arXiv:cs/0505004v1 [cs.SE] 30 Apr 2005

Pluggable AOP — Designing Aspect Mechanisms for
Third-party Composition -

Sergei Kojarski
Northeastern

David H. Lorenz
University

Boston, Massachusetts 02115 USA

{kojarski, lorenz}@ccs.neu.edu

ABSTRACT

Studies of Aspect-Oriented Programming (AOP) usually $oco
a language in which a specific aspect extension is integxaitdd
a base language. Languages specified in this manner havala fixe
non-extensible AOP functionality. In this paper we consitle
more general case of integrating a base language with a set of
main specific third-party aspect extensions for that lagguaNe
present a general mixin-based method for implementingcagpe
tensions in such a way that multiple, independently dewedogy-
namic aspect extensions can be subject to third-party csitipo
and work collaboratively.

1. INTRODUCTION
A current trend in Aspect-Oriented Programming (AOF [26]he

semantics foBase x Ext; and the semantics f@ase x Ext,, the
semantics foBase x Ext; x Extz is undefined even thoudtxt;
andExt; are both aspect extensions to the same base language.

In this paper we resolve this difficulty by considering a mgea-
eral question:

THE ASPECT EXTENSION COMPOSITION QUESTIONGiven a base
language,Base, and a set{Exti, ..., Ext,} of independent as-
pect extensions tBase, what is the meaning of a prograbase €
Base in the base language in the presencenofispect programs
(aspecty, ..., aspect,) € Ext; x --- x Ext, written in then dif-
ferent aspect extensions?

usage of general-purpose AOP languages (AOPLs). However, aAbility to compose distinct aspect extensions is of greacpcal

general-purpose AOPL lacks the expressiveness to tadldassds
of crosscutting. A solution to unanticipated crosscuttiogcerns
is to create and combine different domain-specific aspeenex
sions to form new AOP functionality [#2]. As of yet, there is n
methodology to facilitate this process.

Studies of AOP typically consider the semantics for an AOiAL t
integrates a certain aspect extensiBri;, with a base language,
Base. For exampleExt; might be (a simplified version of) As-
pectJ [25] andBase (a simplified version of) Javdl[3]. The se-
mantics for the integratioBase x Ext; is achieved by amend-
ing the semantics for the base language. Given a pair of @nogr
(base, aspect,) € Base x Ext;, the amended semantics explain
the meaning obase in the presence aispect, .

Unfortunately, the semantics for the aspect extension hafdfor
the base language become tangled in the process of intagrati
Consequently, it is difficult to reuse or combine aspectresitas.
For each newly introduced aspect extension,Baly, the seman-
tics for Base x Exty needs to be reworked. Moreover, given the

*This research was supported in part by the National Scieoge-F
dation (NSF) Science of Design program under Grant Number
CCF-0438971, and by the Institute for Complex Scientifia\Bafe

at Northeastern UniversithEtp: //www.icss.neu.edu).

importance (Sectiol 2). Addressing the general compaositiges-
tion also provides in the special case where- 1 a better encap-
sulation of the semantics for a single aspect extension.

1.1 Combining Two Aspect Extensions
Answering the aspect extension composition question ficdif
even forn = 2. Let MyBase be a procedural language, and con-
sider two independent, third-party aspect extensionsly@ase.
The first,HisExt:, capable of intercepting procedure calls and sim-
ilar in flavor to AspectJ. The otheHerExt2, an aspect extension
to MyBase capable of intercepting calls to the primitive division
operator for catching a division by zero before it even happas
opposed to catching a division by zero exception after iuog;

a capability that AspectJ lacksBoth call interception (e.g.[127])
and checking if a divisor is zero (e.d.] [5.]28] 18]) are benatks
often used in connection with aspects.

W.l.o.g., assumélisExt; is created beforélerExt, is even con-
ceived. IfHisExt; is to eventually work collaboratively with an-
other aspect extension, e.glerExt., the implementation oHis-
Ext; must take special care to expose its AOP effant onlyits
effect, in terms oMyBase. This is because aaspect, program
written in HerExt2 would need to intercept divisions by zero not
only in the base prograruse but also in advice introduced by an
aspect, program written irHisExt; .

Failing to reify a division by zero imspect, might cause a false-
negative effect irHerExt2. Meanwhile,aspect, must not intercept
divisions by zero, if any, in the implementation mechanigmither
HisExt, or HerExt2. Reifying a division by zero in the implemen-
tation mechanism might cause a false-positive effeétdrExt,.

!AspectJ can neither advise primitives nor arguments.

http://arxiv.org/abs/cs/0505004v1

Similarly, aspect,; must intercept not only procedure callstimse
but also any matching procedure call introducedibyect,. aspect,
must not, however, intercept internal procedure callsdhat part
of the implementation mechanism of eithéisExt; or HerExts.

Note that generally aspect extensions present incompadgitls of
AOP granularity [[3D]. In our exampleyspect, is not expressible
in HerExtz, and aspect, is not expressible itisExt;. Therefore
the problem of integrating the two cannot be reduced to kating
aspect, to HerExto or translatingaspect, to HisExt; and using
just one aspect extension. This distinguishes our obgétbm the
purpose of frameworks (like XAspecis]38]) that rely on tise of
a general purpose AOPL (like Aspect]).

In the sequel, dase mechanismdenotes an implementation of a
base language semantics, aspect mechanismienotes an imple-
mentation of an aspect extension semantics, andl mechanism
denotes an implementation of a multi-extension AOPL.

1.2 Objective and Contribution

We describe a general method for implementing the base mecha
nism and the aspect mechanisms in such a way that multigle; in
pendent aspect mechanisms can be subject to third-partyazim
tion and work collaboratively. By third-party compositiohaspect
mechanisms we mean a semantical framework in which disigct

pect mechanisms can be assembled with the base mechanism int

a meaningful multi mechanism without modifying the indivéad
mechanisms. The mechanisms are said to be collaborative uni
of composition if the semantics of the composed multi meigman
can be derived from the semantics of the mechanisms thatresenp
it.

More precisely, let3 denote the base mechanism ®ase. Let
M, ..., M, denote the aspect mechanisms oy, . .., Ext,,
respectively. Thaspect mechanism composition problisno en-
able the third-party composition ef1 , . . . , a1, with B into a multi
mechanismA, in a mannar similar to the assembly of software
components:

e Units of independent production. The aspect mechanisms
M, ..., M, are independently defined. The base mecha-
nism 3 is defined independently fromf, ..., #,. To en-
able the compositiom, . . ., 4, rely only onB and have
an explicit context dependency only oh

Units of composition. The mechanisms are subject to third-
party composition. The multi mechanisp for the com-
bined AOP language is constructed (denoted ¥ aom-
binator) by composing the base mechanism with the aspect
mechanisms without altering themd: = B(B, 44, . .., M)

Units of collaboration. The semantics for the composed
multi mechanismA is the “sum” of the semantics provided
by all the mechanisms.

Independence enables third-party development of aspechane
nisms; composability enables third-party compositionspfect mech-
anisms; and collaboration enables the desired behaviteiedn-
structed AOP language.

2A software component is a unit of composition with contratiyu
specified interfaces and explicit context dependenciegs ansoft-
ware component can be deployed independently and is subject
third-party composition[40].

Specifically, our approach enables third-party compasitbdy-
namic aspect mechanisms. We illustrate our solution foresxp
sion evaluation semantics. We model each aspect mechasism a
a transformation function that revises the evaluation seicsfor
expressions.

1.3 Ouitline

In the rest of this paper, we demonstrate our solution to te a
pect mechanism composition problem concretely througtirthe
plementation of interpreters. The next section motivatesrieed
for composing multiple aspect extensions and demonstitadack

of integration support in current aspect mechanisms. Qefdi
presents a concrete instance of the problem: a base lanfylyage
Base with two aspect extensionBljsExt; andHerExt,. We present
their syntax and analyze a runnable programming examplé&eimp
mented in our framework. In Sectigh 4 we present our approach
for the general case of integratingaspect mechanisms. In Sec-
tion @ we revisit the example shown in Sectidn 3 and formally
demonstrate our approach by constructing the semantidsiyer
Base, HisExt1, andHerExts.

