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A cornerstone of the theory of proof nets for unit-free multiplica-
tive linear logic (MLL) is the abstract representation of cut-free
proofs modulo inessential commutations of rules. The only known
extension to additives, based on monomial weights, fails to pre-
serve this key feature: a host of cut-free monomial proof nets can
correspond to the same cut-free proof. Thus the problem of find-
ing a satisfactory notion of proof net for unit-free multiplicative-
additive linear logic (MALL) has remained open since the incep-
tion of linear logic in 1986. We present a new definition of MALL
proof net which remains faithful to the cornerstone of the MLL
theory.

1 Introduction

The beautiful theory of proof nets for unit-free multiplica-
tive linear logic (MLL) appeared alongside the introduction
of linear logic [Gir87]. A proof net is an abstract repre-
sentation of a proof: the translation of cut-free proofs into
proof nets identifies proofs modulo inessential commuta-
tions of rules. The identifications have since been veri-
fied as canonical from a semantic perspective, with numer-
ous full completeness results for MLL,e.g. [AJ94, HO93,
Loa94, Tan97, BS96, DHPP99]. Furthermore, the identi-
fications correspond to coherences of free star-autonomous
categories [BCST96].

The problem of finding a satisfactory extension of the
theory of proof nets to unit-free multiplicative-additive lin-
ear logic (MALL) has remained open since the inception of
linear logic [Gir87]. Progress towards a solution was made
by Girard [Gir96] with a notion of MALL proof net based
on monomial weights. Unfortunately, monomial proof nets
fail to extend the MLL theory faithfully: a single cut-free
proof may correspond to a host of monomial proof nets, and
there is no natural translation of cut-free proofs into mono-
mial proof nets. Indeed, to quote Girard, monomial proof
nets are “far from being absolutely satisfactory” [Gir96].
We illustrate the problems in detail in Section 4.1.

In this paper we propose a new notion of MALL proof
net (Section 2) which adheres faithfully to the original MLL

∗This paper appeared in Proceedings 18th Annual IEEE Symposium
on Logic in Computer Science (LICS 2003), Ottawa, Canada, June 2003,
except for the appendices, which contain the proofs omitted in the LICS
paper. A preliminary version of some of the material in this paper was
presented in a talk at the workshopLinear Logic 2002, Copenhagen.

theory: we provide a simple inductive translation of cut-free
proofs into cut-free proof nets, yielding the sought-after ab-
stract representations of cut-free proofs modulo inessential
commutations of rules. We define a cut-free proof net on a
sequentΓ as a set of linkings onΓ satisfying a geometric
correctness criterion (Definition 1), and prove that a set of
linkings is the translation of a proof if and only it is a proof
net (Theorem 1).

In Section 3 we extend our proof nets to include the cut
rule, and present a notion of cut elimination. Our approach
to cut suffers from the same problem as Girard’s monomial
proof nets: in the presence of cuts, multiple proof nets may
correspond to the same proof. However, from a semantic
point of view (viz. full completeness) the provision of ab-
stract representations of MALL proofs modulo inessential
rule commutations is crucial only in the cut-free setting.
Moreover, our notion of cut elimination is simply defined,
strongly normalising, and yields a category of proof nets in
which & and⊕ are product and coproduct.

A crisp notion of cut-free MALL proof net is fully mo-
tivated from a proof-theoretic perspective alone. However,
just as MLL has blossomed through numerous fully com-
plete semantics via cut-free MLL proof nets, hopefully the
new definition of cut-free proof net presented here will lead
to a similar blossoming of MALL. Since cut-free mono-
mial proof nets for MALL are unsatisfactory for the reasons
mentioned earlier (and detailed in Section 4.1), any MALL
full completeness result1 based on them (e.g.[AM99], and
the work in progress of Blute, Hamano and Scott on hy-
percoherence spaces) suffers accordingly, particularly with
regard to faithfulness. We anticipate that our new definition
of MALL proof net will yield cleaner and more accessible
MALL full completeness results.

Relationship with Girard’s monomial proof nets. The
technical starting point for our definition of proof net was
Girard’s definition of monomial proof net [Gir96], and in-
deed we employ variants of Girard’s ingenious notions of
slice and jump. Each of our proof nets translates natu-
rally into a non-monomial Girard proof net,i.e., a Girard

1The original motivation for this work came as part of a project by the
first author, Gordon Plotkin and Vaughan Pratt aiming to extend the full
completeness of Chu spaces for MLL [DHPP99] to MALL. We have since
discovered that the result does not extend.



proof net without the condition demanding that weights
must be monomials. Thus one of our contributions rela-
tive to [Gir96] is the successful elimination of the monomial
condition. In [Gir96] Girard remarks that he had been try-
ing to circumvent this technical limitation since 1990, and
Appendix A.1.5 of [Gir96] lists three specific problems that
must be solved in any attempt to eliminate the monomial
condition,i.e., in any attempt to define what he calls “more
liberal proof-nets”, such as ours:

Weights must be monomials. However, weights of the
form p ∪ q will naturally occur if we want to allow
more superimpositions. The present state of affairs is
as follows:

(1) in spite of years of efforts, I never succeeded in
finding the right correctness criterion for these
more liberal proof-nets;

(2) general boolean coefficients might be delicate to
represent (on the other hand, the case we con-
sider has a natural presentation in terms of co-
herent spaces);

(3) normalization in the full case might be messy.

An important stepping stone towards finding the right cri-
terion to address (1) was to first settle the open problem of
whether Girard’s criterion becomes insufficient upon relax-
ing the monomial condition. We show that this is indeed
the case: in Section 4.2 we present a non-monomial proof
structure that does not correspond to any proof, yet satisfies
Girard’s criterion. We address (2) by leaving weights im-
plied, defining a proof net on a sequentΓ as a set of axiom
linkings on an extensionΓ+ of Γ with complementary pairs
of cut formula occurrences. Point (3) is addressed by the
fact that our definition of cut elimination is sufficiently sim-
ple that confluence and strong normalisation are immediate.

The proof that our correctness criterion captures proof
translations hinges on an ordering of&’s and

&

’s which
we call domination. By introducing domination we avoid
the use of empires [Gir87, Gir96], thereby sidestepping the
problem of stability of maximal empires ([Gir96], section
1.5.3)—the main technical problem that led Girard to resort
to monomials in the first place.

MALL. By MALL we mean multiplicative-additive lin-
ear logic without units [Gir87]. Formulas are built from lit-
erals (propositional variablesP,Q, . . . and their negations
P⊥, Q⊥, . . .) by the binary connectivestensor⊗, par

&

,
with & andplus⊕. Negation(−)⊥ extends to arbitrary for-
mulas by de Morgan duality. For technical convenience we
take sequents to be unordered,i.e., a sequent is a non-empty
set of formula occurrencesA1, . . . , An. We omit turnstiles,
which are redundant since all sequents are right-sided. Se-
quents are proved using the following rules:

ax

P, P⊥

ax

P, P⊥

⊗

P⊗P, P⊥, P⊥

ax
P, P⊥

⊕1

P, P⊥⊕Q
ax

P, P⊥

⊗
P⊗P, P⊥, P⊥⊕Q

&

P⊗P, P⊥, P⊥&(P⊥⊕Q)

&

(P⊗P )

&

P⊥, P⊥&(P⊥⊕Q)

Figure 1. Example of the inductive translation
of a cut-free proof into a cut-free proof net.

P, P⊥ ax
Γ, A A⊥, ∆

Γ, ∆
cut

Γ, A B, ∆

Γ, A⊗B, ∆
⊗ Γ, A, B

Γ, A

&

B

&

Γ, A Γ, B

Γ, A&B
&

Γ, A

Γ, A⊕B
⊕1

Γ, B

Γ, A⊕B
⊕2

Here, and throughout this document,P,Q, . . . range
over propositional variables,A,B, . . . over formulas, and
Γ,∆, . . . over sets of formula occurrences. In eliminating
the permutation rule, we assume an implicit tracking of for-
mula occurrences above the line of a rule to formula oc-
currences below the line. Without loss of generality (see
[Gir87]) we restrict the axiom rule to literals.

Flavour of our approach. To give a flavour of our ap-
proach, Figure 1 shows an example of the inductive transla-
tion of a cut-free proof into one of our proof nets. The con-
cluding proof net consists of two linkings, one drawn above
the sequent, the other below. Each contains two axiom
links. The proof nets further up in the derivation have one
or two linkings, correspondingly above and/or below the se-
quent. Had we switched the order of the right-hand tensor
rule and the plus rule, we would have obtained exactly the
same pair of linkings; thus we identify cut-free proofs mod-
ulo a commutation of rules. Two additional translations are
shown in Figure 2.

Here is an example of a proof net with four linkings:

P &P, Q&Q, (Q⊥⊗P⊥)⊗((R

&

R)

&

(R⊥⊗R⊥))

P &P, Q&Q, (Q⊥⊗P⊥)⊗((R

&

R)

&

(R⊥⊗R⊥))

P &P, Q&Q, (Q⊥⊗P⊥)⊗((R

&

R)

&

(R⊥⊗R⊥))

P &P, Q&Q, (Q⊥⊗P⊥)⊗((R

&

R)

&

(R⊥⊗R⊥))
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ax

P⊥, P
⊕1

P⊥, P⊕P

ax

P⊥, P

ax

Q, Q⊥

&

Q

&

Q⊥

⊕1

(Q

&

Q⊥)⊕(R

&

R⊥)
⊗

P⊥, P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

ax
P⊥, P

ax
R, R⊥

&

R

&

R⊥

⊕2

(Q

&

Q⊥)⊕(R

&

R⊥)

⊗
P⊥, P⊗

`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

&

P⊥& P⊥, P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

Figure 2. Deriving the proof nets used in the example of cut elimination.

