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ABSTRACT
Studies of Aspect-Oriented Programming (AOP) usually focus on
a language in which a specific aspect extension is integratedwith
a base language. Languages specified in this manner have a fixed,
non-extensible AOP functionality. In this paper we consider the
more general case of integrating a base language with a set ofdo-
main specific third-party aspect extensions for that language. We
present a general mixin-based method for implementing aspect ex-
tensions in such a way that multiple, independently developed, dy-
namic aspect extensions can be subject to third-party composition
and work collaboratively.

1. INTRODUCTION
A current trend in Aspect-Oriented Programming (AOP [26]) is the
usage of general-purpose AOP languages (AOPLs). However, a
general-purpose AOPL lacks the expressiveness to tackle all cases
of crosscutting. A solution to unanticipated crosscuttingconcerns
is to create and combine different domain-specific aspect exten-
sions to form new AOP functionality [42]. As of yet, there is no
methodology to facilitate this process.

Studies of AOP typically consider the semantics for an AOPL that
integrates a certain aspect extension,Ext1, with a base language,
Base. For example,Ext1 might be (a simplified version of) As-
pectJ [25] andBase (a simplified version of) Java [3]. The se-
mantics for the integrationBase × Ext1 is achieved by amend-
ing the semantics for the base language. Given a pair of programs
〈base , aspect1〉 ∈ Base × Ext1, the amended semantics explain
the meaning ofbase in the presence ofaspect1.

Unfortunately, the semantics for the aspect extension and that for
the base language become tangled in the process of integration.
Consequently, it is difficult to reuse or combine aspect extensions.
For each newly introduced aspect extension, sayExt2, the seman-
tics for Base × Ext2 needs to be reworked. Moreover, given the
∗This research was supported in part by the National Science Foun-
dation (NSF) Science of Design program under Grant Number
CCF-0438971, and by the Institute for Complex Scientific Software
at Northeastern University (http://www.icss.neu.edu).

semantics forBase×Ext1 and the semantics forBase×Ext2, the
semantics forBase × Ext1 × Ext2 is undefined even thoughExt1
andExt2 are both aspect extensions to the same base language.

In this paper we resolve this difficulty by considering a moregen-
eral question:

THE ASPECT EXTENSION COMPOSITION QUESTION: Given a base
language,Base, and a set{Ext1, . . . ,Extn} of independent as-
pect extensions toBase, what is the meaning of a programbase ∈
Base in the base language in the presence ofn aspect programs
〈aspect1, . . . , aspectn〉 ∈ Ext1 × · · · × Extn written in then dif-
ferent aspect extensions?

Ability to compose distinct aspect extensions is of great practical
importance (Section 2). Addressing the general composition ques-
tion also provides in the special case wheren = 1 a better encap-
sulation of the semantics for a single aspect extension.

1.1 Combining Two Aspect Extensions
Answering the aspect extension composition question is difficult
even forn = 2. Let MyBase be a procedural language, and con-
sider two independent, third-party aspect extensions toMyBase.
The first,HisExt1, capable of intercepting procedure calls and sim-
ilar in flavor to AspectJ. The other,HerExt2, an aspect extension
to MyBase capable of intercepting calls to the primitive division
operator for catching a division by zero before it even happens (as
opposed to catching a division by zero exception after it occurs),
a capability that AspectJ lacks.1 Both call interception (e.g., [27])
and checking if a divisor is zero (e.g., [5, 28, 18]) are benchmarks
often used in connection with aspects.

W.l.o.g., assumeHisExt1 is created beforeHerExt2 is even con-
ceived. IfHisExt1 is to eventually work collaboratively with an-
other aspect extension, e.g.,HerExt2, the implementation ofHis-
Ext1 must take special care to expose its AOP effect,and onlyits
effect, in terms ofMyBase. This is because anaspect2 program
written in HerExt2 would need to intercept divisions by zero not
only in the base programbase but also in advice introduced by an
aspect1 program written inHisExt1.

Failing to reify a division by zero inaspect1 might cause a false-
negative effect inHerExt2. Meanwhile,aspect 2 must not intercept
divisions by zero, if any, in the implementation mechanism of either
HisExt1 or HerExt2. Reifying a division by zero in the implemen-
tation mechanism might cause a false-positive effect inHerExt2.

1AspectJ can neither advise primitives nor arguments.
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Similarly, aspect1 must intercept not only procedure calls inbase
but also any matching procedure call introduced byaspect2. aspect1
must not, however, intercept internal procedure calls thatare a part
of the implementation mechanism of eitherHisExt1 or HerExt2.

Note that generally aspect extensions present incompatible levels of
AOP granularity [30]. In our example,aspect1 is not expressible
in HerExt2, andaspect2 is not expressible inHisExt1. Therefore
the problem of integrating the two cannot be reduced to translating
aspect1 to HerExt2 or translatingaspect2 to HisExt1 and using
just one aspect extension. This distinguishes our objective from the
purpose of frameworks (like XAspects [38]) that rely on the use of
a general purpose AOPL (like AspectJ).

In the sequel, abase mechanismdenotes an implementation of a
base language semantics, anaspect mechanismdenotes an imple-
mentation of an aspect extension semantics, and amulti mechanism
denotes an implementation of a multi-extension AOPL.

1.2 Objective and Contribution
We describe a general method for implementing the base mecha-
nism and the aspect mechanisms in such a way that multiple, inde-
pendent aspect mechanisms can be subject to third-party composi-
tion and work collaboratively. By third-party compositionof aspect
mechanisms we mean a semantical framework in which distinctas-
pect mechanisms can be assembled with the base mechanism into
a meaningful multi mechanism without modifying the individual
mechanisms. The mechanisms are said to be collaborative units
of composition if the semantics of the composed multi mechanism
can be derived from the semantics of the mechanisms that comprise
it.

More precisely, letB denote the base mechanism forBase. Let
M1, . . . , Mn denote the aspect mechanisms forExt1, . . . ,Extn,
respectively. Theaspect mechanism composition problemis to en-
able the third-party composition ofM1, . . . ,Mn with B into a multi
mechanismA, in a mannar similar to the assembly of software
components:2

• Units of independent production. The aspect mechanisms
M1, . . . ,Mn are independently defined. The base mecha-
nismB is defined independently fromM1, . . . ,Mn. To en-
able the composition,M1, . . . ,Mn rely only onB and have
an explicit context dependency only onA.

• Units of composition.The mechanisms are subject to third-
party composition. The multi mechanismA for the com-
bined AOP language is constructed (denoted by a⊞ com-
binator) by composing the base mechanism with the aspect
mechanisms without altering them:A = ⊞〈B,M1, . . . ,Mn〉

• Units of collaboration. The semantics for the composed
multi mechanismA is the “sum” of the semantics provided
by all the mechanisms.

Independence enables third-party development of aspect mecha-
nisms; composability enables third-party composition of aspect mech-
anisms; and collaboration enables the desired behavior in the con-
structed AOP language.
2A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subjectto
third-party composition [40].

Specifically, our approach enables third-party composition of dy-
namic aspect mechanisms. We illustrate our solution for expres-
sion evaluation semantics. We model each aspect mechanism as
a transformation function that revises the evaluation semantics for
expressions.

1.3 Outline
In the rest of this paper, we demonstrate our solution to the as-
pect mechanism composition problem concretely through theim-
plementation of interpreters. The next section motivates the need
for composing multiple aspect extensions and demonstratesthe lack
of integration support in current aspect mechanisms. Section 3
presents a concrete instance of the problem: a base languageMy-
Base with two aspect extensions,HisExt1 andHerExt2. We present
their syntax and analyze a runnable programming example imple-
mented in our framework. In Section 4 we present our approach
for the general case of integratingn aspect mechanisms. In Sec-
tion 5 we revisit the example shown in Section 3 and formally
demonstrate our approach by constructing the semantics forMy-
Base, HisExt1, andHerExt2.

2. MOTIVATION
There is a growing need for the simultaneous use of multiple domain-
specific aspect extensions. The need steams mainly from the favor-
able trade-offs that a domain-specific aspect extension canoffer
over a general purpose AOPL:

• Abstraction. A general purpose AOPL offers low-level ab-
stractions for covering a wide range of crosscutting concerns.
Domain specific aspect extensions, in contrast, can offer ab-
stractions more appropriate for the crosscutting cases in the
domain at hand, letting the programmer concentrate on the
problem, rather then on low-level details.

• Granularity. The granularity of an aspect extension dictates
all possible concern effect points within an application. Com-
bining domain-specific aspect extensions allows to overcome
the fixed granularity limitation of general purpose AOPLs [30].

