/, and a patiB from z to a membey in ¢, then there must be a pathfrom x to y. We can express this path constraint with
the following dimension constraind B = C. Consider now the dimension constraihtAB =- —C. This constraint could
be needed to characterize summarizability’dfom a pair of categories; € B, ¢c; € C. In order to represertt with a path
constraint we would need to haveVy(A(r, z) A B(z,y) = —C(z,y) in the language of path constraints, which is not the
case. In conclusion, unlike dimension constraints, pattstaints lack the full expressiveness of the Boolean dpesa

8 Conclusion

Dimension constraints have a practical motivation, camesgpsummarizability, and have a relatively efficient iafere
problem (CoNP-complete) compared with other classes &iflike constraints that have been studied. Moreover, frioen t
study of the running time dIMSAT given in this paper, we conjecture that in most practicalkdibnsDIMSAT should yield
execution times of the order of a less than a second. We ledlese properties should make dimension constraintslusefu
a broad set of practical settings.

Although the first and most direct motivation for introdugidimension constraints is to support aggregate navigation
they are also helpful in the design stage of data cubes. Aaditibnal database systems, the design of dimensionslfaiPO
should be driven by the semantic information provided indtleema. Dimension constraints provide the means to capture
such semantic information. In addition, dimension coristsanay play an important role in the problem of selectingns
to materialize in data cubes by supplying meta-data to suippe test of whether a selected set of views is sufficient to
compute all the required queries.

Dimension constraints can be extended in several directMe could consider further built-in predicates over bittiés,
such as an order relation, to extend equality atoms. We wbeld be able to express dependences such as: “if the value of
the price of a product is less than a given amount, the pradllstup to some particular path in the hierarchy schema”. In
addition, if we relax the partitioning constraint, sumraahility can no longer be characterized with dimension trairgs.
Further extensions to dimension constraints are neededlpieost summarizability inference and aggregate navigaitio
such dimensions.
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2We consider only path constraintsfiorward formbecausdackward path constraintseed cycles in the instance to be satisfied.
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A Proofs of Theorems

Theorem 1 Given a dimension schem@ and a dimension constraint with root ¢, D | « iff ¢ is unsatisfiable in
D' = (H,XU{~a}).
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Proof of Theorem 1 First, we prove thatx) given a dimension instanaé a dimension constraint, and a member
x € d71, thenDinTuple(d, z) F~ « iff DimTuple(d, z) = —«. This follows directly from the fact thatimTuple(d, z) has
onlyzind1.

(If) AssumeD = «. Then there exists a dimension instante (D) such thatd [~ «. Therefore, by Lemma 1,
there exists at least one memberc d~! in d such thabimTuple(d,z) = . By (x), DimTuple(d,z) &= —a. Now,
becausel € I(D), d = X, and by Lemma 2, we haveinTuple(d,z) = X. ThereforeDimTuple(d,x) is over H,
DimTuple(d, z) = X, andDimTuple(d, z) = —«. Consequently is satisfiable inD’, yielding a contradiction.

(Only Ify Assume that is satisfiable inD’. Then there exists a dimensidrover H such thatd = ¥ andd—! # () in
d. Henced = —a. Now, choose a member € d~!. From Lemma 1, it follows thabimTuple(d,z) = —a. By (x),
DimTuple(d,z) #~ a. Now, from Lemma 2, and the fact thdt|= X, it follows thatDimTuple(d,z) = ¥. Therefore
DimTuple(d, z) = %, andDimTuple(d, x) [~ «, and hence [~ « leading to a contradiction.

[ ]
Theorem 2 Given a dimension schenia and a category of D, c is satisfiable inD iff Frozen(D, c) # 0.

Proof of Theorem 2 (If) It is direct since a frozen dimensiehin Frozen(D, c) is a dimension instance dd and has a
member ind 1.

(Only Ify Assume that is satisfiable inD. Then there exists at least one dimension instaned (D) such thati—* # (.
Now, consider a member € d—! in d, and letd’ = DimTuple(d,z). From Lemma 2, it follows that’ = 3, and hence
d" € I(D). ThusTFrozen(D, x) € Frozen(D, c), leading to a contradictior.