2. MOTIVATION

There is a growing need for the simultaneous use of multipieain-
specific aspect extensions. The need steams mainly fronatbe f
able trade-offs that a domain-specific aspect extensionotfan
over a general purpose AOPL:

e Abstraction. A general purpose AOPL offers low-level ab-
stractions for covering a wide range of crosscutting cameer
Domain specific aspect extensions, in contrast, can offer ab
stractions more appropriate for the crosscutting casdsein t
domain at hand, letting the programmer concentrate on the
problem, rather then on low-level details.

Granularity. The granularity of an aspect extension dictates
all possible concern effect points within an applicatioonG
bining domain-specific aspect extensions allows to oveecom
the fixed granularity limitation of general purpose AOFLE][3

Expressiveness versus Complexitye granularity of a general-
purpose AOPL exposes a non-linear relationship between the
language expressiveness and complexity. An increase in the
language granularity would significantly increase the leagg
complexity while achieving a relatively small increase xa e
pressiveness. Domain specific aspect extensions, in etntra
can offer independent diverse ontologies [48].

The need also arises from the sheer abundance of availgi#etas
extensions (and their evolving aspect libraries). For thea Jpro-
gramming language alone there are numerous aspect extensio
that are being used in a variety of commercial and reseanjbgis.
These include: Aspectd (ajt_]12] and abt [4]), AspectWeliz [
COOL [29], JBoss-AOFL12], JAsCH [%3], Object Tearnsl[21], Gom
poselJ[[5D], to name just a féw.Ability to use these aspect ex-
tensions together will allow to reuse exiting (and futurgpect li-
braries written for the different aspect extensions.

Unfortunately, little support is provided for the integeat of dis-
tinct aspect mechanisms. Each aspect mechanism creategits

3For a complete list of commercial and research aspect dgtens
seehttp://www.aosd.net/technology/

http://www.aosd.net/technology/

Listing 1: A non-synchronized bounded buffer

Listing 2: Synchronization aspect in COOL

public class BoundedBuffer {

private Object([] buffer;

private int usedSlots = 0;

private int writePos = 0;

private int readPos = 0;

private static BoundedBuffer singltn = null;

public static BoundedBuffer getInstance() {
return singltn;

}

public BoundedBuffer (int capacity) {
this.buffer = new Object[capacity];
singltn = this;

}

public Object remove () {
if (usedSlots == 0) {return null;}
Object result = buffer[readPos];
buffer[readPos] = null;
usedSlots—-—; readPos++;
if (readPos==buffer.length) readPos=0;
return result;

}

public void add(Object obj) throws Exception {
if (usedSlots==buffer.length)
throw new Exception("buffer is full");
buffer[writePos] = obj;
usedSlots++;
writePos++;
if (writePos==buffer.length) writePos=0;

unique program representation which often excludes fareisr
pects. Consequently, interaction between multiple aspecha-

nisms operating on a single program can produce unexpectedsq

incoherent results.

2.1 Example

Consider a bounded buffer example implemented in Java-(Lisk
ing[). Suppose you have three aspect extensions to Javairat yo

disposal:

e COOL [Z29]—a domain-specific aspect extension for express#

ing coordination of threads;

AW Nk

coordinator BoundedBuffer {
selfex {add, remove},
mutex {add, remove};

}

Listing 3: Synchronization aspect in AspectJ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38

41
42
43

45

public aspect BufferSyncAspect {
private Object remove_thread=null;
private Object add_thread=null;

Object around() :
execution (Object BoundedBuffer.remove()) {
Object this_thread = Thread.currentThread();
synchronized (this) {
while ((remove_thread!=null &&
remove_thread!=this_thread) ||
(add_thread!=null &&
add_thread!=this_thread))
try {wait();
} catch (InterruptedException e) {}
remove_thread = this_thread;
}
Object result = proceed();
synchronized(this) {
remove_thread = null;
notifyAll();
}
return result;

}

void around() throws Exception:
execution (void BoundedBuffer.add (Object)) {
Object this_thread = Thread.currentThread/()
synchronized (this) {
while ((remove_thread!=null &&
remove_thread!=this_thread) ||
(add_thread!=null &&
add_thread!=this_thread))
try {wait();
} catch (InterruptedException e) {}
add_thread = this_thread;
}
try{proceed();}
finally {
synchronized (this) {
add_thread = null;
notifyAll();
}
}
}

’

e AspectWerkz[[B]—a general purpose lightweight AOP frame-

work for Java,

e AspectJ—a general purpose aspect extension for Java,

and two concerns to address, namely, a synchronizationeoonc
and a tracing concern.

2.1.1 COOL versus AspectJ

The synchronization concern can be expressed as a coandasat
pect in COOL (e.qg., Listinfl2) or alternatively as an aspaoAs-
pectJ (e.g., Listinfl3).

The COOL aspect (Listinfl 2) provides an elegant declaratése
scription of the desired synchronization. Thetex exclusion set

{add, remove} specifies thaddd may not be executed by a thread
while remove is being executed by a different thread, and vice
versa. In addition, thee1fex exclusion set prohibits different
threads from simultaneously executing eithea or remove.*

The COOL code is expressive, concise, readable, and easy to u
derstand. It provides the right abstractions. Studies48332[47]
have shown that “participants could look at COOL code anckund
stand its effect without having to analyze vast parts of tst of
the code”, and that “COOL as a synchronization aspect laggua
eased the debugging of multi-threaded programs, comparéubt

“However, the same thread is not prohibited from enterindp bot
add andremove.

N o oA W Nk

AW N Rk

© ® N o ua

Listing 4: Logger aspect in AspectWerkz

[xx @Aspect("perdVM”)x/
public class AWLogger {
[xx@Before call§ *.x(..))&&!cflow(within(AWLogger)}/
public void log(JoinPoint jp) {
System.out.println ("AW:"+jp.getSignature());
}
}

Listing 5: Buffer Logger

public aspect BufferLogger {

pointcut tolog() :
call(* *.*(..)) &&
)i

!cflow (within (BufferLogger)

before(): toLog() {
log ("ENTER", thisJoinPoint) ;
}
after () returning: tolLog() {
log ("EXIT",thisJoinPoint) ;
}
after () throwing: toLog () {
log ("THROW", thisJoinPoint) ;
}

protected void log(String aType,JoinPoint jp) {
BoundedBuffer buf=BoundedBuffer.getInstance();
if (buf==null) return;
try{buf.add(jp);} catch (Exception e) {

System.out.println (e.getMessage()) ;

}

}

}

@Before call(* *.*(..)) && !cflow(within (AWLogger))
specifies that theog method is to be called for every method call
not in the dynamic control flow of methods awrogger.

Listing[H is an auditing aspect in AspectJ. The.og () pointcut
specifies that every method call should be logged. Té&gore,
after () returning, andafter () throwing advice add log mes-
sages to the buffer.

Arguably, if AspectWerkz and AspectJ were designed to be-com

posable third-party aspect mechanisms, building Aspeegtddd
have been much easier. Moreover, third-party compositfaase

pect mechanisms would have made other domain specific cambin

tions possible, like combining COOL with AspectWerkz andala

2.2 Lack of Integration Support

Unfortunately, current aspect mechanisms fail to composectly.
We demonstrate this failure on the bounded buffer examplanio
commonly used approaches:

e Translation. Aspect programs in different aspect extensions

can be translated to a common target aspect extension.

e Instrumentation Aspect mechanisms can be implemented by
means of program instrumentation. Such multiple indepen-
dent aspect mechanisms can be trivially composed by pass-
ing the output of one aspect mechanism as the input to an-

other aspect mechanism.

2.2.1 No Behavior-Preserving Translation
The translation approach requires the expressivenes® dgatpet

aspect extension to support arbitrary granularity. Eveamgran-
ularity does not pose a problem, a translation from one aspec
guage to another will not generally preserve the behaviahef
source aspect program in the presence of other aspectsid€ons
the synchronization concern implementation in COOL (big#).
Translating it to AspectJ (Listifd 3) results in an aspeat teems
to be a correct substitution for the COOL coordination aspmagt

in the presence of the Logger aspect (Lisfihg 5) is actuaity n

ability to debug the same program written in Ja¥a’ [45].