(To aid presentation, we duplicated the underlying sequent.)
Our proof nets can be encoded compactly as collections of
axiom links labelled with predicates (‘weights’). For exam-
ple, the four-linking proof net above can be represented as
follows:

P &p P Q &q Q (Q⊥ ⊗ P⊥) ⊗
`
(R

&

R)

&

(R⊥ ⊗R⊥)
´

p

q p ∧ q

p ∧ q

p

q p ∨ q

p ∨ q

To distinguish the&’s, we have subscripted them. Every&-
assignment (assignment of ‘left’ or ‘right’ to each of&p and
&q) determines a linking as follows: delete each axiom link
whose predicate does not hold, where we readp (resp.p) as
“ &p is assigned ‘left’ (resp. ‘right’)” (andq analogously).
The reader can check that taking each of the four possible
&-assignments in turn produces the four original linkings.

We sketch the idea behind our approach to cut elimina-
tion with an example. Consider the proof nets derived in
Figure 2. Viewing MALL formulas as objects2, and a proof
net onA⊥, B as a morphismA → B, the left proof net is
a morphismP → P ⊕P and the right proof net is a mor-
phismP⊕P → P⊗

(
(Q

&

Q⊥)⊕(R

&

R⊥)
)
. Composition,

yielding a morphismP → P ⊗
(
(Q

&

Q⊥)⊕ (R

&

R⊥)
)
, in

other words, a proof net on the sequentP⊥, P⊗
(
(Q

&

Q⊥)⊕
(R

&

R⊥)
)
, proceeds as follows. First, we concatenate the

two sequents into a combined sequent of four formulas
(omitting commas):

P⊥ [P⊕P ] · · · [P⊥&P⊥] P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

The cut formulas are annotated with square brackets, and
the dotted line represents the cut. Next, we merge the two
original proof nets into a proof net on the combined sequent:

P⊥ [P⊕P ] · · · [P⊥&P⊥] P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

2The example should be accessible to readers with no knowledge of
category theory: focus on the underlying cut elimination.

This new proof net has two linkings, one drawn above the
sequent and one drawn below.3 Each linking consists of
three axiom links. Cut elimination proceeds as follows:

P⊥ [P⊕P ] · · · [P⊥&P⊥] P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

↓

P⊥ [P ] · · · · · · · [P⊥] P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

↓

P⊥ P⊗
`
(Q

&

Q⊥)⊕(R

&

R⊥)
´

The first step, aside from eliminating the⊕ and& to leave
a cut pair of literals[P ] · · · [P⊥], retains only one of the
two original linkings. The underhanging linking is deleted
because it is ‘inconsistent’: it chooses opposite arguments
for the cut⊕ and & (left and right, respectively). This is
an instance of our general rule for additive elimination:re-
tain precisely the consistent linkings, those which choose
the same argument for the cut⊕ and & (in the example
above, the upper linking, which chooses left for both). The
second step is the usual MLL elimination of a cut pair of lit-
erals, which we include in order to frame the example in a
familiar context. Note that the end result really is a cut-free
proof net,i.e., the translation of a cut-free proof: its witness
is a subproof of the right-hand proof of Figure 2 (the left
branch of the final&-rule).

2 Cut-free MALL proof nets

In this section we introduce our definition of cut-free MALL
proof net. As anaide ḿemoirewe provide a summary of the
definition in the box ahead. We treat cut in Section 3.

An additive resolutionof a MALL sequentΓ is any re-
sult of deleting one argument subtree of every additive con-
nective (& or ⊕) of Γ. Thus every remaining& and⊕ is

3The link of the original proof net onP⊥, P⊕P appears in both the
upper linking and the lower linking of the new proof net; it is duplicated
in the merging process, to match the fact that the other proof net had two
linkings.
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{
{{P, P⊥}}

}
B P, P⊥ ax

θ B Γ, A θ′ B B,∆
{λ ∪ λ′ : λ ∈ θ, λ′ ∈ θ′} B Γ, A⊗B,∆

⊗

θ B Γ, A, B

θ B Γ, A

&

B

& θ B Γ, A θ′ B Γ, B

θ ∪ θ′ B Γ, A&B
&

θ B Γ, A

θ B Γ, A⊕B
⊕1

θ B Γ, B

θ B Γ, A⊕B
⊕2

Figure 3. The inductive translation of cut-free
MALL proofs into sets of linkings.

unary. For example, two of 12 possible additive resolutions
of the sequent

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥

are

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@ ��@@ ��@@ ��@@

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@��@@��@@ ��@@ ��@@

Let Γ∗ be an additive resolution ofΓ. An axiom link on
Γ∗ is a pair of complementary literal occurrences ofΓ∗. A
linking on Γ∗ is a partitioning of the set of literal occur-
rences ofΓ∗ into axiom links,i.e., a set of disjoint axiom
links whose union contains every literal occurrence ofΓ∗.
For example, there are two linkings possible on the first of
the two additive resolutions depicted above:

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@ ��@@ ��@@ ��@@

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@ ��@@ ��@@ ��@@

Every additive resolutionΓ∗ of Γ induces an MLL se-
quent, namely by collapsing its additive connectives, which
are unary inΓ∗. A linking λ on Γ∗, viewed as being on
the induced MLL sequent, is exactly an MLL proof struc-
ture in the standard sense [Gir87], which we call theMLL
proof structure induced byλ. For example, the MLL proof
structure induced by the first of the two linkings above is:

P⊥, P ⊗R, (R⊥⊗R)

&

R⊥

A linking on a MALL sequentΓ is a linking on an addi-
tive resolution ofΓ. Write Γ � λ for the additive resolution
associated with a linkingλ. Every cut-free MALL proof
of Γ defines a set of linkings onΓ by a simple induction,
as in Figure 3, whereθ B Γ is the judgement “θ is a set
of linkings onΓ”. (We use the implicit tracking of literal
occurrences downwards through rules.) The base caseax

is a singleton set of linkings whose only linking comprises
a single axiom link, betweenP andP⊥. Examples of the
inductive translation of cut-free proofs into sets of linkings

were presented in Figures 1 and 2. Note that if a cut-free
proofΠ′ can be obtained fromΠ by a series of rule commu-
tations, thenΠ andΠ′ translate to the same set of linkings.

Geometric characterisation of proof translations. We
present a geometric characterisation of those sets of linkings
that arise as the translations of cut-free MALL proofs, and
call themproof nets. Analogous to [Gir96], as a stepping
stone to the definition of a proof net, we introduce the less
restrictive notion of aproof structure.

A &-resolutionΓ? of a sequentΓ is any result of delet-
ing one argument subtree of every& of Γ. A linking λ on
Γ is on Γ? if every literal occurrence ofλ is in Γ?. A set of
linkingsθ onΓ is aproof structureonΓ if it satisfies

(P1) For every &-resolution Γ? of Γ, exactly one linking
of θ is on Γ?.4

We invite the reader to verify (P1) for the sets of linkings
in Figures 1 and 2. Any proof structure can be represented
compactly as a set of axiom links labelled with predicates
(‘weights’), using the encoding described on the third page
of the Introduction. In Section 4 we relate our proof struc-
tures to those of Girard.

The second requirement for a set of linkingsθ to be a
proof net is “pointwise MLL correctness”:

(P2) Every linking of θ induces an MLL proof net.

In other words, for each linkingλ ∈ θ, the MLL proof struc-
ture induced byλ is an MLL proof net, in the usual sense
[Gir87, DR89]. To be self-contained, we characterise (P2)
explicitly below.

Henceforth view a sequentΓ as a graph: a disjoint union
of parse trees, with literals above. For a linkingλ on Γ ob-
tain thegraphGλ of λ from the additive resolutionΓ �λ (a
subgraph ofΓ) by adding each axiom linka of λ as a vertex
aboveΓ � λ, with edges froma down to its two literal oc-
currences. Aswitchingof a linkingλ onΓ is any subgraph
of Gλ obtained by deleting one of the two argument edges
of each

&

-vertex. (P2) holds if and only if every switching
of every linking ofθ is a tree (acyclic and connected).

We require some auxiliary concepts to state our third and
last requirement for a set of linkings to be a proof net. A
set of linkingsΛ togglesa &-occurrencew of Γ if both
arguments ofw are present in

⋃
λ∈Λ Γ � λ. An axiom link

a depends onw within Λ if, within Λ, a can be made to
vanish by togglingw alone: there areλ, λ′ ∈ Λ such that
a∈λ, a 6∈λ′, andw is the only& toggled by{λ, λ′}.

4Therefore, a proof structure onΓ is a maximal clique in the coher-
ence space of linkings onΓ with incoherenceλ ^

_λ′ iff there exists a&-
resolutionΓ? of Γ such that bothλ andλ′ are onΓ?.
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Definition of cut-free MALL proof net aide ḿemoire

Additive resolutionof Γ: any result of deleting one argument subtree of every& or⊕ of Γ. (&-resolutionanalogously.)
Axiom link: pair of complementary literal occurrences.
Linking λ onΓ: partitioning of the set of literal occurrences in an additive resolutionΓ�λ of Γ into axiom links.

GraphGλ: Γ�λ + λ + edges from each axiom link inλ to its two literal occurrences inΓ�λ.
Switchingof a linkingλ: any subgraph ofGλ obtained by deleting one of the two argument edges of each

&

-vertex.