Theorem 3 Given a dimension schenda, and a dimension constraiatwith rootc, D |= « iff for every frozen dimension
f € Frozen(D,c), f E «

Proof of Theorem 3  (If) Assume that there exists a dimensiba I(D) such thatl = «. Then, by Lemma 1, there exists
at least a member € d~!, such that!’ = DimTuple(d, c,z) £ o. Now, letf = TFrozen(D,d’). Itis easily verified that
f £ «. Consequentlyf € Frozen(D, c), andf [~ «, yielding a contradiction.

(Only If) Assume that there exists a frozen dimensjfoa Frozen(D, c) such thatf [~ «a, thenD £ «, leading to a
contradiction.e

Theorem 4 Category satisfiability is NP-complete, implication is G&domplete.

Proof of Theorem 4  First, we will prove that implication is NP-complete.

(NP-hard) We will show a straightforward reduction from SAT to the plarh of testing category satisfiability. From a
propositional formulax, we will build the following dimension schem@ = (H, X): the hierarchy schemA& has a base
category,,se, and for each propositional variablef o, H has a category,. Every category,, is connected witia11, and
Chase 1S CONNected with each categary. The set of constraints is as follows: we have’ whereo’ is obtained fromy by
replacing every variablg with (cyese, ¢p). It is easy to see that is propositionally satisfiable i, is satisfiable inD.

(NP) Given a category of a schema = (H,X), a candidate frozen dimensionkrozen(D, c) can be specified by
a pair(g, ca), whereg is a candidate frozen graph &f whose root is;, andca assigns a member, that could foe(c’) or
some constant mentioned in a equality atom, to a each cgtaggr The child/parent relation of is defined by the edges of
g. A nondeterministic algorithm for testing défis satisfiable inD needs only guess a candidate frozen dimengiand test
in polytime whetherf satisfy conditions of Definition 1, and whethgi= .

Notice that, even iE contains composed path atoms, the ekt X can be done in polytime. Thus, including composed
path atoms in dimension constraints does not add extra exipto the problem.

By Theorem 1, testing whethé? |~ « is equivalent to testing whetheiis satisfiable ifH, X U {-«a}). By Theorem 4,
testing category satisfiability is NP-complete, hencengsmplication is coNP-complete.

Theorem 5 A categoryc is summarizable from a set of categortes a dimension instanceiff for every bottom category
cp of d we haved = (cp, .., c) = O, c5{(Cb; -+ Ciy -+, €)-
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Proof of Theorem 5 Let us denote byz., the expressioly),,, . 4 7, (I'c; d > ', d). From Corollary 1, it suffices to prove
that for every bottom category of d, ()¢, d = R, iff (b) d = (cp, ... c) = O, c5(Cb; - Ciy -+, €)-

Recall the notion of dimension tupleimTuple, from Section 4.2. The following two statements are easéified: (1)
given a dimension instanek two categories, andc, of d, and a member € MembSet,,, DimTuple(d, e) = (cq, .., cp) iff
Jy((zq,y) € T d); and (2) given a dimension instanégthree categories,, ¢, andc, of d, and a member € MembSet.,,
DimTuple(d,€) = (Ca; .., Cb, .., Cg) iff FyTz((e,y) €TLAA (y, 2) € Teld).

(If) Assume (a) is false, then there are three cases to consider.

o (Case 1) Thereis a pdiey, e) in I'¢, d such thatey, e) is notin R.,. Then from (1), it follows thabimTuple(d, e;) =
{cp, .-, ¢). Because (b) holds, the constraint mentioned in (b) alsdshfdr DimTuple(d, ;). Thus there is exactly
one category; € S such thaDimTuple(d, e;) = (cp, -, Ci, -, €). BY (2), IyFz((en,y) € TEid A (y,2) € I'¢, d); and
because d is partitionedy((es, y) € I'e:dA(y, e) € I'c.d). Therefore the tuplée;, e) appearsinr., (I'é:d > T'¢. d),
and henceey, €) appears ik, leading to a contradiction.