• Expressiveness versus Complexity.The granularity of a general-
purpose AOPL exposes a non-linear relationship between the
language expressiveness and complexity. An increase in the
language granularity would significantly increase the language
complexity while achieving a relatively small increase in ex-
pressiveness. Domain specific aspect extensions, in contrast,
can offer independent diverse ontologies [48].

The need also arises from the sheer abundance of available aspect
extensions (and their evolving aspect libraries). For the Java pro-
gramming language alone there are numerous aspect extensions
that are being used in a variety of commercial and research projects.
These include: AspectJ (ajc [12] and abc [4]), AspectWerkz [6],
COOL [29], JBoss-AOP [2], JAsCo [43], Object Teams [21], Com-
poseJ [50], to name just a few.3 Ability to use these aspect ex-
tensions together will allow to reuse exiting (and future) aspect li-
braries written for the different aspect extensions.

Unfortunately, little support is provided for the integration of dis-
tinct aspect mechanisms. Each aspect mechanism creates itsown

3For a complete list of commercial and research aspect extensions
seehttp://www.aosd.net/technology/
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Listing 1: A non-synchronized bounded buffer

1 public class BoundedBuffer {
2

3 private Object[] buffer;
4 private int usedSlots = 0;
5 private int writePos = 0;
6 private int readPos = 0;
7 private static BoundedBuffer singltn = null;
8

9 public static BoundedBuffer getInstance() {
10 return singltn;
11 }
12

13 public BoundedBuffer (int capacity) {
14 this.buffer = new Object[capacity];
15 singltn = this;
16 }
17

18 public Object remove() {
19 if (usedSlots == 0) {return null;}
20 Object result = buffer[readPos];
21 buffer[readPos] = null;
22 usedSlots--; readPos++;
23 if (readPos==buffer.length) readPos=0;
24 return result;
25 }
26

27 public void add(Object obj) throws Exception {
28 if (usedSlots==buffer.length)
29 throw new Exception("buffer is full");
30 buffer[writePos] = obj;
31 usedSlots++;
32 writePos++;
33 if (writePos==buffer.length) writePos=0;
34 }
35 }

unique program representation which often excludes foreign as-
pects. Consequently, interaction between multiple aspectmecha-
nisms operating on a single program can produce unexpected or
incoherent results.

2.1 Example
Consider a bounded buffer example implemented in Java (List-
ing 1). Suppose you have three aspect extensions to Java at your
disposal:

• COOL [29]—a domain-specific aspect extension for express-
ing coordination of threads;

• AspectWerkz [6]—a general purpose lightweight AOP frame-
work for Java;

• AspectJ—a general purpose aspect extension for Java;

and two concerns to address, namely, a synchronization concern
and a tracing concern.

2.1.1 COOL versus AspectJ
The synchronization concern can be expressed as a coordinator as-
pect in COOL (e.g., Listing 2) or alternatively as an aspect in As-
pectJ (e.g., Listing 3).

The COOL aspect (Listing 2) provides an elegant declarativede-
scription of the desired synchronization. Themutex exclusion set

Listing 2: Synchronization aspect in COOL

1 coordinator BoundedBuffer {
2 selfex {add, remove},
3 mutex {add, remove};
4 }

Listing 3: Synchronization aspect in AspectJ

1 public aspect BufferSyncAspect {
2 private Object remove_thread=null;
3 private Object add_thread=null;
4

5 Object around():
6 execution(Object BoundedBuffer.remove()) {
7 Object this_thread = Thread.currentThread();
8 synchronized(this) {
9 while ((remove_thread!=null &&

10 remove_thread!=this_thread) ||
11 (add_thread!=null &&
12 add_thread!=this_thread))
13 try {wait();
14 } catch (InterruptedException e) {}
15 remove_thread = this_thread;
16 }
17 Object result = proceed();
18 synchronized(this) {
19 remove_thread = null;
20 notifyAll();
21 }
22 return result;
23 }
24

25 void around() throws Exception:
26 execution(void BoundedBuffer.add(Object)) {
27 Object this_thread = Thread.currentThread();
28 synchronized(this) {
29 while ((remove_thread!=null &&
30 remove_thread!=this_thread) ||
31 (add_thread!=null &&
32 add_thread!=this_thread))
33 try {wait();
34 } catch (InterruptedException e) {}
35 add_thread = this_thread;
36 }
37 try{proceed();}
38 finally {
39 synchronized(this) {
40 add_thread = null;
41 notifyAll();
42 }
43 }
44 }
45 }

{add, remove} specifies thataddmay not be executed by a thread
while remove is being executed by a different thread, and vice
versa. In addition, theselfex exclusion set prohibits different
threads from simultaneously executing eitheradd or remove.4

The COOL code is expressive, concise, readable, and easy to un-
derstand. It provides the right abstractions. Studies [33,46, 32, 47]
have shown that “participants could look at COOL code and under-
stand its effect without having to analyze vast parts of the rest of
the code”, and that “COOL as a synchronization aspect language
eased the debugging of multi-threaded programs, compared to the

4However, the same thread is not prohibited from entering both
add andremove.
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Listing 4: Logger aspect in AspectWerkz

1 /∗∗ @Aspect(”perJVM”)∗/
2 public class AWLogger {
3 /∗∗@Before call(∗ ∗.∗(..))&&!cflow(within(AWLogger))∗/
4 public void log(JoinPoint jp) {
5 System.out.println("AW:"+jp.getSignature());
6 }
7 }

Listing 5: Buffer Logger

1 public aspect BufferLogger {
2

3 pointcut toLog():
4 call(* *.*(..)) && !cflow(within(BufferLogger)

);
5

6 before(): toLog() {
7 log("ENTER",thisJoinPoint);
8 }
9 after() returning: toLog() {

10 log("EXIT",thisJoinPoint);
11 }
12 after() throwing: toLog() {
13 log("THROW",thisJoinPoint);
14 }
15

16 protected void log(String aType,JoinPoint jp) {
17 BoundedBuffer buf=BoundedBuffer.getInstance();
18 if (buf==null) return;
19 try{buf.add(jp);} catch (Exception e) {
20 System.out.println(e.getMessage());
21 }
22 }
23 }

ability to debug the same program written in Java” [45].

While it is possible to express the same concern in AspectJ, the
code will be much longer. In comparison to the COOL code, the
AspectJ implementation (Listing 3) requires 10 times more lines of
code. It is also harder to explain. The aspect implements a monitor
using two condition variablesremove_thread andadd_thread.
Using two pieces ofaround execution advice, the aspect obtains
locks (remove_thread andadd_thread) for the duration of exe-
cutingproceed (execution ofremove andadd, respectively). This
guarentees that no more than one thread operates on the buffer at
a time. If remove_thread or add_thread are locked by some
other thread, the advice waits. When the thread has a lock, itruns
proceed and afterwards releases the lock by signalingnotifyAll(),
which in turn wakes up other waiting threads.

2.1.2 AspectWerkz + AspectJ
Semantically, the underlying mechanisms of AspectWerkz and As-
pectJ are essentially equivalent. Yet, their syntactical differences
present programmers with a desired choice of alternatives.Re-
cently is was announced that AspectWerkz has joined the AspectJ
project to bring the key features of AspectWerkz to the AspectJ 5
platform [7]. This merger will allow aspects like those in Listing 4
and Listing 5 to run side by side.

Listing 4 is a simple tracing aspect in AspectWerkz. The code
is plain Java. The annotation@Aspect("perJVM") specifies that
theAWLogger class is actually a singleton aspect. The annotation

@Before call(* *.*(..)) && !cflow(within(AWLogger))
specifies that thelog method is to be called for every method call
not in the dynamic control flow of methods inAWLogger.

Listing 5 is an auditing aspect in AspectJ. ThetoLog() pointcut
specifies that every method call should be logged. Thebefore,
after()returning, andafter()throwing advice add log mes-
sages to the buffer.

Arguably, if AspectWerkz and AspectJ were designed to be com-
posable third-party aspect mechanisms, building AspectJ 5would
have been much easier. Moreover, third-party composition of as-
pect mechanisms would have made other domain specific combina-
tions possible, like combining COOL with AspectWerkz and Java.

2.2 Lack of Integration Support
Unfortunately, current aspect mechanisms fail to compose correctly.
We demonstrate this failure on the bounded buffer example for two
commonly used approaches:

• Translation.Aspect programs in different aspect extensions
can be translated to a common target aspect extension.

• Instrumentation.Aspect mechanisms can be implemented by
means of program instrumentation. Such multiple indepen-
dent aspect mechanisms can be trivially composed by pass-
ing the output of one aspect mechanism as the input to an-
other aspect mechanism.

