
Capturing Summarizability with Integrity Constraints in O LAP

Carlos A. Hurtado
Universidad de Chile

churtado@dcc.uchile.cl

Claudio Gutiérrez
Universidad de Chile

cgutierr@dcc.uchile.cl

Alberto Mendelzon
University of Toronto

mendel@cs.toronto.edu

Abstract

In multidimensional data models intended for online analytic processing (OLAP), data are viewed as points in a multi-
dimensional space. Each dimension has structure, described by a directed graph of categories, a set of members for each
category, and a child/parent relation between members. An important application of this structure is to use it to that is,
whether an aggregate view defined for some category can be correctly derived from a set of precomputed views defined for
other categories. A dimension is called heterogeneous if two members in a given category are allowed to have ancestors
in different categories. In this paper, we propose a class ofintegrity constraints and schemas that allow us to reason about
summarizability in general heterogeneous dimensions. We introduce the notion of frozen dimensions, which are minimal
homogeneous dimension instances representing the different structures that are implicitly combined in a heterogeneous di-
mension. Frozen dimensions provide the basis for efficiently testing implication of dimension constraints, and are useful aid
to understanding heterogeneous dimensions. We give a soundand complete algorithm for solving the implication of dimen-
sion constraints, that uses heuristics based on the structure of the dimension and the constraints to speed up its execution.
We study the intrinsic complexity of the implication problem, and the running time of our algorithm.

1 Introduction

In multidimensional data models intended for online analytic processing (OLAP), data are viewed as points in a multi-
dimensional space; for example, a sale of a particular item in a particular store of a retail chain can be viewed as a point in
a space whose dimensions are items, stores, and time, and this point is associated with one or moremeasuressuch as price
or profit. Dimensions themselves have structure; for example, along the store dimension, individual stores may be grouped
into cities, which are grouped into states or provinces, which are grouped into countries. The relationship from elements at a
finer granularity and those at a coarser granularity is called rollup; thus we would say that the city “Toronto” rolls up to the
province “Ontario” and, transitively, it also rolls up to the country “Canada.”

1.1 Heterogeneous Dimensions

The traditional approach to dimension modeling required every pair of elements of a given category to have ancestors in
the same set of categories, a restriction referred to asstructural homogeneity. For example, in a homogeneous dimension we
cannot have some cities that rollup to provinces and some to states.

A number of researchers and practitioners [15, 12, 17, 9] have dropped the homogeneity restriction over the past few years,
yielding structural heterogeneousdimensions, which are needed to represent more naturally and cleanly many practical
situations. In addition, heterogeneous dimensions permitmore efficient storage of data by having fewer categories. A
smaller number of categories might exponentially decreasethe number of aggregate views we may need to handle and store
in OLAP systems.

Example 1 The dimension instance of Figure 1, calledlocation, represents the stores of a retailer. In our hypothetical sce-
nario, the retailer has stores in Canada, Mexico, and USA. All the stores rollup toCity, SaleRegion, andCountry. How-
ever, while the stores in Canada rollup toProvince, the stores in Mexico and USA rollup toState. The cityWashington is

1

s1 s2 s3 s4 s5

all

USA Mexico Canada

Ontario

MonterreyNewYorkWashington Toronto

NvoLeonNYState

r1 r2 r3 r4 r5

(A) (B)

SaleRegion

City

Country

All

Store

State

Province

Figure 1. The dimension location: (A) hierarchy schema; (B) child/parent relation.

m1 m2 m3

b1 b2d1 d2

Account Loan CredCard

all

ChAcc SvAcc MLoan CLoan PLoan CCard

(A) (B)

BLoan AccA AccB

m4

b3

p1 p2 p3 p4 p5 p6 p7

Branch

Product

All

Department

Manager

BranchProdType

ProdType

ProdCategory

Figure 2. The dimension product: (A) hierarchy schema; (B) child/parent relation.

an exception to the latter, since it rolls up directly toCountry without passing throughState. On the other hand, the states
of Mexico and the provinces rollup toSaleRegion, while the states of USA do not necessarily rollup toSaleRegion.

Example 2 Figure 2 depicts a heterogeneous dimension, calledproduct, which models financial services offered by a bank,
such as: accounts, credit cards, loans. In this dimension, all products are classified through the hierarchy path of categories:
Product-ProdType-ProdCategory-All. On the other hand, some types of products, like personal loans and some sorts
of accounts, are handled by branches, whereas other types ofproducts, like mortgage and corporate loans, are handled by
departments. The products that are handled by branches are also classified according to the categoryBranchProdType.
There is a manager in charge of each branch and department. Finally, it happens that some managers handle products in
only one category, which explains the edge fromManager to ProductCategory.

1.2 Summarizability

Cube viewsare simple aggregate queries that provide the basis for OLAPquery formulation. A single-dimension cube
view on a dimensiond (e.g. thelocation dimension) is specified by picking a category within the hierarchy ford (e.g. the
Provincecategory) and a distributive1 aggregate function (e.g. sum). This view, applied to a fact table, aggregates the raw
data in it to the level of aggregation specified by the category; for example, it sums the sales of all stores grouped by province.

1A distributive aggregate functionaf can be computed on a set by partitioning the set into disjointsubsets, aggregating each separately, and then
computing the aggregation of these partial results with another aggregate function we will denote asafc. Among the SQL aggregate functions,COUNT, SUM,
MIN, andMAX are distributive. We have thatCOUNTc = SUM; and forSUM, MIN, andMAX, afc

= af.

2

A key strategy for speeding up cube view processing is to reuse pre-computed cube views. In order to do this, the system
must rewrite a cube view as another query that refers to pre-computed cube views. The process of finding such rewritings is
known in the OLAP world asaggregate navigation[13]. The notion of summarizability was introduced to studyaggregate
navigation in statistical objects and OLAP dimensions [16,15, 17, 9]. As originally stated, summarizability refers towhether
a simple aggregate query (usually calledsummarizationor consolidation) correctly computes a single-category cube view
from another precomputed single-category cube view, in a particular database instance. In previous work [9] we extended
summarizability to allow the combination of several cube views in the rewriting. The notion we use in this paper is: a
categoryc of dimensiond is summarizable from a set of categories{c1, . . . , cn} of dimensiond if, for every fact table and
every distributive aggregate function, the cube view forc can be computed (by a simple relational algebra expression)from
the cube views on theci’s. A formal definition is given in Section 3.

Just as database instances are modeled by database schemas,dimension instances (like the one in Figure 1(B)) are modeled
by dimension schemas (basically the diagram in Figure 1(A)). Testing summarizabilityis the problem of deciding, given a
dimension schemads, a categoryc, and a set of categoriesS, whetherc is summarizable fromS in all the dimension
instances represented byds. In most dimension models in the literature, the dimension schema basically consists of the
hierarchy schema, the DAG shown in Figure 1(A). Such models lack a language fordescribing integrity constraints on the
schema other than the ones that are inherent in the hierarchyschema. This weakens the ability of OLAP systems to test
summarizability.

Example 3 In the dimensionlocation (depicted in Figure 1), we have thatCountry is summarizable from{City}. In-
tuitively, this happens because (i) all the stores rollup toCountry passing throughCity. However, we cannot infer (i) just
by analyzing the hierarchy schema of Figure 1 (A). This hierarchy schema may allow stores that rollup toCountry passing
throughSaleRegions, without going though the categoryCity.

A new class of constraints is needed to express integrity constraints in OLAP dimensions, and to turn dimension schemas
into adequate abstractions to model heterogeneity and to support the summarizability testing.

1.3 Related Work

Kimball [14] introduced the termheterogeneityto refer to the situation where several dimensions representing the same
conceptual entity, but with different categories and attributes, are modeled as a single dimension table. Lehner et al.[15], and
Pedersen and Jensen [17] account for heterogeneity, and propose different solutions to deal with summarizability. Lehner
et al. propose transforming heterogeneous dimensions intohomogeneous dimensions, which they say to be indimensional
normal form(DNF). The transformation is done by treating categories causing heterogeneity as attributes for tables outside
the hierarchy. The proposed transformation flattens the child/parent relation, limiting summarizability in the dimension
instance.

The dimension model of Jagadish et al. [12] allows several bottom categories where members may be placed, which
intuitively allows such members to have ancestors in different sets of categories. In this model, the heterogeneity of aschema
can be only modeled by splitting the categories of the schema, which may increase exponentially the number of categories,
and may impose unnatural restriction on tha way members are grouped into categories. Their model is subsumed by the
model we present in this paper.

Pedersen and Jensen [18] model a particular class of heterogeneous dimensions, and propose transforming them into
homogeneous dimensions by adding null members to representmissing parents. This solution has several drawbacks. First,
the transformation algorithm proposed considers a restricted class of heterogeneous dimensions, and does not scale togeneral
heterogeneous dimensions. In some dimensions, we may need to place several different nulls in some categories, which leads
to a considerable waste of memory and computational effort due to the increased sparsity of the cube views. As an example,
Figure 3 shows the dimension resulting from an attempt to transformlocation (Figure 1) by inserting null members. Notice
that the rollup mappingΓSaleRegion

Province becomes a many-to-many relation, which limits summarizability in the dimension.
Although database researchers have done abundant work on integrity constraints for a variety of data models, almost

nothing has been said about integrity constraints in the context of OLAP dimension modeling. In previous work [9], we
introducedsplit constraints, which are statements about possible categories the members in a given category may rollup to.
Split constraints allow summarizability to be characterized only in a particular class of heterogeneous dimensions that keep a
notion of ordering between the granularities defined by categories. Moreover, split constraints are insufficient for our problem
because in the general case heterogeneity would be better captured by possible hierarchy paths, rather than possible sets of
categories to which members rollup to. Goldstein [6] proposes to capture heterogeneity in database relations by means of

3

s1 s2 s3 s4 s5

all

USA Mexico Canada

r1 r2 r3 r4 r5

NvoLeonNYState

(A) (B)

SaleRegion

City

Country

All

Store

State

Province
n1 n2

MonterreyNewYorkWashington Toronto

Ontarion3 n4 n5

Figure 3. An attempt to fill missing parents with null values i n the dimension location: (A) hierarchy
Schema; (B) child/parent relation.

disjunctive existential constraints(dec’s). The main idea here is to model a relation as a combination of objects, each one
determined by a set of non-null attributes that appear together. Dec’s represent a particular class of split constraints. The
constraints introduced by Husemann et al. [11] are also a subclass of split constraints.Path constraints[1, 4] seem to achieve
the goal of describing certain forms of heterogeneity in semistructured data. Path constraints characterize the existence of
paths associated with sequences of labels in semistructured data. However, path constraints also lack the entire expressiveness
needed to characterize summarizability, and do not describe well the type of heterogeneity arising in OLAP applications. In
particular, we cannot characterize summarizability with them. On the other hand, path constraints are interpreted over data
which have many fewer restrictions in their structure than OLAP dimensions, yielding to a different treatment and complexity
of their inference.

In Section 7, we present a more detailed study of the related work mentioned in this section.

1.4 Contributions

In this paper, we introduce a model for heterogeneous dimensions. The model, formalized with graph-theoretic notions,
yields a new approach to represent the hierarchical structure of dimensions.

We propose a class of constraints,dimension constraints, for the purpose of expressing integrity constraints in dimension
schemas. We show that the hierarchy schema enriched with dimension constraints becomes an adequate abstract model to
infer summarizability. In particular, we show that summarizability can be characterized using dimension constraints, turning
the problem of testing summarizability into an inference problem over dimension constraints.

We give a sound and complete algorithm for solving the implication of dimension constraints based on the notion offrozen
dimensions. Frozen dimensions are minimal homogeneous dimension instances representing the different structures that are
implicitly “mixed up” in the schema. They are inferred from the dimension schema, and provide a useful representation to
understand heterogeneous schemas. We propose an algorithmthat uses heuristics based on the structure of the dimension
schema and the constraints to speed up its execution. We study the intrinsic complexity of the implication problem, and the
running time of the algorithm proposed with experiments.

Finally, we study of the relationship between dimension constraints and other known classes of integrity constraints
presented in the database literature.