e (Case 2) There is atuples, e) in I';, that occurs at least twice iR.,. Then there are two categoriesc; in S such
that(es, ) appearsinr., .(I'¢ d > T, d), and(ey, ¢) appearsinr,, (¢, d p< I'¢,d). Hencedy(I'¢: (es, y)AL'E, (v, €)),
and3z (Tl (ep, 2) A 't (2,€)). By (2),DimTuple(d, es) = (cp, .., Ci; .., ¢), andDimTuple(d, es) = (cp, .., ¢j, ., C).
Becauséey, e) € I'c, d, and by (2)DimTuple(d, ep) = (cs, .., ¢). Hence the constraint mentioned in (b) does not hold
in DimTuple(d, e;), and thus (b) is false, leading to a contradiction.

e (Case 3) Thereis a tuples, e) in R., which is notinl'¢, d. Then there is a category € S such thaBly(I'C: (e, y) A
I'¢.(y,e)). Thus,(e, ep) € T, d, yielding a contradiction.

(Only If) Assume (b) is false. Then, there are two cases to consider.

e (Case 1) The dimensiod has a base membey, such thatDimTuple(d,e;) = (c,..,c), and for all¢; € S,
DimTuple(d, ep) = (cv,..,Cs,-.,c). Then from (1) and (2), it follows thale,,e) € I'¢, d, and for allc; € S'itis
not the case thaty3z((es, y) € T'éid A (y,2) € T'¢.d). Thus(ey, e) does not appear iR.,, and hence (a) does not
hold, yielding a contradiction.

e (Case 2) The dimensiafihas a base membey such thaDimTuple(d, e;) = (e, .., ), and there exist at least two
categories;, c; € S such thaDimTuple(d, ep) = (¢, .., Ci, .., €), andDimTuple(d, ;) = (cp, .., ¢}, .., ¢). Therefore,
from (1) and (2), it follows thates, e) € I'¢, d, and there are two categoriesc; € S such thaty3z(I'¢i (ep, y) A
¢ (y,2)), andIv3w((ey, v) € Tard A (v,w) € I'¢. d). Becausel is partitioned, there is a membemn d~* such that
Fy((er,y) € TEd A (y,e) € TC.d), andIv((ey,v) € TGid A (v,e) € T d). Hence(es, ) appears at least twice in
R., and appears once I, d, leading to a contradiction.

Theorem 6 Testing summarizability is coNP-complete.

Proof of Theorem 6 (coNP-hard)We will present a polytime transformation from VALIDITY, vi¢h is known to be
coNP-complete. In VALIDITY we are given a propositidghand we are asked whethBris valid, i.e., whetheP is satisfied
by all truth assignments. From the instarfie®f VALIDITY we obtain the dimension schem@ = (H,X). The hierarchy
schemaH is as follows:C' = {c, ¢, ¢/,A11} U Cp, whereC'p is a set containing one categaryfor each propositional
variablep; in P. The relation,” contains the pairs, " ¢,c;, /" ¢/, ¢ /7 All, ¢  All. Also, for each category; € Cp
we haver’ " ¢; ande; " All. The seft contains the following constraintée,, c) & (cp, ¢’), (¢, A11), (¢/,A11), and—ap,
whereap is the constraint obtained froi by replacing each propositional variaklewith (¢, ¢;).

Now, consider the instance tésting summarizabilitin which we are asked wheth&t1 is summarizable from in D.

It is easily verified that11 is summarizable from in D iff ¢’ is unsatisfiable inD. In addition, we can easily see thais
unsatisfiable inD iff P is valid. Thereforei11 is summarizable fromin D iff P is valid.

(coNP)In order to test summarizability, we need to test the impiicaof the summarizability condition. First we will
show that testing implication of a constraint which is a Boi combination of atoms of the forfny .., ¢;) or (c, .., c;, .., ¢;)
(in this proof we will refer to such atoms as complex atom#) oONP. It is enough to prove that testing category satiifiab
in a dimension schema with complex atoms is in NP. An NP aflgorihat solves the problem needs only to guess a candidate
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frozen dimensionl (see the proof of Theorem 4) and tests whethdoes not have cycles and shortcuts and satisfies the set
of constraints of the schema. Any complex atom that appedh®iset of constraint can be evaluated in polytime, since
this task essentially requires the computation of the ttiasclosure of the hierarchy af. The remainder atoms can be
evaluated in polytime as well. Thus, the constraints carnvhkiated in polytime.