2.2.1 No Behavior-Preserving Translation
The translation approach requires the expressiveness of the target
aspect extension to support arbitrary granularity. Even when gran-
ularity does not pose a problem, a translation from one aspect lan-
guage to another will not generally preserve the behavior ofthe
source aspect program in the presence of other aspects. Consider
the synchronization concern implementation in COOL (Listing 2).
Translating it to AspectJ (Listing 3) results in an aspect that seems
to be a correct substitution for the COOL coordination aspect, but
in the presence of the Logger aspect (Listing 5) is actually not.

A property of the COOL synchronization concern is transparency
with respect to the AspectJ logging concerns. There should not
be any interference between the two. The COOL aspect does not
contain any join points that should be visible to the AspectJmech-
anism. This property is not preserved in the translation. Calls to
wait (Listing 3, lines 13 and 33) andnotifyAll (Listing 3, lines
20 and 41), which do not exist in the COOL code, will nonetheless
be unexpectedly reflected by the logger.5

Worse yet, the unexpected join points in the target program may
break existing invariants, resulting in our case in a deadlock. An
implicit invariant of the COOL aspect is that if bothadd andremove
are not currently executing by some other thread, then the thread
can enter and execute them. The AspectJ synchronization aspect,
however, violates this invariant. Assume that two threads concur-
rently access the buffer. The first thread acquires the lock,while the
second invokeswait on theBufferSyncAspectobject. However,
beforewait is invoked, theBufferLoggeraspect callsBoundedBuffer.add
(Listing 5, line 19). The latter call causes the second thread to enter
the guarded codeagain and trigger asecondcall to wait.6 Since
5Note that calls towait andnotifyAll cannot be avoided.
6Assuming that the first thread still owns the lock.
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the secondwait call is in thecflow of the logger, it is not advised,
and the thread finally suspends. When the first thread releases the
lock, the second thread wakes up after thesecondwait. It acquires
the lock, completes the advice execution, releases the lock, and pro-
ceeds to thefirst wait invocation. At this point, the buffer is not
locked; the second thread waits on theBufferSyncAspect object
monitor; and if no other thread ever accesses the buffer, thesecond
thread waits for ever—-deadlock!

2.2.2 No Correct Order for Sequential Processing
One would expect the two aspects written in AspectWerkz (List-
ing 4) and AspectJ (Listing 5) to interact as if they were two aspects
written in a single aspect extension (e.g., the future AspectJ 5 plat-
form). On the one hand, the AspectJ logger should log all method
calls within theAWLogger aspect. On the other hand, the As-
pectWerkz logger should log all method calls withinBufferLogger.
(And both should log all method calls in the base program as well.)

However, applying the AspectJ and AspectWerkz instrumentation
mechanisms sequentially, in any order, produces an unexpected re-
sult. The mechanism that is run first may not be able to interpret the
second extension’s aspect program. Specifically, the AspectWerkz
mechanism does not understand AspectJ’s syntax. It can be applied
to the bounded buffer code but not to theBufferLogger aspect.
Thus, when AspectWerkz is run first, some expected log messages
will be missing.

The mechanism that is run last logs method calls that are not sup-
posed to be logged. For example, when AspectWerkz is run sec-
ond, the following unexpected log message is generated by the
AWLogger aspect:

1 AW:public void BufferLogger.
ajc$afterReturning$BufferLogger$2$ba1fbd8a(
org.aspectj.lang.JoinPoint)

3. PROBLEM INSTANCE
We now return toMyBase, HisExt1, andHerExt2 in order to an-
alyze the problem and illustrate our approach concretely. After a
brief introduction to the syntax, we informally explainMyBase,
HisExt1, andHerExt2 through a programming example. The code
fragments are actual running code in our implementation, and their
semantics is formally presented in Section 5.

3.1 Syntax
3.1.1 MyBase Syntax

The syntax ofMyBase is given in Figure 1.MyBase is a procedu-
ral language. Procedures are mutually-recursive with call-by-value
semantics. The set of procedures is immutable at run-time. Ex-
pressed values are either booleans or numbers (but not procedures).
The execution of a program starts by evaluating the body of a pro-
cedure namedmain.

3.1.2 HisExt1 Syntax
The syntax forHisExt1 is given in Figure 2.HisExt1 is a simple
AspectJ-like aspect extension toMyBase. HisExt1 allows one to
impose advice around procedure calls and procedure executions.
Advice code is declared in a manner similar to procedures. Like in
AspectJ, the set of advice is immutable at run-time. Each advice
has two parts: a pointcut designator and an advice body expres-
sion. Atomic pointcuts arepcall-pcd, pexecution-pcd,

cflow-pcd, andargs-pcd. Theand-pcd andor-pcd al-
lows one to combine several pointcuts under conjunction anddis-
junction, respectively. Unlike AspectJ,around is the only advice
kind in HisExt1. There is no support for patterns in pointcut des-
ignators. HisExt1 introduces a newproceed-exp expression,
which is valid only within anHisExt1 advice body expression.

3.1.3 HerExt2 Syntax
HerExt2 allows one to declare a set of exception handlers inMy-
Base for catching and handling division by zero before an excep-
tion occurs. Advice code inHerExt2 specifies an exception handler
expression. A guard clause allows one to specify a dynamic scope
for the handler. HerExt2 introduces a new expression, namely
raise-exp, which is allowed within a handler. It passes the
exception handling to the next handler (in a manner, similarto
proceed-exp of HisExt1). The syntax of the language is given
in Figure 3.

The semantics forHerExt2 is straightforward. Whenever the sec-
ond argument to the division primitive evaluates to zero, the advice
handler (if one exits) is invoked. The handler is evaluated and the
result value substitutes the offending zero in the second argument
to the division primitive, and the program execution resumes.

Listing 8 shows an aspect we can write inHerExt2. This aspect
resumes the execution with the value ofPrecision(1) whenever
the second argument of a division primitive evaluates to 0 within
the control flow of theSQRT procedure.

3.2 A Programming Example
The semantics for the base procedural languageMyBase and the
aspect extensionsHisExt1 andHerExt2 are implemented as inter-
preters [19]. The example presented here is a simple executable
arithmetic program inMyBase for computing the square root of a
given number. While simple, the example is representative in terms
of illustrating the complexity of achieving collaborationamong as-
pect extensions, and its semantics serves as a proof of concept.

The procedureSQRT in Listing 6 implements inMyBase a simple
approximation algorithm using a sequence generated by a recur-
rence relation:

a0=approximation ; repeat an=f(an−1) until precise

By default, it setsa0 = 0, and callsSqrtIter to generate the
recurrence sequence:

an = an−1 + ǫ

until (an)
2 > x. The procedureImprove generates the next ele-

ment in the sequence;IsPreciseEnough? checks the termina-
tion condition; and the valueǫ = ǫ(x) is computed as a function of
x by the procedurePrecision.

The resulted computation of
√
x is inaccurate and extremely ineffi-

cient. However, it serves our purpose well. We will non-intrusively
improve its efficiency using an aspect inHisExt1. We will correct
its behavior for the singular pointx = 0 usingHerExt2.

The code in Listing 7, written inHisExt1, advises the base code
for drastically improving its efficiency and accuracy. Fourpieces
of advice are used. The first around advice (lines 202–204) inter-
cepts executions of the procedureImprove and instead applies
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Program ::= Declaration Program
Declaration ::= “program” “ {” Procedure∗ “}” Declaration
Procedure ::= “procedure” PName “ (” Id∗ “ )” Exps Procedure
Exps ::= lit-exp | true-exp | false-exp |

var-exp | app-exp | begin-exp | if-exp |
assign-exp | let-exp | primapp-exp Expressions

lit-exp ::= Number Numbers
true-exp ::= “true” True
false-exp ::= “false” False
var-exp ::= Id Id meaning
app-exp ::= “call” PName “ (” Exps∗ “ )” Procedure call
begin-exp ::= “{” Exps ( “ ;” Exps )∗ “}” Block
if-exp ::= “if” Exps “then” Exps “else” Exps Conditional
assign-exp ::= “set” Id “=” Exps Assignment
let-exp ::= “let” ( Id “=” Exps )∗ “in” Exps Let
primapp-exp ::= Prim “ (” Exps∗ “ )” Primitive application
Prim ::= “+” | “ -” | “* ” | “ /” Primitives
Id Identifier
PName Procedure name
Number Numbers