A set of linkingsΛ togglesa &-occurrencew of Γ if both arguments ofw are present in
⋃

λ∈Λ Γ�λ.
An axiom linka depends onw within Λ if ∃λ, λ′ ∈ Λ such thata ∈ λ, a 6∈ λ′, andw is the only& toggled by{λ, λ′}.
GraphGΛ:

⋃
λ∈Λ Gλ + jump edges between each axiom link inΛ and any& on which it depends withinΛ.

Switch edgeof a &- or

&

-vertexx in GΛ: any argument or jump edge ofx.
Switching cycleof Λ: a (non self-intersecting) cycle inGΛ containing at most one switch edge of each& and

&

.

A set of linkingsθ is aproof net if it satisfies
(P1) For every&-resolutionΓ? of Γ, exactly one linking ofθ is onΓ?.
(P2) Every switching of every linking ofθ is a tree (acyclic and connected).
(P3) Every setΛ of two or more linkings ofθ toggles a& that is not in any switching cycle ofΛ.6

EXAMPLE 1 Consider the two linkings

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
λ1 :

λ2 :

Here areλ1 andλ2 on their respective additive resolutions:

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@ ��@@ ��@@ ��@@

λ1 :

P⊥⊕(Q⊕P⊥), (P &P )⊗(R⊕R), (R⊥⊗R)

&

R⊥
��@@��@@��@@ ��@@ ��@@λ2 :

Let w be the& of the sequent, and letΛ = {λ1, λ2}. The
axiom link between the left-mostR⊥ and the left-mostR
depends onw within Λ: it is present inλ1 ∈ Λ but not in
λ2∈Λ, andw is the only& toggled by{λ1, λ2}. The axiom
link between the right-mostR andR⊥ does not depend on
w within Λ, since it is present in bothλ1 andλ2. It is the
only one of the 5 axiom links inΛ (more precisely, in

⋃
Λ)

that does not depend onw within Λ.

We now extend the definition of the graph of a linking to
the graph of a set of linkings. Given a setΛ of linkings on
Γ, obtain thegraphGΛ of Λ from

⋃
λ∈Λ Gλ by adding, for

every&-vertexw and every axiom linka depending onw
within Λ, an edge betweenw anda. Each edge of the latter
form, between a&-vertexw and an axiom link, is called a
jump of w. Figure 4 showsG{λ1,λ2} for λ1 andλ2 of Ex-
ample 1, with four jumps (the curved edges). In drawing
an axiom linku, we view the horizontal section as a ver-
tex, and the two verticals as edges. We overlap edges from
axiom links coming down into the same literal occurrence
(i.e., means ). There is no jump to the right-most ax-
iom link, since it does not depend on the& within {λ1, λ2}.
Note that ifΛ ⊆ Λ′, thenGΛ is a subgraph ofGΛ′ , and that
for any linkingλ, G{λ} is preciselyGλ defined on the previ-
ous page. (G{λ} has no jumps, since no& is toggled.)

P⊥

⊕

⊕

P⊥

&

P P

⊗

R

⊕

R R⊥

⊗

R

&

R⊥

A
A

A

��

� S �

b
bb

�
�

S � S �

SS �
�
�

Figure 4. The graph G{λ1,λ2} of Example 1.

A switch edgeof a &- or

&

-vertexx of GΛ is an edge
betweenx and one of its arguments, or a jump ofx (if x is
a &). A switching cycleof a set of linkingsΛ is a cycle in
GΛ containing at most one switch edge of each& and

&

.
(We do not permit a cycle to intersect itself.) For example,
in G{λ1,λ2} of Figure 4, the cycle “& →⊗→⊕→ left-
R → left-{R,R⊥} jump−→ &” contains only one switch edge
of the &, and is therefore a switching cycle of{λ1, λ2} of
Example 1.

DEFINITION 1 A set θ of linkings on a MALL sequent Γ is
a cut-free proof netif it satisfies (P1), (P2)5 and:

(P3) Every set Λ of two or more linkings of θ toggles a &
that is not in any switching cycle of Λ.6

EXAMPLE 2 The set of linkings{λ1, λ2} of Example 1 is
not a proof net. It fails (P3) sinceG{λ1,λ2} (Figure 4) con-
tains a switching cycle through the&.

5By dropping connectedness from (P2) we obtain a cut-free proof net
for MALL with the MIX rule (hypothesesΓ and∆, conclusionΓ, ∆).

6In fact, one need only verify (P3) for thoseΛ which aresaturated,
namely, such that any strictly larger subset ofθ toggles more&’s thanΛ.
Note that there is exactly one saturated set of linkings inθ for eachpartial
&-resolution of Γ, the latter being any result of deleting one argument
subtree of some of the&’s of Γ.
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{
{{P, P⊥}}

}
B [ ] P, P⊥ ax

θ B [Ω] Γ, A θ′ B [Ω′] A⊥,∆
{λ ∪ λ′ : λ ∈ θ, λ′ ∈ θ′} B [Ω,Ω′, A∗A⊥] Γ,∆

cut

θ B [Σ,Ω] Γ, A θ′ B [Σ,Ω′] Γ, B

θ ∪ θ′ B [Σ,Ω,Ω′] Γ, A&B
&

θ B [Ω] Γ, A θ′ B [Ω′] B,∆
{λ ∪ λ′ : λ ∈ θ, λ′ ∈ θ′} B [Ω,Ω′] Γ, A⊗B,∆

⊗

θ B [Ω] Γ, A

θ B [Ω] Γ, A⊕B
⊕1

θ B [Ω] Γ, B

θ B [Ω] Γ, A⊕B
⊕2

θ B [Ω] Γ, A, B

θ B [Ω] Γ, A

&

B

&

Figure 5. Rules for deriving sequentialisable sets of linkings on MALL cut sequents.

EXAMPLE 3 Consider the pair of linkings on the sequent
Γ ≡ P⊥&P⊥, P⊕P obtained as follows:

ax

P⊥, P
⊕2

P⊥, P⊕P

ax
P⊥, P

⊕1

P⊥, P⊕P

&

P⊥&P⊥, P⊕P

Let λ1 andλ2 be the upper- and lower linking respectively
(each having just one axiom link). We shall verify that
{λ1, λ2} is a cut-free proof net.Γ has two&-resolutions,
Γ∗1 ≡ P⊥&P⊥, P⊕P��@@ andΓ∗2 ≡ P⊥&P⊥, P⊕P��@@ . (P1)
holds, since{λ1, λ2} contains exactly one linking onΓ?

i ,
namelyλi. Here are the graphsGλ1 , Gλ2 , andG{λ1,λ2}:

Gλ1
P⊥

& ⊕

P

SS ��

Gλ2
P⊥

&

P

⊕
�� SS

G{λ1,λ2}
P⊥ P⊥

&

P

⊕

P

SS �� SS ��

Eachλi has just one switching, namelyGλi . Since each
Gλi

is a tree, (P2) holds. Finally, (P3) holds since{λ1, λ2}
toggles the&, and the& is not in any switching cycle of
{λ1, λ2}.

THEOREM 1 A set of linkings is the translation of a cut-
free proof iff it is a cut-free proof net.

By a simple induction, the translation of a cut-free proof is
a cut-free proof net. The proof of the converse reduces to a
simple induction on the number of

&

’s and&’s, spelled out
in Appendix B, once we prove theSeparation Lemma: for

any cut-free proof netθ, if Gθ has a

&

or &, then it has a&

or & that separates.Here a

&

- or &-vertexx separates
if it is not an argument (i.e., is an outermost connective),
or it is the argument ofy and deleting the edge betweenx
andy disconnectsGθ. We prove the Separation Lemma via
an ordering on&’s and

&

’s which we calldomination7, a
concept reminiscent of the ordering induced by the notion
of an empireof [Gir96], but different in an essential way.
The details are in Appendix A. The proof in the case of
MIX (see footnote 5) requires only minor changes.

3 Cut

A cut is a pair{A,A⊥} of complementary MALL formulas.
We writeA ∗A⊥ for {A,A⊥}, and treatA ∗A⊥ akin to a
MALL formula, referring to∗ as thecut connective. (In
the cut elimination example in the Introduction we drew a
cut A∗A⊥ informally as[A] · · · [A⊥].) A cut sequentis a
non-empty set of occurrences of MALL formulas and cuts.
A cut-additive resolutionof a cut sequent∆ is any result
of deleting some cuts from∆ and one argument subtree of
every remaining additive connective (& or⊕). Thus every
remaining& and⊕ is unary. For example, here is a cut
sequent followed by one of its cut-additive resolutions:

P⊗P, Q∗Q⊥, P⊥⊕Q, (R⊕S)∗(R⊥&S⊥)

��@@��@@��@@ ��@@ ��@@ ��@@P⊗P, Q∗Q⊥, P⊥⊕Q, (R⊕S)∗(R⊥&S⊥)

An axiom link on a cut-additive resolution∆∗ of a cut se-
quent∆ is a pair of complementary literal occurrences of
∆∗. A linking on ∆∗ is a partitioning of the literal occur-
rences of∆∗ into axiom links,i.e., a set of disjoint axiom
links on∆∗ whose union contains every literal occurrence
of ∆∗. A linking on ∆ is a linking on a cut-additive reso-
lution of ∆. We write∆ � λ for the cut-additive resolution
associated with a linkingλ.