While it is possible to express the same concern in Aspelog], t
code will be much longer. In comparison to the COOL code, the
AspectJ implementation (Listiid 3) requires 10 times mired of
code. Itis also harder to explain. The aspect implementsratoro
using two condition variablesemove_thread andadd_thread.
Using two pieces ofround execution advice, the aspect obtains
locks (remove_thread andadd_thread) for the duration of exe-
cutingproceed (execution ofremove andadd, respectively). This
guarentees that no more than one thread operates on the &iuffe
a time. If remove_thread Or add_thread are locked by some
other thread, the advice waits. When the thread has a loaknét
proceed and afterwards releases the lock by signatiagi fya11 (),
which in turn wakes up other waiting threads.

A property of the COOL synchronization concern is transpeye
with respect to the AspectJ logging concerns. There shooid n
be any interference between the two. The COOL aspect does not
contain any join points that should be visible to the Aspewtth-
anism. This property is not preserved in the translationlisGa

wait (Listing[d, lines 13 and 33) antbtifya11 (Listing[d, lines

20 and 41), which do not exist in the COOL code, will nonetkgle

be unexpectedly reflected by the logger.

Worse yet, the unexpected join points in the target progray m
break existing invariants, resulting in our case in a deddIdAn
implicitinvariant of the COOL aspect is that if botkid andremove
are not currently executing by some other thread, then treath
can enter and execute them. The AspectJ synchronizati@tasp
however, violates this invariant. Assume that two threamtscar-
rently access the buffer. The first thread acquires the lwhKe the
second invokesait ontheBuffersyncAspect object. However,
beforewait isinvoked, thesufferLogger aspect callgoundedBuffer.add
(Listing[d, line 19). The latter call causes the second thteanter
the guarded codagain and trigger asecondcall to wait.® Since

2.1.2 AspectWerkz + AspectJ

Semantically, the underlying mechanisms of AspectWerkiz/Asx
pectJ are essentially equivalent. Yet, their syntactidétrénces
present programmers with a desired choice of alternativee:
cently is was announced that AspectWerkz has joined thedpe
project to bring the key features of AspectWerkz to the Aspéc
platform [4]. This merger will allow aspects like those irsting[4
and Listind® to run side by side.

Listing @ is a simple tracing aspect in AspectWerkz. The code
is plain Java. The annotati@nspect ("pergvm”) specifies that SNote that calls tavait andnotifyall cannot be avoided.
the awLogger class is actually a singleton aspect. The annotation ®Assuming that the first thread still owns the lock.

[

the secondrait callis in thec£1ow of the logger, it is not advised,
and the thread finally suspends. When the first thread rede¢hee
lock, the second thread wakes up aftergdbeondvait. It acquires
the lock, completes the advice execution, releases thedockpro-
ceeds to thdirst wait invocation. At this point, the buffer is not
locked; the second thread waits on thef ferSyncaspect object
monitor; and if no other thread ever accesses the buffegabend
thread waits for ever—-deadlock!

2.2.2 No Correct Order for Sequential Processing
One would expect the two aspects written in AspectWerkzt{Lis
ing[@) and AspectJ (Listird 5) to interact as if they were twpexcts
written in a single aspect extension (e.g., the future Aspgplat-
form). On the one hand, the AspectJ logger should log all oteth
calls within theawLogger aspect. On the other hand, the As-
pectWerkz logger should log all method calls withinf ferLogger.
(And both should log all method calls in the base program ds)we

However, applying the AspectJ and AspectWerkz instruntiemta
mechanisms sequentially, in any order, produces an unepes-
sult. The mechanism that is run first may not be able to in&the
second extension’s aspect program. Specifically, the Agyrr&z
mechanism does not understand AspectJ’s syntax. It carpiecdp
to the bounded buffer code but not to thefferLogger aspect.
Thus, when AspectWerkz is run first, some expected log messag
will be missing.

The mechanism that is run last logs method calls that areumst s

posed to be logged. For example, when AspectWerkz is run sec-

ond, the following unexpected log message is generated éy th
AWLogger aspect:

AW:public void BufferLogger.
ajc$afterReturning$BufferLogger2balfbd8al(
org.aspectj.lang.JoinPoint)

3. PROBLEM INSTANCE

We now return toMyBase, HisExt,, andHerExt. in order to an-
alyze the problem and illustrate our approach concretelger/a
brief introduction to the syntax, we informally explaMyBase,
HisExt;, andHerExt2 through a programming example. The code
fragments are actual running code in our implementatiod taeir
semantics is formally presented in Secfidn 5.

3.1 Syntax

3.1.1 MyBase Syntax

The syntax oMyBase is given in Figurdll MyBase is a procedu-
ral language. Procedures are mutually-recursive withlmalalue
semantics. The set of procedures is immutable at run-time. E
pressed values are either booleans or numbers (but nottunes.
The execution of a program starts by evaluating the body @ba p
cedure nameghain.

3.1.2 HisExt; Syntax

The syntax forHisExt; is given in FigurdR.HisExt; is a simple
AspectJ-like aspect extension ltbyBase. HisExt; allows one to
impose advice around procedure calls and procedure egasuti
Advice code is declared in a manner similar to procedurdee It
Aspect], the set of advice is immutable at run-time. Eaclicadv
has two parts: a pointcut designator and an advice body &xpre
sion. Atomic pointcuts arecall-pcd, pexecution-pcd,

cflow-pcd, andargs-pcd. Theand-pcd andor-pcd al-
lows one to combine several pointcuts under conjunctioncasd
junction, respectively. Unlike Aspectdround is the only advice
kind in HisExt;. There is no support for patterns in pointcut des-
ignators. HisExt; introduces a newroceed-exp expression,
which is valid only within arHisExt; advice body expression.

3.1.3 HerExt2 Syntax

HerExt» allows one to declare a set of exception handlerslin
Base for catching and handling division by zero before an excep-
tion occurs. Advice code iHerExto specifies an exception handler
expression. A guard clause allows one to specify a dynanojgesc
for the handler. HerExt, introduces a new expression, namely
raise-exp, which is allowed within a handler. It passes the
exception handling to the next handler (in a manner, simiar
proceed—exp Of HisExt;). The syntax of the language is given
in Figurel3.

The semantics foHerExts is straightforward. Whenever the sec-
ond argument to the division primitive evaluates to zere dtivice
handler (if one exits) is invoked. The handler is evaluated the
result value substitutes the offending zero in the secogdraent
to the division primitive, and the program execution ressime

Listing[@ shows an aspect we can writeHierExt2. This aspect
resumes the execution with the valuepekcision (1) whenever
the second argument of a division primitive evaluates to {hiwi
the control flow of thesQRT procedure.

3.2 A Programming Example

The semantics for the base procedural langudg8ase and the
aspect extensiondisExt; andHerExt, are implemented as inter-
preters [[1B]. The example presented here is a simple exseuta
arithmetic program irMyBase for computing the square root of a
given number. While simple, the example is representativerms

of illustrating the complexity of achieving collaboratiamong as-
pect extensions, and its semantics serves as a proof offgonce

The proceduresQRT in Listing[d implements ifMyBase a simple
approximation algorithm using a sequence generated byua-rec
rence relation:

ap=approzximation ; repeat an=f(an—1) until precise

By default, it setsup = 0, and callssgrtIter to generate the
recurrence sequence:

Ap = An—1 + €

until (a,)? > z. The procedur@mprove generates the next ele-
ment in the sequence;sPreciseEnough? checks the termina-
tion condition; and the value= ¢(x) is computed as a function of
x by the procedur@recision.

The resulted computation fz is inaccurate and extremely ineffi-
cient. However, it serves our purpose well. We will non4istvely
improve its efficiency using an aspecthtisExt;. We will correct
its behavior for the singular point = 0 usingHerExts.