1.5 Outline

The remainder of this paper is organized as follows. In Section 2 we present a model for heterogeneous dimensions,
and formalize cube views and the notion of summarizability.Section 3 introduces dimension constraints, and dimension

4

schemas. The implication problem related to dimension constraints is studied in Section 4. The relationship between dimen-
sion constraints and summarizability is shown in Section 5.In Section 6 we present the algorithm for testing implication of
dimension constraints and its implementation. In Section 7we compare dimension constraints with other known classes of
integrity constraints. Finally, in Section 8 we conclude and outline some prospects for future work.

The proofs are presented in appendices.

2 Modeling Heterogeneous Dimensions

In this section, we give formalize heterogeneous dimensions. We define summarizability and its essential properties.

2.1 Graph Notation

It is convenient to refresh some elementary graph concepts.A (directed) graphG is a pair of sets(V,E) whereE ⊆ V ×V .
Elementsv ∈ V are calledverticesand pairs(u, v) ∈ E (directed)edges; u andv areadjacentvertices. ApathinG fromv to
w is a sequence of verticesv = v0, . . . , vn = w such that(vi, vi+1) ∈ E. We say thatv reachesw. Thelengthof the path is
n. A cycleis a path withv = w. A dagis a directed acyclic graph. Asinkin a dag is a distinguished vertexw reachable from
every other vertex in the graph. Asourcein a dag is a distinguished vertexv from which every other vertex of the graph is
reachable. Ashortcutin a dag is a path of length> 1 between two adjacent vertices. Given a vertexv ofG, anupgraphis the
subgraph ofG generated byv and all the vertices reachable from it. Given two graphsG1 = (V1, E1) andG2 = (V2, E2), a
graph morphismis a functionφ : V1 → V2 preserving edges, that is,(u, v) ∈ E1 implies(φ(u), φ(v)) ∈ E2. The morphism
φ is called anisomorphism (resp. monomorphism, epimorphism)if φ as a function is bijective (resp. injective, onto).

2.2 Dimensions

Definition 1 Assume the existence of (possibly infinite) setsC (categories), andM (members). LetC ⊆ C andM ⊂ M.

1. Ahierarchy schemais a dagH = (C,ր) having a distinguished categoryAll ∈ C which is a sink.

2. A hierarchy domainis a dagh = (M,<) having a distinguished memberall ∈ M which is a sink, and without
shortcuts. (≪ will denote the transitive closure of<; its reflexive and transitive closure, denoted≤, is calledrollup
relation.)

3. A dimension instanced over a hierarchy schema(C,ր) is a graph morphismd : (M,<) → (C,ր) such that: (a)
(M,<) is a hierarchy domain; (b)d(all) = All; and (c) for allx andy 6= z, if x≪ y ∧ x≪ z thend(y) 6= d(z).

The last condition in item 2 (no shortcuts) avoids redundancies (transitive edges) in the representation of the data. The fact
thatd is a graph morphism in item 3 states that whenever we have a relationshipm1 < m2 between some pair of members
m1 ∈ c1 andm2 ∈ c2, then there is an edgec1 ր c2 in the hierarchy schema representing links between categoriesc1 and
c2.

Condition c of item 3 is a basic restriction in OLAP data modeling [5, 10, 12, 15], and states that the rollup relation≤ is
functional (i.e., single valued) between every pair of categories. This motivates to introduce therollup mappingbetween two
categoriesc1 andc2 of a dimensiond, denotedΓc2

c1
(d), which is the restriction of≤ to d−1(c1) andd−1(c2).

2.3 Summarizability

We will formalize summarizations using relational algebrawith bag semantics extended with thegeneralized projection
operator[7, 2], to express aggregation. Besides the usual operators(σ, ⊲⊳,×, etc.), the algebra includes theadditive union⊎
which adds the multiplicity of the tuples. The generalized projection operator,ΠA, is an extension of the duplicate-eliminating
projection, whereA can include both regular and aggregate attributes.

Given a dimensiond, we assume the existence of distinguish categorycbase , calledbase category, which contains all the
members that are in the bottom categories ofd. For every category for every categoryc of d we have:

Γc
cbase

(d) =
⊎

Every bottom categorycb of d Γci
cb

(d).

5

A single-category cube view can be specified asCubeViewc,af(m)(d, F), whered is a dimension;F is a fact table con-
taining facts at the base categorycbase of d; c is a category ofd; af is an aggregate function; andm is a measure ofF . The
cube viewCubeViewc,af(m)(d, F) represents the following aggregate view:Πc,af(m)(F ⊲⊳ (Γc

cbase
(d))).

Our definition of summarizability is based on the equivalence of two queries, the cube view and the summarization.

Definition 2 (Summarizability) Given a dimension instanced, a set of categoriesS = {c1, . . . , cn}, and a categoryc, c is
summarizablefromS in d iff for every fact tableF , and distributive aggregate functionaf, we have:CubeViewc,af(m)(F, d) =
Πc,afc(m)(

⊎
i∈1...n(πc,mΓc

ci
d ⊲⊳ CubeViewci,af(m)(F, di))).

The following proposition gives a characterization of summarizability that avoids the mention of fact tables.

Proposition 1 (Summarizability) A categoryc is summarizable from a set of categoriesS in a dimension instanced iff
Γc

cbase
=

⊎
ci∈S πcbase ,c(Γ

ci
cbase

(d) ⊲⊳ Γc
ci

(d)).

The next corollary follows from Proposition 1.

Corollary 1 (Summarizability and Bottom Categories) A categoryc is summarizable from a set of categoriesS in a di-
mension instanced iff for every bottom categorycb of d we have:Γc

cb
(d) =

⊎
ci∈S πcb,c(Γ

ci
cb

(d) ⊲⊳ Γc
ci

(d)).

The corollary easily follows from Proposition 1, and definition of Γci
cbase

for a categoryc.

Example 4 Consider the dimensionproduct depicted in Figure 2. In this dimension,ProdCategory is summarizable from

{BranchProdType,Department}.

However, in the dimensionproduct, ProdCategory is not summarizable from

{ProdType,Department}

because we would twice add toProdCategory the sales of products that rollup toProdCategory passing through
ProdType andDepartment at the same time.

By making|S| = 1 in Corollary 1, we have that a categoryc is summarizable from a single categoryc1 in a dimensiond
iff for every bottom categorycb of d we haveΓc

cb
(d) = πcb,c(Γ

c1

cb
(d) ⊲⊳ Γc

c1
(d)).

3 Dimension Constraints

In our framework, a dimension schema consists of a hierarchyschema along with a set ofdimension constraints.

3.1 Dimension Constraint Language

Definition 3 (Dimension Constraint) LetH = (C,ր) be a hierarchy schema,c ∈ C, K ⊆ M. The language of con-
straints (with rootc) has the following atoms: (1) Path atoms:〈c, c1, · · · , cn〉, where thecj must satisfy thatcc1 · · · cn is a
path inH ; (2) Equality atoms:〈c, . . . , c′ = k〉, wherec′ is such that there is a path fromc to c′, andk ∈ K.

A dimension constraint with rootc is a Boolean combinationφ of atoms of the above kind.

Dimension constraints consider the usual connectives¬,∧,∨,⇒,⇔, and⊕ for exclusive disjunction. As usual,⊥ (resp.
⊤) will denote the false (resp. true) proposition. In addition, given a set of atomsA,

⊙
A denotes that there is exactly one

true atom inA.

Definition 4 (Semantics of Constraints)Let d : (M,<) → (C,ր) be a dimension instance, andφ a constraint with root
c. Thend |= φ if and only if

for all m ∈ d−1(c), d |= φ[c/m],
whered |= φ[c/m] is defined recursively as follows:

1. d |= 〈c, c1, . . . , cn〉[c/m] iff there is a pathmx1 · · ·xn in (M,<) with d(xi) ∈ ci.

6

SaleRegion

City

Country

All

Store

State

Province

(a) 〈Store, City〉
(b) 〈Store, .., SaleRegion〉
(c) ¬〈City, State〉 ∨ 〈City, Province〉

Figure 4. The dimension schema locationSchp.

2. d |= 〈c, . . . , c′ = k〉[c/m] iff d(k) ∈ c′ andm ≤ k.

3. d |= (φ ∧ ψ)[c/m] iff d |= φ[c/m] andd |= ψ[c/m]. Similarly for∨ and the other Boolean connectives.

A composed path atomis an expression of the form〈c, .., ci〉 which is a shorthand for the following expression: ifc = ci,
〈c, .., ci〉 represents⊤; else,〈c, .., ci〉 represents the disjunction of all the path atoms with rootc that end withci. Intuitively,
the atom〈c, .., ci〉 expresses that every root member roll up toci.

Example 5 Consider the dimensionlocation (Figure 1). The dimension constraint

〈Store, .., SaleRegion〉

asserts that all the stores rollup toSaleRegion.

Given a hierarchy schemaH and two sets of constraintsΣ,Σ′ overH , we say thatΣ is equivalent toΣ′, if for all dimension
instancesd overH it holds:d |= Σ iff d |= Σ′.

3.2 Dimension Schema

Now we are ready to introduce the concept of Dimension Schema. The following definition extends Definition 1 (1) in the
presence of constraints.

Definition 5 (Dimension Schema)A dimension schemais a pair (H,Σ) whereH is a hierarchy schema andΣ is a set of
constraints.

A dimension instanced over a dimension schemaD = (H,Σ) is a dimension instanced overH such thatd |= Σ. The set
of dimensions instances overD will be denoted byI(D).

We shall now introduce some examples of dimension schemas. Our first schema,locationSchp, provides an abstract
model for location (Figure 1), and is depicted in Figure 4. Notice that the constraint (a) oflocationSchp is an into
constraint.

The next schema we introduce,locationSch, makes use of equality atoms to differentiate the structureof the stores in
each country oflocation. This schema is depicted in Figure 5.

Finally, we give a dimension schema,productSch, that models the product dimension of Figure 2. This schema is
depicted in Figure 6.

We end this section by investigatingsatisfiabilityin our setting. Formally, we say that a dimension schemaD is satisfiable
if I(D) 6= ∅.

Proposition 2 (Satisfiability) Every dimension schema is satisfiable.

7

SaleRegion

City

Country

All

Store

State

Province

(a) 〈Store, City〉
(b) 〈Store, .., SaleRegion〉
(c) 〈City = Washington〉 ≡ 〈City, Country〉
(d) 〈City = Washington〉 ⇒ 〈City.Country = USA〉
(e) 〈State, .., Country = USA〉 ∨ 〈State, .., Country = Mexico〉
(f) 〈State, .., Country = Mexico〉 ≡ 〈State, SaleRegion〉
(g) 〈Province, .., Country = Canada〉

Figure 5. The dimension schema locationSch.

Product

ProductCategory

All

ProductType

Department

Manager

BranchPrdType

Branch

(a) 〈Product, P rodType〉
(b) 〈Product, Branch〉 ⊕ 〈Product,Department〉
(c) 〈Product, Branch〉 ≡ 〈Product, BranchProdType〉
(d) 〈Department,Manager,ProdCategory〉
(e) 〈Branch = b3〉 ⇔ 〈Branch, Manager,ProdCategory〉

Figure 6. The dimension schema productSch.

3.3 Classes of Dimension Schemas

The model we have presented subsumes the dimension models presented in the literature. The following definition for-
malizes two classes of dimension schemas that arise in OLAP.

Definition 6 (Classes of Dimension Schemas)LetD = (H,Σ) be a hierarchy schema.
1.D is canonicalif H has no shortcuts andΣ is equivalent to{〈c, c′〉 | cր c′}.
2.D is balancedif D is canonical andH has a source.

Example 6 Figure 7 shows a canonical schema dimension that models the bank products.

A dimension instanced is homogeneousif for every pair of categoriesc1 ր c2 it holds that the rollup mappingΓc2

c1
d is

a total function. Note that the constraint〈c, c′〉 wherec ր c′ forces the rollup mapping fromc to c′ to be total. Therefore,
canonical schemas convey all the homogeneous instances over its hierarchy schema. In this sense, in canonical schemas,Σ
captures exactly homogeneity. Also notice that we have defined a canonical schema to be shortcut-free, because otherwiseΣ
would force the categories from which the shortcut start to be empty in every dimension conveyed by the schema.