Write [Ω] Γ for the cut sequent obtained by taking the
disjoint union of a setΩ of cut occurrences and a MALL
sequentΓ. A set of linkings on[Ω] Γ is sequentialisable
if it can be derived from the rules in Figure 5, in which
θ B [Ω] Γ is the judgement “θ is a sequentialisable set of
linkings on the cut sequent[Ω] Γ”. (We once again use the

7Unrelated to domination in flowgraphs.
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ax

P, P⊥

ax

P, P⊥

cut

P, P⊥∗P, P⊥

ax
P, P⊥

ax
P, P⊥

cut
P, P⊥∗P, P⊥

&

P, P⊥∗P, P⊥∗P, P⊥&P⊥

ax

P, P⊥

ax

P, P⊥

cut

P, P⊥∗P, P⊥

ax
P, P⊥

ax
P, P⊥

cut
P, P⊥∗P, P⊥

&

P, P⊥∗P, P⊥&P⊥

Figure 6. Examples of the translation of a
proof with cuts.

implicit tracking of literal occurrences downwards through
rules.) The base caseax is a single linking with a single ax-
iom link and no cuts. Figure 6 shows two examples. Each
of the conclusions is a set of two linkings, one drawn above
the cut sequent and one drawn below. The only difference
between the derivations is the final&-rule. The left applica-
tion keeps the cuts in the hypotheses separate (an instance
of the &-rule takingΣ empty andΩ = Ω′ = P⊥ ∗ P ),
whereas the right application superimposes the two cuts
(Σ = P⊥ ∗ P andΩ, Ω′ empty).

Any derivation of a set of linkings using the rules of Fig-
ure 5 projects in an obvious way to a MALL proof, namely,
by restricting to the underlying sequents (viz., readΓ for
θ B [Ω] Γ). For example, the two derivations of Figure 6
each yield the same MALL proof ofP, P⊥&P⊥.

Write Π  θ if Π is the MALL proof obtained from a
derivation of a set of linkingsθ, and say thatΠ is asequen-
tialisation of θ. If a MALL proof Π′ can be obtained from
Π by a series of rule commutations in which no&-rules are
moved upwards, thenΠ andΠ′ are sequentialisations of the
same set of linkings. In the cut-free case, is a function
from proofs to sets of linkings, exactly the translation de-
fined in Figure 3. In the presence of cuts, more than one set
of linkings may correspond to the same proof. For example,
since the two derivations in Figure 6 have the same under-
lying MALL proof (say Π), the concluding sets of linkings
(sayθ andθ′) have a common sequentialisation:Π  θ,
Π θ′, andθ 6= θ′.

We can of course extend the cut-free translation of proofs
by always choosingΣ to be empty in the&-rule (i.e., “never
superimpose cuts”). However, our notion of proof net de-
fined below, which characterises sequentialisability, does
not characterise the image of this translation, since there
would exist sequentialisable sets of linkings that are not

proof translations, such as

P⊕P, P⊥∗P, P⊥&P⊥

Moreover, under this convention two proofs that differ only
in a commutation ofcut and&-rules would be translated to
different sets of linkings.

Note that the alternative of takingΣ maximal (i.e., “su-
perimpose as many cuts as possible”) does not define a
canonical function from proofs to sets of linkings, since
there may be a choice of how to make the identifications.
The following two&-rules illustrate such a choice.

P, P⊥∗P, P⊥∗P, P⊥ P, P⊥∗P, P⊥∗P, P⊥

&

P, P⊥∗P, P⊥∗P, P⊥&P⊥

P, P⊥∗P, P⊥∗P, P⊥ P, P⊥∗P, P⊥∗P, P⊥

&

P, P⊥∗P, P⊥∗P, P⊥&P⊥

Girard was aware of this issue in the context of monomial
proof nets; see Appendix A.1.6 of [Gir96].

Geometric characterisation of sequentialisability. In
the presence of cut, we update all the auxiliary definitions
of Section 2 (&-resolution,GΛ, switching cycle,etc.) by
substituting “cut sequent” for “sequent” and “cut-additive
resolution” for “additive resolution” throughout.

DEFINITION 2 A set θ of linkings on a cut sequent ∆ is a
proof netif:

(P0) At least one literal occurrence of every cut is in θ (i.e.,
in some axiom link of some linking of θ).

(P1) For every &-resolution ∆? of ∆, exactly one linking
of θ is on ∆?.

(P2) Every switching of every linking of θ is a tree (acyclic
and connected 8).

(P3) Every set Λ of two or more linkings of θ toggles a &
that is not in any switching cycle of Λ.

θ is a proof structureif it satisfies (P0) and (P1).

Note that (P1)–(P3) are inherited from the cut-free case.

THEOREM 2 (SEQUENTIALISATION) A set of linkings is
sequentialisable iff it is a proof net.

The proof is essentially the same as the proof of Theorem 1;
the cut connective∗ is akin to an outermost⊗.

8By dropping connectedness, we obtain a proof net for MALL aug-
mented by theMIX rule.
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P &P, Q&Q, (Q⊥⊗P⊥)⊗A

P, Q&Q, (Q⊥⊗P⊥)⊗A P, Q&Q, (Q⊥⊗P⊥)⊗A

P, Q, (Q⊥⊗P⊥)⊗A P, Q, (Q⊥⊗P⊥)⊗A P, Q, (Q⊥⊗P⊥)⊗A P, Q, (Q⊥⊗P⊥)⊗A

P, Q, Q⊥⊗P⊥ P, Q, Q⊥⊗P⊥A A P, Q, Q⊥⊗P⊥ P, Q, Q⊥⊗P⊥A A

.

.

.

tw
.
.
.

tw
.
.
.

tw
.
.
.

id

p

qq

tttt

Figure 7. The proof Πtqp. (We omit the unique cut-free proof ofP,Q,Q⊥ ⊗ P⊥.)

Cut elimination. Let θ be a set of linkings on the cut se-
quent∆, and letA∗A⊥ be a cut of∆. Define theelimina-
tion of A∗A⊥ as follows.

• If A is a literal, deleteA ∗A⊥ from ∆, and replace
any pair of axiom links{l, A}, {A⊥, l′} in a linking
of θ (l and l′ being other occurrences ofA⊥ and A
respectively) with the axiom link{l, l′}.
• If A = A1 ⊗ A2 andA⊥ = A⊥

1

&

A⊥
2 (or vice versa),

replaceA ∗A⊥ with two cutsA1 ∗A⊥
1 andA2 ∗A⊥

2 .
Retain all the original linkings.

• If A = A1&A2 andA⊥ = A⊥
1 ⊕ A⊥

2 (or vice versa)
replaceA ∗A⊥ with two cutsA1 ∗A⊥

1 andA2 ∗A⊥
2 .

Retain precisely the ‘consistent’ linkings: delete any
linkingsλ such that in∆�λ the (now unary)& and⊕
take opposite arguments (i.e., such that the right argu-
ment of the& is in ∆ �λ and the left argument of the
⊕ is in ∆ �λ, or vice versa). Finally, ‘garbage collect’
by deletingAi∗A⊥

i if no literal occurrence ofAi∗A⊥
i

is in any of the remaining linkings.

An example of cut elimination was presented in the Intro-
duction.

PROPOSITION1 Eliminating a cut from a proof net yields
a proof net.

Proposition 1 is proved in Appendix C.

THEOREM 3 Cut elimination of proof nets is strongly nor-
malising.

Proof. Confluence is immediate from the definition; cut
elimination reduces the size of the cut sequent, and is there-
fore strongly normalising. �

A category of proof nets. Our cut elimination allows
us to define a category of MALL proof nets. Objects
are MALL formulas, and a morphismA → B is a cut-
free proof net on the sequentA⊥, B. The composition of
θ : A → B andθ′ : B → C is the normal form of the
proof net{λ ∪ λ′ : λ ∈ θ, λ′ ∈ θ′} on A⊥, B ∗B⊥, C.
Composition is associative, since cut elimination is strongly
normalising. The identityA → A contains a linkingλ on
A⊥, A iff λ matches theith literal of A⊥ with the ith literal

of A. This category has the structure of a star-autonomous
category minus the units;& is product, and⊕ is coproduct.

4 Girard’s monomial proof nets

In this section we relate our MALL proof nets to the mono-
mial proof nets of Girard [Gir96].

4.1 Monomial proof nets are unsatisfactory

We give a detailed account of how monomial proof nets
[Gir96] fail to provide abstract representations of cut-free
MALL proofs modulo inessential commutations of rules. A
single cut-free proof may correspond to a host of monomial
proof nets, and there is no natural translation of cut-free
MALL proofs into monomial proof nets. (The reader un-
familiar with monomial proof nets should be able to follow
the general shape of the argument.)

Consider the following pair of cut-free monomial proof
nets:

P &P P⊥ ⊗Q⊥

&p ⊗

P P P⊥ Q⊥ Q Q

JJ 

 JJ 

 JJ 



p

Q&Q

p
q

q

&q

P &P P⊥ ⊗Q⊥

&p ⊗

P P P⊥ Q⊥ Q Q

JJ 

 JJ 

 JJ 



p

&q1

Q&Q
ZZ ��

&q2

Q Q

JJ 



pq1 pq1

pq1

pq2

p q2

pq1

(Eigenvariables associated with&’s are shown as sub-
scripts; we omit implied weights.) These two monomial
proof nets correspond to the same proof. The second mono-
mial proof net has two forms of redundancy relative to the
first: (i) the& with eigenweightq has been replaced by two
similar ‘copies’, and (ii) the axiom link of weightp has been
split into two.

Even if one attempts to fix a choice of representation
(e.g.favouring the first monomial proof net above over the
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Q1

JJ &



Q⊥
1

Q
Q

⊕�
�

R1

JJ &



R⊥
1

aaaaa

⊗
�

��

P1

A
A

&p1

�
�

P1

p1

p1

p2 ∧ p3 ∧ p4 p2 ∨ p3 ∨ p4

Q4

JJ &



Q⊥
4

Q
Q

⊕�
�

R4

JJ &



R⊥
4

aaaaa

⊗
�

��

P4

A
A

&p4

�
�

P4

p4

p4

p1 ∧ p2 ∧ p3 p1 ∨ p2 ∨ p3

Q2



&JJ

Q⊥
2

�
�

⊕Q
Q

R2



&JJ

R⊥
2

!!!!!