The code in Listindd7, written iHisExt;, advises the base code
for drastically improving its efficiency and accuracy. Fqigces

of advice are used. The first around advice (lined E02-204}-in
cepts executions of the procedureprove and instead applies

Program n=
Declaration =
Procedure =
Exps n=

lit-exp =
true—-exp L=
false—-exp =
var—-exp =
app-exp =
begin-exp =
if-exp =
assign-exp =
let-exp n=
primapp-exp =
Prim =
Id

PName

Number

Declaration
“program” “ {" Procedure” “}"
“procedure”’ PName “(" Id" “)” Exps
lit-exp | true—exp | false-exp |
var—exp | app—-exp | begin-exp | if-exp |
assign-exp | let—exp | primapp-exp
Number

“true”

“false”

Id

“call” PName “(" Exps™ “)"
“{" Exps (“;" Exps)" “}"

“if” Exps “then” Exps “else” Exps
“set” Id“=" Exps
“let” (Id“=" Exps)
Prim“(" Exps™“)"
o e o

* u

in” Exps

Program
Declaration
Procedure

Expressions
Numbers

True

False

Id meaning
Procedure call
Block
Conditional
Assignment

Let

Primitive application
Primitives
Identifier
Procedure name
Numbers

Figure 1:MyBase syntax

AOPl-Program
AOP1l-Declaration
Advice

Pointcut

call-pcd
exec—pcd
cflow-pcd
args—pcd
and-pcd
or—-pcd
Exps;
proceed-exp

::= AOPl-Declaration

= ‘“aopl’“{” Advice" “}"
== “around
= call-pcd|exec—pcd|cflow-pcd |

LTIt

" Pointcut Exps;

args-pcd | and-pcd | or—pcd

= “ pca”n “ (11 PName u)n

“pexecutiori” “ (" PName “)”
“cflow” “ (" PName “)”
“args”“ (" Id*)"
“and”“ (" Pointcut™® “)”
“or"“ (" Pointcut™ “)"
Exps | proceed-exp

= “proceed

HisExt; program
HisExt; declaration
Advice

Pointcut designators
Procedure call pcd
Procedure execution pcd
Control flow pcd
Argument pcd
Conjunction pcd
Disjunction pcd

Advice expressions
Proceed exp

Figure 2:HisExt; syntax

AOP2-Program
AOP2-Declaration
Handler

ExXpss

raise—exp

i:= AOP2-Declaration
::: u.aopzl “ {n Handler* u.}n

= ‘“guard_cflow” PName “resumewith” Expsy

n= Exps|raise-exp
= ‘“raise’

HerExt, program
HerExt, declaration
Handlers

Handler expressions
Raise expressions

Figure 3:HerExts syntax

101
102
103

104
105

106
107

108
109
110
111
112
113

114]
115
116
117
118
119
120
121
122
123

201
202
203
204
205

206

207
208
209
210
211

301l @aop2 { guard_cflow SQRT resumewith call Precision(1l) } ‘

Listing 6: A naive program itMyBase for computing,/z

program {
procedure SORT (radicand) {
call SgrtIter (0, radicand,call Precision(radicand
))
}
procedure SgrtlIter (approximation, radicand,
precision) {

let

bid = call Improve (approximation,radicand,
precision)

in

if call IsPreciseEnough? (bid, radicand)
then bid
else call SqgrtIter (bid, radicand,precision)
}
procedure Improve (approximation,radicand,
precision) {
+ (approximation, precision)
}
procedure Precision(x) {1}
procedure IsPreciseEnough? (root, square) {
1t? (square,call Square (root))
}
procedure Square (x) {*(x,x)}
procedure Abs (x) {if 1t?(x,0) then -(0,x) else x}
procedure main() {call SQRT(5)}
}

Listing 7: Advice inHisExt; for using Newton’s method

aopl {
around: and (pexecution(Improve) args(an,x,epsilon)) {
/(+(an,/(x,an)),2)
}
around: and (pexecution(IsPreciseEnough?) args(root, x)
) |
1t? (ecall Abs (- (x,call Square(root))),call
Precision(x))
}
around : pcall (Precision) {
/ (proceed, 1000)
}
}

Listing 8: Advice inHerExt, for preventing an exception

Newton’s method:

1 T
An+1 = 5 (an + a_)

(num-val 161/72)

meaningiSl = 2.2361111 = /5.0001929 = /5.

The improved program works well for all non-negative inptds
SORT, except for when the radicand Gs In this caseImprove
is called with the first argument,, set to0. The execution of
Improve triggers the advice arountinprove execution which
dividesz by a,,. Since the value of,, is 0 an exception occurs.

3.3 Third-party Composition

The main point of this example is thakisExt; and HerExt, are
subject to third-part composition witklyBase and work collabo-
ratively:

e Units of independent production. HisExt; and HerExts
are independently constructed.

e Units of composition. MyBase, HisExt;, andHerExt, are
units of compositionMyBase can be used by itself (running
only Listing[d). MyBase can be used withisExt; alone
(omitting Listing[3). MyBase can be used witlHerExts
alone (omitting ListindJ7’).MyBase can be used with both
HisExt,; andHerExts.

e Units of collaboration. When HisExt; and HerExts are
both used they collaborate. In the absencelefExts, call-

Ing
call SQRT (0)

results in

Error in /: undefined for 0.

However, wherHerExt, with the advice code in Listingl 8

are present, the correct value 0 is returned. The violating

primitive division application is introduced by the advick
HisExt;, yet intercepted by the advice bBlerExt,. This de-
sired behavior is non-trivial becaubésExt; was constructed
without any prior knowledge dflerExts.

3.4 Analysis

In order to achieve a correct collaboration:

e The aspectual effect of all extension programs needs to be

exposed to all the collaborating aspect mechanisms.

e Each individual aspect mechanism must hide its implemen-

tation from other aspect mechanisms.

The second around advice (lifeSP053207) intercepireciseEnough?

executions and checks instead whether or |fat,)* — z| < ¢

wheree = —L_ is set in the third around advice (linES208311).

1000 . . .
The successive approximations now converge quadratically

Runningmain and calling

call SQRT (5)

returns’

"The result shown is the actual value returned by the Schefije [3

implementation.

3.4.1 Exposure of Aspectual Effect

In the context of multiple distinct aspect mechanisms,aieréle-
ments of the aspect program should be exposed to all colitibgr
aspect mechanisms. We call these elementadipectual effect
The aspectual effect of an aspect program generally spetifee
implementation of a crosscutting concern. We assume tleadgh
pectual effect is expressed in the base language.

In our example, the aspectual effect of aspect; € HisExt: is
specified by advice-body expressions; the aspectual effean
aspect, € HerExts is specified by handler expressions. Wi

Ext; andHerExt, are composed together, their mechanisms must

reflect each other’s effect. SpecificallyjsExt; aspects must be
able to advise procedure calls made fromitteeExt> handler ex-
pressions; andierExt, handlers must be able to intercept excep-
tions introduced by thélisExt; pieces of advice.

3.4.2 Hiding of Mechanism Implementation

An aspect extension extends the base language with newdonct
ality. For exampleHisExt; adds advice binding, artdlerExt» adds
exception handling to the base language. An aspect mechanis
that implements the new functionality must hide its int¢éoera-
tions from the other aspect mechanisms. In our exampletqdin
matching and advice selection operations of lthigExt; mecha-
nism must be hidden from thiderExt> mechanism. Conversely,
testing whether the second division primitive argumenteaias
to zero and the exception handler selectiorHefExt> should be
invisible to theHisExt; mechanism.

4. OUR APPROACH

Now that we have illustrated a desired behavior, we explain o
solution to the aspect mechanism composition problem ieigén

4.1 Aspect Mechanisms as Mixins

evaluate:

B

B
A =
=
evaluate -
e B
A =8(B,)

=

A= 8(B, o, ...

self-eval self-eval

My

evaluate:

» M)

Figure 4:Mixing-like composition of aspect mechanisms

The primary idea is to view an aspect mechanism that extends a

base mechanism asnaixin [L3] that is applied to the base mech-
anism description. A description of a mechanism is an emgpdi
of its implementation (e.g., a configuration of an abstraathine
or its semantics). Araspect mixin mechanistnansforms some
of the base mechanism description and introduces someaddit
descriptior?