Given two classes of schemasS1, S2, we defineS1 ⊆ S2 iff for each schema inS1, there is an equivalent schema inS2.
Then it holds Balanced Schemas⊆ Canonical Schemas⊆ Dimension Schemas.

4 Implication

A dimension schemaD logically impliesa dimension constraintα, writtenD |= α, if every dimension instanced over
D satisfiesα. In our context, theimplication problemis the problem of determining, given a dimenion schemaD and a
dimension constraintα, whetherD |= α.

8

Department

 ProdType

Dept&AsiaManager

DeptProduct

All

BranchProduct

Branch

BranchManager

ProdClass

AsiaBranch

AsiaBranchProduct

(e) 〈c, c′〉, for all edges(c, c′) in the hierarchy schema.

Figure 7. A canonical schema for the bank products.

4.1 Frozen Dimension

Intuitively, a frozen dimensionis a minimal dimension instance conveyed by a dimension schema. They are minimal
because they contain at most one member per each category andhave a single bottom category. Each frozen dimension
shows a structure (upgraph of some bottom category of the hierarchy schema), along with some constants that appear in the
schema and other arbitrary members (we refer the reader to previous work [10] for details.)

Frozen dimension are important because, as we will show nextin this section, in order to test implication of a constraint
(with root isc) from a dimension schema, we only need to test whether the constraint holds for each of the frozen dimensions
of the schema (whose upgraph start fromc).

LetD be a dimension schema andc a constant of it,ConstD(c) be the set of constantsk that occur in atoms of the form
〈ci, .., c = k〉 in D.

Definition 7 (Frozen Dimension) Given a dimension schemaD andc ∈ C, a frozen dimensionwith root c is a dimension
instanced : (M,<) → (C,<) ofD such that:

1. d is injective (i.e., each category has at most one member);
2. d−1(c) is a source of(M,<);

There could be infinitely many frozen dimensions, but there are only finitely many up to isomorphism, where isomorphism
is defined as follows:d is iso tod′ iff there exists a graph mappingf : (M,<) → (M ′, <′) such thatd = d′ ◦ f , and if
k ∈ ConstD(cj) andd(k) = cj = d′(k), thenf(x) = x.

From now one, we will consider frozen dimensions up to isomorphism. We introduce an injective functionnk : C → M

which assigns a fix member to each category which does not havea constant member in a frozen dimension.
We denote byFrozen(D, c) the set of frozen dimension ofD (up to isomorphism) with rootc, and byFrozen(D) the

union of allFrozen(D, c) for all categoriesc of D.
Frozen dimensions tell us a great deal about the semantics ofdimension schemas, as the following example shows.

Example 7 Consider the dimension schemaslocationSchp. The set

Frozen(locationSchp, Store)

consists of the dimensions depicted in Figure 8. The figure shows the subgraphs induced by the nonempty edges in the
child/parent relation of each frozen dimension.

The setFrozen(locationSch, Store) contains the dimensions of Figure 9. Here, we present the frozen dimensions
similarly to Figure 8 but we depict the member in a categoryc, whenever the category has associated some constant that
appears in the constraints. Notice that this set illustrates the different structures stores inMexico, USA, andCanada have.

The setFrozen(productSch, Store) is depicted in Figure 10.

9

f3 f4f1 f2

SaleRegion

City

Country

All

Store

State

Province

SaleRegion

City

Country

All

Store

State

Province

SaleRegion

City

Country

All

Store

State

Province

SaleRegion

City

Country

All

Store

State

Province

Figure 8. Frozen dimensions of locationSchp with root Store.

f3 f4f1 f2

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

Country:USACountry:USA

City:Washington

Country:Mexico

City:nk City:nk City:nk

Country:Canada

Figure 9. Frozen dimensions of locationSch with root Store.

Branch

Product

ProductCategory

All

ProductType

Department

Manager

BranchPrdType

Product

ProductCategory

All

ProductType

Department

Manager

BranchPrdType

Product

ProductCategory

All

ProductType

Department

Manager

BranchPrdType

Branch:kn Branch:b3

f1 f2 f3

Figure 10. Frozen dimensions of productSch with root Product.

4.2 Dimension Tuples

Just as a relational table can be viewed as a set of tuples, an OLAP dimension may be viewed as a set of small pieces of
data we will calldimension tuples. The notion of dimension tuple will serve to simplify several proofs in this thesis.

Definition 8 (Dimension Tuple) A dimension tuple of a dimension instanced is the restriction ofd to the upgraph ofdom(d)
defined by a particular memberx in dom(d).

10

It is easily verified that the preceding definition is sound, i.e., any dimension tuple satisfies conditions of Definition 1.
Notice that every memberx of a dimensiond defines a dimension tuple which will be denoted byDimTuple(d, x). Moreover,
we can view a dimension as a set having one dimension tuple foreach leaf member.

The following lemma says that in order to test if a dimension instanced satisfies a dimension constraint with rootc, we
just need to check whether the dimension tuple of each memberin MembSetc satisfies the dimension constraint.

Lemma 1 (Dimension Constraints and Dimension Tuples)Given a dimension instanced and a dimension constraintα
with root c, d |= α iff for every memberx ∈ d−1(c), DimTuple(d, x) |= α.

Another result we will need to simplify further proofs is thefollowing:

Lemma 2 (Dimension Constraints and Dimension Tuples)Given a dimension instanced and a dimension constraintα
such thatd |= α, then for every memberx of d, DimTuple(d, x) |= α.

From a dimension tuplet over a dimension schemaD we can obtain a frozen dimension ofD, denoted byTFrozen(D, t),
as follows: for every memberx of t, let c be the category to whichx belongs, ifx 6∈ ConstD(c), then replacex with nk(c)

4.3 Category Satisfiability

A categoryc is said to besatisfiablein a schemaD (we assume thatc is a category ofD) if there exists a dimension
instanced ∈ I(D) such thatd−1(c) 6= ∅.

Example 8 Suppose we add the constraint¬〈SaleRegion, Country〉 to locationSch. Then,SaleRegion would become
unsatisfiable in the resulting schema, because every memberin a dimension must reachall, and consequently, every dimen-
sion instance of the hierarchy schema oflocationSch should satisfy〈SaleRegion, Country〉.

The category satisfiabilityproblem is the problem of determining whether a categoryc is satisfiable in a dimension
schemaD. Unsatisfiable categories can be dropped from the schema, making a cleaner representation of the data. However,
the fundamental importance of testing category satisfiability is its connection with testing implication.

Theorem 1 (Cat. Satisfiability and Implication) Given a dimension schemaD and a dimension constraintα with root c,
D |= α iff c is unsatisfiable inD′ = (H,Σ ∪ {¬α}).

In view of Theorem 1, any algorithm for solving category satisfiability can be used to solve implication. The converse
is also true; however, it requires expressing the theorem a little bit differently. Next, we show the importance of frozen
dimensions for testing category satisfiability and implication.

4.4 Testing Category Satisfiability

The following theorem proves that frozen dimensions are minimal models [3] for testing category satisfiability.

Theorem 2 (Cat. Satisfiability and Frozen Dimensions)Given a dimension schemaD and a categoryc ofD, c is satisfi-
able inD iff Frozen(D, c) 6= ∅.

Given a dimension schemaD = (H,Σ) and a categoryc, a candidate frozen dimension ofD with root c can be built by
first choosing a subgraph ofH , and then selecting the members using the functionsConstD andnk. The number of candidate
frozen dimensions generated in this way is finite, and the test of whether one of them is a frozen dimension can be done in
polytime. Consequently, Theorem 2 establishes an algorithm to solve category satisfiability. In Section 6 we present such an
algorithm in details.

Similarly, frozen dimensions can be directly used to test implication, as the following theorem shows.

Theorem 3 (Implication and Frozen Dimensions)Given a dimension schemaD, and a dimension constraintα with root
c,D |= α iff for every frozen dimensionf ∈ Frozen(D, c), f |= α

We now give the intrinsic complexity of implication and category satisfiability.

11

Theorem 4 (Complexity) Category satisfiability is NP-complete, implication is CoNP-Complete.

From the proof of Theorem 4 it is easily verified that including composed path atoms into dimension constraints does not
add extra complexity to the problems.

In canonical schemas, category satisfiability becomes trivial since all the categories are satisfiable.

Proposition 3 (Cat. Satisfiability in Canonical Schemas)Every category of a canonical schemaD is satisfiable inD.

5 Reasoning about Summarizability

In this section, we give a characterization of summarizability in terms of dimension constraints. In this form, we turn the
problem of testing summarizability into testing implication inside our class of constraints.

In order to characterize summarizability, we will use the shorthand〈c, .., ci, .., cj〉, wherec, ci, andcj are categories.
Formally,〈c, .., ci, .., cj〉 is defined as follows:

• If c 6= ci 6= cj then〈c, .., ci, .., cj〉 represents the disjunction of all the path atoms that start with c, end withcj , and
containci.

• If c = ci = cj then〈c, .., ci, .., cj〉 represents⊤.

• If c = cj andc, cj 6= ci then〈c, .., ci, .., cj〉 represents⊥.

• If c = ci andc, ci 6= cj then〈c, .., ci, .., cj〉 represents〈c, .., cj〉.

• Finally, if c 6= ci, cj andci = cj then〈c, .., ci, .., cj〉 represents〈c, .., ci〉.

Intuitively, the dimension constraint〈c, .., ci, .., cj〉 means that for all memberx ∈ MembSetc, x rolls up tocj passing
throughci.

Theorem 5 (Summarizability and Dimension Constraints) A categoryc is summarizable from a set of categoriesS in a
dimension instanced iff for every bottom categorycb of d we haved |= 〈cb, .., c〉 ⇒

⊙
ci∈S〈cb, .., ci, .., c〉.

The intuition behind Theorem 5 is that, in order forc to be summarizable fromS, it must be the case that every base
member (i.e., a member in a bottom category) that rolls up toc, rolls up toc passing trough one and only one of the categories
in S. Notice that Theorem 5 shows that summarizability can be characterized as a property of dimension instances themselves,
avoiding the mention of fact tables.

Example 9 In the dimensionproduct (Figure 2), we have thatProdCategory is summarizable from

{BranchProdType,Department}

because

product |= 〈Product, .., P rodCategory〉 ⇒
(〈Product, .., BranchProdType, .., P rodCategory〉 ⊙ 〈Product, .., Department, .., P rodCategory〉).

Example 10 We have thatCountry is summarizable from{City} in location (Figure 1) because

location |= 〈Store, .., Country〉 ⇒ 〈Store, .., City, .., Country〉.

However,Country is not summarizable from{State, Province} in location because

location 6|= 〈Store, .., Country〉 ⇒ (〈Store, .., State, .., Country〉 ⊕ 〈Store, .., P rovince, .., Country〉).

This is because the stores that belong to Washington rollup directly to Country without passing through states or
provinces.

From Theorem 5, it follows that a categoryc is summarizable from a set of categoriesS in a dimension schemaD iff for
every bottom categorycb of D we haveD |= 〈cb, .., c〉 ⇒

⊙
ci∈S〈cb, .., ci, .., c〉. Therefore, testing summarizability reduces

to testing implication of the preceding constraint, for each bottom category.
We now study the intrinsic complexity of testing summarizability.

12

Theorem 6 (Complexity of Testing Summarizability) Testing summarizability is coNP-complete.

Proposition 4 (Summarizability and Canonical Schemas)Given a canonical schemaD = (H,Σ), a categoryc ofD, and
a set of categoriesS of D, c is summarizable fromS in D iff for every bottom categorycb of D, if cb ր∗ c, then there is
exactly one categoryc′ ∈ S such thatcb ր∗ c′ andc′ ր∗ c in H .

From Proposition 4 it easily follows that testing summarizability in cannonical schemas is in polytime.

6 The DIMSAT Algorithm

In this section, we provide an algorithm, calledDIMSAT, to solve category satisfiability efficiently.