⊗
@

@@

P2

�
�

&p2

A
A

P2

p2

p2

p1 ∧ p3 ∧ p4p1 ∨ p3 ∨ p4

Q3



&JJ

Q⊥
3

�
�

⊕Q
Q

R3



&JJ

R⊥
3

!!!!!

⊗
@

@@

P3

�
�

&p3

A
A

P3

p3

p3

p1 ∧ p2 ∧ p4p1 ∨ p2 ∨ p4

P⊥
3




⊗

JJ

P⊥
2

�
�

⊗Q
Q

P⊥
1




⊗

JJ

P⊥
4

Figure 8. Girard’s correctness criterion is insufficient without monomials: this (abbreviated) non-
monomial Girard proof net is not sequentialisable.

second), one still runs into difficulty. As a concrete illus-
tration, we exhibit cut-free proofsΠα and monomial proof
netsθβ for which the binary relation of sequentialisation is

Πptq

@@

θq,pq

��!!!!!
Πtpq

@@

θp q,pq,pq

��

Πtqp

@@aaaaa

θp,pq

��

Πqtp

DefineΠtqp to be the proof shown in Figure 7, whereA =
(R

&

R)

&

(R⊥⊗R⊥), id denotes the identity proof andtw
denotes the twist proof. LetΠtpq be the result of commuting
rulesq andp in Πtqp, let Πqtp be the result of commuting
t andq in the right half ofΠtqp, and letΠptq be the result
of commutingt andp in the right half ofΠtpq. Define the
monomial proof netsθβ as follows. To specifyθβ it suffices
to present a configuration of weighted axiom links. OnP
andQ literals, fix the configuration as below-left:

P & P Q& Q Q⊥⊗ P⊥

&p &q ⊗

P P Q Q Q⊥ P⊥

JJ 

 JJ 

 JJ 



p
p

q
q

R R R⊥ R⊥

w
w(idw)

R R R⊥ R⊥

w
w

(tww)

We have taken as eigenweights the labels of the&-rules of
theΠα. The configuration of axiom links onA will be a dis-
joint union of axiom links in the identity and twist config-
urations:idw andtww (above-right) denote a pair of axiom
links of weightw in the identity and twist configurations,
respectively. We specify theθβ by the following disjoint

unions of weighted identity and twist configurations onA:

θp,pq: idpq t twp t twpq

θq,pq: idpq t twq t twpq

θp q,pq,pq: idpq t twp q t twpq t twpq

(By redundancies of type (i) and (ii) illustrated earlier, there
are of course a host of other monomial proof netsθβ which
are parodies of the three above.) Since theΠα are equivalent
modulo inessential rule commutations, any satisfactory the-
ory of proof nets should provide a canonical representation
uniting all of them. With monomial proof nets one would
have to close under the sequentialisation relation between
proofs and monomial proof nets depicted earlier, thereby
creating a matching between the set of proofsΠα and the
set of monomial proof netsθβ , and then artificially choose
a representative from amongst theθβ .

By contrast, in our setting we associate the same proof
net with eachΠα: the four-linking proof net on the second
page of the Introduction. Thus we preserve the spirit of
MLL proof nets by providing an abstract representation of
all of theΠα in one.

4.2 Girard’s criterion is insufficient without monomials

A key stepping stone towards our formulation of a new def-
inition of proof net was to first settle the open problem of
whether Girard’s proof net correctness criterion [Gir96] be-
comes insufficient upon relaxing the dependency condition,
which is the requirement that every weight be a monomial.
The answer is yes: in Figure 8 we present a cut-free non-
monomial Girard proof netθ which is not sequentialisable.
By non-monomial Girard proof netwe mean a proof net
as in [Gir96] but for the omission of the dependency con-
dition. Strictly speakingθ is merely an abbreviation of a

9



non-monomial Girard proof net: view eachpi as an eigen-
variable and split each⊕ into a separate⊕1 and⊕2; formu-
las and remaining weights are implied.

Figure 8 also encodes one of our proof structuresθ, via
the notion of weight described on the third page of the In-
troduction. It is not a proof net, since (P3) fails:Gθ contains
a switching cycle passing through all four&’s (follow the
four jumps&pi

to the axiom link{R⊥
i+1, Ri+1} (mod4)).

4.3 Mapping monomial proof structures to ours

Let a non-monomial Girard proof structurebe a proof
structure as in [Gir96] but for the omission of the depen-
dency condition. Define a non-monomial Girard proof
structure to becompactif (a) any non-literal formula oc-
currence is the conclusion of exactly one link, except that a
formulaA ⊕ B may be the conclusion of both a⊕1- and a
⊕2-link, and (b) any two literal occurrences constitute the
conclusions of at most one axiom link. Each non-monomial
Girard proof structure, and thus also each monomial one,
can be collapsed into a compact non-monomial Girard proof
structure by identifying, along with their premises, links of
the same type with the same conclusion(s), and summing
the weights of links and formulas so identified. This col-
lapse does not preserve the dependency condition. Any
compact non-monomial Girard proofstructure can be ob-
tained as the collapse of a (monomial) Girard proofstruc-
ture .

T
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Compact non-monomial Girard proof structures are in
bijection with our proof structures. The counterpart of Gi-
rard’s “technical condition” is implied by (P1) and our defi-
nition of a set of linkings in terms of additive resolutions.
The surjective map from (monomial) Girard proof struc-
tures to our proof structures obtained by composing the col-
lapse and the bijection preserves the property of being a se-
quentialisation of a particular MALL proof.

Given a set of linkingsθ on a sequentΓ and a subset
Λ ⊆ θ, let Gθ

Λ be defined asGΛ, but with jump edges be-
tween every&-vertexw ∈ GΛ and every axiom linka ∈ GΛ

depending onw within θ. Note thatGΛ = GΛ
Λ . Define the

variant (P2∗) of (P2) by usingGθ
{λ} in place ofGλ in the def-

inition of a switching ofλ, also deleting all but one switch
edge of each&. (P2∗) clearly implies (P2), since it involves
more switchings. In fact, (P2∗) is strictly stronger than (P2):
for θ = {λ1, λ2} of Example 1, the graphGθ

λ1
has a switch-

ing cycle (the one presented below Figure 4), whereasGλ1

does not. However, it is not hard to check that (P2∗) is im-
plied by (P2) and (P3) together.

The bijection between compact non-monomial Girard
proof structures and our proof structures can now be fur-
ther refined: compact non-monomial Girard proof nets are
in bijection with sets of linkings in our sense which satisfy
(P1) and (P2∗).

5 Work in progress

The equivalence relation on cut-free MLL proofs induced
by their translation into cut-free MLL proof nets is canon-
ical in sense that the equivalence corresponds to coherence
in a star-autonomous category [BCST96]. We conjecture
that the equivalence on cut-free MALL proofs induced by
our translation into proof nets corresponds to coherence in
a star-autonomous category with products (hence sums).

We are seeking a reformulation of cut that preserves the
elegance of the cut-free definition, in the sense of retaining
a natural translation from proofs to proof nets.

We are investigating whether the following variant of
(P3) yields an alternative definition of proof net: for any
switching cycleS of a set of linkingsΛ, at least one& tog-
gled inΛ is not inS.

Acknowledgements. Vaughan Pratt, for invaluable feed-
back during the development of this work. Paul-André
Melli ès, for suggesting to the first author that the search for
a satisfactory notion of MALL proof net was an interesting
and potentially fruitful research topic.

References

[AJ94] S. ABRAMSKY & R. JAGADEESAN (1994): Games
and full completeness for multiplicative linear logic.
Journal of Symbolic Logic 59(2), pp. 543–574.

[AM99] S. ABRAMSKY & P.-A. MELLI ÈS (1999): Concur-
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A Appendix: Separation

Throughout this appendixθ is a proof net on a cut sequent
Γ.9 For verticesx andy of the graphGθ, write x → y iff x
is an argument ofy, or x is an axiom link andy is either a
& on whichx depends inθ or one of the two literals linked
by x, thus directing the edges ofGθ downwards. Property
(P2) impliesGθ is connected.

A subsetΛ ⊆ θ is saturatedif any strictly larger subset
of θ toggles more&’s thanΛ. Clearlyθ itself is saturated.
For Λ a set of linkings andw a & of Γ let Λw denote the
set of all linkings inΛ whose additive resolution does not
contain the right argument ofw. Write λ

w= λ′ if linkings
λ, λ′ ∈ θ are either equal orw is the only& toggled be-
tweenΓ�λ andΓ�λ′. It is straightforward to check that:

(S1) If Λ is saturated and togglesw then alsoΛw is satu-
rated.

(S2) If Λ is saturated and togglesw andλ ∈ Λ thenλ
w= λw

for someλw ∈ Λw.

(S3) If Λ is saturated and togglesw andλ
x= λ′ for λ, λ′ ∈

Λ thenλ
w= λw

x= λ′w
w= λ′ for someλw, λ′w ∈ Λw.

LEMMA 1 Let w be a & toggled by a saturated set Λ ⊆ θ,
and let e be an edge in GΛ originating from an axiom link a,
such that e 6∈ GΛw . Then the jump a→ w is in GΛ.

