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A cornerstone of the theory of proof nets for unit-free multiplica- theory: we provide a simple inductive translation of cut-free
tive linear logic (MLL) is the abstract representation of cut-free proofs into cut-free proof nets, yielding the sought-after ab-
proofs modulo inessential commutations of rules. The only known stract representations of cut-free proofs modulo inessential
extension to additives, based on monomial weights, fails to pre- commutations of rules. We define a cut-free proof net on a
serve this key feature: a host of cut-free monomial proof nets can sequenf” as a set of linkings o satisfying a geometric
correspond to the same cut-free proof. Thus the problem of find- correctness criterion (Definition 1), and prove that a set of
ing a satisfactory notion of proof net for unit-free multiplicative- linkings is the translation of a proof if and only it is a proof
additive linear logic (MALL) has remained open since the incep- net (Theorem 1).
tion of linear logic in 1986. We present a new definition of MALL In Section 3 we extend our proof nets to include the cut
proof net which remains faithful to the cornerstone of the MLL rule, and present a notion of cut elimination. Our approach
theory. to cut suffers from the same problem as Girard’s monomial

proof nets: in the presence of cuts, multiple proof nets may
1 Introduction correspond to the same proof. However, from a semantic

point of view {viz. full completeness) the provision of ab-

The beautiful theory of proof nets for unit-free multiplica- Stract representations of MALL proofs modulo inessential
tive linear logic (MLL) appeared alongside the introduction 'Ule commutations is crucial only in the cut-free setting.
of linear logic [Gir87]. A proof net is an abstract repre- Moreover, our r?o.tlon of cut. elimination is simply defmedl,
sentation of a proof: the translation of cut-free proofs into Strongly normalising, and yields a category of proof nets in
proof nets identifies proofs modulo inessential commuta- Which & andé are product and coproduct.
tions of rules. The identifications have since been veri- A crisp notion of cut-free MALL proof net is fully mo-
fied as canonical from a semantic perspective, with numer-tivated from a proof-theoretic perspective alone. However,
ous full completeness results for MLE,g.[AJ94, HO93, just as MLL has blossomed through numerous fully com-
Loa94, Tan97, BS96, DHPP99]. Furthermore, the identi- plete se_m.a_ntics via cut-free MLL proof nets, hopefu!ly the
fications correspond to coherences of free star-autonomoug'€W definition of cut-free proof net presented here will lead
categories [BCST96]. to a similar blossoming of MALL. Since cut-free mono-

The problem of finding a satisfactory extension of the mial proof nets _for MALL are_uns_atisfac'_tory for the reasons
theory of proof nets to unit-free multiplicative-additive lin- Mentioned earlier (and detailed in Section 4.1), any MALL
ear logic (MALL) has remained open since the inception of full completeness resdibased on theme(g.[AM99], and
linear logic [Gir87]. Progress towards a solution was made the work in progress of Blute, Hamano and Scott on hy-
by Girard [Gir96] with a notion of MALL proof net based percoherenpe spaces) suffer; gccordlngly, parﬂcular'ly. \{wth
on monomial weights. Unfortunately, monomial proof nets regard to falthfulnesg. We anticipate that our new deflqltlon
fail to extend the MLL theory faithfully: a single cut-free  Of MALL proof net will yield cleaner and more accessible
proof may correspond to a host of monomial proof nets, and MALL full completeness results.
there is no natural translation of cut-free proofs into mono- _ o ) )
mial proof nets. Indeed, to quote Girard, monomial proof Rélationship with Girard’s monomial proof nets. ~ The
nets are “far from being absolutely satisfactory” [Girg6]. €chnical starting point for our definition of proof net was
We illustrate the problems in detail in Section 4.1. Girard's definition of monomial proof net [Gir96], and in-

In this paper we propose a new notion of MALL proof deed we employ variants of Girard’s ingenious notions of

net (Section 2) which adheres faithfully to the original MLL  Slic& and jump. Each of our proof nets translates natu-
rally into a non-monomial Girard proof netge., a Girard

*This paper appeared in Proceedings 18th Annual IEEE Symposium
on Logic in Computer Science (LICS 2003), Ottawa, Canada, June 2003, 1The original motivation for this work came as part of a project by the
except for the appendices, which contain the proofs omitted in the LICS first author, Gordon Plotkin and Vaughan Pratt aiming to extend the full
paper. A preliminary version of some of the material in this paper was completeness of Chu spaces for MLL [DHPP99] to MALL. We have since
presented in a talk at the workshbjnear Logic 2002, Copenhagen. discovered that the result does not extend.




proof net without the condition demanding that weights x

_ I P, P+
must be monomials. Thus one of our contributions rela- L o
tive to [Gir96] is the successful elimination of the monomial — = N ! T
. . . P PL P PL P7 P EBQ ]D7 P
condition. In [Gir96] Girard remarks that he had been try- ) ’ . L L .
ing to circumvent this technical limitation since 1990, and —F= 1, P&P, P~ P00
Appendix A.1.5 of [Gir96] lists three specific problems that P®P, P, P (B
must be solved in any attempt to eliminate the monomial &
ST ' “ —f— 1) N
condition,i.e., in any attempt to define what he calls “more P®P, P* P*&(PtaQ)
liberal proof-nets”, such as ours: L= %
—f— 1
Weights must be monomials. However, weights of the (PRP)RPL, PL&(PraQ)
L J

form p U ¢ will naturally occur if we want to allow

more superimpositions. The present state of affairs is

as follows: Figure 1. Example of the inductive translation
of a cut-free proof into a cut-free proof net.

(1) in spite of years of efforts, | never succeeded in
finding the right correctness criterion for these
more liberal proof-nets;

LA A+ A

(2) general boolean coefficients might be delicate to P, PL ax T,A cut

represent (on the other hand, the case we con-

sider has a natural presentation in terms of co- A B,A I'A B %3

herent spaces); I'A® B,A I, A%B
(3) normalization in the full case might be messy. I'A TI.B T, A o I'B ®

T, A&B ILAeB ' IAeoB °
An important stepping stone towards finding the right cri- Here, and throughout this documenf, Q, ... range

terion to address (1) was to first settle the open problem ofgyer propositional variablesd, B, . .. over formulas, and

whether Girard's criterion becomes insufficient uponrelax- 1 A " over sets of formula occurrences. In eliminating
ing the monomial condition. We show that this is indeed the permutation rule, we assume an implicit tracking of for-
the case: in Section 4.2 we present a non-monomial proofyyja occurrences above the line of a rule to formula oc-
structure that does not correspond to any proof, yet satisfiegyrrences below the line. Without loss of generality (see

Girard’s criterion. We address (2) by leaving weights im- [Gir87]) we restrict the axiom rule to literals.
plied, defining a proof net on a sequéhas a set of axiom

linkings on an extensiofi* of I' with complementary pairs  Flavour of our approach. To give a flavour of our ap-
of cut formula occurrences. Point (3) is addressed by theproach, Figure 1 shows an example of the inductive transla-
fact that our definition of cut elimination is sufficiently sim-  tion of a cut-free proof into one of our proof nets. The con-
ple that confluence and strong normalisation are immediate cluding proof net consists of two linkings, one drawn above
The proof that our correctness criterion captures proof the sequent, the other below. Each contains two axiom
translations hinges on an ordering &fs and %’s which links. The proof nets further up in the derivation have one
we call domination By introducing domination we avoid  or two linkings, correspondingly above and/or below the se-
the use of empires [Gir87, Gir96], thereby sidestepping the quent. Had we switched the order of the right-hand tensor
problem of stability of maximal empires ([Gir96], section rule and the plus rule, we would have obtained exactly the
1.5.3)—the main technical problem that led Girard to resort same pair of linkings; thus we identify cut-free proofs mod-

to monomials in the first place. ulo a commutation of rules. Two additional translations are
shown in Figure 2.
MALL. By MALL we mean multiplicative-additive lin- Here is an example of a proof net with four linkings:
ear logic without units [Gir87]. Formulas are built from lit- : | o
erals (propositional variableB, @, . .. and their negations P&P, Q&Q, (Q*®PH)o((RBR)Z(RF®RY))
P+, Q*,..) by the binary connectiveensor ®, par %, [ ‘ [ ‘
: : 1 i — —
with & andplus . Negation(—)-- extends to arbitrary for- PP, QLO. (O P )e((RIR)D (R ©R))

mulas by de Morgan duality. For technical convenience we
take sequents to be unordered, a sequent is a non-empty { \ — \
set of formula occurrences, , . .., A,,. We omit turnstiles, P&P, Q&Q, (QT@P)@((RBR)B(RT@R"))

which are redundant since all sequents are right-sided. Se- : | : |
guents are proved using the following rules: P&P, Q&Q, (Q*®PH&((RBR)X (R ®R™))
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Figure 2. Deriving the proof nets used in the example of cut elimination.