Figure 1:MyBase syntax

AOP1-Program ::= AOP1-Declaration HisExt1 program
AOP1-Declaration ::= “aop1” “ {” Advice∗ “}” HisExt1 declaration
Advice ::= “around” “ :” Pointcut Exps1 Advice
Pointcut ::= call-pcd | exec-pcd | cflow-pcd |

args-pcd | and-pcd | or-pcd Pointcut designators
call-pcd ::= “pcall” “ (” PName “ )” Procedure call pcd
exec-pcd ::= “pexecution” “ (” PName “ )” Procedure execution pcd
cflow-pcd ::= “cflow” “ (” PName “ )” Control flow pcd
args-pcd ::= “args” “ (” Id∗ “ )” Argument pcd
and-pcd ::= “and” “ (” Pointcut∗ “ )” Conjunction pcd
or-pcd ::= “or” “ (” Pointcut∗ “ )” Disjunction pcd
Exps1 ::= Exps | proceed-exp Advice expressions
proceed-exp ::= “proceed” Proceed exp

Figure 2:HisExt1 syntax

AOP2-Program ::= AOP2-Declaration HerExt2 program
AOP2-Declaration ::= “aop2” “ {” Handler∗ “}” HerExt2 declaration
Handler ::= “guard cflow” PName “ resume with ” Exps2 Handlers
Exps2 ::= Exps | raise-exp Handler expressions
raise-exp ::= “ raise” Raise expressions

Figure 3:HerExt2 syntax
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Listing 6: A naıve program inMyBase for computing
√
x

101 program {
102 procedure SQRT(radicand) {
103 call SqrtIter(0,radicand,call Precision(radicand

))
104 }
105 procedure SqrtIter(approximation,radicand,

precision) {
106 let

107 bid = call Improve(approximation,radicand,
precision)

108 in

109 if call IsPreciseEnough?(bid,radicand)
110 then bid
111 else call SqrtIter(bid,radicand,precision)
112 }
113 procedure Improve(approximation,radicand,

precision) {
114 +(approximation,precision)
115 }
116 procedure Precision(x) {1}
117 procedure IsPreciseEnough?(root,square) {
118 lt?(square,call Square(root))
119 }
120 procedure Square(x) {*(x,x)}
121 procedure Abs(x) {if lt?(x,0) then -(0,x) else x}
122 procedure main() {call SQRT(5)}
123 }

Listing 7: Advice inHisExt1 for using Newton’s method

201 aop1 {
202 around: and(pexecution(Improve) args(an,x,epsilon)) {
203 /(+(an,/(x,an)),2)
204 }
205 around: and(pexecution(IsPreciseEnough?) args(root,x)

) {
206 lt? (call Abs(-(x,call Square(root))),call

Precision(x))
207 }
208 around : pcall(Precision) {
209 /(proceed,1000)
210 }
211 }

Listing 8: Advice inHerExt2 for preventing an exception

301 aop2 { guard cflow SQRT resume with call Precision(1) }

Newton’s method:

an+1 =
1

2

(

an +
x

an

)

The second around advice (lines 205–207) interceptsIsPreciseEnough?
executions and checks instead whether or not

∣
∣(an)

2 − x
∣
∣ < ǫ

whereǫ = 1

1000
is set in the third around advice (lines 208–211).

The successive approximations now converge quadratically.

Runningmain and calling

call SQRT(5)

returns7

7The result shown is the actual value returned by the Scheme [36]
implementation.

(num-val 161/72)

meaning161

72
= 2.2361111 =

√
5.0001929

.
=

√
5.

The improved program works well for all non-negative inputsto
SQRT, except for when the radicand is0. In this case,Improve
is called with the first argumentan set to0. The execution of
Improve triggers the advice aroundImprove execution which
dividesx by an. Since the value ofan is 0 an exception occurs.

3.3 Third-party Composition
The main point of this example is thatHisExt1 andHerExt2 are
subject to third-part composition withMyBase and work collabo-
ratively:

• Units of independent production. HisExt1 andHerExt2
are independently constructed.

• Units of composition. MyBase, HisExt1, andHerExt2 are
units of composition.MyBase can be used by itself (running
only Listing 6). MyBase can be used withHisExt1 alone
(omitting Listing 8). MyBase can be used withHerExt2
alone (omitting Listing 7).MyBase can be used with both
HisExt1 andHerExt2.

• Units of collaboration. WhenHisExt1 and HerExt2 are
both used they collaborate. In the absence ofHerExt2, call-
ing

call SQRT(0)

results in

Error in /: undefined for 0.

However, whenHerExt2 with the advice code in Listing 8
are present, the correct value 0 is returned. The violating
primitive division application is introduced by the adviceof
HisExt1, yet intercepted by the advice ofHerExt2. This de-
sired behavior is non-trivial becauseHisExt1 was constructed
without any prior knowledge ofHerExt2.

3.4 Analysis
In order to achieve a correct collaboration:

• The aspectual effect of all extension programs needs to be
exposed to all the collaborating aspect mechanisms.

• Each individual aspect mechanism must hide its implemen-
tation from other aspect mechanisms.

3.4.1 Exposure of Aspectual Effect
In the context of multiple distinct aspect mechanisms, certain ele-
ments of the aspect program should be exposed to all collaborating
aspect mechanisms. We call these elements theaspectual effect.
The aspectual effect of an aspect program generally specifies the
implementation of a crosscutting concern. We assume that the as-
pectual effect is expressed in the base language.

In our example, the aspectual effect of anaspect1 ∈ HisExt1 is
specified by advice-body expressions; the aspectual effectof an
aspect2 ∈ HerExt2 is specified by handler expressions. WhenHis-
Ext1 andHerExt2 are composed together, their mechanisms must

7



reflect each other’s effect. Specifically,HisExt1 aspects must be
able to advise procedure calls made from theHerExt2 handler ex-
pressions; andHerExt2 handlers must be able to intercept excep-
tions introduced by theHisExt1 pieces of advice.

3.4.2 Hiding of Mechanism Implementation
An aspect extension extends the base language with new function-
ality. For example,HisExt1 adds advice binding, andHerExt2 adds
exception handling to the base language. An aspect mechanism
that implements the new functionality must hide its internal opera-
tions from the other aspect mechanisms. In our example, pointcut
matching and advice selection operations of theHisExt1 mecha-
nism must be hidden from theHerExt2 mechanism. Conversely,
testing whether the second division primitive argument evaluates
to zero and the exception handler selection ofHerExt2 should be
invisible to theHisExt1 mechanism.

4. OUR APPROACH
Now that we have illustrated a desired behavior, we explain our
solution to the aspect mechanism composition problem in general.

4.1 Aspect Mechanisms as Mixins
The primary idea is to view an aspect mechanism that extends a
base mechanism as amixin [13] that is applied to the base mech-
anism description. A description of a mechanism is an encoding
of its implementation (e.g., a configuration of an abstract machine
or its semantics). Anaspect mixin mechanismtransforms some
of the base mechanism description and introduces some additional
description.8

By keeping a clean separation between the descriptions of the base
and aspect mechanisms, the aspect mixin mechanism may be com-
posed with other mechanisms that extend the same base language.
The particular composition strategy may differ. In the nextsection
we show a concete instance of this general approach.

4.2 Solution Instance
We illustrate the approach specifically for expression evaluation se-
mantics. To build a multi mechanism, the composed aspect mech-
anisms are organized in a chain-of-responsibility [20], pipe-and-
filter architecture [37] (Figure 4). Each aspect mechanism per-
forms some part of the evaluation and forwards other parts ofthe
evaluation to the next mechanism using delegation semantics [8]
(“super”-like calls). If an expression is delegated by all mecha-
nisms then it is eventually evaluated inB. All the mechanisms
defer toA for the evaluation of recursive and other “self”-calls.

A subtlety in designing a collaborative aspect mechanism isdecid-
ing what to hide, what to delegate, and what to expose. A mech-
anism may hide its effect by directly reducing an expression. A
mechanism may refine the next mechanism’s semantics by delegat-
ing the evaluation. A mechanism may expose its effect by evaluat-
ing expressions inA. The latter allows what is known as “weav-
ing”. The exposed expressions are then evaluated collaboratively
by all the mechanisms. As a result, an effect of an aspect mecha-
nism is made visible to all the other mechanisms. Hence, the mech-
anisms reflect one another’s effect. Overall, a mechanism iscon-

8We generally assume that granularity requirements of an aspect
mechanism can always be satisfied by either taking the most fine-
grained description form (e.g., small-step operational semantics),
or refining (e.g., annotating) the current description.

delegate-eval

self-eval

self-eval

BM1

evaluate

A = B

delegate-eval

A = ⊞〈B, M1〉

self-eval

Mn B

A = ⊞〈B, M1, . . . , Mn〉

evaluate

M1

B

self-evalself-eval

delegate-eval

self-eval

evaluate

Figure 4:Mixing-like composition of aspect mechanisms

sidered a collaborative unit provided it properly hides, delegates, or
exposes the evaluation.