By keeping a clean separation between the descriptionedfake

and aspect mechanisms, the aspect mixin mechanism may be com

posed with other mechanisms that extend the same base tgngua
The particular composition strategy may differ. In the reettion
we show a concete instance of this general approach.

4.2 Solution Instance

We illustrate the approach specifically for expressionueaébn se-
mantics. To build a multi mechanism, the composed aspedhmec
anisms are organized in a chain-of-responsibilifyl [20hepand-
filter architecture[[37] (Figur&l4). Each aspect mechanigmn p
forms some part of the evaluation and forwards other parthef
evaluation to the next mechanism using delegation sensa[&]c
(“super™like calls). If an expression is delegated by akaha-
nisms then it is eventually evaluated B All the mechanisms
defer to.A for the evaluation of recursive and other “self’-calls.

A subtlety in designing a collaborative aspect mechanisdecsd-

ing what to hide, what to delegate, and what to expose. A mech-
anism may hide its effect by directly reducing an expressién
mechanism may refine the next mechanism’s semantics byateleg
ing the evaluation. A mechanism may expose its effect byuaval

ing expressions ind. The latter allows what is known as “weav-
ing”. The exposed expressions are then evaluated collaelya

by all the mechanisms. As a result, an effect of an aspect anech
nism is made visible to all the other mechanisms. Hence, gehm
anisms reflect one another’s effect. Overall, a mechanistons

8We generally assume that granularity requirements of aacasp
mechanism can always be satisfied by either taking the mest fin
grained description form (e.g., small-step operationala#ics),

or refining (e.g., annotating) the current description.

sidered a collaborative unit provided it properly hidededates, or
exposes the evaluation.

Notation

The following notations are pertinent. We express fundiorCur-
ried form. The Curried function definition

fn patq pats . .. pat, = exp

is the same as the lambda expressigmit; .\ pats. . . . A pat,.exp.
Correspondingly, we write a list of function arguments with
parentheses or commas to express a function applicatibtettes
the first argument as its single parameter, which could bela,tu
constructs and returns a new function, which then takes é¢xé n
argument as its single parameter, and so on. In functiorstype
associates to the right.

We use the forn{id aspat) in a formal argument to bind an iden-
tifier id to a value and match the value with a pattput. Vari-
ables in the pattern bind to their corresponding values. ‘¥ée u
val pat = val to split apart a value. The symbol’‘stands for an
anonymous variable (don’t care). The symbalenotes an empty
mapping and] denotes an empty list.

4.2.1 Overall Semantics

Let AJexp] denote the meaning of an AOP expressiamp. Our
goal is to be able to build the multi mechanisinby composing
the base mechanis and the mutually independent aspect mech-
anismsah, ..., M.

Base introduces a domailixp, of base expressions. In addition,
each of the extensior&xty , Exts, . . . , Ext,, may introduce its own
respective domain of additional expressidisp, , Exp,, .. ., Expn.g
The domain of AOP expressiodsxp 4, is hence a union of pair-
wise disjointed expression domains defined by:

Exp, = Exp, + Exp, + Exp, +--- + Exp,

*We assume thdExp, N Exp; = ¢ forall0 <i < j < n.

The additional expressions are concartegrationinstructions for
the respective aspect mechanism. A conderplementationon
the other hand, is expressed using base language expresgsion
Exp, only.

EXAMPLE 1. HisExt; introduces a proceed-exp artkerExts
a raise-exp to specify nesting of advice and handler exewcsiti
respectively. Aruspect; € HisExt; in implemented ifExp, +
{proceed-exp and anaspect, € HerExts in Exp, + {raise-exg.

We use the term\OP configuratiorto denote the state of a multi
mechanism4. An AOP configuratiorcfg € Cfg , is a vector of
configurations of the composed mechanisms:

Cfg, = Cfg, x Cfg, x Cfg, x --- x Cfg,,

whereCfg, denotes a domain of the base mechanism states, and

Cfg,;,1 < i < n, denotes a domain of the aspect mechanigm
states.

EXAMPLE 2. Informally, aMyBase mechanism configuration
comprises a procedure environment, a variable environpraert a
store. AHisExt; mechanism configuration comprises a list of ad-
vice, a “current” join point, and a “current” proceed compation.

The effect of evaluating an expressienp € Exp 4 is to change
the AOP configuration. The meaning of an expressiom € Exp ,,
denotedA[exp], is defined to be a partial function on configura-
tions:

Cont 4

——
A:Exp, — (Cfg, — Cfg,)
We denote byCont 4 the set of partial functions o@fg ,.

4.2.2 Design Guidelines for the Base Mechanism
B provides semantics for expressionBiase. The meaning of an
expressiorezp € Exp, in Base, denoted3[exp], is expected to
be defined as:

B : Exp, — Cont 4

The semantical functio should adhere to the following design
principles:

o All sub-reductions within a@-reduction are reduced by call-
ing A instead off5.

e 3 only accesses and updates the he€dg,-element of the
cfg € Cfg, configuration, and carries the tail through the
computation.

Note that the fact tha$ is defined in terms o€fg , does not mean
that .4 or n are known at the time of writing3. At the time of
writing the base mechanism is assumed to be:

Alexp] = { ﬁ[[exp]] exp € Exp,

otherwise

where | stands for “undefined”. LeB : Exp, — Cfg, — Cfg,
denote the evaluation semantics Base with its standard signa-
ture. B is extended to have the signature®twithout knowingn)
as follows:Vexp € Exp,,Vcfg = cfgy:cfg” € Cfg, -

cfghcfg” Blexp] cfgy = cfgh

Blexp] cfg = { n Bleap] cfgo = L

4.2.3 Design Guidelines for an Aspect Mechanism
We construct the aspect mechanigmfor an aspect extensidgxt;

as the override combinatithof a semantics transforméf; and a
semantical functio;:

val #; = fneval = (7; eval) ® &;

Semantics for thExt;'s newly introduced expression domdlxp,
is defined by:

& : Exp, — Cont 4

The introduction ofExt; into the base language also requires a
change to the evaluation semantics for a non-eMstybset of the
existing base language expressi@ihep), C Exp,,. We define this
part of the semantics fd&Ext; as a language semantics transformer:

Evalg)
Ti: (Exp, — Conta) — (Exp, — Conta)

Evalg

The semantics transformér; should adhere to the following de-
sign principles:

e 7T defines the semantics f&xt; and nothing more. LeB’
denote a semantical function with the same signatui@ @s
an extended signatuté.7;(B’) delegates the evaluation to
B’ whenever the base language semantics is required.

e 7,(B') accesses only th€fg,- and Cfg,-elements in a
cfg € Cfg , configuration, while the rest are carried through
the computation.

Note that allowing the aspect mechanism access t@fgg ele-
ment is needed for modeling interesting cases of aspectanach
interactions.

4.2.4 Third-party Construction of an AOP Language
Let B denote théBase mechanism, and Igtk; };- , be an ordered
index set. LetMy,, , . . ., My, denote the aspect mechanisms for the
aspect extensiorsxts, , . . . , Exty,,, respectively.