(To aid presentation, we duplicated the underlying sequent.)This new proof net has two linkings, one drawn above the
Our proof nets can be encoded compactly as collections ofsequent and one drawn beldwEach linking consists of
axiom links labelled with predicates (‘weights’). For exam- three axiom links. Cut elimination proceeds as follows:

ple, the four-linking proof net above can be represented as

follows: Pt [P®P].--[Pt&P) P®((C'Q_|7M2L)@(Rﬂ%ﬂ)
‘ p pPAgq |
q PAg —
) Pt [Pl [P4] Po((Q3QY)®(RIR"))

P& P Q& Q (Qt®PY)® ((RTR) 7 (R-@RY))

| | 57| :
q pVgq
7 Va pt Po((Q¥QY)®(RIRY))

To distinguish the's, we have subscripted them. Evely The first step, aside from eliminating theand & to leave
assignment (assignment of ‘left’ or ‘right’ to eachéf, and a cut pair of literals|P] - - - [P], retains only one of the
&) determines a linking as follows: delete each axiom link two original linkings. The underhanging linking is deleted
whose predicate does not hold, where we re&esp.p) as because it is ‘inconsistent’: it chooses opposite arguments
“&, is assigned ‘left’ (resp. ‘right)” (and; analogously).  for the cut® and & (left and right, respectively). This is
The reader can check that taking each of the four possiblean instance of our general rule for additive eliminatiosx:
&-assignments in turn produces the four original linkings. tain precisely the consistent linkingthose which choose

We sketch the idea behind our approach to cut elimina-the same argument for the cat and & (in the example
tion with an example. Consider the proof nets derived in above, the upper linking, which chooses left for both). The
Figure 2. Viewing MALL formulas as objectsand a proof second step is the usual MLL elimination of a cut pair of lit-
net onA+, B as a morphismd — B, the left proof net is erals, which we include in order to frame the example in a
a morphismP — P& P and the right proof net is a mor-  familiar context. Note that the end result really is a cut-free
phismP&P — P® ((Q@Ql)@(R@Rl))_ Composition, proof net,i.e., the translation of a cut-free proof: its witness
yielding a morphismP — P ® ((Q3Q*) @ (RBRY)), in is a subproof pf the right-hand proof of Figure 2 (the left
other words, a proof net on the sequérit, Pa((Q3Q")® branch of the finak:-rule).
(R®WR™)), proceeds as follows. First, we concatenate the
two sequents into a combined sequent of four formulas2 Cut-free MALL proof nets
(omitting commas):

In this section we introduce our definition of cut-free MALL

Pt [POP]---[PT&PT]  PO((QFQ1)®(RBRY)) proof net. As araide némoirewe provide a summary of the
Odefinition in the box ahead. We treat cut in Section 3.

An additive resolutionof a MALL sequentT” is any re-
sult of deleting one argument subtree of every additive con-
nective & or @) of I'. Thus every remaining: and&® is

The cut formulas are annotated with square brackets, an
the dotted line represents the cut. Next, we merge the two
original proof nets into a proof net on the combined sequent:

1 1 1 1 1
P [PeP] - [P &P  Po((Q3Q")®(RART)) 3The link of the original proof net o+, P& P appears in both the
upper linking and the lower linking of the new proof net; it is duplicated
2The example should be accessible to readers with no knowledge ofin the merging process, to match the fact that the other proof net had two
category theory: focus on the underlying cut elimination. linkings.
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Figure 3. The inductive translation of cut-free
MALL proofs into sets of linkings.

were presented in Figures 1 and 2. Note that if a cut-free
proofIl’ can be obtained frofl by a series of rule commu-
tations, therdI andIl’ translate to the same set of linkings.

Geometric characterisation of proof translations. We
present a geometric characterisation of those sets of linkings
that arise as the translations of cut-free MALL proofs, and
call themproof nets Analogous to [Gir96], as a stepping
stone to the definition of a proof net, we introduce the less
restrictive notion of groof structure

A &-resolutionT™ of a sequent’ is any result of delet-
ing one argument subtree of eveyof I'. A linking A on
I'ison I if every literal occurrence ok is in I'*. A set of

unary. For example, two of 12 possible additive resolutions linkings ¢ onT" is aproof structureon " if it satisfies

of the sequent
Pre(QoePt), (P&P)®(R®R), (R*®R)SR*
are
Poaort), (PLRj®(ROR], (R*@R)ZR*
PLo(OCK, (R&P)2(RER), (RE@R)BR:

Let I'* be an additive resolution df. An axiom link on
I'* is a pair of complementary literal occurrencedf A
linking on I"* is a patrtitioning of the set of literal occur-
rences ofl™ into axiom links,i.e., a set of disjoint axiom
links whose union contains every literal occurrencd of

(P1) For every & -resolution I'* of T, exactly one linking
of @ ison I'*.4

We invite the reader to verify (P1) for the sets of linkings
in Figures 1 and 2. Any proof structure can be represented
compactly as a set of axiom links labelled with predicates
(‘weights’), using the encoding described on the third page
of the Introduction. In Section 4 we relate our proof struc-
tures to those of Girard.

The second requirement for a set of linkingso be a
proof net is “pointwise MLL correctness”:

For example, there are two linkings possible on the first of (P2) Every linking of # induces an MLL proof net.

the two additive resolutions depicted above:
1 r 1 r 1
Koo Ph), (PR)@(ROR], (R*@R)BR*

oo, (PORo(ROR], (o R)FR

Every additive resolutiod™ of I induces an MLL se-

In other words, for each linking € 6, the MLL proof struc-
ture induced by\ is an MLL proof net, in the usual sense
[Gir87, DR89]. To be self-contained, we characterise (P2)
explicitly below.

Henceforth view a sequehtas a graph: a disjoint union

quent, namely by collapsing its additive connectives, which Of parse trees, with literals above. For a linkingnI" ob-

are unary in**. A linking A on I'*, viewed as being on
the induced MLL sequent, is exactly an MLL proof struc-
ture in the standard sense [Gir87], which we call hiel
proof structure induced by\. For example, the MLL proof
structure induced by the first of the two linkings above is:

[ 1 [ 1 [ 1
PL, P®R, (R*QR)BR*

A linking on a MALL sequenf is a linking on an addi-
tive resolution ofl". Write I' | A for the additive resolution
associated with a linking.. Every cut-free MALL proof
of I" defines a set of linkings of by a simple induction,
as in Figure 3, wheré@ > I is the judgementf is a set
of linkings onT™. (We use the implicit tracking of literal
occurrences downwards through rules.) The base sase
is a singleton set of linkings whose only linking comprises
a single axiom link, betwee® and P-. Examples of the
inductive translation of cut-free proofs into sets of linkings

tain thegraph G, of A from the additive resolutio’ [ A (a
subgraph of") by adding each axiom link of A as a vertex
aboveTl | A\, with edges fronu down to its two literal oc-
currences. Aswitchingof a linking A onT" is any subgraph

of G, obtained by deleting one of the two argument edges
of each?%-vertex. (P2) holds if and only if every switching
of every linking ofé is a tree (acyclic and connected).

We require some auxiliary concepts to state our third and
last requirement for a set of linkings to be a proof net. A
set of linkingsA togglesa &-occurrencew of I' if both
arguments ofv are present it J,., I' [ A. An axiom link
a depends orw within A if, within A, ¢ can be made to
vanish by togglingw alone: there are,, \’ € A such that
a€ N, a¢g N, andw is the only& toggled by{\, \'}.

4Therefore, a proof structure dn is a maximal clique in the coher-
ence space of linkings di with incoherence\ <\’ iff there exists a&-
resolution™* of I" such that both\ and\’ are onl'*.