6.1 Description of the Algorithm

In order to describe the algorithm we need to introduce the notion of subhierarchy.

Definition 9 (Subhierarchy) Given a hierarchy schemaH :

• a subhierarchyofH with root c is a subgraph ofH whose source isc and whose sink isAll.

• letD = (H,Σ) be a dimension schema, andg be a subhierarchy ofH , we say thatg induces a frozen dimensionin D
iff there exists a frozen dimensionf ofD such thatg = ran(f).

The algorithmDIMSAT builds subhierarchies and tests whether each of them induces at least one frozen dimension in
the dimension schema given. When a subhierarchy is built, each path atomp in the constraints is replaced by a truth value
given by whetherp appears in the subhierarchy; the equality atoms over categories that do not appear in the subhierarchy
are replaced by⊥. In this form,Σ is reduced to a set of constraints that do not mention path atoms. This set is then tested
over the candidate frozen dimensions induced by the subhierarchy. In addition, the algorithm prunes the subhierarchies to be
explored by taking into account shortcuts, cycles, andinto constraints.Into constraints are dimension constraints of the form
〈c, c′〉; intuitively, aninto constraint states that all the members ofc have a parent inc′. We conjecture that this optimization
should be useful in practice, since in many situations heterogeneity may arise as an exception, having most of the edges of
the schema associated withinto constraints.

The following definition is useful, as we wish to discard the constraints inΣ that are irrelevant when finding a frozen
dimension. Given a dimension schemaD = (H,Σ), and a categoryc of D, Prop(D, c) is the set containing the dimension
constraintsα of Σ such that the rootc′ of α satisfiescր∗ c′.

The DIMSAT algorithm uses a procedure calledCHECK, that tests whether a subhierarchy induces a frozen dimension.
The main idea behindCHECK is as follows: when a subhierarchyg is built, all the path atoms that appear in the dimension
expressionProp(D, c) are replaced by their truth values ing. Doing this,Prop(D, c) is turned into a dimension expression
that mentions only equality atoms that refer to the categories in the subhierarchy. In order to test whether a candidate frozen
dimensionf built overg is a frozen dimension, we need only to test whether the assignment of constants to categories inf
satisfiesProp(D, c). In this form, we evaluate the path atoms (and some of the equality atoms as well) only once for all the
candidate frozen dimension built over the same subhierarchy.

We next define the circle operator, that replaces the truth value of each path atomp in a set of dimension constraints,
according to whetherp exists in a given subhierarchy.

Definition 10 Given a set of dimension constraintsΣ, and a subhierarchyg ofH , Σ ◦ g is the set of dimension constraints
resulting fromΣ by: (a) renaming every path atomp with⊤ if p is a path ing, and with⊥ otherwise; and (b) renaming every
equality atomci.cj = k, such that there is no path fromci to cj in g, with⊥.

Example 11 The dimension constraintsProp(locationSch, Store) are depicted in Figure 11 (left). Now, letg be the
subhierarchy represented asf2 in Figure 5. The dimension constraintsProp(locationSch, Store) ◦ g are depicted in
Figure 11 (right).

13

Prop(locationSch, Store) Prop(locationSch, Store) ◦ g
(a) 〈Store, City〉 (a)⊤
(b) 〈Store, .., SaleRegion〉 (b)⊤
(c) 〈City = Washington〉 ≡ 〈City, Country〉 (c) 〈City = Washington〉 ≡ ⊥
(d) 〈City = Washington〉 ⇒ 〈City, .., Country =
USA〉

(d) 〈City = Washington〉 ⇒ 〈City.Country =
USA〉

(e) 〈State, .., Country =
Mexico〈∨〈State, .., Country = USA〉

(e) 〈State, .., Country = Mexico〉 ∨
〈State, .., Country = USA〉

(f) 〈State, .., Country = Mexico〉 ≡
〈State, SaleRegion〉

(f) 〈State, .., Country = Mexico〉 ≡ ⊥

(g) 〈Province, .., Country = Canada〉 (g) 〈Province, .., Country = Canada〉

Figure 11. (Left) Prop(locationSch, Store). (Right) Prop(locationSch, Store) ◦ g.

Notice that the dimension constraintsProp(D, c) ◦ g contain only equality atoms. Now, given a dimension schema
D = (H,Σ) and a subhierarchyg = (C′,ր′) of H , a c-assignment forg is a injective functionca : C′ → Const ∪ {nk}
such that for allc′ ∈ C′, ca(c′) = k implies that the there is an atom of the form〈c, .., c = k〉 in Σ.

We say that a c-assignmentca satisfies a set of dimension constraintsΣ that mention only equality atoms, denotedca |= Σ,
if Σ is true when we replace each equality atom inΣ with its truth value given byca. For example, if an equality atomp is
〈c, .., ci = k〉, and we have thatca(ci) = k then we replacep with ⊤.

Lemma 3 Given a dimension schemaD = (H,Σ), and a subhierarchyg ofH with root c, g induces a frozen dimension iff
(a) g has no cycles or shortcuts, and (c) there exists a c-assignment ca of g such thatca |= Prop(D, c) ◦ g.

The proof of the lemma is straightforward, so we skip it.
We are now able to introduce theDIMSAT algorithm.DIMSAT, depicted in Figure 12, is basically a backtracking algorithm

that explores subhierarchies. The procedureEXPAND constructs subhierarchies ofH with root c, that have no cycles or
shortcuts and satisfy the into constraints given inΣ. When one of such subhierarchiesg is built, EXPAND callsCHECK(g) to
decide whetherg induces a frozen dimension. If so,CHECK makesFIND = true, andEXPAND exits, aborting all previous
calls toEXPAND, and returning the control of the execution toDIMSAT. If not, EXPAND returns, and backtracks to a previous
state in the search; we assume that when this occurs,g is restored to the form it had beforeEXPAND was called.

Let us now explain some aspects ofEXPAND. The subhierarchy being built is kept in the variableg, which has four
components:g.C, containing the categories ofg; g.Out, which contains for every categoryc′ ∈ g.C, the categories directly
abovec′ in g; g.Top, which has the categories ing.C with no edges from them ing; andg.In∗, which keeps for every
categoryc′ ∈ g.C, the categories that reach directly or indirectlyc′ in g. As we will see,g.In∗ is essential for recognizing
shortcuts. In each step in the recursion,EXPAND is called with parametersg, c, andR, wherec is a category, andR is a set of
categories. Initially,EXPAND is called byDIMSAT with R = ∅; in this case{c} is kept asg.Top. In an execution ofEXPAND,
Line (6) detects whetherg.Top = {All}. If so, CHECK(g) is called. If not,EXPAND chooses a top categoryctop ∈ g.Top,
and tries all possible callsEXPAND(g, c, R), whereR is any combination of categories directly abovectop in H such that the
following hold: R does not produce shortcuts or cycles (note that the categories that potentially cause shortcuts and cycles
are computed in lines (11) and (12), respectively); andR contains all categoriesc′ such that theinto constraint〈ctop, c′〉 is
in Σ. In this form,EXPAND takes into account theinto constraints in order to prune the subhierarchies to be explored, and
shortens the loop of Line (16).

Example 12 Consider the execution of

DIMSAT(locationSch, Store).

Figure 13 showsg in the successive instances ofEXPAND. The subhierarchyg with whichEXPAND calls CHECK the first
time is delimited by a box. Notice thatg.Top is the category written with a large font in each subgraph.

Correctness ofDIMSAT is proved in Appendix D.
We end this section by giving the asymptotic time complexityof DIMSAT. LetN be the number of categories inD, and

letNK be the number of constant in the schema. In addition,NΣ stand for the size ofΣ.

14

Algorithm DIMSAT(D, c)
Input: A dimension schemaD = (H,Σ) and a cate-
gory
c ∈ C.
Output: Whetherc is satisfiable inD.
(1) FIND := false , Pr := Prop(c,D)
(2) g.C := {c}, g.Out(c) := ∅, g.Top := {c},
g.In∗(c) := ∅
(3) EXPAND(g, c, ∅)
(4) return(FIND)
endDIMSAT

ProcedureCHECK(g)
Input: A subhierarchyg of H
Local Vars: Pr ′, ca
Global Vars: FIND
(1) Pr ′ := Pr ◦ g
(2) For every c-assignmentca of g do
(3) FIND := (ca |= Pr ′)
(4) If FIND then return()
(5) endFor
endCHECK

ProcedureEXPAND(g, c, R)
Input: a categoryc, and a list of categoriesR
Local Vars: ctop, Ss, Sc, S, P , S′

Global Vars: H , FIND
(1) If R 6= ∅ then
(2) g.Top := (g.Top \ {c}) ∪ (R \ g.C)
(3) g.C := g.C ∪R; g.Out(c) := R
(4) For everyc′ ∈ R dog.In∗(c′) := g.In∗(c)
(5) EndIf
(6) If Top = {All} then
(7) CHECK(g)
(8) If FIND then exit() else return()
(9) EndIF
(10) Choose a categoryctop 6= All ∈ g.Top

(11)Ss := {c′ ∈ H.Out(ctop) |
g.In(c′) ∩ g.In∗(ctop) 6= ∅}

(12)Sc := H.Out(ctop) ∩ g.In∗(ctop)
(13)S := H.Out(ctop) \ (Ss ∪ Sc))
(14)Into := {c′ ∈ H.Out(ctop) | 〈ctop, c′〉 ∈ Σ}
(15) If ((Into 6⊆ S) or (S = ∅)) then return()
(16) For every non-empty setS′ ⊆ (S \ Into) do
(17) EXPAND(g, ctop, S′ ∪ Into)
(18) endFor
endEXPAND

Figure 12. Algorithm DIMSAT.

Proposition 5 (Complexity ofDIMSAT) DIMSAT runs in timeO(2N2+N log NKN3NΣ).

From the proof of Proposition 5, it follows that the time complexity of DIMSAT can be expressed in terms of the number
of subhierarchies of the schema which match the into constraints. LetW be this number, then we have thatDIMSAT runs in
timeO(W2N log NKN3NΣ). If the schema does not have equality atoms, the complexity turns toO(WN3NΣ).

6.2 Implementation

To assess the performance ofDIMSAT we implemented it using Java, and performed experiments on aPentium IV com-
puter, with CPU clock rate of 2.4 GHz, 512MB RAM, and running Windows XP.

Firstly, we performed experiments with the three dimensionschemas introduced in Section 3:locationSchp (Figure 4);
locationSch (Figure 5); andproductSch (Figure 6). We ranDIMSAT to test category satisfiability of the bottom categories
of the aforementioned schemas.

For each of the schemas we also ran a variation ofDIMSAT, calledFROZEN, used to compute the whole set of frozen
dimension. Recall thatDIMSAT halts when a particular frozen dimension is found, which mayrequire the exploration of
a particular subset of subhierarchies of the schema. In contrast, when the algorithm returnsfalse , it builds the entire set
of subhierarchies of the schema. Consequently, there couldbe differences between the running times ofDIMSAT when it
returnstrue and when it returnsfalse. SinceFROZEN does no halt until all the frozen dimensions are found, its running time
approximates the timeDIMSAT would take in its worst-case executions. The results of the experiments are shown in Figure
14. The first column shows the time (seconds) spent to load thedimension schema; the last two columns show the remaining
times taken byDIMSAT andFROZEN. It can be seen that the overall cost of computing the frozen dimensions was less than .1
second in all of the three schemas.

To study scalability ofDIMSAT, we performed similar experiments with five more complex dimension schemas. Their
hierarchy schemas are lattices of adjacent squares, where the categories are placed in the corners of them. The schemas
have disjunctive constraints which do not impose any restriction on how members rollup to the categories directly above

15

SaleRegion

City

Country

All

State

Province

SaleRegion

City

Country

All

Store

State

SaleRegion

Country

All

Store

Province

SaleRegion

Country

All

Store

State

Province

SaleRegion

Country

All

Store

State

Province

SaleRegion

Country

All

Store

Province

SaleRegion

City

Country

All

Store

Province

City

Country

All

Store

State

Province

SaleRegion

City

All

Store

State

Province

City

Country

All

Store

Province

SaleRegion

City

Country

Store

State

Province

SaleRegion

City

All

Store

State

Province

Store

City

Province

City

State

City

State

State
SaleRegion

Country

All

State

City

SaleRegion

Country

Figure 13. A series of subhierarchies in an execution of DIMSAT(locationSch, Store).