Proof. Let e bea→ x. If e is not a jump,e 6∈ GΛw implies
a 6∈ GΛw . Chooseλ ∈ Λ with a ∈ λ. By (S2)λ

w= λw

for someλw ∈ Λw. Sincea 6∈ λw (for a 6∈ GΛw ), the jump
a→ w is in GΛ.

If e is a jump, we haveλ, λ′ ∈ Λ with a ∈ λ, a 6∈ λ′ and
λ

x= λ′. By (S3)λ
w= λw

x= λ′w
w= λ′ for λw, λ′w ∈ Λw.

Either a 6∈ λw or a ∈ λ′w, elsee ∈ GΛw ; either way, the
jumpa→ w is in GΛ. �

LEMMA 2 Every non-empty union S of switching cycles in
Gθ has a jump out of it, i.e., for some axiom link a∈S and
&-vertex w 6∈S, there is a jump a→w in Gθ.

Proof. Let Λ be a minimal saturated subset ofθ with
GΛ containingS. Switchings of singleton subsets ofθ are
cycle-free by (P2), soΛ contains at least two linkings. Let
w be a& toggled byΛ that is not in any switching cycle
of Λ (existing by (P3)), sow 6∈ S. SinceΛ is minimal,
S 6⊆ GΛw (using (S1)), so some edgee of S is in GΛ but
not inGΛw . Without loss of generalitye is an edge from an
axiom link a, because for any other edgey → x in S we
havea → z1 → . . . → zn = y → x in S for some axiom
link a, andy → x is inGΛw whenevera→ z1 is inGΛw . By
Lemma 1 the jumpa→ w is in GΛ, hence also inGθ. �

9Readers concerned only with the cut-free case may ignore the full gen-
erality of this reference to cut, and assume thatθ is a cut-free proof net on
a MALL sequentΓ.

Henceforth “

&

/&” abbreviates “

&

or &”. A path from x0

to xn in Gθ is a sequence of distinct verticesx0x1 . . . xn

such that for eachi eitherxi → xi+1 or xi ← xi+1 (note
that we do not allow cycles). Aswitching path is a path
in Gθ that does not traverse two switch edges of any

&

or
& in succession. A switching pathx0 . . . xn is strong if
it does not end by entering a

&

/& along one of its switch
edges (i.e., xn−1 → xn only if xn is not a

&

/&). Sup-
pose pathsπ = x0 . . . xn andπ′ = y0 . . . ym are disjoint
but for xn = y0. If π and π′ are switching paths, then
their compositeπ;π′ = x0 . . . xny1 . . . ym is not neces-
sarily a switching path (namely ifxn = y0 is a &/

&

and
xn−1 → xn = y0 ← y1), whereas ifπ andπ′ are strong
switching paths thenπ;π′ is also a strong switching path.

Write x⇒G y if the subgraphG of Gθ contains a strong
switching path fromx to y. An x-zoneX is a subgraph
of Gθ such that for allx′ ∈ X, there existsy such that
x ← y ⇒X x′.10 Given a

&

/&-vertexx and a vertexy,
definex dominatesy, denotedx A y, if y is in anx-zone.
If x is not dominated, it isfree.

LEMMA 3 Domination A is transitive.

Proof. We show that ifX is anx-zone,y ∈ X andY is
a y-zone, thenX ∪ Y is anx-zone. Takez ∈ Y \ X. We
havex ← x′ ⇒X y ← y′ ⇒Y z for somex′ ∈ X and
y′ ∈ Y . If the strong switching pathy′ ⇒Y z does not
intersectX, thenx′ ⇒X y ← y′ ⇒Y z constitutes a strong
switching path, so we are done. Otherwise lety′′ be the last
vertex alongy′ ⇒Y z that is inX. Sincey′′ ∈ X we have
x ← x′′ ⇒X y′′, and the sub-path ofy′ ⇒Y z from y′′

to z is a strong switching pathy′′ ⇒Y z; the composition
of these paths yieldsx ← x′′ ⇒X∪Y z, since the only
common vertex isy′′. �

LEMMA 4 Let C be a switching cycle in Gθ containing an
axiom link with a jump to a &-vertex w 6∈ C. Then w
dominates every vertex of C.

Proof. C is aw-zone. �

LEMMA 5 If x is in a switching cycle in Gθ then w A x for
some &-vertex w in no switching cycle in Gθ.

Proof. Apply Lemma 2 repeatedly, growing a collection of
switching cycles one cycle at a time, until jumping to a&-
vertexw that is not in a switching cycle. This must happen
eventually, since (P3) impliesGθ contains a& that is not in
any switching cycle. The result follows by Lemma 4 and
the transitivity ofA. �

10The union of allx-zones is itself anx-zone, which could be called the
realm of x, a concept reminiscent of the notion ofempireof [Gir96], but
different in an essential way.
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LEMMA 6 If x A x then x is in a switching cycle in Gθ.

Proof. If x A x thenx ← y ⇒X x for somex-zoneX,
hencex is in a switching cycle inGθ. �

LEMMA 7 Every

&

/& of Gθ is either free or is dominated
by a free

&

/&.

Proof. If x0 is neither free nor dominated by a free

&

/&-
vertex, then we can build an infinite chainx0 @ x1 @ . . .
of distinct vertices with the same property. Ifxi is in a
switching cycle then takexi+1 to be the vertex given by
Lemma 5, which is not in a switching cycle;xi+1 is fresh
otherwisexi+1 @ xi+1 whencexi+1 is in a switching cycle
(contradiction). Ifxi is in no switching cycle thenxi+1

exists sincexi is not free;xi+1 is fresh otherwisexi @ xi,
whencexi is in a switching cycle (contradiction). �

COROLLARY 1 If Gθ has a

&

/& then it has a free

&

/&.

LEMMA 8 If x A y0 and there is a path y0y1 . . . yn in Gθ

which never enters a

&

/& from above (i.e., yi−1 → yi only
if yi is not a

&

/&), then x A yn.

Proof. Let X be anx-zone containingy0, and letyi be the
last vertex ony0y1 . . . yn that is inX. Thenx← z⇒X yi

for somez. Now Y = X∪{yi, ..., yn} is anx-zone, since
x←z⇒Y yi⇒Y yj for j = i, ..., n. �

Distinct

&

/&-verticesx andy or Gθ areback-to-back, de-
notedx ←→ y, if there is a switching pathxz0 . . . zny in
Gθ such thatx ← z0 andzn → y, and areface-to-face,
denotedx →← y, if there exists a pathxz0 . . . zny in Gθ

such thatx→ z0 andzn ← y, and none of thezi are

&

/&-
vertices (so in particularxz0 . . . zny is a strong switching
path).

LEMMA 9 If x A z and y A z for distinct free

&

/&-
vertices x and y, then x←→ y.

Proof. LetX be anx-zone containingz, so that for somex′

we havex← x′ and a strong switching pathπ = x′ . . . z in
X. Letz′ be the first vertex ofxπ with y A z′. By Lemma 8
the predecessorz′′ of z′ in xπ is a

&

/& andz′′ ← z′, so
the prefixπ′ of π up toz′ is strong. Sincey A z′ there is
a strong switching pathπ′′ = y1 . . . ynz′ in a y-zone, with
y ← y1. The concatenationxπ′yn . . . y1y is a switching
path (since none of theyi is in π′) witnessingx←→ y. �

A

&

/&-vertexx of Gθ separatesif it is not an argument
(i.e., is an outermost connective), or it is the argument ofy
and deleting the edge betweenx andy disconnectsGθ.

LEMMA 10 If a

&

/&-vertex x is free and does not separate,
then x→← y and x←→ z for free y and z.

Proof. Sincex does not separate, it is in a cycleC (say
clockwise) whose first (resp. last) edge is oriented out of
(resp. into)x. Takey to be the first

&

/& reached clockwise
along C from x. Thenx →← y (otherwisey A x by
Lemma 8) andy is free sincey′ A y implies y′ A x by
Lemma 8, contradicting the freedom ofx.

Let z be the first vertex reached anti-clockwise fromx
that is not dominated byx, and letz′ be its predecessor. By
Lemma 8,z is a

&

/&, andx A z′ → z, thereforex←→ z.
If z is not free, replace it by a free

&

/& dominatingz (hence
alsoz′) provided by Lemma 7, and appeal to Lemma 9.�

LEMMA 11 Let x be a

&

/& and let z0 . . . zn be a switching
path in Gθ such that z0 → x and zn → x. Then x dominates
every vertex of {z0, . . . , zn}.

Proof. {z0, . . . , zn} is ax-zone. �

SEPARATION LEMMA If Gθ has a

&

/&-vertex then it has a&

/&-vertex that separates.

Proof. Had Gθ no separating

&

/&-vertex thenx0 →←
x1 ←→ x2 →← x3 ←→ . . . for free

&

/&-verticesxi with
xi+1 6= xi by Lemma 10 (x0 exists by Corollary 1). The
compositionπ of the paths witnessing the→← and←→
relations eventually intersects itself at a vertexx, yielding
a pathπ′ = xz0 . . . zn such that{x, z0, . . . , zn} is a cycle.
Since each witness is a switching path,π′ is a switching
path (by design, composition at eachxi avoids introducing
consecutive switch edges ofxi). Furthermore, one of thexi

must be among thezj . Using Lemma 5 if{x, z0, . . . , zn}
is a switching cycle, and Lemma 11 otherwise, thisxi is
dominated, a contradiction (sincexi is free). �

B Appendix: Proof that every cut-free proof
net is the translation of a cut-free proof

With the Separation Lemma in hand, the proof that every
cut-free proof net is the translation of a cut-free proof re-
duces to simple induction.