— Definition of cut-free MALL proof net

aide meémoire—

Additive resolutionof I': any result of deleting one argument subtree of edergr @ of I". (&-resolutionanalogously.)

Axiom link: pair of complementary literal occurrences.

Linking A onT'": partitioning of the set of literal occurrences in an additive resolufipn of I" into axiom links.

GraphGy: I'[ A + A + edges from each axiom link ikto its two literal occurrences ifi | \.
Switchingof a linking A: any subgraph of, obtained by deleting one of the two argument edges of &avhrtex.

A set of linkingsA togglesa &-occurrencev of I' if both arguments ofv are presentif), ., T'[ \.

An axiom link a depends onw within A if 3\, A’ € A suchthat € A\, a ¢ ), andw is the only& toggled by{X, \'}.
GraphGa: [Uyea 92 +jump edges between each axiom linkAnand any& on which it depends withir.

Switch edgeof a &- or ¥-vertexx in G, : any argument or jump edge of

Switching cycleof A: a (non self-intersecting) cycle i, containing at most one switch edge of edeland?.

A set of linkingsé is aproof netif it satisfies

(P1) For eveng:-resolutionl™ of ', exactly one linking of is onI'™*.
(P2) Every switching of every linking df is a tree (acyclic and connected).
(P3) Every sef\ of two or more linkings of) toggles a& that is not in any switching cycle of.°

ExamMpLE 1 Consider the two linkings

1

I 1 I 1
Pro(QaPt), (P&P)®(ROR), (R*®@R)BR:
9t L ] [ [

Here are\; and )\, on their respective additive resolutions:

A\ - — T 1 T 1
1 Re@ePrt), (POR)@(ROK), (R*©R)3R*

1 1 1
o Pro@OLX ReP)olKeR), (RTOR)IR

Let w be the& of the sequent, and lét = {)\;, \2}. The
axiom link between the left-mos®+ and the left-mosi?
depends onw within A: it is present in\; € A but not in
A2 €A, andw is the only& toggled by{ A1, A2 }. The axiom
link between the right-mosk and R+ does not depend on
w within A, since it is present in both; and ;. It is the
only one of the 5 axiom links ith (more precisely, it J A)
that does not depend anwithin A.

We now extend the definition of the graph of a linking to
the graph of a set of linkings. Given a sebf linkings on

I, obtain thegraph G, of A from [ J,., G by adding, for
every &-vertexw and every axiom links depending onv
within A, an edge betweem anda. Each edge of the latter
form, between & -vertexw and an axiom link, is called a
jump of w. Figure 4 showgj,,, »,; for A\; and ), of Ex-
ample 1, with four jumps (the curved edges). In drawing
an axiom linkr, we view the horizontal section as a ver-

L N P\L LT T
\ @/ \&/ \@/ \®/
69/ \®/ \7?

Figure 4. The graph Gy, »,) of Example 1.

A switch edgeof a &- or ¥-vertexx of G, is an edge
betweenr and one of its arguments, or a jump:ofif = is
a &). A switching cycleof a set of linkingsA is a cycle in
Ga containing at most one switch edge of edehand 7.
(We do not permit a cycle to intersect itself.) For example,
in G¢a,,a,) Of Figure 4, the cycle & — ® — @ — left-
R — left-{R, R} X™ &” contains only one switch edge
of the &, and is therefore a switching cycle 64;, Ao} of
Example 1.

DEFINITION 1 A set 0 of linkings on a MALL sequent T is
a cut-free proof netif it satisfies (P1), (P2)° and:

(P3) Every set A of two or more linkings of 6 toggles a &
that is not in any switching cycle of A.®

EXAMPLE 2 The set of linkings{\1, A2} of Example 1 is
not a proof net. It fails (P3) sincg,, »,; (Figure 4) con-

tex, and the two verticals as edges. We overlap edges fronfains a switching cycle through tie.

axiom links coming down into the same literal occurrence
(i.e, 1 meansil). There is no jump to the right-most ax-
iom link, since it does not depend on tkewithin {1, A2 }.
Note that ifA C A’, theng, is a subgraph of,., and that
for any linking\, G, is preciselyg, defined on the previ-
ous page.{;,y has no jumps, since na is toggled.)

5By dropping connectedness from (P2) we obtain a cut-free proof net
for MALL with the mix rule (hypotheseF andA, conclusionl’, A).

8In fact, one need only verify (P3) for thoske which aresaturated
namely, such that any strictly larger subsetdabggles morek:'s thanA.
Note that there is exactly one saturated set of linkingsfior eachpartial
&-resolution of T, the latter being any result of deleting one argument
subtree of some of th&’s of T



0> QT A 0 > (] AL A
(PP > [ PP \UN s AeO,Nef) > [0, AxAL I, A
0> [L0TrA 0> 8T8 0> QT A 0 > (] B,A
U0 > [,9Q,Q] T, A&B DUN e Nel b QU] T,A® B,A
6o [@ra 6> QT8 0> QT AB
0> [Q T, AeB 0> [QT,AeB ° 0 > [Q T, A%B

Figure 5. Rules for deriving sequentialisable sets of linkings on MALL cut sequents.

ExamPLE 3 Consider the pair of linkings on the sequent
I' = P &P+, P@ P obtained as follows:

ax

ax

1 €L
PP PP
D2 N D1
PJ_7P®P P 7PGBP
&
.1
P& Pt PeP
I

Let \; and ), be the upper- and lower linking respectively
(each having just one axiom link). We shall verify that
{A\1, A2} is a cut-free proof netl’ has two&-resolutions,
It = PLeRE Popandly = &P PaP. (P1)
holds, since{A1, A2} contains exactly one linking of},
namely)\;. Here are the grapt®,,, G.,, andGyy, x,):

| |

P r gx
\ / '
& &)
1
P P gx
/ \ ?
& &
pt | pt P P
\ 1/ \ / G2a.02)
& &

Each \; has just one switching, namely,,. Since each
Gy, is atree, (P2) holds. Finally, (P3) holds since, A2}
toggles the&, and the& is not in any switching cycle of

{1, A2}

THEOREM1 A set of linkings is the translation of a cut-
free proof iff it is a cut-free proof net.

By a simple induction, the translation of a cut-free proof is
a cut-free proof net. The proof of the converse reduces to
simple induction on the number 8f's and&’s, spelled out

in Appendix B, once we prove th®eparation Lemmafor

any cut-free proof ned, if Gy has a% or &, then it has a

%y or & that separatesHere a%- or &-vertexz separates

if it is not an argumenti(e., is an outermost connective),
or it is the argument of and deleting the edge between
andy disconnectsjy. We prove the Separation Lemma via
an ordering on&’'s and%’s which we calldominatiorf, a
concept reminiscent of the ordering induced by the notion
of an empireof [Gir96], but different in an essential way.
The details are in Appendix A. The proof in the case of
MIX (see footnote 5) requires only minor changes.

3 Cut

A cutis apair{ 4, A*+} of complementary MALL formulas.
We write Ax A+ for {A, A+}, and treatd x A+ akin to a
MALL formula, referring tox as thecut connective (In
the cut elimination example in the Introduction we drew a
cut Ax AL informally as[A] - - - [A+].) A cut sequents a
non-empty set of occurrences of MALL formulas and cuts.
A cut-additive resolutionof a cut sequent\ is any result

of deleting some cuts fromk and one argument subtree of
every remaining additive connectivé& (or ). Thus every
remaining& and @ is unary. For example, here is a cut
sequent followed by one of its cut-additive resolutions:

P®P, QxQ*, P oQ, (R®S)* (R &S™)

PP, K, P ol [KoS)+ (R &X)

An axiom link on a cut-additive resolution* of a cut se-
guentA is a pair of complementary literal occurrences of
A*. Alinking on A* is a partitioning of the literal occur-
rences ofA* into axiom links,i.e., a set of disjoint axiom
links on A* whose union contains every literal occurrence
of A*. A linking on A is a linking on a cut-additive reso-
lution of A. We write A [ X for the cut-additive resolution
associated with a linking.

Write [Q] T for the cut sequent obtained by taking the
disjoint union of a sef) of cut occurrences and a MALL
sequentl’. A set of linkings on[Q] T is sequentialisable
if it can be derived from the rules in Figure 5, in which
6 > [Q] T is the judgement is a sequentialisable set of

a1inkings on the cut sequef®] I'”. (We once again use the

"Unrelated to domination in flowgraphs.