Since the size of the summarizability constraint, withaglacing its complex atoms, is polynomial on the size of the
dimension schema, testing summarizability is coONP.

[ ]

B Proofs of Propositions

Proposition1 A categorycis summarizable from a set of categorie a dimension instancéiff I't, =4 g 7, (L6

Chase Chase
c )
I ci/"t

Proof of Proposition 1 The condition of Definition 2 is equivalent to the followingradition:

Hc,m:af(m) (ngasa > .fbase) = Hcﬂn:afc(m) (Lﬂizlmn Te,m (Fa > (Hc,i7m:af(m) (Fg};m > fbase))))

Because the dimension is partitioned, i.e., each elemeat inlls up to a unique element in, we can push up the
projectionll,, ,,—,r(m) iN the right-side expression yielding:

Hc,m:af(m) (ngase > fbase) = Hc,m:afc(m)(wizl__n WC,chi,m:af(m) (Fa > (ng(m > fbase)))-

And becausef is distributive, we have:

Hc,m:af(m) (ng{m > fbase) = Hc,m:af(m) (@izlmn 7rc7m(]-—‘gi > (Pgimc > fbase)))-
Becauser does not eliminate duplicates, we can replacg, with 7., . . Yielding:

Hc,771:af(m) (ngasg D fbase) = Hc,m:af(m)(wizlmn cham,c,m(ng > (ngase > fbase)))-

Becausex is associative, we have:

Hc7m:af(m)(rgbm > fbase) = Hc7m:af(m)(Hi:l...n(WCbase,c,m(ng > ngm)) > fbase)-
Finally, the condition of Definition 2 is equivalent to:

(*) Hc,771:af(m) (ngasc > fbase) = Hc,771:af(m) (R > fbase)a

whereR is the queryty, ., ,, me,.. . c(I'6 > T¢).

We now prove both directions of the proposition.

(If) Itis direct by replacing? with ', in (x).

(Only If) Assume(x), and suppose thdt # I';, . Thenthere is atuple= (3, z.) such that the number of occurrences
of tin R is different than the number of occurrenceg @f I';, . Now, letaf be the aggregate functiomm, and letfy.se
be the fact table with a single tup{e;, 1). Then it is direct that the right and left side query(ef compute different values
for the measuren at z.., yielding a contradictione

Proposition 2 Every dimension schema is satisfiable.

Proof of Proposition 2 Given a dimension schenia = (H, ¥), letd be a dimension instance with hierarchy scheiha
and a unigue memberll. Itis easy to see that the relatienof d inducs a hierarchy domain amldsatisfies conditions of
Definition 1. Moreover, because all the categoried,ofxceptall, are empty, and there cannot be a dimension constraint
with rootAl1l, trivially d = X. Henced € I(D), andD is satisfiables

Proposition 3 Every category of a canonical schema is satisfiable.
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Proof of Proposition 3 Given a canonical schenda = (H, X) (recall that® here is a set of constraints that represents the
condition of homogeneity), leb’ be the schem@H, X’) such that>’ has a constraini;, ¢;) for every edge inff. We have
that a category is satisfiable inD iff ¢ is satisfiable inD’, simply becausé(D) = I(D’). Now consider the dimension

f whose hierarchy schema . The dimensiory has a membeik(c’) for every category ifDut*(c), and its child/parent
relation< is defined as follows: for every pair of members; of f, z < y iff y's category is directly above'’s category in

H. Itis easily verified thaff satisfies conditions of Definition 1. Alsd,satisfies all the into constraints ¥i. Thusf is a
frozen dimension ifrozen(D, c), and hence is satisfiable inD. e

Proposition4 Given a canonical schenia = (H, ), a category: of D, and a set of categorigsof D, ¢ is summarizable
from S in D iff for every bottom category, of D, if ¢, /* ¢, then there is exactly one categefyc S such that, ™ ¢
andc’ 7 cin H.