We construct the multi mechanisr as the composition:
A=8(B, My, ..., Mg,)

where the composition semantics Biis defined as following. The
meaning ofexp € Exp 4, denotedA,[exp] cfg, is given by the
recurrence relation:

Ao =B

Ap = An1 ®© (Mg, An—1)

By construction,
A, : (Exp, + Expy, +--- + Exp,) — Cont,

is of the right signature and obeys the composition pricifb il-
lustrate the construction, we conclude by elaborating tisetfiree
instances:

10For two partial functiong andh, their override combinatiop®h
(h overridesy), is defined by:

_ h(z)
(99 1)) =as { 5]
W.l.0.9., assum&xp}, # ¢.
2An extended3 may have a signatui§’ : Exp;, — Cfg ,, where
Exp;, 2 Exp,.

z € dom h
otherwise

Ext;

Base

'

Ext;

Figure 5:Expression Domains fdr= 2

Forl = 0, we have thaExp, = Exp,, and the meaning
of exp € Exp , is the same as the meaningeafp in Base:

A? Exp, — Cont 4

A?[exp] ¢fg = Blexp] cfg

For! = 1 and the singleton index s¢i} for somel < i <
n, we have thaExp , = Exp, + Exp,. The meaning of
exp € Exp, is

annotated-exp = procbody-exgprocarg-exp|primarg-exp|

assignrhs-expblock-exp|letbody-exg

letrhs-explif-exp|then-expelse-exp
procbody-exp = Exp, x PNm Procedure body
procarg-exp = Exp, x (PNm x Var) Procedure arg
primarg-exp = Exp, x (Prim x Int) Primitive arg
assignrhs-exp = Exp, x Var Assignment RHS
block-exp = Exp, x Int Block element
letbody-exp = Exp, x Var”* Let body
letrhs-exp = Exp, x (Var x Int) Let env RHS
if-exp = Exp, x {if} If exp
then-exp = Exp, x {then} Then exp
else-exp = Exp, x {else} Else exp

Figure 6:Annotated Expressions
app-exp = PNm x procarg-exp Procedure call
begin-exp = block-exp Block
cond-exp = if-expx then-expx else-exp Conditional exp
assign-exp = Var x assignrhs-exp Assignment
let-exp = Var® x letrhs-exp x
letbody-exp Let

primapp-exp = Prim x primarg-exp Primitive app

Al (Exp, + Exp,) — Cont 4

We construct:

Figure 7:Complex Expressions

o B

AW =Bo(T:B) @&

. Eillexp] cfg exp € Exp,
A exp] cfg = { (Ti B)lexp] efy exp € Exp,
Blexp] cfg otherwise

cfg, € Ctg, = Envp X Envy X Base

Store configuration
envy € Envy = Var — Loc Variable envs
sto € Store = Loc — Val Value Stores
envp € Envp = PNm — Proc Procedure envs
0 € Proc = Var® x procbody-exp Procedures

For! = 2 and the ordered index s¢t, j} for somel <
i,j < n, we have thaExp, = Exp, + Exp; + Exp;
(Figure[®). The meaning efrp € Exp 4 is

ALY (Exp, + Exp, + Exp;) — Cont
We construct:

ar; Al

—_——
AT = AW o (T; A e g5

Eilexp] exp € Exp;
Eilexp] exp € Exp, .
(i3}) (T B)[exp] ezp € Expy — Expg
AT leap] = (T B)[exp] exp € Exp, — Exp)
(T; (B@ (T: B))lexp] exp € Expy NExp)
Blexp] otherwise
5. IMPLEMENTATION

As a proof of concept we have implementdgBase, HisExt,, and
HerExt» for the example presented in Sectfdn 3. This section pro-
vides the implementation details more formally to the sdiired
reader.

5.1 Base Mechanism Implementation

The domainExp , of AOP expressions includeglyBase, His-
Ext:, andHerExt» expressions. We defifexp, by extending the
expression sdExps with a set of annotated expressions:

Exp, Exps + annotated-exp

10

Figure 8:MyBase domains

Annotated expressions (FigUtk 6) extend the interface embtise
mechanism to satisfy granularity needs of thigExt; andHerExt,
mechanisms. A complex expression (Fididre 7) includes atedt
expressions as subexpressions.

The base configuration domafdfg, consist of a procedure en-
vironment domairEnvp, a variable environment domaknvy,
and a value store domatore (Figure[®). A procedure is repre-
sented as a closure that contains argument names and aymeced
body expression. The other definitions are omitted.

The evaluation semantids$ (Figure[®) forExp, expressions sat-
isfies the design principles for the base mechanisms: (1gxall
pression evaluations if§ are exposedto A (highlighted in the

figure); (2) it accesses and updates only @#g-element of the
configuration; (3) the other configurations are carriedufjfothe

computation.

5.2 Aspect Mechanism Implementation

The aspect mechanisms are implemented as mixins to the base

mechanism (FigurEZ10). The semantics Eott; is specified using
three constructor functions:

e build-E&; constructs an evaluator f@#xp, expressions:
build-&; : Int — (Exp, — Cont)

val B : Exp, — Cont
= fn (1it-exp (num) (_,_, sto)::cfg" =
(0,0, sto[0 — (num-val num) :: cfg*
| fn(true-exp () (_,_,sto):cfg" =
(0,0, sto[0 — (bool-val#t)]):: ¢fg*
| fn(false-exp () (_,_,sto):cfg" =
(0,0, sto[0 — (bool-val #£)]):: cfg”
| Ifn (app-exp (pname, [exp1, ..., expn])) cfgy:: cfg”
et
val (envp, envy , sto) = cfg,
val (_,_, stoy):cfgi =
A exp1 (envp, envy, sto):: cfg*

val (_,_, sto,):cfgn =

A expn (envp, envy, sto, 1) ::cfgn_1
val ([id1, ..., id,], expproc) = envp pname
val v1 = sto; 0

val v, = sto,, 0
val sto,, .1 = sto,[l1 — v1], l1 ¢ dom sto,,

val stog, = stoan_1[ln — Un], ln ¢ dom stog, 1
in

A expproc (envp,ofidy — 1, ..., idn — ln], stoa,)::cfgr
end

| fn (annotated-exp (exp,_)) ¢fg = Aexp cfg

Figure 9:MyBase semantical function

e build-7; constructs the semantics transformer for Exe; :

Evalg %Evalg’)

B

#Cfg,

+eval(exp)

#procbody-exp(exp
#primarg-exp(erpq

#app-exp(pname, [expl, ..., expy])

b, pname)
rg; T, POS)

A

My

Mo

—Cfg,

—Cfg,

+eval(exp)

Happ-exp(pname, [expl, ..., epn])
#procbody-exp(expy, pname)
—proceed-exp()

+eval(exp)
#primarg-exp(exparg, prim, pos)
#procbody-exp(expy, pname)
—raise-exp()

Figure 10:Aspect mechanisms as mixins

build-77; : Int — (Exp, — Cont4) — (Exp;, — Cont)

e build- 24 constructs the aspect mixin mechanismfor Ext;:

val build- a4 : Int — Evaly — (Exp}, + Exp,) — Cont

fn pos eval = (build-7; pos eval) & (build-&; pos

The Int arguments provides the position of the extension’s config-

uration domainCfg, within Cfg ,.

5.2.1 HisExt; Mechanism

The aspect mechanisnr; transforms the semantics for procedure

calls and executions, and supplies semanticEfp,’s new pro-
ceed expression:

Exp; = {app-expprocbody-exp
Exp, = {proceed-exp

A configurationcfg, € Cfg, for HisExt; (Figure[T1) comprises a
set of advice, a “current” join point, and a “current” prode®ntin-
uation. An adviceidv € Adv is derived directly fromHisExt;'s

syntax. A join pointjp € JP is an abstraction of the procedure

call stack. It stores the name, formal and actual argumédsor-
responding procedure. The third element provides a medning
proceed expressions. The effect and binding domains asmait
to the mechanism. An effect carries a set of bindings and viced

11

exp € Exp,,;, = Exp,+ Exp, Advice exps

cfg, € Cfg, = Adv* x JP x Cont 4 Configuration

adv € Adv =PCD x Exp,,4, Advice

jp € JP = {call,exec} x PNmx
Var® x Val® x JP 4 Unit Join points

pcd € PCD Pointcuts

effect € Effect = Bnd* x Exp,,, Effects

bnd € Bnd = Var x Val Binding
Figure 11:HisExt; Domains

local
val app-eff: Int — Effect”™ — Evalyp — Evalg
=fn_ [evalexp cfg =

| fni (bnd}g,, expadv) :: effec
fn exp (envp, envy , sto) ::
let

t* eval =
cfg” =

val (adv*, jp,procd) = m; (cfg")

val procd’ : Cont 4
= fn {_,_, sto"y: cfg™’

app-effi effect* eval exp (envp, envy, sto’):: cfg

=

*/

val (envy’, sto’) = build-adv-envbnd, 4, sto
val ¢fg*’ = cfg*[i — (adv™, jp,procd’)]