Notation.

The following notations are pertinent. We express functions in Cur-
ried form. The Curried function definition

fn pat1 pat2 . . . patn ⇒ exp

is the same as the lambda expressionλ pat1.λ pat2. . . . λ patn.exp.
Correspondingly, we write a list of function arguments withno
parentheses or commas to express a function application that takes
the first argument as its single parameter, which could be a tuple,
constructs and returns a new function, which then takes the next
argument as its single parameter, and so on. In function types, ‘→’
associates to the right.

We use the form(id aspat) in a formal argument to bind an iden-
tifier id to a value and match the value with a patternpat. Vari-
ables in the pattern bind to their corresponding values. We use
val pat = val to split apart a value. The symbol ‘’ stands for an
anonymous variable (don’t care). The symbol⋄ denotes an empty
mapping and[] denotes an empty list.

4.2.1 Overall Semantics
Let A[exp℄ denote the meaning of an AOP expressionexp. Our
goal is to be able to build the multi mechanismA by composing
the base mechanismB and the mutually independent aspect mech-
anismsM1, . . . ,Mn.

Base introduces a domainExp0 of base expressions. In addition,
each of the extensionsExt1,Ext2, . . . ,Extn may introduce its own
respective domain of additional expressionsExp1,Exp2, . . . ,Expn.9

The domain of AOP expressionsExpA is hence a union of pair-
wise disjointed expression domains defined by:

ExpA = Exp0 +Exp1 +Exp2 + · · ·+Expn

9We assume thatExpi ∩Expj = φ for all 0 ≤ i < j ≤ n.
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The additional expressions are concernintegrationinstructions for
the respective aspect mechanism. A concernimplementation, on
the other hand, is expressed using base language expressions in
Exp0 only.

EXAMPLE 1. HisExt1 introduces a proceed-exp andHerExt2
a raise-exp to specify nesting of advice and handler executions,
respectively. Anaspect1 ∈ HisExt1 in implemented inExp0 +
{proceed-exp} and anaspect 2 ∈ HerExt2 in Exp0+{raise-exp}.

We use the termAOP configurationto denote the state of a multi
mechanismA. An AOP configurationcfg ∈ CfgA is a vector of
configurations of the composed mechanisms:

CfgA = Cfg0 ×Cfg1 ×Cfg2 × · · · ×Cfgn

whereCfg0 denotes a domain of the base mechanism states, and
Cfgi, 1 ≤ i ≤ n, denotes a domain of the aspect mechanismMi

states.

EXAMPLE 2. Informally, aMyBase mechanism configuration
comprises a procedure environment, a variable environment, and a
store. AHisExt1 mechanism configuration comprises a list of ad-
vice, a “current” join point, and a “current” proceed computation.

The effect of evaluating an expressionexp ∈ ExpA is to change
the AOP configuration. The meaning of an expressionexp ∈ ExpA,
denotedA[exp℄, is defined to be a partial function on configura-
tions:

A : ExpA → (

ContA
︷ ︸︸ ︷

CfgA →֒ CfgA)

We denote byContA the set of partial functions onCfgA.

4.2.2 Design Guidelines for the Base Mechanism
B provides semantics for expressions inBase. The meaning of an
expressionexp ∈ Exp0 in Base, denotedB[exp℄, is expected to
be defined as:

B : Exp0 → ContA

The semantical functionB should adhere to the following design
principles:

• All sub-reductions within aB-reduction are reduced by call-
ingA instead ofB.

• B only accesses and updates the headCfg0-element of the
cfg ∈ CfgA configuration, and carries the tail through the
computation.

Note that the fact thatB is defined in terms ofCfgA does not mean
that A or n are known at the time of writingB. At the time of
writing the base mechanism,A is assumed to be:

A[exp℄ =

{
B[exp℄ exp ∈ Exp0

⊥ otherwise

where⊥ stands for “undefined”. Let̂B : Exp0 → Cfg0 → Cfg0

denote the evaluation semantics forBase with its standard signa-
ture. B̂ is extended to have the signature ofB (without knowingn)
as follows:∀exp ∈ Exp0,∀cfg = cfg0 ::cfg

∗ ∈ CfgA :

B[exp℄ cfg =

{
cfg ′

0 ::cfg
∗ B̂[exp℄ cfg0 = cfg ′

0

⊥ B̂[exp℄ cfg0 = ⊥

4.2.3 Design Guidelines for an Aspect Mechanism
We construct the aspect mechanismMi for an aspect extensionExti
as the override combination10 of a semantics transformerT i and a
semantical functionEi:

val Mi = fn eval ⇒ (T i eval)⊕ Ei

Semantics for theExti’s newly introduced expression domainExpi

is defined by:

Ei : Expi → ContA

The introduction ofExti into the base language also requires a
change to the evaluation semantics for a non-empty11 subset of the
existing base language expressionsExpi

0 ⊆ Exp0. We define this
part of the semantics forExti as a language semantics transformer:

T i :

Eval0
︷ ︸︸ ︷

(Exp0 → ContA) →

Evali
0

︷ ︸︸ ︷

(Exp
i
0 → ContA)

The semantics transformerT i should adhere to the following de-
sign principles:

• T i defines the semantics forExti and nothing more. LetB′

denote a semantical function with the same signature asB or
an extended signature.12 T i(B′) delegates the evaluation to
B′ whenever the base language semantics is required.

• T i(B′) accesses only theCfg0- and Cfgi-elements in a
cfg ∈ CfgA configuration, while the rest are carried through
the computation.

Note that allowing the aspect mechanism access to theCfg0 ele-
ment is needed for modeling interesting cases of aspect mechanism
interactions.

4.2.4 Third-party Construction of an AOP Language
Let B denote theBase mechanism, and let{ki}ni=1

be an ordered
index set. LetMk1

, . . . , Mkn denote the aspect mechanisms for the
aspect extensionsExtk1

, . . . ,Extkn , respectively.

We construct the multi mechanismA as the composition:

A = ⊞〈B, Mk1
, . . . , Mkn〉

where the composition semantics for⊞ is defined as following. The
meaning ofexp ∈ ExpA, denotedAn[exp℄ cfg , is given by the
recurrence relation:

A0 = B
An = An−1 ⊕ (Mkn An−1)

By construction,

An :
(
Exp0 +Expk1

+ · · ·+Expkn

)
→ ContA

is of the right signature and obeys the composition principle. To il-
lustrate the construction, we conclude by elaborating the first three
instances:

10For two partial functionsg andh, their override combinationg⊕h
(h overridesg), is defined by:

(g ⊕ h)(x) =def

{

h(x) x ∈ dom h
g(x) otherwise

11W.l.o.g., assumeExpi
0 6= φ.

12An extendedB may have a signatureB′ : Exp′
0 → CfgA, where

Exp′
0 ⊇ Exp0.
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Exp0

Expi

Expj

Expi
0Base

Exti

Exp
j
0

Extj

Figure 5:Expression Domains forl = 2

• For l = 0, we have thatExpA = Exp0, and the meaning
of exp ∈ ExpA is the same as the meaning ofexp in Base:

Aφ : Exp0 → ContA

Aφ
[exp℄ cfg = B[exp℄ cfg

• For l = 1 and the singleton index set{i} for some1 ≤ i ≤
n, we have thatExpA = Exp0 + Expi. The meaning of
exp ∈ ExpA is

A{i} : (Exp0 +Expi) → ContA

We construct:

A{i} = B ⊕
Mi B

︷ ︸︸ ︷

(T i B)⊕ Ei

A{i}
[exp℄ cfg =







Ei[exp℄ cfg exp ∈ Expi

(T i B)[exp℄ cfg exp ∈ Expi
0

B[exp℄ cfg otherwise

• For l = 2 and the ordered index set{i, j} for some1 ≤
i, j ≤ n, we have thatExpA = Exp0 + Expi + Expj

(Figure 5). The meaning ofexp ∈ ExpA is

A{i,j} : (Exp0 +Expi +Expj) → ContA

We construct:

A{i,j} = A{i} ⊕

Mj A{i}

︷ ︸︸ ︷

(T j A{i})⊕ Ej

A{i,j}
[exp℄ =







Ej[exp℄ exp ∈ Expj

Ei[exp℄ exp ∈ Expi

(T j B)[exp℄ exp ∈ Exp
j
0 −Expi

0

(T i B)[exp℄ exp ∈ Expi
0 −Exp

j
0

(T j (B ⊕ (T i B)))[exp℄ exp ∈ Expi
0 ∩Exp

j
0

B[exp℄ otherwise

5. IMPLEMENTATION
As a proof of concept we have implementedMyBase,HisExt1, and
HerExt2 for the example presented in Section 3. This section pro-
vides the implementation details more formally to the so-inclined
reader.