Proof of Proposition 4 Consider the constrairity, ..,c) = O, cg(cp; - ¢i, -, ¢), Wherecy, is a bottom category ob.
Now consider the atonry, .., ¢) that appears i&(c;, ¢, S). BecauseD is canonical,D = (¢, .., ¢) means that, /™ cin
D. Similarly, D = (cp, .., ¢, ..,c) means that, /* ¢ andc’ * cin H. ThusD E =(c, ¢, S) asserts that there is exactly
one category’ € S such that, /* ¢ andd’ /* cin H. e

Proposition 5 DIMSAT runs in timeO(2"+N 1os N 3 ),

Proof of Proposition 5 The execution time addIMSAT can be decomposed into the tirfie due to executions EXPAND
without considering subcalls {€HECK, plus the timel;, due to executions dfHECK.

Let us first examing?. If we do not consider the execution GEECK, an arbitrary execution &XPAND takesO (N Nyt )
steps in lines 1-14, plus the time for the executions of frttalls toEXPAND in Line 16. Here N,,; stands for the maximum
out degree of the categories In. If we assume that all sets are implemented as bit vectoch, @aion, difference, and
intersection operation take&3(N). Thus, the timeD(N N,,;) of lines 1-14 is basically given by lines 4 and 11, where at
mostN,,; operations are done.

ThereforeT} isin O(aN N,.:), wherea is the number of calls made EXPAND in the entire execution of the algorithm.
Now, when constructing a candidate subhierarERRAND is called at most once for each category in the subhierafdigte
are at mosg” candidate subhierarchies, so< 2V N. ThusT} isin O(2V N3)

Now, we studyT». The cost of a single call afHECK is (a) the time used to compuf&’ := Pr o g, plus (b) the time
that Loop 2-4 takes. A naive procedure to comphié := Pr o g is as follows: while we are doing a depth-first traversal
of g, we delete from each path the edge being traversed; in the stap, we mark the equality atom that refers to the node
we visit. At the end, we make false the equality atoms unnthede the path atoms that remain in the list. This takes
O((Nx)N?), which is the order of (a). Time (b) is in the order of the numblec-assignments times the cost of evaluating
each c-assignment. The number of c-assignments is at/KeSt, and the evaluation of each of them takes at mafs;
steps. Therefore, Time (b) is @ (N Nx). Consequently, each executionaECK takesO(Ns N2 + NV N Ny steps.
Hence each execution OHECK takesO(Nx ™Y N2Ny,) steps. Consequently, we have tiiatis in O(2V° (N Y N2Ny))).

Thereforel’, + Ty is in O(2N° TN log N N3 N ).

C Proofs of Lemmas

Lemmal Given adimension instanekand a dimension constraintwith roote, d = « iff for every member € d=1(c),
DimTuple(d, z) E a.

Proof of Lemma 1 (If) Assume that! = a. Then there must exist a member € MembSet. such thatx[z/m| does
not hold ind, wherea[z/m] is the FOL expression obtained framby renaming the unique free variabtewith m. Now
consider a single atom in «. It is easily verified that (*)ut[x/m] holds ind iff at[z/m] holds inDimTuple(d, m). Thus
alxz/m] does not hold imimTuple(d, m). Now, from the fact thabimTuple(d, m) has a unigue membet in MembSet,,
it follows thatDimTuple(d, m) does not satisfi{yz € d~!(c)[a]. Thus,DimTuple(d,m)  «, leading to a contradiction.
(Only Ify Assume that there exists a membere d—!(c) such thaDimTuple(d,m) ~ «. Thenalz/m] does not hold
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in DimTuple(d, m). Now, from (*), it follows thata[z/m] does not hold inl. Hence,d does not satisfyyz € d=!(c)a.
Consequently] [~ «, yielding a contradiction.
[ ]

Lemma 2 Given a dimension instaneéand a dimension constraintsuch thatd = «, then for every member of d,
DimTuple(d, z) = .