— — T T proof translations, such as
P, PL P, PL P, P P, P — |
at — — e P@P, PL«P, PLept
P pLep pt P, Pt«p, Pt
’ ’ — = & Moreover, under this convention two proofs that differ only
1 1 i i -
P PLeb Prap Prupt ina commutatlor_l ot_ut and & -rules would be translated to
x ;o J different sets of linkings.
Note that the alternative of taking maximal {.e., “su-
ax ax ax ax perimpose as many cuts as possible”) does not define a
PﬁPL PﬁPL P, Pt P, Pt canonical function from proofs to sets of linkings, since
’ " eut — — ot there may be a choice of how to make the identifications.
PﬁPL*PﬁPL P, Pt«p, Pt The following two & -rules illustrate such a choice.
) ) [I— I &
1 1 1 1 1 1
—1 — 1 1 1 P, P~xP, P—xP, P
P, PX+P, P& P+ P, P~xP, P~xP, P (I L [ &
L I
1 1 1
_ _ P, PLxP, PL«P, PL& Pt
Figure 6. Examples of the translation of a - - R
proof with cuts. — — — " " "
P, ptsp, prap, pt A2 Pl AR D
&

implicit tracking of literal occurrences downwards through
rules.) The base case is a single linking with a single ax-
iom link and no cuts. Figure 6 shows two examples. Each
of the conclusions is a set of two linkings, one drawn above Girard was aware of this issue in the context of monomial
the cut sequent and one drawn below. The only differenceproof nets; see Appendix A.1.6 of [Gir96].

between the derivations is the finatrule. The left applica-

tion keeps the cuts in the hypotheses separate (an instanc&eometric characterisation of sequentialisability.  In

1 1 1
P, PL«P, PL«P, PL& P+
=1 |

of the &-rule taking® empty andQ = Q' = P+« P), the presence of cut, we update all the auxiliary definitions
whereas the right application superimposes the two cutsof Section 2 &-resolution,G,, switching cycle,etc) by
(X = Pt x P andQ, Q' empty). substituting “cut sequent” for “sequent” and “cut-additive

Any derivation of a set of linkings using the rules of Fig- resolution” for “additive resolution” throughout.
ure 5 projects in an obvious way to a MALL proof, namely,
by restricting to the underlying sequentsz(, readI" for -
6 > [Q] T). For example, the two derivations of Figure 6 Proof netif:
each yield the same MALL proof af, P& P+. (PO) At least one literal occurrence of every cut is in 6 (i.e.,

Write IT ~~ 6 if 11 is the MALL proof obtained from a in some axiom link of some linking of 9).
derivation of a set of linking8, and say thall is asequen-
tialisation of 6. If a MALL proof I’ can be obtained from
IT by a series of rule commutations in which &orules are
moved upwards, theld andIl’ are sequentialisations of the (P2) Every switching of every linking of 0 is a tree (acyclic
same set of linkings. In the cut-free case,is a function and connected®).
from proofs to sets of linkings, exactly the translation de-
fined in Figure 3. In the presence of cuts, more than one se
of linkings may correspond to the same proof. For example,
since the two derivations in Figure 6 have the same under-g s a proof structureif it satisfies (P0) and (P1).
lying MALL proof (say II), the concluding sets of linkings
(sayd andf’) have a common sequentialisatiof: ~ 6,
IT~ ', andf # 6'.

We can of course extend the cut-free translation of proofs
by always choosing to be empty in th&:-rule (.e., “never
superimpose cuts”). However, our notion of proof net de- The proof is essentially the same as the proof of Theorem 1,
fined below, which characterises sequentialisability, doesthe cut connective is akin to an outermosb.
not characterise the image of this translation, since there sgy gropping connectedness, we obtain a proof net for MALL aug-
would exist sequentialisable sets of linkings that are not mented by thaaix rule.

DEFINITION 2 A set 6 of linkings on a cut sequent A is a

(P1) For every & -resolution A* of A, exactly one linking
of 0 is on A*.

{PS) Every set A of two or more linkings of 6 toggles a &
that is not in any switching cycle of A.

Note that (P1)—(P3) are inherited from the cut-free case.

THEOREM 2 (SEQUENTIALISATION) A set of linkings is
sequentialisable iff it is a proof net.




id tw tw tw

P,Q,Qt P+t A P,Q,QtopP+t A P,Q,Qt P+ A P,Q,QteopP*t A

t t ¢ ‘
Pe @ erhed P.Q.(Q*@PH)8A P,Q,(Q*@P)8A P.Q,(Q*@Ph)pA
1 q
P,Q&Q,(QT®PH)®A P,Q&Q, (QePL)eA
p

P&P,Q&Q,(QT®PH)®A
Figure 7. The proof Il,,,. (We omit the unique cut-free proof ét, Q, Q+ ® P+.)

Cut elimination. Letd be a set of linkings on the cut se- of A. This category has the structure of a star-autonomous
quentA, and let4 «+ A+ be a cut ofA. Define theelimina- category minus the unitg; is product, andp is coproduct.
tion of Ax A+ as follows.

e If Ais a literal, deleted x A+ from A, and replace 4  Girard’s monomial proof nets

any pair of axiom links{l, A}, {A+,1'} in a linking
of # (I and!’ being other occurrences of+ and A
respectively) with the axiom linki,1’}.

o If A=A, ® Ay andA+ = A{ A5 (or vice versa), 4.1 Monomial proof nets are unsatisfactory
replaceA « A+ with two cutsA; * A{ and A, * A;-.
Retain all the original linkings.

In this section we relate our MALL proof nets to the mono-
mial proof nets of Girard [Gir96].

We give a detailed account of how monomial proof nets
_ [Gir96] fail to provide abstract representations of cut-free
o If A= A1&Ay andA+ = A @ A5 (or vice versa)  MALL proofs modulo inessential commutations of rules. A

replaced x A with two cuts A; = A{- and As x Ay . single cut-free proof may correspond to a host of monomial
Retain precisely the ‘consistent’ linkings: delete any proof nets, and there is no natural translation of cut-free
linkings A such that inA [ A the (now unary): and& MALL proofs into monomial proof nets. (The reader un-

take opposite argumentsg(, such that the right argu-  familiar with monomial proof nets should be able to follow
ment of the& is in A [ A and the left argument of the  the general shape of the argument.)

@isin A A, orvice versa). Finally, ‘garbage collect’ Consider the following pair of cut-free monomial proof

by deletingA; x A:- if no literal occurrence oft; x A;- nets: B

is in any of the remaining linkings. P — e |
An example of cut elimination was presented in the Intro- p P Pt Q Q Q
duction. N\ / N\ / \ /

&p ® &q
PROPOSITION1 Eliminating a cut from a proof net yields | | |
a proof net. PP PteQt  QLQ
Proposition 1 is proved in Appendix C. Py
pq1 Pa2
THEOREM 3 Cut elimination of proof nets is strongly nor- ’p&l ~ ‘ ’ ‘pél
malising. P M 1ra
p P P Q" Q Q@ Q@ Q@
Proof. Confluence is immediate from the definition; cut \ N\ / \ / \ /
elimination reduces the size of the cut sequent, and is there- &p ® @ &gy
fore strongly normalising. a \ \ N
P&P Pt Q&Q

A category of proof nets. Our cut elimination allows  (Eigenvariables associated witk’s are shown as sub-

us to define a category of MALL proof nets. Objects scripts; we omit implied weights.) These two monomial
are MALL formulas, and a morphised — B is a cut- proof nets correspond to the same proof. The second mono-
free proof net on the sequent-, B. The composition of  mial proof net has two forms of redundancy relative to the
6 : A— Bandf# : B — C is the normal form of the first: (i) the & with eigenweight; has been replaced by two

proof net{\U X : X € §,\ € ¢} on A+, B+ B+ C. similar ‘copies’, and (ii) the axiom link of weighthas been
Composition is associative, since cut elimination is strongly split into two.

normalising. The identityd — A contains a linking\ on Even if one attempts to fix a choice of representation
AL, Aiff X matches the™ literal of A+ with the:™ literal (e.g.favouring the first monomial proof net above over the
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Figure 8. Girard’s correctness criterion is insufficient without monomials: this (abbreviated) non-

monomial Girard proof net is not sequentialisable.