Time Load DIMSAT FROZEN

locationSchp .04 .01 .02
locationSch .06 .01 .03
productSch .05 .02 .03

Figure 14. Running times (seconds) of DIMSAT for the schemas introduced in Section 3.

16

Num Cat. Size Σ Num Frozen Dims. Time Load DIMSAT FROZEN

lattice1 8 9 15 .05 .01 .01
lattice2 12 18 207 .05 .01 .08
lattice3 16 27 2895 .06 .01 .7
lattice4 20 36 40735 .09 .01 12.8
lattice5 24 45 573951 .1 .01 368.1

Figure 15. Running times (seconds) of DIMSAT for the schemas lattice1-lattice5.

Num Frozen Dims. Time Load DIMSAT FROZEN Gain FROZEN

lattice1′ 15 .05 .01 .01 0
lattice2′ 153 .05 .01 .07 .01
lattice3′ 1494 .07 .01 .3 .4
lattice4′ 13657 .1 .01 4.6 8.2
lattice5′ 120038 .12 .01 56.7 311.1

Figure 16. Running times (seconds) of DIMSAT for the schemas lattice1′-lattice5′.

them. Because of this, the number of frozen dimensions of theschemas are the same as their numbers of subhierarchies.
The schemas, calledlattice1, lattice2, lattice3, lattice4, andlattice5, have respectively,8, 12, 16, 20 and24
categories.

The results of the experiments are shown in Figure 15. The size of each set of constraints is measured as the number of
atoms and logic operators that arise in the constraints. Notice that the number of frozen dimensions grows exponentially
by a factor of4 between two consecutive schemas in the table. The computation of the frozen dimension for schemas
lattice1-lattice4 take less than a second. This time considerably increases inthe last schema (6 minutes aprox.).

From Figure 15 and the analytic study of the complexity ofDIMSAT we conjecture that in a lattice of 28 categories with
structure similar tolattice1-lattice5, the algorithmFROZEN would take more than two hours, and it would take around
five days in a lattice of32 categories. Nevertheless, it is important to notice that itwould be very unusual to have schemas
with such amounts of subhierarchies in real-world applications. But even if those schema arose,DIMSAT may be improved to
allow handling schemas with high degree of complexity. For instance,DIMSATmay be speed up by precomputing and storing
the set of frozen dimensions, turning the algorithm to polytime on the number of frozen dimensions of the schema.

Finally, we investigated the effect of the pruning heuristic on the running time ofDIMSAT. As explained in Section 6.1, ho-
mogeneous edges inlattice5properly modeled withinto constraintsmay considerably reduce the number of subhierarchies
explored byDIMSAT andFROZEN. In order to assess this claim we tested the algorithm with schemaslattice1′-lattice5′,
which are obtained fromlattice1-lattice5 by adding into constraints to some of their edges. In particular, we add
one-fiveinto constraintsto the schemaslattice1′-lattice5′, respectively. The results, shown in Figure 16, provide ev-
idence that the running times of the algorithms reduce significantly. In particular, the usage ofinto constraintsfor pruning
yields a speed up of8.2 seconds and5 minutes for schemaslattice4′ andlattice5′, respectively. Notice that the frozen
dimensions of the schemas reduces w.r.t. schemaslattice1-lattice5. Because of the pruning strategy, the algorithm
avoid the cost of building subhierarchies that violate the into constraints and it only builds subhierarchies that induce frozen
dimensions.

7 Related Database Constraints

In this section we briefly compare dimension constraints with other classes of constraints known in the database world.
As explained in several papers (e.g., [12]) OLAP dimension may be modeled as a set of normalized tables, one for each

category, containing the rollup mappings that start from the category, along with the the attributes of the category. Therefore
the framework presented in this paper may be formalized using a relational database setting.

Let us first clarify the relationship between dimension constraints and First Order Logic (FOL) constraints, that may
expressed over the relational representation described above. An important property of the relation< of a dimension instance
is that the size of its largest path should be smaller than thesize of the largest path without cycle in the hierarchy schema.

17

This turns the ancestor/descendant relation≪ to be FOL definable. Consequently, the conditions that a dimension must
satisfy given in Definition 1 can be defined with FOL sentencesover the relational representation. In addition, it is easily
verified that dimension constraints are FOL constraints; therefore, our entire framework is a fraction of FOL. Essentially, the
partitioning property (Condition c of Definition 1 (3)) turns frozen dimensions into minimal models for testing implication
of dimension constraints, which makes the inference test tractable and coNP-complete.

Abiteboul et al. [1] study a class of FOL constraints calledembedded constraintsthat formalizes a wide variety of con-
straints studied in the database literature. Embedded constraints essentially say that the presence of some tuples in the instance
implies the presence of some tuples in the instance or implies that certain tuple components are equal. Dimension constraints
cannot be expressed with embedded constraints, since we cannot express with them constraints that assert dependences such
as “some tuples or some other tuples appear in the instance”.

Example 13 Consider the dimension constraint〈c, c1〉 ∨ 〈c, c2〉. This constraint is equivalent to the following FOL expres-
sion:

∀x(MembSetc(x) ⇒ ∃x1∃x2(Γ
c1

c (x, x1) ∨ Γc2

c (x, x2))).

This constraint cannot be expressed with an embedded constraint, since an embedded constraint is an expression of the
form

∀x1, . . . , xn(φ(x1, . . . , xn) ⇒ ∃z1, . . . , zkψ(y1, . . . , ym)),

where{z1, . . . , zk} = {y1, . . . , ym} − {x1, . . . , xn}, andφ andψ are conjunctions of atoms.

Dimension Constraints restrict data in a similar fashion asa class of constraints (which are not embedded constraints)
called disjunctive existential constraints (dec’s) [6]. The main idea here is to model a relation as a combination of objects,
each one determined by a set of non-null attributes that appear together. Disjunctive existential constraints are usedto
characterize the possible sets of non-null attributes thatmay occur in the tuples of a relation; and hence, the possibleobjects
that are mixed in the relation. Formally, a dec has the formX ⊢ {Y1, . . . , Yn}, and means that whenever a tuple is non-null
for the set of attributesX , it must be non-null for all the attributes in at least one setof attributesY1, . . . , Yn.

In order to clarify this relationship, let us sssume that thedimension is represented as a single relational table, where we
each category is an attribute, and the base categorycbase is the key of the table. The partitioning restriction (Condition c of
Definition 1 (3)) causes the base category to be a key in thus table, also, the edges in the hierarchy schema may be regarded
as functional dependences, properly interpreted to deal with null values. It is important to note that this representation is not
always possible, as shown in [8], because of heterogeneity.

A decX ⊢ {Y1, . . . , Yn} over this table can be expressed with the following dimension constraint overd:

(
∧

l∈X〈cbase , .., cj〉) ⇒
∨

i∈1..n(
∨

c′∈Yi
〈cbase , .., c′〉)

A

B C

c’

All

c

Figure 17. Graphical representation of a path constraint in terpreted in a dimension instance.

By definition, a dec of the formX ⊢ ∅means⊤. Therefore, we cannot express split constraints of the form(
∨

c∈X ¬〈cbase , .., cj〉),
because the absence of positive atoms in the clauses of theirbodies makes their corresponding dec’s⊤. In particular, the

18

constraint〈cbase , .., c〉 ⇒ (¬〈cbase , .., c1〉∨¬〈cbase , .., c2〉) states that every member ofcbase that rolls up toc does not rollup
to c1 andc2 at the same time. This constraint cannot be expressed with dec’s. Moreover, as shown by Hurtado and Mendelzon
[9], we need constraints of this form to characterize summarizability of c from {c1, c2} in a hierarchical dimension instance.

The dimension schemas introduced by Husemann et al. [11] canbe easily represented with split schemas. However, the
converse is not true. Consider a hierarchy schema with categoriesc, c1, c2, such thatc ր c1, andc ր c2. The model of
Husemann et al. allows us to express only one of the followingsplit constraints:〈c, c1〉∧ 〈c, c2〉 (the categories are optional),
or 〈c, c1〉 ⊕ 〈c, c2〉 (the categories are alternatives). There are a variety of situations in between that cannot be expressed
with them. For instance, we may have stores that rollup toProvince and do not rollup toState, and stores that rollup to
Province andState, yielding the following split constraint:〈Store, .., State〉 ⇒ 〈Store, .., P rovince〉. HereProvince
andState are neither optional nor alternative categories. We conclude that, unlike the constraints introduced by Husemann
et al. [11], split constraints incorporate the whole expressiveness of the boolean connectives.

We turn now to study the relationship between path constraints [1, 4] and dimension constraints. A path constraint
is interpreted over a semistructured data instance (sdi) which, following Buneman et al. [4], can be abstracted as a pair
σ = (r, E), wherer is a constant denoting the “root” of the data instance, andE is a a finite set of binary relations denoting
the edge labels. We can represent a dimension instanced with a sdi by makingr = All, and reversing the child/parent
relation<d to represent the edges ofσ. In path constraints, apathα(x, y) is a predicate that states the existence of a pathα
fromx to y in σ. In the dimension instance representingσ, α can be viewed as a sequence of categories. Path constraints are
expressions of the form:

∀x∀y(A(r, x) ∧B(x, y) ⇒ C(x, y),

whereA,B,C are paths2. This constraint (see Figure 17) basically states that if there is a pathA from all to a memberx in
c′, and a pathB fromx to a membery in c, then there must be a pathC fromx to y. We can express this path constraint with
the following dimension constraint:AB ⇒ C. Consider now the dimension constraintβ: AB ⇒ ¬C. This constraint could
be needed to characterize summarizability ofc′ from a pair of categoriesc1 ∈ B, c2 ∈ C. In order to representβ with a path
constraint we would need to have∀x∀y(A(r, x) ∧B(x, y) ⇒ ¬C(x, y) in the language of path constraints, which is not the
case. In conclusion, unlike dimension constraints, path constraints lack the full expressiveness of the Boolean operators.

8 Conclusion

Dimension constraints have a practical motivation, can express summarizability, and have a relatively efficient inference
problem (CoNP-complete) compared with other classes of path-like constraints that have been studied. Moreover, from the
study of the running time ofDIMSAT given in this paper, we conjecture that in most practical situationsDIMSAT should yield
execution times of the order of a less than a second. We believe these properties should make dimension constraints useful in
a broad set of practical settings.

Although the first and most direct motivation for introducing dimension constraints is to support aggregate navigation,
they are also helpful in the design stage of data cubes. As in traditional database systems, the design of dimensions for OLAP
should be driven by the semantic information provided in theschema. Dimension constraints provide the means to capture
such semantic information. In addition, dimension constraints may play an important role in the problem of selecting views
to materialize in data cubes by supplying meta-data to support the test of whether a selected set of views is sufficient to
compute all the required queries.

Dimension constraints can be extended in several directions. We could consider further built-in predicates over attributes,
such as an order relation, to extend equality atoms. We wouldthen be able to express dependences such as: “if the value of
the price of a product is less than a given amount, the productrolls up to some particular path in the hierarchy schema”. In
addition, if we relax the partitioning constraint, summarizability can no longer be characterized with dimension constraints.
Further extensions to dimension constraints are needed to support summarizability inference and aggregate navigation in
such dimensions.

Acknowledgments

This research was supported by Millenium Nucleus, Center for Web Research (P01-029-F), Mideplan, Chile. We thank
Renée Miller, Ken Sevcik, Anthony Bonner, John Mylopoulos, and Laks Lakshmanan for their fruitful suggestions.

2We consider only path constraints inforward formbecausebackward path constraintsneed cycles in the instance to be satisfied.