Proof of Lemma 2 Assume there is a member of d such thaDimTuple(d, m) [~ «. Then there are three cases: (Case
1)m € d~'(c). In this case, we use Lemma 1 to reach a contradiction. (Cpse € d—'(c) andm rolls up toc. Let

m’ be the ancestor af in d=!(c). Then, from Lemma 1, it follows thatimTuple(DimTuple(d,m), m’) does not satisfy

a. ButDimTuple(DimTuple(d, m), m’) = DimTuple(d, m’). HenceDimTuple(d, m’) }~ «, and using Lemma X [~ a,
yielding a contradiction. (Case 3) does not rollup ta. Then,DimTuple(d,m) has no member id—!(c), and it is direct
thatDimTuple(d, m) = «, yielding a contradictione

Lemma 3 Given a dimension schemé& = (G, ¥), and a subhierarchy of G with root ¢, ¢g induces a frozen dimension
iff () g has no cycles or shortcuts, and (c) there exists a c-assigraef g such thaka = Prop(ds, c) o g.

D Correctness ofDIMSAT

In this section we prove the correctnes®ofISAT. Let us define the procedur&PAND’, which is obtained frontXPAND
by replacing Line 7 (wher€HECK is called) with an operation that adg$o a global variabl&Result.

Next, we prove some propertieSEXPAND’.

We will denote byP;, wherei can be a number, or a letter, a particular instance (or exeguif a procedure’. If p
is a parameter oP, p; stands for the actual parameter that correspongsimothe instanceP; of P. In particular, given
an instanc&XPAND; (¢;, R;) of EXPAND, g; andctop; stand for the variableg andctop immediately after the execution of
Line 11. Thecall graphof an execution of a recursive procedurds a tree whose nodes are instance®pénd each edge
(P;, P;) represents thak; called P; during the execution. The children of a node are orderedrdaupto their occurrence
in the execution. Consider an mstarE)EPANDn(cn, R,,) of EXPAND, and letr be the path from the root to that instance in
the call graph oEXPAND(c, 0), then CatP,, stands for the set of categorigssuch that there is an instanE&PAND; (¢;, R;)
inT.

Lemma 4 (Properties ofEXPAND’) Given an instanc&XPAND'; (c;,R;) in the call graphCG of EXPAND'(c, §)), the follow-
ing hold:

. The category reaches every category in.C, and each category ip;.C reaches a level ig;. Top in g;.
. g; has no cycles or shortcuts.
. For every into constrainfc;, c2) € 3 such thate; € (g;.C' \ g. Top), we have thatc, ¢2) is an edge of;.

. gi-Top # 0.
. LetEXPAND';(c;,R;) be the instance that calleEKPAND'; (c;,R: ), thene; ¢ CatP;.

ga A W N P

Proof of Lemma 4
1. We omit the proof since the statement can be proved by igistiarward induction on the length of a path@G.

2. We will prove this using induction on the length of the axtan path. Base Case: it is direct since there is a unique
category ing.C, and this category is also i Top. Induction step: assume that the instaB&BAND'(c;,R;) called
EXPAND'(c;,Ri). Suppose; has a cycle, then becaugghas no cycles, at least one categefye R; must be in the
cycle. But, becauss, ¢ Sc; (whereSc; is computed in Line 12) iBXPAND';(c5,R;), ¢ & g;.In*(ltop;). Now from
Line 4 in EXPAND’; (1;,R;), it follows thatg;.In*(c,) = g;.In*(ctop;) U {ctop;}, and hence,, ¢ g;.In*(c,), and
thereforec,, cannot be in a cycle, leading to a contradiction. Now, suppgp$as a shortcut, then becaugehas no
shortcuts, there must be a short¢tft ¢, ), for somec,, € R; in g;. Thereforeg;.In(c,) N g;.In*(c;) # 0. And from
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¢ = ctop;, gi-In(cn) € H.In(cy,), andg;.In*(ctop;) = g;.In*(ctop;), tfollows thatH.In(c,)Ng;.In* (ctop;) # 0.
Now, because of Line 1%k,, € Ss;. Moreover, because of Line 13, ¢ S; and because of Line 16, ¢ R;, yielding
a contradiction.