second), one still runs into difficulty. As a concrete illus-
tration, we exhibit cut-free proofd, and monomial proof
netsf for which the binary relation of sequentialisation is

q pq eﬁﬁyp’,ﬁq p Pq

Definell,,, to be the proof shown in Figure 7, whede=
(R® R) % (R+® R1), id denotes the identity proof and
denotes the twist proof. Lét,,,, be the result of commuting
rulesq andp in I, letIl,, be the result of commuting
t andg in the right half ofIl,,,, and letll,;, be the result
of commutingt andp in the right half ofIl,,,. Define the
monomial proof netds as follows. To specify; it suffices
to present a configuration of weighted axiom links. ®n
and@ literals, fix the configuration as below-left:

p — (idw) w
p‘ T 7 ‘ N
, » o o oL po R R RY Rt
NN NS
&p &q ® v w
‘ ‘ ‘ e
P& P Q&Q Qt®pt R R Rt Rt

We have taken as eigenweights the labels of&hriles of
theIl,, . The configuration of axiom links oA will be a dis-
joint union of axiom links in the identity and twist config-
urations:id,, andtw,, (above-right) denote a pair of axiom
links of weightw in the identity and twist configurations,
respectively. We specify thész by the following disjoint

unions of weighted identity and twist configurations 4n

gﬁ,pﬁ: idpq (i tWﬁ [ thE
O3pq" idpg U twg U twyy
Opq.pa.pa: idpg U twpg L twpg LI twgg

(By redundancies of type (i) and (ii) illustrated earlier, there
are of course a host of other monomial proof régtsvhich
are parodies of the three above.) Sincellheare equivalent
modulo inessential rule commutations, any satisfactory the-
ory of proof nets should provide a canonical representation
uniting all of them. With monomial proof nets one would
have to close under the sequentialisation relation between
proofs and monomial proof nets depicted earlier, thereby
creating a matching between the set of prddfsand the
set of monomial proof net#s, and then artificially choose
a representative from amongst the

By contrast, in our setting we associate the same proof
net with eacHI,,: the four-linking proof net on the second
page of the Introduction. Thus we preserve the spirit of
MLL proof nets by providing an abstract representation of
all of theIl, in one.

4.2 Girard'’s criterion is insufficient without monomials

A key stepping stone towards our formulation of a new def-
inition of proof net was to first settle the open problem of
whether Girard’s proof net correctness criterion [Gir96] be-
comes insufficient upon relaxing the dependency condition,
which is the requirement that every weight be a monomial.
The answer is yes: in Figure 8 we present a cut-free non-
monomial Girard proof net which is not sequentialisable.
By non-monomial Girard proof netwe mean a proof net
as in [Gir96] but for the omission of the dependency con-
dition. Strictly speaking is merely an abbreviation of a



The shaded occurrencesstfuctureshould readet Accordingly,surjectivehas been
struck three sentences later. Thanks to Masahiro Hamano for this correction.

non-monomial Girard proof net: view eaghas an eigen-
variable and split eacly into a separatey; and®,; formu-

las and remaining weights are implied.

Figure 8 also encodes one of our proof structureda
the notion of weight described on the third page of the In-
troduction. It is not a proof net, since (P3) failg; contains
a switching cycle passing through all fo&’s (follow the
four jumpsé&,,, to the axiom link{ R |, R;11} (mod4)).

4.3 Mapping monomial proof structures to ours

5 Work in progress

The equivalence relation on cut-free MLL proofs induced
by their translation into cut-free MLL proof nets is canon-
ical in sense that the equivalence corresponds to coherence
in a star-autonomous category [BCST96]. We conjecture
that the equivalence on cut-free MALL proofs induced by
our translation into proof nets corresponds to coherence in
a star-autonomous category with products (hence sums).

We are seeking a reformulation of cut that preserves the
elegance of the cut-free definition, in the sense of retaining
a natural translation from proofs to proof nets.

Let a non-monomial Girard proof structurebe a proof
structure as in [Gir96] but for the omission of the depen-
dency condition. Define a non-monomial Girard proof
structure to becompactif (a) any non-literal formula oc-
currence is the conclusion of exactly one link, except that a
formula A @ B may be the conclusion of bothdy - and a

structure by identifying, along with their premises, links of

We are investigating whether the following variant of
(P3) yields an alternative definition of proof net: for any
switching cycleS of a set of linkingsA, at least on&: tog-
gledinAisnotinsS.

Acknowledgements. Vaughan Pratt, for invaluable feed-
@»-link, and (b) any two literal occurrences constitute the back during the development of this work. Paul-Aadr
conclusions of at most one axiom link. Each non-monomial Mellies, for suggesting to the first author that the search for
Girard proof structure, and thus also each monomial one,2 satisfactory notion of MALL proof net was an interesting
can be collapsed into a compact non-monomial Girard proofand potentially fruitful research topic.

the same type with the same conclusion(s), and summingReferences

the weights of links and formulas so identified. This col-

lapse does not preserve the dependency condition. AnyIAJgA']

compact non-monomial Girard pro|structure can be ob-
tained as the collapse of a (monomial) Girard pr struc-
ture.

Compact non-monomial Girard proof structures are in

bijection with our proof structures. The counterpart of Gi- [BCSTO6]

rard’s “technical condition” is implied by (P1) and our defi-
nition of a set of linkings in terms of additive resolutions.
The surjeetive map from (monomial) Girard proof struc-
tures to our proof structures obtained by composing the col-
lapse and the bijection preserves the property of being a se
guentialisation of a particular MALL proof.

Given a set of linkingg? on a sequent’ and a subset
A C 6, let G§ be defined ag,, but with jump edges be-
tween evengk:-vertexw € G, and every axiom link € Gy
depending onv within 6. Note thatG, = G4. Define the
variant (P2) of (P2) by usinggfk} in place ofG, in the def-
inition of a switching of), also deleting all but one switch
edge of eacld:. (P2") clearly implies (P2), since it involves
more switchings. In fact, (P2is strictly stronger than (P2):
for & = {\1, A2} of Example 1, the grapﬁﬁ1 has a switch-
ing cycle (the one presented below Figure 4), whetgas
does not. However, it is not hard to check that (P& im-
plied by (P2) and (P3) together.

The bijection between compact non-monomial Girard
proof structures and our proof structures can now be fur-
ther refined: compact non-monomial Girard proof nets are
in bijection with sets of linkings in our sense which satisfy
(P1) and (P2).
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A Appendix: Separation

Throughout this appendi& is a proof net on a cut sequent
I".° For verticesr andy of the graphGy, write z — v iff z

is an argument of, or x is an axiom link andy is either a
& on whichx depends ird or one of the two literals linked
by z, thus directing the edges g% downwards. Property
(P2) impliesgy is connected.

A subsetA C 6 is saturatedif any strictly larger subset
of 6 toggles morek:’s thanA. Clearlyd itself is saturated.
For A a set of linkings andv a & of T" let A denote the
set of all linkings inA whose additive resolution does not
contain the right argument af. Write A\ = X’ if linkings
A, N € 0 are either equal ow is the only & toggled be-
tweenI' [ A andI' | ). Itis straightforward to check that:

(S1)If A is saturated and toggles then alsoA™ is satu-
rated.

(S2) If A is saturated and togglesand\ € A then\ = )\,
for some),, € Av.

(S3)If A is saturated and togglesand\ = X for A\, X €
Athen) = )\, = ) = )\ for some),, N, € A¥.

LEMMA 1 Letw be a & toggled by a saturated set A C 0,
and let e be an edge in G originating from an axiom link a,
such that e € Gaw. Then the jump a — w is in Gy .

Proof. Lete bea — x. If eisnota jumpge € Gaw implies
a & Gyo. Choosel € Awitha € X\. By (S2)\ = ),
for some\,, € A*. Sincea & A\, (for a € Gaw), the jump
a— wisingGy.

If eis ajump, we have,, \' € Awitha € A\,a ¢ \ and
AZ N By (S3)\ £ A\, = N, 2 N for A\, N, € A”.
Eithera ¢ X\, ora € X\, elsee € Gyw; either way, the
jumpa — wisinGy. O

LEMMA 2 Every non-empty union S of switching cycles in
Gy has a jump out of it, i.e., for some axiom link a € S and
&-vertex w¢ S, there is a jump a — w in Gy.