19

References

[1] S. Abiteboul and V. Vianu. Regular path queries with pathconstraints. InProceedings of the 16th ACM Symposium on
Principles of Database Systems, Tucson, Arizona, USA, 1997.

[2] R. Agrawal, A. Gupta, S. Sarawagi, P. Deshpande, S. Agarwal, J. Naughton, and R. Ramakrishnan. On the computation
of multidimensional aggregates. InProceedings of the 22nd International Conference on Very Large Data Bases,
Bombay, India, 1996.

[3] E. Borger, E. Gradel, and Y. Gurevich.The Classical Decision Problem. Springer, Berlin, 1996.

[4] P. Buneman, W. Fan, and W. S. Path constraints on semistructured and structured data. InProceedings of the 17th ACM
Symposium on Principles of Database Systems, Seattle, Washington, USA, 1998.

[5] L. Cabibbo and R. Torlone. Querying multidimensional databases. InProceedings of the 6th International Workshop
on Database Programming Languages, East Park, Colorado, USA, 1997.

[6] B. A. Goldstein. Constraints on null values in relational databases. InProceedings of the 7th International Conference
on Very Large Data Bases, Cannes, France, 1981.

[7] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A powerful approach to aggregation. InProceedings
of the 21st International Conference on Very Large Data Bases, Zurich, Switzerland, 1995.

[8] C. Hurtado. Structurally heterogeneous OLAP dimensions. InDoctoral Thesis, Computer Science Dep. Toronto. URL:
www.cs.toronto.edu/˜chl/thesiss.ps, 2002.

[9] C. Hurtado and A. Mendelzon. Reasoning about summarizability in heterogeneous multidimensional schemas. In
Proceedings of the 8th International Conference on Database Theory, London, UK, 2001.

[10] C. Hurtado and A. Mendelzon. OLAP dimension constraints. InProc. PODS 2002, Madison, USA, 2002.

[11] B. Huseman, J. Lechtenborger, and G. Vossen. Conceptual data warehouse design. InProceedings of the International
Workshop on Design and Management of Data Warehouses (DMDW), Stockholm, Sweden, 2000.

[12] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava. What can hierarchies do for data warehouses? InProc. of the
25th International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, 1999.

[13] R. Kimball. The aggregate navigator.DBMS and Internet Systems Magazine, http://www.dbmsmag.com, November
1995.

[14] R. Kimball. The Data Warehouse Toolkit. J.Wiley and Sons, Inc, 1996.

[15] W. Lehner, H. Albrecht, and H. Wedekind. Multidimensional normal forms. InProceedings of the 10th Statistical and
Scientific Database Management Conference, Capri, Italy., 1998.

[16] H. J. Lenz and A. Shoshani. Summarizability in OLAP and statistical databases. InProceedings of the 9th SSDBM
Conference, Olympia, Washington, USA, 1997.

[17] T. B. Pedersen and C. S. Jensen. Multidimensional data modeling for complex data. InProceedings of the 15th IEEE
International Conference on Data Engineering, Sydney, Australia, 1999.

[18] T. B. Pedersen, C. S. Jensen, and D. C. E. Extending practical pre-aggregation in on-line analytical processing. In
Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, 1999.

A Proofs of Theorems

Theorem 1 Given a dimension schemaD and a dimension constraintα with root c, D |= α iff c is unsatisfiable in
D′ = (H,Σ ∪ {¬α}).

20

Proof of Theorem 1 First, we prove that(∗) given a dimension instanced, a dimension constraintα, and a member
x ∈ d−1, thenDimTuple(d, x) 6|= α iff DimTuple(d, x) |= ¬α. This follows directly from the fact thatDimTuple(d, x) has
only x in d−1.

(If) AssumeD 6|= α. Then there exists a dimension instanced ∈ I(D) such thatd 6|= α. Therefore, by Lemma 1,
there exists at least one memberx ∈ d−1 in d such thatDimTuple(d, x) 6|= α. By (∗), DimTuple(d, x) |= ¬α. Now,
becaused ∈ I(D), d |= Σ, and by Lemma 2, we haveDimTuple(d, x) |= Σ. ThereforeDimTuple(d, x) is overH ,
DimTuple(d, x) |= Σ, andDimTuple(d, x) |= ¬α. Consequentlyc is satisfiable inD′, yielding a contradiction.

(Only If) Assume thatc is satisfiable inD′. Then there exists a dimensiond overH such thatd |= Σ andd−1 6= ∅ in
d. Henced |= ¬α. Now, choose a memberx ∈ d−1. From Lemma 1, it follows thatDimTuple(d, x) |= ¬α. By (∗),
DimTuple(d, x) 6|= α. Now, from Lemma 2, and the fact thatd |= Σ, it follows thatDimTuple(d, x) |= Σ. Therefore
DimTuple(d, x) |= Σ, andDimTuple(d, x) 6|= α, and henceD 6|= α leading to a contradiction.

•

Theorem 2 Given a dimension schemaD and a categoryc of D, c is satisfiable inD iff Frozen(D, c) 6= ∅.

Proof of Theorem 2 (If) It is direct since a frozen dimensiond in Frozen(D, c) is a dimension instance ofD and has a
member ind−1.

(Only If) Assume thatc is satisfiable inD. Then there exists at least one dimension instanced ∈ I(D) such thatd−1 6= ∅.
Now, consider a memberx ∈ d−1 in d, and letd′ = DimTuple(d, x). From Lemma 2, it follows thatd′ |= Σ, and hence
d′ ∈ I(D). ThusTFrozen(D,x) ∈ Frozen(D, c), leading to a contradiction.•

Theorem 3 Given a dimension schemaD, and a dimension constraintα with rootc,D |= α iff for every frozen dimension
f ∈ Frozen(D, c), f |= α

Proof of Theorem 3 (If) Assume that there exists a dimensiond ∈ I(D) such thatd 6|= α. Then, by Lemma 1, there exists
at least a memberx ∈ d−1, such thatd′ = DimTuple(d, c, x) 6|= α. Now, letf = TFrozen(D, d′). It is easily verified that
f 6|= α. Consequently,f ∈ Frozen(D, c), andf 6|= α, yielding a contradiction.

(Only If) Assume that there exists a frozen dimensionf ∈ Frozen(D, c) such thatf 6|= α, thenD 6|= α, leading to a
contradiction.•

Theorem 4 Category satisfiability is NP-complete, implication is CoNP-complete.

Proof of Theorem 4 First, we will prove that implication is NP-complete.
(NP-hard) We will show a straightforward reduction from SAT to the problem of testing category satisfiability. From a

propositional formulaα, we will build the following dimension schemaD = (H,Σ): the hierarchy schemaH has a base
categorycbase , and for each propositional variablep of α,H has a categorycp. Every categorycp is connected withAll, and
cbase is connected with each categorycp. The set of constraintsΣ is as follows: we haveα′ whereα′ is obtained fromα by
replacing every variablep with 〈cbase , cp〉. It is easy to see thatα is propositionally satisfiable iffcbase is satisfiable inD.

(NP) Given a categoryc of a schemaD = (H,Σ), a candidate frozen dimension inFrozen(D, c) can be specified by
a pair(g, ca), whereg is a candidate frozen graph ofH whose root isc, andca assigns a member, that could benk(c′) or
some constant mentioned in a equality atom, to a each category in g. The child/parent relation off is defined by the edges of
g. A nondeterministic algorithm for testing ifc is satisfiable inD needs only guess a candidate frozen dimensionf , and test
in polytime whetherf satisfy conditions of Definition 1, and whetherf |= Σ.

Notice that, even ifΣ contains composed path atoms, the testf |= Σ can be done in polytime. Thus, including composed
path atoms in dimension constraints does not add extra complexity to the problem.

By Theorem 1, testing whetherD 6|= α is equivalent to testing whetherc is satisfiable in(H,Σ ∪ {¬α}). By Theorem 4,
testing category satisfiability is NP-complete, hence testing implication is coNP-complete.•

Theorem 5 A categoryc is summarizable from a set of categoriesS in a dimension instanced iff for every bottom category
cb of d we haved |= 〈cb, .., c〉 ⇒

⊙
ci∈S〈cb, .., ci, .., c〉.

21

Proof of Theorem 5 Let us denote byRcb
the expression

⊎
ci∈S πcb

(Γci
cb
d ⊲⊳ Γc

ci
d). From Corollary 1, it suffices to prove

that for every bottom categorycb of d, (a)Γc
cb
d = Rcb

iff (b) d |= 〈cb, .., c〉 ⇒
⊙

ci∈S〈cb, .., ci, .., c〉.
Recall the notion of dimension tuple,DimTuple, from Section 4.2. The following two statements are easily verified: (1)

given a dimension instanced, two categoriesca andcb of d, and a membere ∈ MembSetca
, DimTuple(d, e) |= 〈ca, .., cb〉 iff

∃y((xa, y) ∈ Γcb
ca
d); and (2) given a dimension instanced, three categoriesca, cb, andcg of d, and a membere ∈ MembSetca

,
DimTuple(d, e) |= 〈ca, .., cb, .., cg〉 iff ∃y∃z((e, y) ∈ Γcb

ca
d ∧ (y, z) ∈ Γ

cg

cb
d).

(If) Assume (a) is false, then there are three cases to consider.

• (Case 1) There is a pair(eb, e) in Γc
cb
d such that(eb, e) is not inRcb

. Then from (1), it follows thatDimTuple(d, eb) |=
〈cb, .., c〉. Because (b) holds, the constraint mentioned in (b) also holds forDimTuple(d, eb). Thus there is exactly
one categoryci ∈ S such thatDimTuple(d, eb) |= 〈cb, .., ci, .., c〉. By (2),∃y∃z((eb, y) ∈ Γci

cb
d ∧ (y, z) ∈ Γc

ci
d); and

because d is partitioned,∃y((eb, y) ∈ Γci
cb
d∧(y, e) ∈ Γc

ci
d). Therefore the tuple(eb, e) appears inπcb,c(Γ

ci
cb
d ⊲⊳ Γc

ci
d),

and hence(eb, e) appears inRcb
, leading to a contradiction.

• (Case 2) There is a tuple(eb, e) in Γc
cb

that occurs at least twice inRcb
. Then there are two categoriesci, cj in S such

that(eb, e) appears inπcb,c(Γ
ci
cb
d ⊲⊳ Γc

ci
d), and(eb, e) appears inπcb,c(Γ

cj

cb
d ⊲⊳ Γc

cj
d). Hence∃y(Γci

cb
(eb, y)∧Γc

ci
(y, e)),

and∃z(Γcj

cb
(eb, z) ∧ Γc

cj
(z, e)). By (2), DimTuple(d, eb) |= 〈cb, .., ci, .., c〉, andDimTuple(d, eb) |= 〈cb, .., cj , .., c〉.

Because(eb, e) ∈ Γc
cb
d, and by (2),DimTuple(d, eb) |= 〈cb, .., c〉. Hence the constraint mentioned in (b) does not hold

in DimTuple(d, eb), and thus (b) is false, leading to a contradiction.

• (Case 3) There is a tuple(eb, e) in Rcb
which is not inΓc

cb
d. Then there is a categoryci ∈ S such that∃y(Γci

cb
(eb, y) ∧

Γc
ci

(y, e)). Thus,(e, eb) ∈ Γc
cb
d, yielding a contradiction.

(Only If) Assume (b) is false. Then, there are two cases to consider.

• (Case 1) The dimensiond has a base membereb such thatDimTuple(d, eb) |= 〈cb, .., c〉, and for all ci ∈ S,
DimTuple(d, eb) 6|= 〈cb, .., ci, .., c〉. Then from (1) and (2), it follows that(eb, e) ∈ Γc

cb
d, and for allci ∈ S it is

not the case that∃y∃z((eb, y) ∈ Γci
cb
d ∧ (y, z) ∈ Γc

ci
d). Thus(eb, e) does not appear inRcb

, and hence (a) does not
hold, yielding a contradiction.