3. We will prove this by induction on the length of the exeontpath. Base Case: it is direct since there is a unique cate-
gory ing.C, and it is also iry. Top. Induction step: assume that the instaBXBAND’(c;,R;) calledEXPAND’(c;, Rs).
Assume that there exists a categoftyc’ € ¢;.C \ g;. Top, such thatc’,¢”) € X, andc” & g¢,.0ut(c’). Notice that
becausgy; satisfies the statement of the lemma, it must be the case’that;, and thernt’ = ctop;. Now, because
EXPAND'; (¢, R;) was called withR; = S’ U Into;, andc” € Into;, we have that” € R;. Hencec” € g;.0ut(c,),
yielding a contradiction.

4. Assume thag;.T'op = (). This instance must have been called by another insEXRAEND’(c;, R;) such thay;. Top =
{c;}, otherwisey,. Top would not be empty (because in Line 2, wheyeTop is computedg;. Top \ {¢;} C g;. Top).
Now, from Lemma 4 (1), it follows thag;.C' C g;.In*(c;). On the other hand, becaugeTop = 0, R; C ¢,.C (again
this follows from Line 2 wheregy;. Top is computed). Then, we have; C g;.In*(c;). Therefore,R; C g;.In*(l;),
and becaus®; = g;.Out(c;), we have a cycle ig;, which contradicts Lemma 4 (2).

5. It is direct by induction on the length of the paths, thatdeery pathr’ = EXPAND(c, ?) ... EXPAND,, (¢, Ry,) Of
T, gm-Top = gm.C \ Cr. Now, let7 be the path from the root tBXPAND;(¢;, R;), and assume that there exist an
instanceEXPAND; (¢;, R;) in T such that; = ¢;; then there must be a sub-path= EXPAND(c, 0)) . . . EXPAND; (¢;, R;)
... EXPANDy (ck, Ry) EXPAND; (¢;, R;) of T (we assume without loss of generality tEAPAND; (c;, R;) occurs before
thanEXPANDy (cx, R)). Let 7/ be ' without EXPAND,(c;, R;). Then, we havey.Top = ¢5.C \ C-~. But because
EXPAND; (c;, R;) is called byEXPANDy (ck, Ry) in Line 17, ctop,, = ¢;, and hence; € g.Top. Then,c; = ¢;, and
¢; € Crv, yielding a contradiction.

Lemma 5 (Correctness ofEXPAND) Given a dimension schem@ = (H,X), and a category, after an execution of
EXPAND'(c, 0)), the variable Result contains all the subhierarchieg of H with root ¢ such that: (a)g has no cycles or
shortcuts and (b) for every into constraifat;, c2) € X, such that; is a category ofy we have thate;, ¢2) is an edge of.

Proof of Lemma 5 Let us introduce some notation for the proof. First, we deddie call graph afXPAND'(c, () by CG.

In addition, let@ be the set containing all the subhierarchjesf H with rootc such that: (a)y has no cycles or shortcuts
and (b) for every into constraifit;, c2) € X, such that; is a category ofy we have thatc,, c2) is an edge of. Finally,
given two subhierarchiggandg’ of H, ¢’ is a I-subgraph of if: ¢’.C' C ¢.C; and for every category € (¢’.C \ ¢'. Top),
g.0ut(c) = g'.Out(c).

We need to prove thaesult = Q.

First, we will prove thatResult C Q. Consider a leafXPAND'; (c;, R;) of CG. From Lemma4 (1), Lemma 4 (2), Lemma
4 (3), and the fact that;. Top = {A11}, it easily follows thaty; € Q, and henc&Result C Q.