Proof. Let A be a minimal saturated subset ®fwith
G containingS. Switchings of singleton subsets Gfare
cycle-free by (P2), sa contains at least two linkings. Let
w be a& toggled byA that is not in any switching cycle
of A (existing by (P3)), sav ¢ S. SinceA is minimal,
S & Gaw (using (S1)), so some edgeof S is in G, but
not in Gaw. Without loss of generality is an edge from an
axiom link a, because for any other edge— =z in S we
havea — 2; — ... — 2z, = y — 2 in S for some axiom
link a, andy — x is in Gyw Whenever — z1 IS N Gyw. By
Lemma 1 the jump — wisin Gy, hence also igjy. O

9Readers concerned only with the cut-free case may ignore the full gen-
erality of this reference to cut, and assume thit a cut-free proof net on
a MALL sequentl".
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Henceforth %3/&” abbreviates % or &”. A path from
to z,, in Gy is a sequence of distinct verticegx; . ..z,
such that for each eitherz; — z;4; or z; «— x;41 (note
that we do not allow cycles). Awitching pathis a path
in Gy that does not traverse two switch edges of ahpr
& in succession. A switching pathy . ..z, is strong if
it does not end by entering?@/& along one of its switch
edgesite., x,_1 — x, only if =, is not a%/&). Sup-
pose pathsr = zp...x, and7’ = yo...y,, are disjoint
but for x,, = yo. If # and«’ are switching paths, then
their compositer; 7’ = zg...z,y1...9m IS NOt Neces-
sarily a switching path (namely if,, = yo is a & /% and
Tn_1 — Tp = Yo < Y1), Whereas ifr and«’ are strong
switching paths them; 7’ is also a strong switching path.

Write x = ¢ y if the subgraphG of Gy contains a strong
switching path fromx to y. An z-zone X is a subgraph
of Gy such that for allz’ € X, there existyy such that
r — y =x 219 Given a%¥/&-vertexz and a vertexy,
definex dominatesy, denotedr 1 y, if y is in anz-zone.
If 2 is not dominated, it ifree.

LEMMA 3 Domination T is transitive.

Proof. We show that ifX is anz-zone,y € X andY is
ay-zone, thenX UY is anz-zone. Takez € Y \ X. We
haver «— 2’ =x y « 3’ =y z for somez’ € X and
y' € Y. If the strong switching path’ =y =z does not
intersectX, thenz’ = x y « 3’ =y z constitutes a strong
switching path, so we are done. Otherwiseylébe the last
vertex alongy’ =y z thatis inX. Sincey” € X we have
z «— 2" =x y”, and the sub-path af =y 2 from y”
to z is a strong switching path” =y z; the composition
of these paths yields «— z” =xyuy z, since the only
common vertex ig’”. O

LEMMA 4 Let C be a switching cycle in Gy containing an
axiom link with a jump to a &-vertex w ¢ C. Then w
dominates every vertex of C.

Proof. C is aw-zone. O

LEMMA 5 Ifz is in a switching cycle in Gy then w 1 x for
some &-vertex w in no switching cycle in Gy.

Proof. Apply Lemma 2 repeatedly, growing a collection of
switching cycles one cycle at a time, until jumping té:a
vertexw that is not in a switching cycle. This must happen
eventually, since (P3) impligs contains & that is not in
any switching cycle. The result follows by Lemma 4 and
the transitivity of 1. O

10The union of alkz-zones is itself ar-zone, which could be called the
realm of z, a concept reminiscent of the notionerpireof [Gir96], but
different in an essential way.



LEMMA 6 Ifx O x then x is in a switching cycle in Gy.

Proof.
hencex is in a switching cycle irGy.

If x Oz thenx «— y =x x for somez-zoneX,
O

LEMMA 7 Every %/& of Gy is either free or is dominated
by a free /& .

Proof. If xq is neither free nor dominated by a fré#&:-
vertex, then we can build an infinite chaig C =, C ...
of distinct vertices with the same property. af is in a
switching cycle then take;,; to be the vertex given by
Lemma 5, which is not in a switching cycle;. is fresh
otherwiser; 1 C z;,1 whencer;, is in a switching cycle
(contradiction). Ifx; is in no switching cycle then:; 1
exists sincer; is not free;z;; is fresh otherwise:; C x;,
whencer; is in a switching cycle (contradiction). O

COROLLARY 1 If Gy has a /& then it has a free %§/& .

LEMMA 8 If x 1 yo and there is a path yoy ...y, in Gy
which never enters a %5/& from above (i.€., y;_1 — y; only
if y; is not a %4/& ), then x 1 y,,.

Proof. Let X be anz-zone containingyy, and lety; be the
last vertex ornyoy: ...y, thatis inX. Thenx «— z=x y;
for somez. NowY = X U{y;, ..., y,} IS anz-zone, since
r—z=>y Y=y y; forj=i, .. n. O

Distinct 2%/&-verticesz andy or Gy areback-to-back de-
notedx —— y, if there is a switching pathz . .. z,y in
Gp such thatr «— 2z, andz, — y, and areface-to-face
denotedr —+« y, if there exists a pathzy ... z,y in Gy
such thatt — 2, andz,, < y, and none of the; are?3/&-
vertices (so in particulatz . . . z,y is a strong switching
path).

LEMMA 9 If x O z and y 1 z for distinct free %/&-
vertices x and y, then x «—— y.

Proof. Let X be anz-zone containing, so that for some’
we haver < z’ and a strong switching path= 2’ ...zin
X. Letz’ be thefirst vertex afm withy 3 2/. By Lemma 8
the predecessor’ of 2’ in zw is a®/& andz” « 2/, so
the prefixn’ of = up to 2’ is strong. Sincey O 2’ there is
a strong switching path” = y; ...y,2’ in ay-zone, with
y < y1. The concatenatiomn’y,, ...y y is a switching
path (since none of thg is in «’) witnessingr «—— y. O

A %/ &-vertexz of Gy separatedf it is not an argument
(i.e., is an outermost connective), or it is the argumeny of
and deleting the edge betweemandy disconnectsjy.

LEMMA 10 Ifa?/&-vertex x is free and does not separate,
then x —+« y and x «+— z for free y and z.
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Proof. Sincex does not separate, it is in a cyalé(say
clockwise) whose first (resp. last) edge is oriented out of
(resp. into)r. Takey to be the firs€y/& reached clockwise
alongC from x. Thenz —« y (otherwisey O z by
Lemma 8) andy is free sincey’ 1 y impliesy’ O z by
Lemma 8, contradicting the freedom :of

Let z be the first vertex reached anti-clockwise fram
that is not dominated by, and letz’ be its predecessor. By
Lemma 8,z is a®/&, andx 1 2’ — z, thereforer —— z.
If zis not free, replace it by a fré®/& dominatingz (hence
alsoz’) provided by Lemma 7, and appeal to Lemma@.

LEMMA 11 Letx be a?/& and let 2 . . . z,, be a switching
path in Gy such that zg — x and z,, — x. Then x dominates
every vertex of {zq, ..., zn}.

Proof. {zo,...,2,}is az-zone. O
SEPARATION LEMMA If Gy has a%¥/&-vertex then it has a

X1&-vertex that separates.

Proof. Had Gy no separating¥/&-vertex thenzg —«—
T —— Ty —« x3 —— ... for free?¥/&-verticesr; with
zi+1 # x; by Lemma 10 £, exists by Corollary 1). The
compositionr of the paths witnessing thes«— and «——
relations eventually intersects itself at a vertexyielding
apathr’ = zzy ...z, such thaf{z, 2, ..., 2, } is a cycle.
Since each witness is a switching patti,is a switching
path (by design, composition at eachavoids introducing
consecutive switch edges ©f). Furthermore, one of the;
must be among the;. Using Lemma 5 if{x, z9,..., 2.}
is a switching cycle, and Lemma 11 otherwise, thjsis
dominated, a contradiction (sineg is free). O

B Appendix: Proof that every cut-free proof
net is the translation of a cut-free proof

With the Separation Lemma in hand, the proof that every
cut-free proof net is the translation of a cut-free proof re-
duces to simple induction.