• (Case 2) The dimensiond has a base membereb such thatDimTuple(d, eb) |= 〈cb, .., c〉, and there exist at least two
categoriesci, cj ∈ S such thatDimTuple(d, eb) |= 〈cb, .., ci, .., c〉, andDimTuple(d, eb) |= 〈cb, .., cj, .., c〉. Therefore,
from (1) and (2), it follows that(eb, e) ∈ Γc

cb
d, and there are two categoriesci, cj ∈ S such that∃y∃z(Γci

cb
(eb, y) ∧

Γc
ci

(y, z)), and∃v∃w((eb, v) ∈ Γ
cj

cb
d ∧ (v, w) ∈ Γc

ci
d). Becaused is partitioned, there is a membere in d−1 such that

∃y((eb, y) ∈ Γci
cb
d ∧ (y, e) ∈ Γc

ci
d), and∃v((eb, v) ∈ Γ

cj
cbd ∧ (v, e) ∈ Γc

ci
d). Hence(eb, e) appears at least twice in

Rcb
and appears once inΓc

cb
d, leading to a contradiction.

•

Theorem 6 Testing summarizability is coNP-complete.

Proof of Theorem 6 (coNP-hard)We will present a polytime transformation from VALIDITY, which is known to be
coNP-complete. In VALIDITY we are given a propositionP and we are asked whetherP is valid, i.e., whetherP is satisfied
by all truth assignments. From the instanceP of VALIDITY we obtain the dimension schemaD = (H,Σ). The hierarchy
schemaH is as follows:C = {cb, c, c′, All} ∪ CP , whereCP is a set containing one categoryci for each propositional
variablepi in P . The relationր contains the pairscb ր c, cb ր c′, c ր All, c′ ր All. Also, for each categoryci ∈ CP

we havec′ ր ci andci ր All. The setΣ contains the following constraints:〈cb, c〉 ⊕ 〈cb, c
′〉, 〈c, All〉, 〈c′, All〉, and¬αP ,

whereαP is the constraint obtained fromP by replacing each propositional variableci with 〈c′, ci〉.
Now, consider the instance oftesting summarizabilityin which we are asked whetherAll is summarizable fromc in D.

It is easily verified thatAll is summarizable fromc in D iff c′ is unsatisfiable inD. In addition, we can easily see thatc is
unsatisfiable inD iff P is valid. ThereforeAll is summarizable fromc in D iff P is valid.

(coNP) In order to test summarizability, we need to test the implication of the summarizability condition. First we will
show that testing implication of a constraint which is a Boolean combination of atoms of the form〈c, .., ci〉 or 〈c, .., ci, .., cj〉
(in this proof we will refer to such atoms as complex atoms) isin coNP. It is enough to prove that testing category satisfiability
in a dimension schema with complex atoms is in NP. An NP algorithm that solves the problem needs only to guess a candidate

22

frozen dimensiond (see the proof of Theorem 4) and tests whetherd does not have cycles and shortcuts and satisfies the set
of constraints of the schema. Any complex atom that appears in the set of constraint can be evaluated ind in polytime, since
this task essentially requires the computation of the transitive closure of the hierarchy ofd. The remainder atoms can be
evaluated in polytime as well. Thus, the constraints can be evaluated in polytime.

Since the size of the summarizability constraint, without replacing its complex atoms, is polynomial on the size of the
dimension schema, testing summarizability is coNP.

•

B Proofs of Propositions

Proposition 1 A categoryc is summarizable from a set of categoriesS in a dimension instanced iff Γc
cbase

=
⊎

ci∈S πcbase ,c(Γ
ci
cbase

⊲⊳
Γc

ci
).

Proof of Proposition 1 The condition of Definition 2 is equivalent to the following condition:

Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=afc(m)(
⊎

i=1...n πc,m(Γc
ci
⊲⊳ (Πci,m=af(m)(Γ

ci
cbase

⊲⊳ fbase))))

Because the dimension is partitioned, i.e., each element inci rolls up to a unique element inc, we can push up the
projectionΠci,m=af(m) in the right-side expression yielding:

Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=afc(m)(
⊎

i=1...n πc,mΠci,m=af(m)(Γ
c
ci
⊲⊳ (Γci

cbase
⊲⊳ fbase))).

And becauseaf is distributive, we have:

Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=af(m)(
⊎

i=1...n πc,m(Γc
ci
⊲⊳ (Γci

cbase
⊲⊳ fbase))).

Becauseπ does not eliminate duplicates, we can replaceπc,m with πcbase ,c,m yielding:

Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=af(m)(
⊎

i=1...n πcbase ,c,m(Γc
ci
⊲⊳ (Γci

cbase
⊲⊳ fbase))).

Because⊲⊳ is associative, we have:

Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=af(m)(
⊎

i=1...n(πcbase ,c,m(Γc
ci
⊲⊳ Γci

cbase
)) ⊲⊳ fbase).

Finally, the condition of Definition 2 is equivalent to:

(∗) Πc,m=af(m)(Γ
c
cbase

⊲⊳ fbase) = Πc,m=af(m)(R ⊲⊳ fbase),

whereR is the query
⊎

i∈1...n πcbase ,c(Γ
ci
cbase

⊲⊳ Γc
ci

).
We now prove both directions of the proposition.
(If) It is direct by replacingR with Γc

cbase
in (∗).

(Only If) Assume(∗), and suppose thatR 6= Γc
cbase

. Then there is a tuplet = (xb, xc) such that the number of occurrences
of t in R is different than the number of occurrences oft in Γc

cbase
. Now, letaf be the aggregate functionsum, and letfbase

be the fact table with a single tuple(xb, 1). Then it is direct that the right and left side query of(∗) compute different values
for the measurem atxc, yielding a contradiction.•

Proposition 2 Every dimension schema is satisfiable.

Proof of Proposition 2 Given a dimension schemaD = (H,Σ), let d be a dimension instance with hierarchy schemaH ,
and a unique memberall. It is easy to see that the relation< of d inducs a hierarchy domain andd satisfies conditions of
Definition 1. Moreover, because all the categories ofd, exceptAll, are empty, and there cannot be a dimension constraint
with rootAll, trivially d |= Σ. Henced ∈ I(D), andD is satisfiable.•

Proposition 3 Every category of a canonical schema is satisfiable.

23

Proof of Proposition 3 Given a canonical schemaD = (H,Σ) (recall thatΣ here is a set of constraints that represents the
condition of homogeneity), letD′ be the schema(H,Σ′) such thatΣ′ has a constraint〈ci, cj〉 for every edge inH . We have
that a categoryc is satisfiable inD iff c is satisfiable inD′, simply becauseI(D) = I(D′). Now consider the dimension
f whose hierarchy schema isH . The dimensionf has a membernk(c′) for every category inOut∗(c), and its child/parent
relation< is defined as follows: for every pair of membersx, y of f , x < y iff y’s category is directly abovex’s category in
H . It is easily verified thatf satisfies conditions of Definition 1. Also,f satisfies all the into constraints inΣ′. Thusf is a
frozen dimension inFrozen(D, c), and hencec is satisfiable inD. •

Proposition 4 Given a canonical schemaD = (H,Σ), a categoryc ofD, and a set of categoriesS ofD, c is summarizable
from S in D iff for every bottom categorycb of D, if cb ր∗ c, then there is exactly one categoryc′ ∈ S such thatcb ր∗ c′

andc′ ր∗ c in H .

Proof of Proposition 4 Consider the constraint〈cb, .., c〉 ⇒
⊙

ci∈S〈cb, .., ci, .., c〉, wherecb is a bottom category ofD.
Now consider the atom〈cb, .., c〉 that appears inΞ(cb, c, S). BecauseD is canonical,D |= 〈cb, .., c〉 means thatcb ր∗ c in
D. Similarly,D |= 〈cb, .., c′, .., c〉 means thatcb ր∗ c′ andc′ ր∗ c in H . ThusD |= Ξ(cb, c, S) asserts that there is exactly
one categoryc′ ∈ S such thatcb ր∗ c′ andc′ ր∗ c in H . •

Proposition 5 DIMSAT runs in timeO(2N2+N log NKN3NΣ).

Proof of Proposition 5 The execution time ofDIMSAT can be decomposed into the timeT1 due to executions ofEXPAND
without considering subcalls toCHECK, plus the timeT2 due to executions ofCHECK.

Let us first examineT1. If we do not consider the execution ofCHECK, an arbitrary execution ofEXPAND takesO(NNout)
steps in lines 1-14, plus the time for the executions of further calls toEXPAND in Line 16. Here,Nout stands for the maximum
out degree of the categories inD. If we assume that all sets are implemented as bit vectors, each union, difference, and
intersection operation takesO(N). Thus, the timeO(NNout) of lines 1-14 is basically given by lines 4 and 11, where at
mostNout operations are done.

Therefore,T1 is inO(αNNout), whereα is the number of calls made toEXPAND in the entire execution of the algorithm.
Now, when constructing a candidate subhierarchy,EXPAND is called at most once for each category in the subhierarchy.There
are at most2N candidate subhierarchies, soα < 2NN . ThusT1 is inO(2NN3)

Now, we studyT2. The cost of a single call ofCHECK is (a) the time used to computePr′ := Pr ◦ g, plus (b) the time
that Loop 2-4 takes. A naive procedure to computePr′ := Pr ◦ g is as follows: while we are doing a depth-first traversal
of g, we delete from each path the edge being traversed; in the same step, we mark the equality atom that refers to the node
we visit. At the end, we make false the equality atoms unmarked and the path atoms that remain in the list. This takes
O((NΣ)N2), which is the order of (a). Time (b) is in the order of the number of c-assignments times the cost of evaluating
each c-assignment. The number of c-assignments is at mostNK

N , and the evaluation of each of them takes at mostNNΣ

steps. Therefore, Time (b) is inO(NK
NNΣ). Consequently, each execution ofCHECK takesO(NΣN

2 +NK
NNNΣ) steps.

Hence each execution ofCHECK takesO(NK
NN2NΣ) steps. Consequently, we have thatT2 is inO(2N2

(NK
NN2NΣ)).

ThereforeT1 + T2 is inO(2N2+N log NKN3NΣ).
•

C Proofs of Lemmas

Lemma 1 Given a dimension instanced and a dimension constraintα with rootc, d |= α iff for every memberx ∈ d−1(c),
DimTuple(d, x) |= α.

Proof of Lemma 1 (If) Assume thatd 6|= α. Then there must exist a memberm ∈ MembSetc such thatα[x/m] does
not hold ind, whereα[x/m] is the FOL expression obtained fromα by renaming the unique free variablex with m. Now
consider a single atomat in α. It is easily verified that (*)at[x/m] holds ind iff at[x/m] holds inDimTuple(d,m). Thus
α[x/m] does not hold inDimTuple(d,m). Now, from the fact thatDimTuple(d,m) has a unique memberm in MembSetc,
it follows thatDimTuple(d,m) does not satisfy∀x ∈ d−1(c)[α]. Thus,DimTuple(d,m) 6|= α, leading to a contradiction.
(Only If) Assume that there exists a memberm ∈ d−1(c) such thatDimTuple(d,m) 6|= α. Thenα[x/m] does not hold

24

in DimTuple(d,m). Now, from (*), it follows thatα[x/m] does not hold ind. Hence,d does not satisfy∀x ∈ d−1(c)α.
Consequently,d 6|= α, yielding a contradiction.

•

Lemma 2 Given a dimension instanced and a dimension constraintα such thatd |= α, then for every memberx of d,
DimTuple(d, x) |= α.

Proof of Lemma 2 Assume there is a memberm of d such thatDimTuple(d,m) 6|= α. Then there are three cases: (Case
1) m ∈ d−1(c). In this case, we use Lemma 1 to reach a contradiction. (Case 2) m 6∈ d−1(c) andm rolls up toc. Let
m′ be the ancestor ofx in d−1(c). Then, from Lemma 1, it follows thatDimTuple(DimTuple(d,m),m′) does not satisfy
α. But DimTuple(DimTuple(d,m),m′) = DimTuple(d,m′). HenceDimTuple(d,m′) 6|= α, and using Lemma 1,d 6|= α,
yielding a contradiction. (Case 3)m does not rollup toc. Then,DimTuple(d,m) has no member ind−1(c), and it is direct
thatDimTuple(d,m) |= α, yielding a contradiction.•

Lemma 3 Given a dimension schemads = (G,Σ), and a subhierarchyg of G with root c, g induces a frozen dimension
iff (a) g has no cycles or shortcuts, and (c) there exists a c-assignment ca of g such thatca |= Prop(ds, c) ◦ g.