We now prove tha) C Result. First, we will prove (i) if there exists an instanE&PAND’; (c;,R;) in CG whereg; is
a l-subgraph of;, andg;.C' C g.C, theng;. Top # {A11}. Assume that this is false, i.ey;. Top = {A11}. Now let¢’ be
a category irny.C which is not ing;.C (note thatc’ # A11). Now consider a path = ¢’¢; ...c,c¢ from some category
" € g;.Ctoc ing. Note thatAll cannot be in this path, because there is no category atidvén g. This path must
exist because’ is at least connected fromin g (see definition of subhierarchy). Becaugeis a I-subgraph of;, and
" e ¢;.C\ gi. Top = ¢;.C \ {A11}, we have thatc’c;) is an edge iny;, hencec; € g;.C. We repeat this argument
with ¢, ¢, instead ofc”, ¢1, yieldingca € ¢;.C. Repeating the argument along the path, we reach ¢;.C, yielding a
contradiction.

Now, we prove (ii) if there is an instan®PAND'; (c;,R;) in CG whereg; is a |-subgraph ofj, andg;.C C ¢.C, then
there is a childEXPAND’;(c;,Ry) of EXPAND’; (c;,R;) such thatg; is a |-subgraph of;. Because (i) we reach Line 10 in
EXPAND’; (c;,R; ), and because Lemma 4 (4), and (i) there is at least one cgtegprin g;.ctop, andctop # A11. Now, we
callEXPAND'; (ctops, S; UIntos ), whereS; U Into; is the set of categories inOut(ctop;). Note that/nto; C g.0ut(ctop;)
becausg € Q. Now, we have:; = ctop;, andR; = S U Into;, and we have that; is also a I-subgraph af.

We will prove the existence of a pathin the execution graph that ends with a |E3PAND',, (c,,, R,,) of CG, such that
g; corresponds tg. We star from the rooEXPAND’(c, () and using (ii) we have the paBXPAND'(c, ))EXPAND’; (cq,Ry),
whereg; is a |-subgraph of;. We repeat this argument until the last instance in the =, EXPAND’, (c,, R,) Satisfies
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gn-C = g.C. Becausgy, is a |I-subgraph of, we have thay,, = g. And hencey,,.Top = {A11}. And hence in Line 7 we
addg to Result.

[ ]
We now prove the correctnesSmfMSAT.

Theorem 7 (Correctness oDIMSAT) Every execution diIMSAT(D, c¢) stops, and correctly outputs whetheis satisfiable
in D.

Proof of Theorem 7  First, we will prove thaDIMSAT(D, c) stops. It is enough to show thBXPAND when called the first
time with ¢ and{) stops. We will show that the call graph BXPAND(c, }), CG, is finite. It is easy to see that every node
EXPAND; (¢;, R;) of CG has a finite number of children, because the number of calBX®aND in Line 16 is at most the
number of subsets @ut(ctop;) in H, which is finite. Hence, in order f@'G to be infinite, there must exist an infinite path
in CG starting from the rooEXPAND(c, ). Now, because of Lemma 4 (5), we cannot have an infinite-tepgth inCG,
otherwise the number of categories in the graph would beitefiHenceCG is finite. Now, we can easily see that each
instance oEXPAND in C'G takes a finite amount of time, plus the time that takes thewgi@tof its descendants. Therefore
DIMSAT stops.

Now, we show thaDIMSAT(D, c¢) correctly outputs whether is satisfiable inD. First, we prove that if: is satisfiable
in D, thenDIMSAT(D, ¢) outputstrue. Assume not, then there is a non-empty Setontaining every subhierarchigsof
H with root ¢ such that: (a) has no cycles or shortcuts; and (b) for every into constrainice) € %, if ¢; is a category
of g, then(cy, c2) is an edge ofj. Then, because of Lemma 5, we have t0®ECK is called with every subhierarchy in
S. In particular,CHECK is called with a subhierarchy € S that induces a frozen dimension In. Moreover,CHECK(g')
returnsfalse, which contradicts Proposition 3. It remains to prove thatMSAT(D, ¢) outputstrue, thenc is satisfiable in
D. Assume thabIMSAT(D, ¢) outputstrue. It is easily verified from Lemma 5 and Proposition 3 that et graphy with
which CHECK is called is a subhierarchy &f with rootc, andg induces a frozen dimension ifs. Thereforec is satisfiable
in D.
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