Let θ be a proof net onΓ. We proceed by induction on
the sum the number of

&

’s and&’s of Gθ.

Base case (primary induction) Γ is

&

/&-free, henceθ
comprises a single linkingλ onΓ. We proceed by induction
on the number of connectives ofΓ.

• Base case (secondary induction).Γ contains no con-
nectives, soΓ = P1, P

⊥
1 , . . . , Pn, P⊥

n for n ≥ 0
and propositional variablesP1, . . . , Pn, and λ links
the complementary literal occurrencesPi andP⊥

i for
i = 1, ..., n. By (P2) n = 1. The axiom rule with
conclusionP1, P

⊥
1 is a sequentialisation ofθ.
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• Induction step (secondary induction).Being void of&

’s, Gλ is the unique switching ofλ, so by (P2)Gλ is
a tree.

– SupposeΓ = ∆, A ⊕ B, with ⊕-vertexx ∈ Gλ

corresponding toA⊕B. SinceΓ�λ is an additive
resolution,x is unary inGλ, i.e., there is a unique
y ∈ Gλ with y → x. If this y is the left (resp.
right) argument ofx, consider the left (resp. right)
⊕-ruleρ with conclusion∆, A⊕B and hypothesis
Γ′ = ∆, A (resp.∆, B). The linkingλ on Γ also
constitutes a linkingλ′ on Γ′, since no literals of
the deleted⊕-argument were incident with an ax-
iom link of λ. The graphGλ′ is a tree, becauseGλ

is a tree. Henceθ′ = {λ′} is a proof net onΓ′. By
induction,θ′ is the translation of a cut-free MALL
proof ofΓ′, which when followed byρ constitutes
a cut-free MALL proof ofΓ whose translation isθ.

– SupposeΓ = ∆, A0 ⊗ A1, with ⊗-vertexx ∈ Gλ

corresponding toA0⊗A1. Deletingx separates the
treeGλ into a left treeT0 and right treeT1 whose
respective conclusions define sequents∆0 and∆1,
a partitioning of∆. Consider the⊗-rule ρ with
conclusionΓ and hypotheses∆0, A0 and∆1, A1.
SinceGλ is a tree, no axiom link ofλ goes be-
tween∆0, A0 and ∆1, A1, henceλ partitions to
form linkings λ0 andλ1, respectively, on∆0, A0

and ∆1, A1. Eachθi = {λi} is a proof net on
∆i, Ai since eachGλi

= Ti is a tree. Appeal to the
induction hypothesis withθ0 andθ1, in the manner
of the⊕ case above.

Induction step (primary induction) Γ has at least one

&

or &. By (P2)Gθ is connected.

• SupposeΓ = ∆, A

&

B, with

&

-vertexx ∈ Gθ corre-
sponding toA

&

B. Consider the

&

-rule ρ with con-
clusionΓ and hypothesisΓ′ = ∆, A, B. The sequents
Γ andΓ′ have the same literal occurrences and essen-
tially the same&- and additive resolutions, soθ consti-
tutes a proof structureθ′ on Γ′. The switchings of the
linkings of θ′ are trees, since they are obtained from
those ofθ by deletingx. Moreover,θ andθ′ have the
same subsetsΛ of linkings, toggling the same&s and
having the same switching cycles (because the vertex
x cannot be in a switching cycle of anyΛ ⊆ θ). There-
fore θ′ is a proof net onΓ′. Appeal to the induction
hypothesis withθ′.

• SupposeΓ = ∆, A0&A1, with vertexw ∈ Gθ corre-
sponding toA0&A1. Consider the&-ruleρ with con-
clusionΓ and left and right hypothesesΓ0 = ∆, A0

andΓ1 = ∆, A1, respectively. Define the sets of link-
ingsθi onΓi to comprise those linkings ofθ which are

on Γi ⊆ Γ. Eachθi is a proof net since any switching
cycle of θi is a switching cycle ofGθ. Appeal to the
induction hypothesis with eachθi.

• SupposeGθ has no→-terminal (i.e. concluding)

&

or
&. By the Separation LemmaGθ has a

&

/&-vertexx
such that the deletion of the edgex → y disconnects
Gθ into G0 andG1.

Let G0 be the component containingx, and let
Γ0 comprise the formula-occurrences corresponding
to the→-terminal vertices ofG0 (some formulas of
Γ together with the subformula occurrenceA&B cor-
responding tox). Defineθ0 = {λ � Γ0 : λ ∈ θ} on
Γ0 (eachλ � Γ0 is well-defined since noa ∈ λ goes
betweenG0 andG1).

Let Γ1 be the subsequent ofΓ containing the for-
mulas corresponding to the→-terminal vertices ofG1.
In G1, y is→-initial. Form G+

1 by adding literalsP
andP⊥, the axiom linka = {P, P⊥}, and edgesy ←
P ← a→ P⊥. Let Γ̂1 beΓ1 with P substituted for the
subformula occurrenceA&B corresponding tox, and
let Γ+

1 = Γ̂1, P
⊥. Defineθ1 = {λ� Γ̂1 ∪ {a} : λ ∈ θ}

onΓ+
1 .

Claim: x ∈ Γ�λ for all λ ∈ θ.
Proof. If not, there isλ ∈ θ and a&-vertexw with

x in Γ � λ but not inΓ � λw for someλw ∈ θ such
thatλ

w= λw. Thus there is a jumpb → w in Gθ for
someb ∈ G0 with b ∈ λ \ λw. Since linkings are
total on additive resolutions there exists an axiom link
c ∈ λw \λ connecting to the formula containingx, but
not satisfyingc→ · · · → x, so there is a jumpc→ w
in Gθ. If w ∈ G0 thenc → w is a jump fromG1 to
G0, and if w ∈ G1 thenb → w is a jump fromG0

to G1; either case violates the disconnectedness ofG0

from G1.

The claim implies thatθ0 and θ1 are sets of link-
ings onΓ0 andΓ+

1 , respectively. Moreover,Gθ0 = G0

andGθ1 = G+
1 . We now check thatθ0 and θ1 are

proof nets,i.e., satisfy (P1)–(P3). Sinceθ satisfies
(P1),θ0 (resp.θ1) has at least one linking on every&-
resolution ofΓ0 (resp.Γ+

1 ). Hadθi two distinct link-
ings on the same&-resolution, there would be a jump
from an axiom link inGi to a & in G1−i, violating
the disconnectedness ofG0 from G1. Thusθi satisfies
(P1). (P2) is trivially inherited fromθ. Finally, (P3)
holds since any set of linkingsΛ′ in θ0 or θ1 corre-
sponds to a set of linkingsΛ in θ toggling the same
&s, such that any switching cycle ofΛ′ is a switching
cycle ofΛ.

By inductionθ0 is the translation of a cut-free proof
Π0 of Γ0 and likewiseθ1 is the translation ofΠ1. Sub-
stitutingΠ0 for the axiom rule with conclusionP, P⊥

in Π1 yields a proof whose translation isθ. �
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In the case of MALL+MIX , the connectedness requirement
of (P2) does not apply. This condition is used three times
in the above proof. To prove that a set of linkings is the
translation of a cut-free MALL+MIX proof iff it is a cut-
free mix net, where amix net is a set of linkings satisfying
(P1)–(P3) minus the connectedness requirement of (P2), in
each part of the inductive proof above, the case thatGθ is
not connected can be dealt with by partitioningΓ into a
number of non-empty subsequentsΓi, each harbouring a
connected component ofGθ. The mix netθ projects to mix
netsθi onΓi, which by induction are translations of cut-free
MALL+ MIX proofsΠi. By theMIX rule these combine into
a proof that translates toθ.

C Appendix: Proof that eliminating a cut
from a proof net yields a proof net

In this appendix we establish that cut elimination preserves
(P0)–(P3). Preservation of (P0) is trivial. Preservation of
(P1) for a literal or multiplicative cut is also trivial; for an
additive cut it is an immediate consequence of the following
lemma.

LEMMA 12 Let A∗A⊥ be an additive cut in a cut sequent
Γ with A = A0&A1 and A⊥ = A⊥

0 ⊕ A⊥
1 (or vice versa),

and let λ, λ′ be linkings of a proof net on Γ such that the
cut & is the only & toggled between Γ �λ and Γ �λ′. Then
λ and λ′ take the same argument of A⊥, i.e., exactly one of
A⊥

0 and A⊥
1 occurs in both Γ�λ and Γ�λ′.

Proof. If λ and λ′ took opposite arguments ofA⊥, an
axiom link aboveA⊥ would depend on the cut&. The re-
sulting jump yields a switching cycle of{λ, λ′} containing
the only& toggled by{λ, λ′}, in violation of (P3). �

Preservation of (P2) is straightforward for a literal or addi-
tive cut, since switchings correspond before and after the
elimination. Preservation of (P2) for a multiplicative cut
is a corollary of the well-definedness of cut elimination for
MLL proof nets, since the elimination of a multiplicative
cut from one of our proof nets corresponds precisely to the
parallel elimination of copies of the cut in the induced MLL
proof nets.11

11To be self-contained, we give a direct proof. LetΓ (resp.Γ′) be the
cut sequent before (resp. after) the elimination. By definition, the linkings
remain the same. We prove the following stronger result: if every switch-
ing of a linkingλ onΓ is a tree, then every switching ofλ onΓ′ is a tree.
If the eliminated cut vertexc is absent fromλ � Γ, every switching ofλ
onΓ′ is a switching ofλ onΓ, hence a tree; therefore assumec is present.
Let x be the eliminated

&

, with argumentsx0, x1, and lety be the elim-
inated⊗, with argumentsy0, y1. Thusxi → x → c ← y ← yi in Γ.
Let Γ̂ be the result of deletingx, c andy (and associated edges) fromΓ.
Claim: every switchingσ of λ on Γ̂ is the disjoint union of three trees, one
containing thexi, one containingy0, and one containingy1. Proof: letσi

be the switching ofλ onΓ obtained fromσ by addingxi → x→ c← y

The remainder of this appendix is devoted to the proof
that cut elimination preserves (P3).