5.1 Base Mechanism Implementation
The domainExpA of AOP expressions includesMyBase, His-
Ext1, andHerExt2 expressions. We defineExp0 by extending the
expression setExps with a set of annotated expressions:

Exp0 = Exps+ annotated-exp

annotated-exp = procbody-exp|procarg-exp|primarg-exp|
assignrhs-exp|block-exp|letbody-exp|
letrhs-exp|if-exp|then-exp|else-exp

procbody-exp = Exp0 ×PNm Procedure body
procarg-exp = Exp0 × (PNm ×Var) Procedure arg
primarg-exp = Exp0 × (Prim × Int) Primitive arg
assignrhs-exp = Exp0 ×Var Assignment RHS
block-exp = Exp0 × Int Block element
letbody-exp = Exp0 ×Var∗ Let body
letrhs-exp = Exp0 × (Var × Int) Let env RHS
if-exp = Exp0 × {if} If exp
then-exp = Exp0 × {then} Then exp
else-exp = Exp0 × {else} Else exp

Figure 6:Annotated Expressions

app-exp = PNm × procarg-exp∗ Procedure call
begin-exp = block-exp∗ Block
cond-exp = if-exp× then-exp× else-exp Conditional exp
assign-exp = Var × assignrhs-exp Assignment
let-exp = Var∗ × letrhs-exp∗×

letbody-exp Let
primapp-exp = Prim × primarg-exp∗ Primitive app

Figure 7:Complex Expressions

cfg0 ∈ Cfg0 = EnvP ×EnvV× Base
Store configuration

envV ∈ EnvV = Var → Loc Variable envs
sto ∈ Store = Loc → Val Value Stores
envP ∈ EnvP = PNm → Proc Procedure envs
θ ∈ Proc = Var∗ × procbody-exp Procedures

Figure 8:MyBase domains

Annotated expressions (Figure 6) extend the interface of the base
mechanism to satisfy granularity needs of theHisExt1 andHerExt2
mechanisms. A complex expression (Figure 7) includes annotated
expressions as subexpressions.

The base configuration domainCfg0 consist of a procedure en-
vironment domainEnvP , a variable environment domainEnvV ,
and a value store domainStore (Figure 8). A procedure is repre-
sented as a closure that contains argument names and a procedure
body expression. The other definitions are omitted.

The evaluation semanticsB (Figure 9) forExp0 expressions sat-
isfies the design principles for the base mechanisms: (1) allex-
pression evaluations inB are exposed to A (highlighted in the
figure); (2) it accesses and updates only theCfg0-element of the
configuration; (3) the other configurations are carried through the
computation.

5.2 Aspect Mechanism Implementation
The aspect mechanisms are implemented as mixins to the base
mechanism (Figure 10). The semantics forExti is specified using
three constructor functions:

• build-Ei constructs an evaluator forExpi expressions:

build-Ei : Int → (Expi → ContA)
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val B : Exp0 → ContA
= fn (lit-exp 〈num〉) 〈 , , sto 〉 ::cfg∗ ⇒

〈⋄, ⋄, sto [0 7→ (num-val num)]〉 ::cfg∗

| fn (true-exp 〈〉) 〈 , , sto 〉 ::cfg∗ ⇒
〈⋄, ⋄, sto [0 7→ (bool-val#t)]〉 ::cfg∗

| fn (false-exp 〈〉) 〈 , , sto 〉 ::cfg∗ ⇒
〈⋄, ⋄, sto [0 7→ (bool-val#f)]〉 ::cfg∗

| fn (app-exp 〈pname, [exp1, . . . , expn]〉) cfg0 ::cfg
∗

let
val 〈envP , envV , sto〉 = cfg0

val 〈 , , sto1〉 ::cfg∗1 =

A exp1 〈envP , envV , sto〉 ::cfg∗

. . .
val 〈 , , ston〉 ::cfg∗n =

A expn 〈envP , envV , ston−1〉 ::cfg∗n−1

val 〈[id1, . . . , idn] , expproc〉 = envP pname
val υ1 = sto1 0
. . .
val υn = ston 0
val ston+1 = ston[l1 7→ υ1], l1 /∈ dom ston

. . .
val sto2n = sto2n−1[ln 7→ υn], ln /∈ dom sto2n−1

in
A expproc 〈envP , ⋄[id1 7→ l1, . . . , idn 7→ ln], sto2n〉 ::cfg∗n

end
| . . .

| fn (annotated-exp 〈exp, 〉) cfg ⇒ A exp cfg

Figure 9:MyBase semantical function

• build-T i constructs the semantics transformer for theExti:

build-T i : Int →

Eval0→Evali
0

︷ ︸︸ ︷

(Exp0 → ContA) → (Exp
i
0 → ContA)

• build-Mi constructs the aspect mixin mechanismMi for Exti:

val build-Mi : Int → Eval0 → (Expi
0 +Expi) → ContA

= fn pos eval ⇒ (build-T i pos eval)⊕ (build-Ei pos)

TheInt arguments provides the position of the extension’s config-
uration domainCfgi within CfgA.

5.2.1 HisExt1 Mechanism
The aspect mechanismM1 transforms the semantics for procedure
calls and executions, and supplies semantics forExp1’s new pro-
ceed expression:

Exp1
0 = {app-exp, procbody-exp}

Exp1 = {proceed-exp}

A configurationcfg1 ∈ Cfg1 for HisExt1 (Figure 11) comprises a
set of advice, a “current” join point, and a “current” proceed contin-
uation. An adviceadv ∈ Adv is derived directly fromHisExt1’s
syntax. A join pointjp ∈ JP is an abstraction of the procedure
call stack. It stores the name, formal and actual arguments of a cor-
responding procedure. The third element provides a meaningfor
proceed expressions. The effect and binding domains are internal
to the mechanism. An effect carries a set of bindings and an advice

M2

+eval(exp)

−Cfg
2

#procbody-exp(expb, pname)
#primarg-exp(exparg , prim, pos)

−raise-exp()
#procbody-exp(expb, pname)

−Cfg
1

#app-exp(pname, [exp1, ..., expn])

−proceed-exp()

M1

+eval(exp)

#Cfg
0

+eval(exp)

#procbody-exp(expb, pname)
#primarg-exp(exparg , prim, pos)
. . .

B

#app-exp(pname, [exp1, ..., expn])

Figure 10:Aspect mechanisms as mixins

exp ∈ Expadv = Exp0 +Exp1 Advice exps
cfg1 ∈ Cfg1 = Adv∗ × JP ×ContA Configuration
adv ∈ Adv = PCD ×Expadv Advice
jp ∈ JP = {call,exec} ×PNm×

Var∗ ×Val∗ × JP +Unit Join points
pcd ∈ PCD Pointcuts
effect ∈ Effect = Bnd∗ ×Expadv Effects
bnd ∈ Bnd = Var ×Val Binding

Figure 11:HisExt1 Domains

local
val app-eff : Int → Effect∗ → Eval0 → Eval0

= fn [] eval exp cfg ⇒ eval exp cfg

| fn i 〈bnd∗adv, expadv〉 ::effect∗ eval ⇒
fn exp 〈envP , envV , sto〉 ::cfg∗ ⇒
let
val 〈adv∗, jp, procd〉 = πi(cfg

∗)
val procd′ : ContA
= fn 〈 , , sto′〉 ::cfg∗′ ⇒
app-eff i effect∗ eval exp 〈envP , envV , sto′〉 ::cfg∗′

val 〈envV ′, sto′〉 = build-adv-envbnd∗adv sto

val cfg∗′ = cfg∗[i 7→ 〈adv∗, jp, procd′〉]
val cfg ′

0 ::cfg
∗′′ = A expadv 〈envP , envV

′, sto′〉 ::cfg∗′

in
cfg ′

0 ::cfg
∗′′[i 7→ 〈adv∗, jp, procd〉]

end
. . .

in
val build-T 1 : Int → Eval0 → Eval10
= fn i eval exp cfg0 ::cfg

∗ ⇒
let
val 〈adv∗, jpenc, procd〉 = πi(cfg

∗)
val jp = build-jp exp jpenc cfg0

val effect∗ = match-jpjp adv∗

val cfg∗′ = cfg∗[i 7→ 〈adv∗, jp, procd〉]
val cfg ′

0 ::cfg
∗′′ = app-eff i effect∗ eval exp cfg0 ::cfg

∗′

in
cfg ′

0 ::cfg
∗′′[i 7→ 〈adv∗, jpenc, procd〉]

end
end

Figure 12:build-T 1 semantics
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val build-E1 : Int → Exp1 → ContA
= fn i (proceed-exp 〈〉) (cfg as ::cfg∗) ⇒
let
val 〈 , , procd〉 = πi(cfg

∗)
in
procd cfg

end

Figure 13:build-E1 semantics

body expression. The bindings provide an appropriate variable en-
vironment for evaluating the advice body expression.