*//

val cfgg:: cfg
in

cfgi i cfg
end

*II[

n

val build-77 : Int — Evaly —
= fni eval exp cfg,:: cfg” =
let
val (adv*, jpenc, procd) = m;(

= A expaav {envp, envy’, sto’) :: cfg

*/

i — (adv™, jp, procd)]

Eval}

cfg”)

val jp = build-jp exp jpene cfyg,

val effect™ = match-jpjp adv™

val cfg*™’ = cfg*[i = (adv*, jp,procd)]

val cfgy :: cfg™”
in

= app-effi effect™ eval exp cfg,:: cfg

*/

cfgy i cfg*”[i — (adv®, jpenc, procd)]

end
end

Figure 12:build- 71 semantics

val build-&; : Int — Exp; — Cont 4 local

= fni (proceed-exp () (cfg as_::cfg™) = val app-handler: Int — Exp;,, — Cont
let =f_ 1] ¢fg = cfyg

val (_,_,procd) = m;(cfg*) | fniexp:exp” (envp,_, sto)::cfg” =
in let

procd cfg val (hnd”*, stack,raise) = m;(cfg™)
end valv = sto 0

val raise’ : Cont
= fn (envp, envy, sto) : cfg™ =
app-handlerexp® (envp, envy , sto[0 — v]):: ¢fg”
val ¢fg*’ = cfg*[i — (hnd*, stack,raise’)]

Figure 13:build- £&; semantics

body expression. The bindings provide an appropriate birien- val cfgy:: cfg*”’ = Aexp (envp, o, sto):: cfg™’
vironment for evaluating the advice body expression. in
cfgy i cfg*"[i = (hnd™, stack, raise)]
The interesting part of the aspect mechanisfnimplementation end
is given bybuild- 7 (Figure[I2).build- 7, defines a transformer .
of the semantics for procedure calls and procedure exesutithe in
new semantics creates a join point, matches it against aiceadv val build-77% : Int — Evaly — Eval?
list, and applies selected advice effectsapp-eff. The function = fn i eval (primarg-exp (exparg, PriM, pog asewp) cfg =
ensures that the mechanism’s configuration properly refeettur- let
rent” join point by setting it before and after an effect apgtion. val (envp, envy,_):_ = cfg
val (c¢fg’ as(_,_, sto)::cfg*) = _
app-eff has _two genera_l behaviors. If the eﬁegt list is empt){ then |r;f (sto 0 = (num-valo) A prim= “" A pos—2)
the expression evaluation Otherwise, the function then
exposesthe effect by evaluating the advice expressiom,q, in let
A. expqay is evaluated in a properly constructed variable environ- val (hnd”*, stack,_) = m;i(cfg™)
mentenvy .4, and a proceed continuatigmocd’. val exp},,,, = match-handlethnd* stack
in
app-eff ensures that the mechanism configuration always stores a app-handleri expj,,.q (envp, envy, sto):: cfg*
proper proceed continuation in the same mannduiglsl- 7 re- end
flects a “current” join point. This makdsuild-&; straightforward elsecfg’
(FigureIB). The meaning of@roceed-exp expression is given end
by the proceed continuation obtained from the configuratibime | fni eval (procbody—-exp (expy, pname) asexp) cfg, :: cfg™ =
continuation then runapp-eff on the rest of the effect list. In other let
words, aproceed-exp expression either evaluates the next ad- val (hnd”*, stack,raise) = m;(cfg™)
vice in A or delegates the evaluation ¢éwal if there is no advice val ¢fg*’ = cfg*[i — (hnd*, pname:: stack, raise)]
left. w11

val cfgy::cfg*” =
in
cfgy:cfg™’[i = (hnd*, stack, raise)]
end
end

Due to space considerations, we omitigExt; functionsmatch-jp
build-jp andbuild-adv-enywhich do not affect the mechanism com-
position semantics.

5.2.2 HerExt; Mechanism

The 2% mechanism foHerExt, transforms the semantics for a
primitive argument and procedure execution expressiar sap-
plies semantics faExp,’s new raise expression:

Figure 15:build- 72 semantics

and a “current” raise continuation. A handlend € Handler
is derived from the syntax dflerExt,. It contains a name of a
guarded procedure and a handler expression. A handlerssipne
may contain aaise—-exp expression.

Exp; = {primarg-exp prochody-exp
Exp, = {raise-exg

A configurationcfg, € Cfg, (Figurel13) stores a list of handlers, a

.) The new semantics fasrimarg-exp enables the invocation of
stack of currently executing procedures (a list of procediames), pr g~ exb

a handler in an exceptional situation when the second anguafie
a division primitive evaluates to zero. In this cabeild- 7> (Fig-

ure[IH) selects a list of handler expressions usiragch-handler
erp € Exp,,, = Exp, + Exp, _ Handler exps and in3okes them usinapp-handler pIf no excepstsi':)? occurs, the
cfg> € Cfg, = Handler” x PNm’x _ _ original semantics is used.
Cont 4 Configuration
hnd € Handler = PNm x Exp,,,,4 Handlers The mechanism reflects the execution stack of its configurdty
] transforming the semantics fpirocbody-exp expressions. The
Figure 14:HerExt, Domains new semantics simply pushes the stack before and popsritgfte

12

val build-&; : Int — Exp, — Conta
= fni (raise-exp()) (¢fg as_::cfg”) =
let
val (_, _,raise) = m;(cfg™)
in
raise cfg
end

Figure 16:build- &2 semantics

plying eval.

app-handlerproduces a configuration transformer from a list of ;
handler expressions. If the list is empty then the transéorim 2
the identity function. Otherwise, the configuration is donsted 3
by evaluating in4 the first handler expression. The function also
constructs and reflects a raise continuation in the meamacis-
figuration. The continuation simply appliapp-handlerto the rest

of the handlers.

The build-&, function (Figuredb) is similar tduild-&;. The
meaning of aaise—exp expression is provided by the raise con-
tinuation drawn from the configuration.

Due to space considerations, we omit thatch-handlerfunction
of HerExto. This function bars no affect on the mechanism com-
position semantics.

5.3 Constructing an AOP language
We construct the semantical function for the composed AQ@P la
guage as follows:

A =8 (B, M1, M)
where
M, = build- a4 1
and
My = build- a5 2

The meaning of a program
p = (base, aspect,, aspecty)

in the composed AOP language is defined as:

M[p] = A expmain {cfgo, cfg1, cfga)

such that
E€TLPmain — (app_exp <‘main7 [] >)
cfg, = (envp,©,0) envp = Dobase]
cfg, = (adv*, (),) adv* = D1 [aspect]
fgn = (hnd”,[\0) hnd* = Ds[aspect,]

6. DISCUSSION AND FUTURE WORK

Our study of constructing an AOP language with multiple aspe
extensions opens interesting research questions.

6.1 Alternative Collaboration Semantics

The co-existence of multiple aspect extensions raise diqueon-
cerning the desired policy of collaboration. The preserseld-
tion instance defines the combinat@r operations to “wrap” as-
pect mechanisms around each other and around the origirzal-me
ing. This grants the aspect mechanism with complete coatre

13

the original meaning and the option to override it. For exkmnp
the HisExt; mechanism might disable the original semantics of
app-expandprocbody-exgxpressions when they are advised with
no proceed A mechanism can either delegate the expression eval-
uation to the next mechanism or evaluate the expressidf itee

the latter case, the evaluated expression is “filtered” o call

this a composition witlwrappingsemantics.

Collaboration with wrapping semantics is sensitive to thaeo of
composition. The program example in Listiflg 9 illustratesok
laboration with wrapping semantics.

Listing 9: Collaboration semantics itO P

program {procedure main() { 1 } }
aopl { around(): pexecution(main) {/(1,0)} }
aop2 { guard_cflow main resumewith 2 }

If the AOP language is constructed as
A =8 (B, M, M)

M is applied first and replaces thgocbody-expof main with
the advice body expression. Consequentls, does not observe
the execution ofrain in the execution stack and would not guard
the division. The program would therefore throws a divigezero
exception. On the other hand, if the language is construated

A =8 (B, ¢, M)

the exception is caught.