Let 6§ be a proof net oii’. We proceed by induction on
the sum the number 68’s and&’s of Gy.

Base case (primary induction) T is Z/&-free, hence&
comprises a single linking onT". We proceed by induction
on the number of connectives Bf

e Base case (secondary inductiori).contains no con-
nectives, sol' = P, Pt,...,P,, Pt forn > 0
and propositional variable#, ..., P,, and X links
the complementary literal occurrencBsand P;- for
i = 1,...,n. By (P2)n = 1. The axiom rule with
conclusionP;, Pt is a sequentialisation @



Induction step (primary induction)
or &. By (P2)Gy is connected.

e Induction step (secondary inductionBeing void of
%'s, G is the unigue switching ok, so by (P2)G, is
atree.

— Supposd” = A, A @ B, with @-vertexz € G,
corresponding tod & B. Sincel | \ is an additive
resolution,x is unary ingG,, i.e, there is a unique
y € G\ with y — . If this y is the left (resp.
right) argument oft, consider the left (resp. right)
@-rule p with conclusionA, A @ B and hypothesis
I = A, A (resp.A, B). The linking\ onT also
constitutes a linking\’ on I/, since no literals of
the deletedb-argument were incident with an ax-
iom link of \. The graphG,. is a tree, becausg,
is atree. Hencé’ = {)\'} is a proof net ol”. By
induction,#’ is the translation of a cut-free MALL
proof of I, which when followed by constitutes
a cut-free MALL proof ofl" whose translation ig.

— Supposd” = A, Ay ® Ay, with ®-vertexa € G,
corresponding toly® A;. Deletingz separates the
treeG, into a left treeT, and right tre€l’; whose
respective conclusions define sequeltsandA,

a partitioning of A. Consider thex-rule p with
conclusionl and hypothese&, Ap andA1, A;.
Since G, is a tree, no axiom link of\ goes be-
tween Ay, Ag and Ay, A1, hence) partitions to
form linkings A\g and A\, respectively, om\g, 4g
and A, A;. Each#; = {)\;} is a proof net on
A;, A; since eaclyj,, = T is atree. Appeal to the
induction hypothesis withy andé,, in the manner
of the® case above.

I" has at least on®

e Supposd’ = A, A% B, with ¥-vertexx € Gy corre-
sponding toA%¥ B. Consider the¥-rule p with con-
clusionT" and hypothesi$’ = A, A, B. The sequents

I" andI” have the same literal occurrences and essen-

tially the sameX; - and additive resolutions, gkconsti-
tutes a proof structur@ onI’. The switchings of the
linkings of 6" are trees, since they are obtained from
those off by deletingz. Moreover,f andf’ have the
same subsets of linkings, toggling the samé& s and

having the same switching cycles (because the vertex

2 cannot be in a switching cycle of ayC 6). There-
fore 6’ is a proof net orl”. Appeal to the induction
hypothesis witho’.

Supposd’ = A, Ap& A1, with vertexw € Gy corre-
sponding tad, & A;. Consider thekz-rule p with con-
clusionT" and left and right hypothesd = A, Ay
andI’y = A, Ay, respectively. Define the sets of link-
ingsd; onT'; to comprise those linkings @fwhich are
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onI'; C I'. Eachd; is a proof net since any switching
cycle of §; is a switching cycle ofjy. Appeal to the
induction hypothesis with eadh.

Supposgjy has no—-terminal {.e. concluding)? or
&. By the Separation Lemm@y has a%/&-vertexz
such that the deletion of the edge— y disconnects
Gy into Gy andG1.

Let Gy be the component containing, and let
'y comprise the formula-occurrences corresponding
to the —-terminal vertices ofG, (some formulas of
T" together with the subformula occurrendé: B cor-
responding tar). Definefy = {A [Ty : A € 6} on
Ty (each\ | Ty is well-defined since na € \ goes
betweenz, andGy).

Let I'; be the subsequent @f containing the for-
mulas corresponding to the-terminal vertices of;.
In Gy, y is —-initial. Form G by adding literalsP
and P+, the axiom linka = {P, P}, and edgeg «
P« a — PL. Letl; bel'; with P substituted for the
subformula occurrencd & B corresponding te, and
letI'; =T, PL. Definedy = {\|T; U{a}: \ €6}
onl'{.

Claim:z eT'[Aforall \ € 6.

Proof. If not, there isA € 6 and a&-vertexw with
zinT [ Abutnotinl' | \, for some), € 6 such
thatA = \,. Thus there is a jump — w in Gy for
someb € Gy with b € A\ A\,. Since linkings are
total on additive resolutions there exists an axiom link
¢ € Ay \ A connecting to the formula containing but
not satisfyinge — --- — x, so there is a jump — w
in Gyg. If w € Gy thenc — w is a jump fromG; to
Gy, and ifw € Gy thenb — w is a jump fromG,
to G1; either case violates the disconnectednessof
fromGy. [ ]

The claim implies that), and 6, are sets of link-
ings onl'y andl';, respectively. Moreovegy, = Gy
and Gy, = Gf. We now check thaf, and 6, are
proof nets,i.e,, satisfy (P1)-(P3). Sincé satisfies
(P1),6, (resp.f1) has at least one linking on evegy-
resolution ofly (resp.I'{"). Had#; two distinct link-
ings on the samé& -resolution, there would be a jump
from an axiom link inG; to a & in G;_;, violating
the disconnectedness G6f, from G';. Thusd; satisfies
(P1). (P2) is trivially inherited fron®. Finally, (P3)
holds since any set of linking&’ in 6, or #; corre-
sponds to a set of linking4 in 6 toggling the same
&s, such that any switching cycle af is a switching
cycle of A.

By inductiondy is the translation of a cut-free proof
II, of I'y and likewised; is the translation ofI;. Sub-
stitutingII, for the axiom rule with conclusio®, P+
in II; yields a proof whose translationfs O



In the case of MALL#MIX, the connectedness requirement

The remainder of this appendix is devoted to the proof

of (P2) does not apply. This condition is used three times that cut elimination preserves (P3).

in the above proof. To prove that a set of linkings is the
translation of a cut-free MALL#IX proof iff it is a cut-
free mix net, where aix netis a set of linkings satisfying

Fix a proof netd on a cut sequent. We localise the
notion of domination of Appendix A frorfi to any saturated
set of linkingsA C 6. Write x —, y if the edgez — y

(P1)—(P3) minus the connectedness requirement of (P2), irof Gy is in G5. A subgraphX of G, is anxz-zone under

each part of the inductive proof above, the case hais
not connected can be dealt with by partitionifignto a
number of non-empty subsequerts each harbouring a
connected component 6f. The mix netd projects to mix
netsf; onI';, which by induction are translations of cut-free
MALL+ Mix proofslI;. By themix rule these combine into
a proof that translates th

C Appendix: Proof that eliminating a cut
from a proof net yields a proof net

In this appendix we establish that cut elimination preserves

A if for all 2’ € X there existyy with z «—, y =x 2/;
given a%/&-vertexx € G, and a vertexy € Gy, define
x dominatesy in A, denotedr 1, vy, if y € X for some
x-zone X underA. Lemmas 2, 3, 4, 5, 6, 8, and 11 of
Appendix A localise frond to any saturated set of linkings
A C 0, as follows:

LOCALISED LEMMA 2 For every non-empty union S of
switching cycles in G, there is a jump a — w in G be-
tween an axiom link a € S and a &-vertex w ¢ S which is
toggled by A.

(P0)-(P3). Preservation of (P0) is trivial. Preservation of LOCALISED LEMMA 3 Localised domination  is tran-

(P1) for a literal or multiplicative cut is also trivial; for an

additive cut itis an immediate consequence of the following

lemma.

LEMMA 12 Let Ax At be an additive cut in a cut sequent
[ with A = Ag& Ay and A+ = A3 @ Af (or vice versa),
and let \, X' be linkings of a proof net on I" such that the
cut & is the only & toggled betweenT" [\ andT" | \'. Then
X and )\ take the same argument of AL, i.e., exactly one of
Ag and Af occursinbothT' [\ and T | X',

Proof. If X\ and )\’ took opposite arguments of*, an
axiom link aboveA+ would depend on the cut. The re-
sulting jump yields a switching cycle df\, A’} containing
the only& toggled by{ )\, \'}, in violation of (P3). O

Preservation of (P2) is straightforward for a literal or addi-

tive cut, since switchings correspond before and after the

elimination. Preservation of (P2) for a multiplicative cut
is a corollary of the well-definedness of cut elimination for
MLL proof nets, since the elimination of a multiplicative

cut from one of our proof nets corresponds precisely to the

parallel elimination of copies of the cut in the induced MLL
proof nets'!