The interesting part of the aspect mechanismM1 implementation
is given bybuild-T 1 (Figure 12).build-T 1 defines a transformer
of the semantics for procedure calls and procedure executions. The
new semantics creates a join point, matches it against an advice
list, and applies selected advice effects inapp-eff. The function
ensures that the mechanism’s configuration properly reflects a “cur-
rent” join point by setting it before and after an effect application.

app-eff has two general behaviors. If the effect list is empty then
the expression evaluation isdelegated. Otherwise, the function
exposesthe effect by evaluating the advice expressionexpadv in
A. expadv is evaluated in a properly constructed variable environ-
mentenvV adv and a proceed continuationprocd′.

app-eff ensures that the mechanism configuration always stores a
proper proceed continuation in the same manner asbuild-T 1 re-
flects a “current” join point. This makesbuild-E1 straightforward
(Figure 13). The meaning of aproceed-exp expression is given
by the proceed continuation obtained from the configuration. The
continuation then runsapp-eff on the rest of the effect list. In other
words, aproceed-exp expression either evaluates the next ad-
vice inA or delegates the evaluation toeval if there is no advice
left.

Due to space considerations, we omit theHisExt1 functionsmatch-jp,
build-jpandbuild-adv-env, which do not affect the mechanism com-
position semantics.

5.2.2 HerExt2 Mechanism
The M2 mechanism forHerExt2 transforms the semantics for a
primitive argument and procedure execution expressions, and sup-
plies semantics forExp2’s new raise expression:

Exp2
0 = {primarg-exp, procbody-exp}

Exp2 = {raise-exp}

A configurationcfg2 ∈ Cfg2 (Figure 14) stores a list of handlers, a
stack of currently executing procedures (a list of procedure names),

exp ∈ Exphnd = Exp0 +Exp2 Handler exps
cfg2 ∈ Cfg2 = Handler∗ ×PNm∗×

ContA Configuration
hnd ∈ Handler = PNm ×Exphnd Handlers

Figure 14:HerExt2 Domains

local
val app-handler: Int → Exp∗

hnd → ContA
= fn [] cfg ⇒ cfg

| fn i exp ::exp∗ 〈envP , , sto 〉 ::cfg∗ ⇒
let
val 〈hnd∗, stack, raise〉 = πi(cfg

∗)
val υ = sto 0
val raise′ : ContA
= fn 〈envP , envV , sto〉 ::cfg∗ ⇒
app-handlerexp∗ 〈envP , envV , sto [0 7→ υ]〉 ::cfg∗

val cfg∗′ = cfg∗[i 7→ 〈hnd∗, stack, raise′〉]
val cfg ′

0 ::cfg
∗′′ = A exp 〈envP , ⋄, sto〉 ::cfg∗′

in
cfg ′

0 ::cfg
∗′′[i 7→ 〈hnd∗, stack, raise〉]

end
. . .

in
val build-T 2 : Int → Eval0 → Eval20
= fn i eval (primarg-exp 〈exparg, prim, pos〉 asexp) cfg ⇒

let
val 〈envP , envV , 〉 :: = cfg

val (cfg ′ as〈 , , sto〉 ::cfg∗) = eval exp cfg

in
if (sto 0 = (num-val0) ∧ prim = “/” ∧ pos= 2)
then
let
val 〈hnd∗, stack, 〉 = πi(cfg

∗)
val exp∗hnd = match-handlerhnd∗ stack

in
app-handleri exp∗hnd 〈envP , envV , sto〉 ::cfg∗

end
elsecfg ′

end
| fn i eval (procbody-exp 〈expb, pname〉 asexp) cfg0 ::cfg

∗ ⇒
let
val 〈hnd∗, stack, raise〉 = πi(cfg

∗)
val cfg∗′ = cfg∗[i 7→ 〈hnd∗, pname ::stack, raise〉]
val cfg ′

0 ::cfg
∗′′ = eval exp cfg0 ::cfg

∗′

in
cfg ′

0 ::cfg
∗′′[i 7→ 〈hnd∗, stack, raise〉]

end
end

Figure 15:build-T 2 semantics

and a “current” raise continuation. A handlerhnd ∈ Handler

is derived from the syntax ofHerExt2. It contains a name of a
guarded procedure and a handler expression. A handler expression
may contain araise-exp expression.

The new semantics forprimarg-exp enables the invocation of
a handler in an exceptional situation when the second argument of
a division primitive evaluates to zero. In this case,build-T 2 (Fig-
ure 15) selects a list of handler expressions usingmatch-handler
and invokes them usingapp-handler. If no exception occurs, the
original semantics is used.

The mechanism reflects the execution stack of its configuration by
transforming the semantics forprocbody-exp expressions. The
new semantics simply pushes the stack before and pops it after ap-
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val build-E2 : Int → Exp2 → ContA
= fn i (raise-exp 〈〉) (cfg as ::cfg∗) ⇒
let
val 〈 , , raise〉 = πi(cfg

∗)
in
raise cfg

end

Figure 16:build-E2 semantics

plying eval.

app-handlerproduces a configuration transformer from a list of
handler expressions. If the list is empty then the transformer is
the identity function. Otherwise, the configuration is constructed
by evaluating inA the first handler expression. The function also
constructs and reflects a raise continuation in the mechanism con-
figuration. The continuation simply appliesapp-handlerto the rest
of the handlers.

The build-E2 function (Figure 16) is similar tobuild-E1. The
meaning of araise-exp expression is provided by the raise con-
tinuation drawn from the configuration.

Due to space considerations, we omit thematch-handlerfunction
of HerExt2. This function bars no affect on the mechanism com-
position semantics.

5.3 Constructing an AOP language
We construct the semantical function for the composed AOP lan-
guage as follows:

A = ⊞ 〈B, M1,M2〉
where

M1 = build-M1 1

and

M2 = build-M2 2

The meaning of a program

p = 〈base , aspect1, aspect2〉
in the composed AOP language is defined as:

M[p℄ = A expmain 〈cfg0, cfg1, cfg2〉

such that

expmain = (app-exp 〈‘main, [] 〉)
cfg0 = 〈envP , ⋄, ⋄〉 envP = D0[base ℄

cfg1 = 〈adv∗, 〈〉, ⋄〉 adv∗ = D1[aspect1℄

cfg2 = 〈hnd∗, [] , ⋄〉 hnd∗ = D2[aspect2℄

6. DISCUSSION AND FUTURE WORK
Our study of constructing an AOP language with multiple aspect
extensions opens interesting research questions.

6.1 Alternative Collaboration Semantics
The co-existence of multiple aspect extensions raise a question con-
cerning the desired policy of collaboration. The presentedsolu-
tion instance defines the combinator⊞ operations to “wrap” as-
pect mechanisms around each other and around the original mean-
ing. This grants the aspect mechanism with complete controlover

the original meaning and the option to override it. For example,
the HisExt1 mechanism might disable the original semantics of
app-expandprocbody-expexpressions when they are advised with
no proceed. A mechanism can either delegate the expression eval-
uation to the next mechanism or evaluate the expression itself. In
the latter case, the evaluated expression is “filtered” out.We call
this a composition withwrappingsemantics.

Collaboration with wrapping semantics is sensitive to the order of
composition. The program example in Listing 9 illustrates acol-
laboration with wrapping semantics.

Listing 9: Collaboration semantics inAOP

1 program {procedure main() { 1 } }
2 aop1 { around(): pexecution(main) {/(1,0)} }
3 aop2 { guard cflow main resume with 2 }

If the AOP language is constructed as

A = ⊞ 〈B,M2,M1〉
M1 is applied first and replaces theprocbody-expof main with
the advice body expression. Consequently,M2 does not observe
the execution ofmain in the execution stack and would not guard
the division. The program would therefore throws a divide-by-zero
exception. On the other hand, if the language is constructedas

A = ⊞ 〈B,M1,M2〉
the exception is caught.