D Correctness ofDIMSAT

In this section we prove the correctness ofDIMSAT. Let us define the procedureEXPAND′, which is obtained fromEXPAND
by replacing Line 7 (whereCHECK is called) with an operation that addsg to a global variableResult.

Next, we prove some properties ofEXPAND′.
We will denote byPi, wherei can be a number, or a letter, a particular instance (or execution) of a procedureP . If p

is a parameter ofP , pi stands for the actual parameter that corresponds top in the instancePi of P . In particular, given
an instanceEXPANDi(ci, Ri) of EXPAND, gi andctopi stand for the variablesg andctop immediately after the execution of
Line 11. Thecall graphof an execution of a recursive procedureP is a tree whose nodes are instances ofP , and each edge
(Pi, Pj) represents thatPi calledPj during the execution. The children of a node are ordered according to their occurrence
in the execution. Consider an instanceEXPANDn(cn, Rn) of EXPAND, and letτ be the path from the root to that instance in
the call graph ofEXPAND(c, ∅), thenCatPn stands for the set of categoriesci such that there is an instanceEXPANDi(ci, Ri)
in τ .

Lemma 4 (Properties ofEXPAND′) Given an instanceEXPAND′i(ci, Ri) in the call graphCG of EXPAND′(c, ∅), the follow-
ing hold:

1. The categoryc reaches every category ingi.C, and each category ingi.C reaches a level ingi.Top in gi.

2. gi has no cycles or shortcuts.

3. For every into constraint〈c1, c2〉 ∈ Σ such thatc1 ∈ (gi.C \ g.Top), we have that(c1, c2) is an edge ofgi.

4. gi.T op 6= ∅.

5. LetEXPAND′j(cj, Rj) be the instance that calledEXPAND′i(ci, Ri), thenci 6∈ CatP j .

Proof of Lemma 4

1. We omit the proof since the statement can be proved by a straightforward induction on the length of a path inCG .

2. We will prove this using induction on the length of the execution path. Base Case: it is direct since there is a unique
category ing.C, and this category is also ing.Top. Induction step: assume that the instanceEXPAND′(cj, Rj) called
EXPAND′(ci, Ri). Supposegi has a cycle, then becausegj has no cycles, at least one categorycn ∈ Ri must be in the
cycle. But, becausecn 6∈ Scj (whereScj is computed in Line 12) inEXPAND′j(cj, Rj), cn 6∈ gj .In

∗(ltopj). Now from
Line 4 in EXPAND′i(li, Ri), it follows thatgi.In

∗(cn) = gj .In
∗(ctopj) ∪ {ctopj}, and hencecn 6∈ gi.In

∗(cn), and
thereforecn cannot be in a cycle, leading to a contradiction. Now, suppose gi has a shortcut, then becausegj has no
shortcuts, there must be a shortcut(c′, cn), for somecn ∈ Ri in gi. Therefore,gi.In(cn) ∩ gi.In

∗(ci) 6= ∅. And from

25

ci = ctopj , gi.In(cn) ⊆ H.In(cn), andgi.In
∗(ctopj) = gj.In

∗(ctopj), t follows thatH.In(cn)∩gj .In
∗(ctopj) 6= ∅.

Now, because of Line 11,cn ∈ Ssj. Moreover, because of Line 13,cn 6∈ S; and because of Line 16,cn 6∈ Ri, yielding
a contradiction.

3. We will prove this by induction on the length of the execution path. Base Case: it is direct since there is a unique cate-
gory in g.C, and it is also ing.Top. Induction step: assume that the instanceEXPAND′(cj, Rj) calledEXPAND′(ci, Ri).
Assume that there exists a categoryc′, c′ ∈ gi.C \ gi.Top, such that〈c′, c′′〉 ∈ Σ, andc′′ 6∈ gi.Out(c

′). Notice that
becausegj satisfies the statement of the lemma, it must be the case thatc′ = ci, and thenc′ = ctopj . Now, because
EXPAND′i(ci, Ri) was called withRi = S′

j ∪ Intoj , andc′′ ∈ Intoj , we have thatc′′ ∈ Ri. Hencec′′ ∈ gi.Out(cn),
yielding a contradiction.

4. Assume thatgi.T op = ∅. This instance must have been called by another instanceEXPAND′(cj, Rj) such thatgj .Top =
{ci}, otherwisegi.Top would not be empty (because in Line 2, wheregi.Top is computed,gj .Top \ {ci} ⊆ gi.Top).
Now, from Lemma 4 (1), it follows thatgj .C ⊆ gj.In

∗(ci). On the other hand, becausegi.Top = ∅,Ri ⊆ gj .C (again
this follows from Line 2 wheregi.Top is computed). Then, we haveRi ⊆ gj .In

∗(ci). Therefore,Ri ⊆ gi.In
∗(li),

and becauseRi = gi.Out(ci), we have a cycle ingi, which contradicts Lemma 4 (2).

5. It is direct by induction on the length of the paths, that for every pathτ ′ = EXPAND(c, ∅) . . . EXPANDm(cm, Rm) of
τ , gm.Top = gm.C \ Cτ ′ . Now, let τ be the path from the root toEXPANDi(ci, Ri), and assume that there exist an
instanceEXPANDj(cj , Rj) in τ such thatci = cj; then there must be a sub-pathτ ′ = EXPAND(c, ∅) . . . EXPANDi(ci, Ri)
. . . EXPANDk(ck, Rk) EXPANDj(cj , Rj) of τ (we assume without loss of generality thatEXPANDi(ci, Ri) occurs before
thanEXPANDk(ck, Rk)). Let τ ′′ beτ ′ without EXPANDj(cj , Rj). Then, we havegk.T op = gk.C \ Cτ ′′ . But because
EXPANDj(cj , Rj) is called byEXPANDk(ck, Rk) in Line 17,ctopk = cj , and hencecj ∈ gk.Top. Then,cj = ci, and
cj ∈ Cτ ′′ , yielding a contradiction.

•

Lemma 5 (Correctness ofEXPAND) Given a dimension schemaD = (H,Σ), and a categoryc, after an execution of
EXPAND′(c, ∅), the variableResult contains all the subhierarchiesg of H with root c such that: (a)g has no cycles or
shortcuts and (b) for every into constraint〈c1, c2〉 ∈ Σ, such thatc1 is a category ofg we have that(c1, c2) is an edge ofg.

Proof of Lemma 5 Let us introduce some notation for the proof. First, we denoted the call graph ofEXPAND′(c, ∅) by CG .
In addition, letQ be the set containing all the subhierarchiesg of H with root c such that: (a)g has no cycles or shortcuts
and (b) for every into constraint〈c1, c2〉 ∈ Σ, such thatc1 is a category ofg we have that(c1, c2) is an edge ofg. Finally,
given two subhierarchiesg andg′ of H , g′ is a l-subgraph ofg if: g′.C ⊆ g.C; and for every categoryc ∈ (g′.C \ g′.Top),
g.Out(c) = g′.Out(c).

We need to prove thatResult = Q.
First, we will prove thatResult ⊆ Q. Consider a leafEXPAND′i(ci, Ri) of CG. From Lemma 4 (1), Lemma 4 (2), Lemma

4 (3), and the fact thatgi.Top = {All}, it easily follows thatgi ∈ Q, and henceResult ⊆ Q.
We now prove thatQ ⊆ Result. First, we will prove (i) if there exists an instanceEXPAND′i(ci, Ri) in CG wheregi is

a l-subgraph ofg, andgi.C ⊂ g.C, thengi.Top 6= {All}. Assume that this is false, i.e.,gi.Top = {All}. Now let c′ be
a category ing.C which is not ingi.C (note thatc′ 6= All). Now consider a pathp = c′′c1 . . . cnc

′ from some category
c′′ ∈ gi.C to c′ in g. Note thatAll cannot be in this path, because there is no category aboveAll in g. This path must
exist becausec′ is at least connected fromc in g (see definition of subhierarchy). Becausegi is a l-subgraph ofg, and
c′′ ∈ gi.C \ gi.T op = gi.C \ {All}, we have that(c′′c1) is an edge ingi, hencec1 ∈ gi.C. We repeat this argument
with c1, c2, instead ofc′′, c1, yielding c2 ∈ gi.C. Repeating the argument along the path, we reachc′ ∈ gi.C, yielding a
contradiction.

Now, we prove (ii) if there is an instanceEXPAND′i(ci, Ri) in CG wheregi is a l-subgraph ofg, andgi.C ⊂ g.C, then
there is a childEXPAND′j(cj, Rj) of EXPAND′i(ci, Ri) such thatgj is a l-subgraph ofg. Because (i) we reach Line 10 in
EXPAND′i(ci, Ri), and because Lemma 4 (4), and (i) there is at least one category ctop in gi.ctop, andctop 6= All. Now, we
call EXPAND′j(ctopi, S′i∪Intoi), whereS′

i∪Intoi is the set of categories ing.Out(ctopi). Note thatIntoi ⊆ g.Out(ctopi)
becauseg ∈ Q. Now, we havecj = ctopi, andRj = S′

i ∪ Intoi, and we have thatgj is also a l-subgraph ofg.
We will prove the existence of a pathτ in the execution graph that ends with a leafEXPAND′n (cn, Rn) of CG , such that

gi corresponds tog. We star from the rootEXPAND′(c, ∅) and using (ii) we have the pathEXPAND′(c, ∅)EXPAND′1(c1, R1),
wheregi is a l-subgraph ofg. We repeat this argument until the last instance in the path,say,EXPAND′n(cn, Rn) satisfies

26

gn.C = g.C. Becausegn is a l-subgraph ofg, we have thatgn = g. And hencegn.T op = {All}. And hence in Line 7 we
addg toResult.

•
We now prove the correctness ofDIMSAT.

Theorem 7 (Correctness ofDIMSAT) Every execution ofDIMSAT(D, c) stops, and correctly outputs whetherc is satisfiable
in D.

Proof of Theorem 7 First, we will prove thatDIMSAT(D, c) stops. It is enough to show thatEXPAND when called the first
time with c and∅ stops. We will show that the call graph ofEXPAND(c, ∅), CG, is finite. It is easy to see that every node
EXPANDi(ci, Ri) of CG has a finite number of children, because the number of calls toEXPAND in Line 16 is at most the
number of subsets ofOut(ctopi) in H , which is finite. Hence, in order forCG to be infinite, there must exist an infinite path
in CG starting from the rootEXPAND(c, ∅). Now, because of Lemma 4 (5), we cannot have an infinite-length path inCG,
otherwise the number of categories in the graph would be infinite. HenceCG is finite. Now, we can easily see that each
instance ofEXPAND in CG takes a finite amount of time, plus the time that takes the execution of its descendants. Therefore
DIMSAT stops.

Now, we show thatDIMSAT(D, c) correctly outputs whetherc is satisfiable inD. First, we prove that ifc is satisfiable
in D, thenDIMSAT(D, c) outputstrue. Assume not, then there is a non-empty setS containing every subhierarchiesg of
H with root c such that: (a)g has no cycles or shortcuts; and (b) for every into constraint〈c1, c2〉 ∈ Σ, if c1 is a category
of g, then(c1, c2) is an edge ofg. Then, because of Lemma 5, we have thatCHECK is called with every subhierarchy in
S. In particular,CHECK is called with a subhierarchyg′ ∈ S that induces a frozen dimension inD. Moreover,CHECK(g′)
returnsfalse, which contradicts Proposition 3. It remains to prove that if DIMSAT(D, c) outputstrue, thenc is satisfiable in
D. Assume thatDIMSAT(D, c) outputstrue. It is easily verified from Lemma 5 and Proposition 3 that the last graphg with
whichCHECK is called is a subhierarchy ofH with rootc, andg induces a frozen dimension inds. Therefore,c is satisfiable
in D.

•

27