Fix a proof netθ on a cut sequentΓ. We localise the
notion of domination of Appendix A fromθ to any saturated
set of linkingsΛ ⊆ θ. Write x →Λ y if the edgex → y
of Gθ is in GΛ. A subgraphX of GΛ is anx-zone under
Λ if for all x′ ∈ X there existsy with x←Λ y ⇒X x′;
given a

&

/&-vertexx ∈ GΛ and a vertexy ∈ GΛ, define
x dominatesy in Λ, denotedx AΛ y, if y ∈ X for some
x-zoneX underΛ. Lemmas 2, 3, 4, 5, 6, 8, and 11 of
Appendix A localise fromθ to any saturated set of linkings
Λ ⊆ θ, as follows:

LOCALISED LEMMA 2 For every non-empty union S of
switching cycles in GΛ there is a jump a → w in GΛ be-
tween an axiom link a ∈ S and a &-vertex w 6∈S which is
toggled by Λ.

LOCALISED LEMMA 3 Localised domination AΛ is tran-
sitive.

LOCALISED LEMMA 4 Let C be a switching cycle in GΛ

containing an axiom link with a jump to a &-vertex w 6∈ C.
Then w AΛ x for all vertices x ∈ C.

LOCALISED LEMMA 5 If x is in a switching cycle of Λ
then w AΛ x for some &-vertex w toggled by Λ that is in
no switching cycle of Λ.

LOCALISED LEMMA 6 If x AΛ x then x is in a switching
cycle of Λ.

LOCALISED LEMMA 8 If x AΛ y0 and there is a path
y0y1 . . . yn in GΛ which never enters a

&

/& from above,
then x AΛ yn.

LOCALISED LEMMA 11 Let x be a

&

/& and let z0 . . . zn

be a switching path in GΛ such that z0 →Λ x and zn →Λ x.
Then x AΛ zi, each 0 ≤ i ≤ n.

The proof of Localised Lemma 2 is a relatively straightfor-
ward adaptation of the proof of Lemma 2; we present it in
full below. The proofs of the remaining localised lemmas
are obtained by making the following substitutions in the
proofs of the originals in Appendix A:Λ for θ, AΛ for A,
→Λ for→, andzone underΛ for zone.

andy0 → y ← y1, a priori a tree; were theyi connected by a pathπ in σ
thenyπy would be a cycle in eachσi; werexj andyk connected by a path
π in σ thencxxjπykyc would be a cycle inσj ; were thexi disconnected
in σ then (given the disconnection of thexi from theyi) they would be
disconnected in eachσi. A switching ofλ onΓ′ is a switching ofλ on Γ̂
together with cutsx0 → c0 ← y0 andx1 → c1 ← y1, and is therefore
(by the claim) a tree.
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Proof of Localised Lemma 2.Let Λm be a minimal satu-
rated subset ofΛ with GΛm containingS. Switchings of
singleton sets of linkings are cycle-free by (P2), soΛm

contains at least two linkings. Letw be a & toggled by
Λm that is not in any switching cycle ofΛm (existing
by (P3)), sow 6∈ S. SinceΛm ⊆ Λ, w is certainly
toggled byΛ. SinceΛm is minimal, S 6⊆ GΛw

m
(using

(S1)), so some edgee of S is in GΛm
but not in GΛw

m
.

Without loss of generalitye is an edge from an axiom
link a, because for any other edgey → x in S we have
a → z1 → . . . → zn = y → x in S for some axiom link
a, andy → x is in GΛw

m
whenevera → z1 is in GΛw

m
. By

Lemma 1 the jumpa→ w is in GΛm , hence also inGΛ. �

Proof that cut elimination preserves (P3). Preservation
is immediate for the elimination of a literal cutP∗P⊥, since
for every setΛ of linkings onΓ, the&-vertices toggled by
Λ and the switching cycles ofΛ correspond before and af-
ter the elimination. Thus consider the elimination of an ad-
ditive cut (A0&A1) ∗ (A⊥

0 ⊕ A⊥
1 ) or a multiplicative cut

(A0

&

A1)∗(A⊥
0 ⊗A⊥

1 ).
Let θ′ on the cut sequentΓ′ be the result of eliminating

(A0&A1)∗(A⊥
0 ⊕A⊥

1 ) or (A0

&

A1)∗(A⊥
0 ⊗A⊥

1 ) from the
proof netθ on Γ. Let x be the& or

&

andy the⊕ or ⊗
of the cut, letx0, x1 andy0, y1 be the arguments ofx andy
respectively, and letc be the cut vertex∗ betweenx andy.
Thus inΓ′ each ofc, x andy have been deleted, and cut ver-
ticesc0 betweenx0 andy0 andc1 betweenx1 andy1 have
been added, unless one ofA0, A

⊥
0 or A1, A

⊥
1 disappeared

in the ‘garbage collection’ phase of additive elimination, in
which case only one ofc0 or c1 is present.

Supposeθ′ fails (P3), i.e., there exists a set of two or
more linkingsΛ′ ⊆ θ′ such that every& in Γ′ toggled by
Λ′ is in a switching cycle ofΛ′ onΓ′.

LEMMA 13 There exists a saturated set of linkings Λ ⊆ θ
on Γ such that Λ on Γ toggles the same &’s as Λ′ on Γ′,
except perhaps x in addition (in the case of an additive cut).

Proof. Since cut elimination simply deletes linkings,Λ′

can also be viewed as a set of linkings onΓ, andΛ′ ⊆ θ.
Furthermore,Λ′ onΓ toggles exactly the same&’s asΛ′ on
Γ′, except perhapsx in addition (in the case of an additive
cut). LetΛ be a minimal saturated set of linkings ofθ onΓ
containingΛ′. By minimality,Λ onΓ toggles the same&’s
asΛ′ onΓ. �

LEMMA 14 The vertex y is not in a switching cycle of Λ.

Proof. If y is in a switching cycle, then by Localised
Lemma 5,Λ toggles a&-vertex w AΛ y in no switch-
ing cycle ofΛ. We havew AΛ x by Localised Lemma 8.
Necessarilyw 6= x, otherwisew AΛ w and by Localised
Lemma 6w is in a switching cycle ofΛ, a contradiction.

By Lemma 13,w is toggled byΛ′ on Γ′, hence12 w is in a
switching cycleC of Λ′ onΓ′.

SupposeC does not go through bothc0 and c1. Then
C induces a switching cycle ofΛ on Γ, still containingw,
obtained by re-routing a possible passage throughc0 or c1

to go throughc instead. This yields a contradiction.
SupposeC goes through bothc0 andc1. Re-routing both

passages to go throughc instead either yields two switching
cycles throughc with w in one of them, a contradiction,
or yields a switching cycleCy throughy and a switching
pathPx = z0 . . . zn in GΛ with z0 →Λ x andzn →Λ x,
such thatw is either inCy or Px. The first possibility im-
mediately yields a contradiction, so assumew ∈ Px. By
Localised Lemma 11,x AΛ w, so by transitivity (Localised
Lemma 3),w AΛ w, hence by Localised Lemma 6,w is in
a switching cycle ofΛ, a contradiction. �

LEMMA 15 Every &-vertex v 6= x toggled by Λ on Γ is in
a switching cycle of Λ on Γ.

Proof. By Lemma 13,v is toggled byΛ′ onΓ′, hence12 v is
in a switching cycleC of Λ′ onΓ′. SupposeC goes through
c0 and/orc1. By re-routing the passage(s) throughc0 and/or
c1 to go throughc instead,C induces a switching cycle ofΛ
onΓ that containsy, in contradiction with Lemma 14. Thus
C does not go throughc0 or c1. HenceC is also a switching
cycle ofΛ onΓ, containingv. �

COROLLARY 2 If the cut is multiplicative, every & toggled
by Λ on Γ is in a switching cycle of Λ on Γ.

Thus if the cut is multiplicative,θ fails to be a proof net, a
contradiction. Henceforth we assume the cut is additive.

LEMMA 16 The &-vertex x is the unique & toggled by Λ
that is not in any switching cycle of Λ.

Proof. Sinceθ is a proof net,Λ toggles a&-vertexv in no
switching cycle ofΛ. By Lemma 15, necessarilyv = x. �

There exist linkingsλ1, λ2 ∈ Λ′ such thaty0 ∈ λ1 �Γ′ but
y0 6∈ λ2 �Γ′, for otherwiseΛ would not togglex. Thus there
is a jumpa→Λ u in GΛ from an axiom linka abovey0 to a
&-vertexu toggled byΛ. If u = x, we immediately obtain
a switching cyclex, c, y, y0,. . . ,a, x in GΛ, a contradiction.
Thusu 6= x, so by Lemma 15,u is in a switching cycle ofΛ,
and by Localised Lemma 5 and Lemma 16,x AΛ u. Thus
x is in a switching cycle ofΛ going throughc, y, y0, a and
u (or a shortcut thereof, if the strong switching path from
x to u intersects the pathx, c, y, y0, . . . , a), a contradiction.
Henceθ′ satisfies (P3).

12Recall thatΛ′ was chosen as a witness to the failure of (P3) forθ′:
any& in Γ′ toggled byΛ′ is in a switching cycle ofΛ′ onΓ′.
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