1170 be self-contained, we give a direct proof. [e(resp.I’) be the
cut sequent before (resp. after) the elimination. By definition, the linkings
remain the same. We prove the following stronger result: if every switch-
ing of a linking A\ onT is a tree, then every switching afonT” is a tree.
If the eliminated cut vertex is absent from\ | I, every switching of\
onT" is a switching of\ onT', hence a tree; therefore assuais present.
Let z be the eliminated?, with argumentscg, z1, and lety be the elim-
inated®, with argumentsyo,y1. Thusz; — =z — ¢ «— y «— y; in .
Let I" be the result of deleting, c andy (and associated edges) frdm
Claim: every switchingr of A onI" is the disjoint union of three trees, one
containing ther;, one containingyo, and one containing; . Proof: leto;
be the switching of\ onT" obtained fronw by addingz; — x — c «— y
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sitive.

LOCALISEDLEMMA 4 Let C be a switching cycle in Gp
containing an axiom link with a jump to a &-vertex w ¢ C'.
Then w 5 x for all vertices x € C.

LOCALISEDLEMMA 5 If x is in a switching cycle of A
then w Jp x for some &-vertex w toggled by A that is in
no switching cycle of A.

LOCALISED LEMMA 6 Ifx O « then x is in a switching
cycle of A.

LOCALISEDLEMMA 8 If x 1 yo and there is a path
YoY1 - - - Yn in Gy which never enters a /& from above,
then x 1A Yn-

LOCALISED LEMMA 11 Let x be a /& and let zg . . . zy,
be a switching path in G such that zyg — x and z, —, .
Then x Jp z;,each0 <1 < n.

The proof of Localised Lemma 2 is a relatively straightfor-
ward adaptation of the proof of Lemma 2; we present it in
full below. The proofs of the remaining localised lemmas
are obtained by making the following substitutions in the
proofs of the originals in Appendix AA for 6, T, for O,
— for —, andzone unden\ for zone

andyg — y < y1, a priori a tree; were thg; connected by a pathin o
thenymy would be a cycle in each;; werex; andy,, connected by a path
m in o thenczx jmy,yc would be a cycle inv;; were thex; disconnected
in o then (given the disconnection of thg from they;) they would be
disconnected in each;. A switching of A onT” is a switching of\ on I
together with cutsg — ¢o < yo andz; — c¢1 < y1, and is therefore
(by the claim) a tree.



Proof of Localised Lemma 2Let A,,, be a minimal satu-
rated subset oA with G, containingS. Switchings of
singleton sets of linkings are cycle-free by (P2), &g
contains at least two linkings. Let be a& toggled by
A,, that is not in any switching cycle ol,, (existing
by (P3)), sow ¢ S. SinceA,, C A, w is certainly
toggled byA. SinceA,, is minimal, S ¢ Gy (using
(S1)), so some edge of S is in G,,, but not in Gxw .
Without loss of generalitye is an edge from an axiom
link a, because for any other edge— x in S we have
— z, =y — x in S for some axiom link
a, andy — z isin Gy Whenevera — z; is in Gaw . By
Lemma 1 the jump — wisinG, , hence alsoig,. O

a — zZ1 — ...

m?

Proof that cut elimination preserves (P3). Preservation
is immediate for the elimination of a literal cB% P, since
for every setA of linkings onT', the &-vertices toggled by
A and the switching cycles of correspond before and af-

ter the elimination. Thus consider the elimination of an ad-

ditive cut (Ap& A;) * (Ay @ A{) or a multiplicative cut
Let ¢’ on the cut sequert’ be the result of eliminating
(Ao& A1) *(Ag @ AT) or (AgDAp)*(Ag @ AT ) from the
proof netd onT'. Letx be the& or ¥ andy the ® or ®
of the cut, letxg, z1 andyg, y; be the arguments af andy
respectively, and let be the cut vertex between: andy.

Thus inI” each ofc, z andy have been deleted, and cut ver-

ticescy betweenry andy, andc; betweenr; andy; have
been added, unless one 4f, A3 or A;, A{- disappeared

in the ‘garbage collection’ phase of additive elimination, in

which case only one af; or ¢; is present.

Suppose)’ fails (P3),i.e., there exists a set of two or
more linkingsA’ C 6’ such that eveng in IV toggled by
A’ is in a switching cycle o\’ onT".

LEMMA 13 There exists a saturated set of linkings A C 6
on I" such that A on T toggles the same &’s as A’ on T”,
except perhaps x in addition (in the case of an additive cut).

Proof. Since cut elimination simply deletes linking4;
can also be viewed as a set of linkingsibpandA’ C 4.
FurthermoreA’ onT toggles exactly the samfe’s asA’ on
I/, except perhaps in addition (in the case of an additive
cut). LetA be a minimal saturated set of linkings®bn T"
containingA’. By minimality, A onT toggles the sam&’s
asA’ onT. O

LEMMA 14 The vertex y is not in a switching cycle of A.

Proof. If y is in a switching cycle, then by Localised
Lemma 5,A toggles a&-vertexw Ip y in no switch-
ing cycle of A. We havew T, x by Localised Lemma 8.
Necessarilyw # z, otherwisew ), w and by Localised
Lemma 6w is in a switching cycle ofA, a contradiction.
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By Lemma 13w is toggled byA’ onT”’, hencé? w is in a
switching cycleC of A’ onI”.

SupposeC' does not go through botly andc;. Then
C induces a switching cycle of onT, still containingw,
obtained by re-routing a possible passage thratygbr ¢,
to go throughe instead. This yields a contradiction.

Suppose” goes through both, andc;. Re-routing both
passages to go througlinstead either yields two switching
cycles throughe with w in one of them, a contradiction,
or yields a switching cycl&, throughy and a switching
pathP, = zy...z, in Gy With zp —4 2 andz, —a =,
such thatw is either inCy, or P,. The first possibility im-
mediately yields a contradiction, so assumez P,. By
Localised Lemma 11; T, w, So by transitivity (Localised
Lemma 3),w Jx w, hence by Localised Lemma @, is in
a switching cycle of\, a contradiction. O

LEMMA 15 Every &-vertex v # x toggled by A on T is in
a switching cycle of A onT.

Proof. By Lemma 13y is toggled byA’ onT”, hencé? v is

in a switching cycle” of A’ onI”. Suppos& goes through
co and/ore; . By re-routing the passage(s) throughand/or
¢1 to go throughe instead C' induces a switching cycle of
onT that containg, in contradiction with Lemma 14. Thus
C does not go throughy or ¢;. HenceC'is also a switching
cycle of A onT, containingu. O

COROLLARY 2 Ifthe cut is multiplicative, every & toggled
by A on T is in a switching cycle of A onT.

Thus if the cut is multiplicatived fails to be a proof net, a
contradiction. Henceforth we assume the cut is additive.

LEMMA 16 The &-vertex x is the unique & toggled by A
that is not in any switching cycle of A.

Proof. Sinced is a proof netA toggles a&-vertexwv in no
switching cycle ofA. By Lemma 15, necessarity= x. [J

There exist linkings\;, Ao € A’ such thatyy € A; [T but
yo € Ao [TV, for otherwiseA would not toggler. Thus there
is ajumpa —, win G, from an axiom linka abovey, to a
&-vertexu toggled byA. If v = z, we immediately obtain
a switching cyclec, ¢, v, yo,. . . ,a, z in G4, a contradiction.
Thusu # z, so by Lemma 15, is in a switching cycle of\,
and by Localised Lemma 5 and Lemma %63, u. Thus
x is in a switching cycle ofA going through, ¥, 4o, a and
u (or a shortcut thereof, if the strong switching path from
x to u intersects the path, ¢, y, yo, - - . , @), a contradiction.
Henced’ satisfies (P3).

12Recall thatA’ was chosen as a witness to the failure of (P3)dor
any & in IV toggled byA’ is in a switching cycle of\’ onT".