In wrapping semantics different mechanisms generally reflect dif-
ferent views of the program execution. Alternatively, one can pro-
vide a collaboration semantics where all the mechanisms share a
unique program view. This can be achieved by decoupling the reifi-
cation and reflection processes of a mechanism. With such seman-
tics, every expression evaluated inA is reified by all the mech-
anisms. The evaluation semantics is then constructed by allthe
mechanism collaboratively with respect to the ordering. Given this
alternative semantics, the program example in Listing 9 would pro-
duce no exception independently of the ordering ofM1 andM2.

6.2 Alternative Semantical Operations
We illustrate our approach using expression evaluation semantics.
However, the idea of third-party composition of aspect extensions
can be realized for other kinds of semantical operations.

Consider a generalized form of a semantical function type:

Mean = OP → ContA

whereOP is a domain of operation identifiers. GivenCfgA =
Cfg0 ×Cfg∗, Mean maps to various operations ofMyBase se-
mantics as shown in Table 1. For example, store lookup operation
is identified by location. It takes a store and a (dummy) value, and
returns a store and a result value. Our approach can be easilyrede-
fined to useMean instead of expression evaluation semantics.

6.3 Other Solution Instances
The specific⊞ wrapping semantics is only an illustration of our
approach in general. In this sections we discuss how alternative
solution instances can be constructed.

The wrapping semantics enables to compose arbitrary aspectmech-
anisms as long as the mechanisms can be defined as mixins to the
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Type OP Cfg0

Expr. eval Exp EnvP ×EnvV × Store

Store upd Loc Store

Store lookup Loc Store ×Val

Env upd Var EnvV

Env lookup Var EnvV × Loc

Table 1:Semantical operations inMyBase

base mechanism description. However, wrapping does not sup-
port complex mechanism compositions. For example, a reason-
able composition of AspectJ and AspectWerkz might require that,
at each join point,before advice in both AspectJ and AspectWerkz
aspects are executed before anyaround advice, and finally fol-
lowed byafter advice. However, such an AspectJ/AspectWerkz
composition is difficult to construct using the wrapping composi-
tion semantics.

More complex composition semantics can be provided by imposing
additional requirements on the aspect mechanism design. For ex-
ample, one possible approach is to specify types of aspectual effect
that a mechanism can produce. With such a semantics, the over-
all aspectual effect can be constructed from aspectual effects of the
collaborating mechanisms with regard to the effect types.

6.4 Other Mechanism Descriptions
Our choice of the mechanism’s description style restricts access to
the context data. Specifically, a mechanism can only access ele-
ments of the current or parent expression, environment, andstores.
While this data can be sufficient for implementing theHisExt1 and
HerExt2 aspect extensions forMyBase, real-world aspect exten-
sions may generally require more information. For example,As-
pectJ needs access to callee and caller objects to constructa method
call join point. Instantiating the approach for a description style that
uses an explicit representation of the evaluation context (e.g., using
a CEKS machine [15, 16]) would produce a more general solution.

In our solution we used annotated expressions to meet the granu-
larity requirement ofHisExt1 andHerExt2. The same result can be
achieved by using small-step operational semantics for describing
the mechanisms. In this case, aspect mechanisms would transform
and extend operational semantics rules of the base mechanism.

6.5 Application
This work provides a foundation for composing multiple aspect
mechanisms. A practical application of this work is to construct
an AOP framework that:

1. supports expressiveness that generalizes over conceptsand
lingual mechanisms of potential source aspect extensions.
This requires a generalized aspect mechanism model.

2. meets granularity requirements of any source aspect exten-
sion.

3. provides lingual mechanisms for encapsulating constructs that
simulate a source aspect mechanism.

4. provides lingual mechanisms for exposing the aspectual ef-
fect of the source aspects.

7. RELATED WORK
7.1 Composing Aspect Extensions
Several authors point out the expressiveness drawback in using a
single general-purpose AOP language, and emphasize the useful-
ness of combining modular domain-specific aspect extensions [14,
22, 48, 38, 30]. However, the problem of composition has not re-
ceived a thorough study.

XAspects. Shonle et al. [38] present a framework for aspect com-
pilation that allows to combine multiple domain-specific aspect ex-
tensions. The framework’s composition semantics is to reduce all
extensions to a single general-purpose aspect extension (AspectJ).
Specifically, given a set of programs written in different aspect ex-
tensions, XAspects produces a single program in AspectJ. Anas-
pect extension program is translated to one or more AspectJ as-
pects. In XAspects, collaboration between the aspect extensions is
realized as a collaboration between the translated AspectJ’s aspects.

The XAspects framework uses a translation-based approach.Specif-
ically, XAspects translates programs in domain-specific aspect ex-
tensions to AspectJ. Unfortunately, in the presence of other aspects,
this approach does not preserve the behavior of the domain specific
aspects, and therefore the XAspects approach does not guarantee a
correct result.

Moreover, extensions in XAspects must be reducible to AspectJ.
Since only a subset of aspect extensions is expressible in AspectJ,
XAspects doesn’t achieve composition in general. Our approach
to composition and collaboration is not based on translation. In
comparison to XAspects our proposed approach is more general.

Concern Manipulation Environment . IBM’s new Concern Ma-
nipulation Environment provides developers with an extensible plat-
form for concern separation: “The CME provides a common plat-
form in which different AOSD tools can interoperate and integrate” [1].
CME would be a natural environment for a large scale application
of our approach.

7.2 AOP Semantics
Existing works in AOP semantics explain existing aspect exten-
sions and model AOP in general. We base some of our work on
these studies. Unfortunately, they do not address the problem of
aspect mechanism composition directly.

Semantics for Existing AOP Languages. Wand et al.’s [49] se-
mantic for advice and dynamic join points explains a simplified
dynamic AspectJ. It provides denotational semantics to a small pro-
cedural language, similar to ours. The language embodies key fea-
tures of dynamic join points, pointcuts and advice. The seman-
tics given does not express the AOP semantics separately from the
base. However, advice weaving is defined there as a procedure
transformer. This is a special case of a language semantics trans-
former as we choose to define an aspect mechanism.

Method-Call Interception [27] is another semantical modelthat gives
semantics of advising method calls. Similar to the previously dis-
cussed work, it highlights a very specific piece of AOP expressive-
ness (similar to AspectJ).

Semantical Models of AOP. Several studies on AOP semantics
provide a general model of AOP functionality. Walker et al. [44]
defined aspects through explicitly labeled program points and first-
class dynamic advice. Jagadeesan et al. [24] use similar abstrac-
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tions (pointcuts and advice). Clifton et al. [10, 11] provides pa-
rameterized aspect calculus for modeling AOP semantics. Intheir
model, AOP functionality can be applied to any reduction step in
a base language semantics. This is similar to the definition of an
aspect mechanism we use.

In comparison to our semantics, these models define AOP function-
ality using low-level language semantics abstractions. Using these
more formal approaches for describing our method is left forfuture
work.

Modular Semantics for AOP. We define an aspect mechanism
separately from the base language and require it to specify only
the AOP transformation functionality. This approach leadsto the
construction of modular AOP semantics. Exploring the application
of other approaches for modular language semantics (e.g., modular
SOS [31] and monad-based denotational semantics) to describing
aspect mechanism is another area for further research.

8. CONCLUSION
In this paper we address the open problem of integrating a base lan-
guageBase with a set of third-party aspect extensionsExt1, . . . ,Extn
for that language. We present a semantical framework in which in-
dependently developed, dynamic aspect mechanisms can be subject
to third-party composition and work collaboratively.

We instantiate our approach for aspect mechanisms defined asex-
pression evaluation transformers. The mechanisms can be com-
posed like mixin layers [39, 34, 35] in a pipe-and-filter architecture
with delegation semantics. Each mechanism collaborates bydele-
gatingor exposingthe evaluation of expressions. The base mecha-
nism serves as the terminator and does not delegate the evaluation
further.

We applied our approach in the implementation of a concrete base
languageMyBase and two concrete aspect extensions to that lan-
guage:HisExt1 andHerExt2. The implementation illustrates the
constructions steps. It demonstrates the semantics for third-party
composition of aspect mechanisms.

The semantics forHisExt1 resembles that for AspectJ. Indeed, our
approach can be applied to implementing the pointcut and advice
mechanism of AspectJ as an aspect extensions to Java. More-
over, our approach is not limited to the pipe-and-filter composi-
tion architecture. Introduction of a generalized aspect mechanism
model would enable sophisticated compositions of third-party as-
pect mechanisms. This would further provide a practical wayto
compose AspectJ with new domain-specific aspect extensions.
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