In wrapping semantics different mechanisms generally ceflé-
ferent views of the program execution. Alternatively, oa@ pro-
vide a collaboration semantics where all the mechanismese sha
unique program view. This can be achieved by decouplingdtfie r
cation and reflection processes of a mechanism. With suchrsem
tics, every expression evaluated jhis reified by all the mech-
anisms. The evaluation semantics is then constructed kel
mechanism collaboratively with respect to the orderinge@ithis
alternative semantics, the program example in Lidflng 9ldvpto-
duce no exception independently of the orderingofand A%.

6.2 Alternative Semantical Operations

We illustrate our approach using expression evaluatioragéios.
However, the idea of third-party composition of aspect esi@ns
can be realized for other kinds of semantical operations.

Consider a generalized form of a semantical function type:

Mean = OP — Conta

where OP is a domain of operation identifiers. Givedfg ,
Cfg, x Cfg*, Mean maps to various operations bfyBase se-
mantics as shown in Tabg 1. For example, store lookup dparat
is identified by location. It takes a store and a (dummy) vadungl
returns a store and a result value. Our approach can be ezddy
fined to uséMean instead of expression evaluation semantics.

6.3 Other Solution Instances

The specificH wrapping semantics is only an illustration of our
approach in general. In this sections we discuss how atfeena
solution instances can be constructed.

The wrapping semantics enables to compose arbitrary asgett-

anisms as long as the mechanisms can be defined as mixins to the

[Type [OP | Cfg, | 7. RELATED WORK

Expr. eval Exp | Enve x Envy x Store 7.1 Composing Aspect Extensions

Store upd Loc Store Several authors point out the expressiveness drawbackirig as
Store lookup || Loc Store x Val single general-purpose AOP language, and emphasize the-use
Env upd Var Envy ness of combining modular domain-specific aspect exteaich
Env lookup Var Envy x Loc [22,[48 [38[73D]. However, the problem of composition has aet r

ceived a thorough study.

Table 1:Semantical operations MyBase XAspects Shonle et al[[38] present a framework for aspect com-
pilation that allows to combine multiple domain-specifipest ex-
tensions. The framework’s composition semantics is tocedll
extensions to a single general-purpose aspect extensspeAl).
Specifically, given a set of programs written in differenpect ex-
tensions, XAspects produces a single program in AspecthsAn
pect extension program is translated to one or more Aspa&et] a
pects. In XAspects, collaboration between the aspect sixies is
realized as a collaboration between the translated Aspesidects.

base mechanism description. However, wrapping does net sup
port complex mechanism compositions. For example, a reason
able composition of AspectJ and AspectWerkz might requnag, t

at each join pointpe fore advice in both AspectJ and AspectWerkz
aspects are executed before ampund advice, and finally fol-
lowed byafter advice. However, such an AspectJ/AspectWerkz
composition is difficult to construct using the wrapping qusi-

tion semantics. The XAspects framework uses a translation-based appr&gperif-

ically, XAspects translates programs in domain-specifpeasex-
tensions to AspectJ. Unfortunately, in the presence ofr@tbgects,
this approach does not preserve the behavior of the domegifisp
aspects, and therefore the XAspects approach does nontemia
correct result.

More complex composition semantics can be provided by iingos
additional requirements on the aspect mechanism designex-o
ample, one possible approach is to specify types of asfexftaat

that a mechanism can produce. With such a semantics, the over
all aspectual effect can be constructed from aspectualtsfté the

collaborating mechanisms with regard to the effect types. Moreover, extensions in XAspects must be reducible to ASpec

. L. Since only a subset of aspect extensions is expressiblegach
6.4 Other Mechanism Descriptions XAspects doesn’t achieve composition in general. Our a0
Our choice of the mechanism’s description style restrictesas to to composition and collaboration is not based on transiatim
the context data. Specifically, a mechanism can only acdess e comparison to XAspects our proposed approach is more denera
ments of the current or parent expression, environmentsaonds.

While this data can be sufficient for implementing thieExt, and Concern Manipulation Environment. IBM’'s new Concern Ma-
HerExt, aspect extensions fdvlyBase, real-world aspect exten- nipulation Environment provides developers with an esxtsagplat-
sions may generally require more information. For exampke, form for concern separation: “The CME provides a common-plat

pectJ needs access to callee and caller objects to corstnethod form in which different AOSD tools can interoperate and gngge” [1].
call join point. Instantiating the approach for a descaptstyle that CME would be a natural environment for a large scale apptinat
uses an explicit representation of the evaluation contegt,(using of our approach.

a CEKS machind[1%.-16]) would produce a more general saiutio

. , 7.2 AOP Semantics
In our soll_Jtlon we used annotated expressions to meet tmeigra Existing works in AOP semantics explain existing aspecext
larity requirement oHisExt, andHerExt2. The same resultcanbe ions and model AOP in general. We base some of our work on

achieved by using small-step operational semantics farrijéisg these studies. Unfortunately, they do not address the emobf
the mechanisms. In this case, aspect mechanisms wouldatnans aspect mechanism composition directly.

and extend operational semantics rules of the base meohanis
Semantics for Existing AOP Languages Wand et al.'s[[4B] se-

6.5 Application mantic for advice and dynamic join points explains a simgifi
This work provides a foundation for composing multiple aspe dynamic AspectJ. It provides denotational semantics toal gro-
mechanisms. A practical application of this work is to comst cedural language, similar to ours. The language embodiefeke
an AOP framework that: tures of dynamic join points, pointcuts and advice. The sema

tics given does not express the AOP semantics separatetytfre
)) base. However, advice weaving is defined there as a procedure

1. supports expressiveness that generalizes over coraets yansformer. This is a special case of a language semarits-t

lingual mechanisms of potential source aspect extensions. former as we choose to define an aspect mechanism.

This requires a generalized aspect mechanism model.
Method-Call Interceptiori[27] is another semantical mahat gives
semantics of advising method calls. Similar to the previodss-
cussed work, it highlights a very specific piece of AOP exgikes
3. provides lingual mechanisms for encapsulating contstihat ness (similar to AspectJ).

simulate a source aspect mechanism.

2. meets granularity requirements of any source aspech-exte
sion.

Semantical Models of AOR Several studies on AOP semantics
4. provides lingual mechanisms for exposing the aspecfual € provide a general model of AOP functionality. Walker et BA]
fect of the source aspects. defined aspects through explicitly labeled program pointsfast-
class dynamic advice. Jagadeesan efal. [24] use simil&iaabs

14

tions (pointcuts and advice). Clifton et al_[10,] 11] proeesdpa-
rameterized aspect calculus for modeling AOP semanticthelin

model, AOP functionality can be applied to any reductiorp ste
a base language semantics. This is similar to the definiiamo
aspect mechanism we use.

In comparison to our semantics, these models define AOPifumnct
ality using low-level language semantics abstractionsndythese
more formal approaches for describing our method is leffifture
work.

Modular Semantics for AOP. We define an aspect mechanism
separately from the base language and require it to spenify o
the AOP transformation functionality. This approach letashe
construction of modular AOP semantics. Exploring the ayapion

of other approaches for modular language semantics (eoglyiliar
SOS [31] and monad-based denotational semantics) to biggri
aspect mechanism is another area for further research.

8. CONCLUSION

In this paper we address the open problem of integratingealbas
guageBase with a set of third-party aspect extensidbd;, . . . , Ext,
for that language. We present a semantical framework intwinic
dependently developed, dynamic aspect mechanisms cabjeetsu
to third-party composition and work collaboratively.

We instantiate our approach for aspect mechanisms definext as
pression evaluation transformers. The mechanisms canrbe co
posed like mixin layerd 39,34, B5] in a pipe-and-filter arebture
with delegation semantics. Each mechanism collaborateteley
gatingor exposinghe evaluation of expressions. The base mecha-
nism serves as the terminator and does not delegate theatwalu
further.

We applied our approach in the implementation of a concrase b
languageMyBase and two concrete aspect extensions to that lan-
guage: HisExt; andHerExt>. The implementation illustrates the
constructions steps. It demonstrates the semantics fial-plairty
composition of aspect mechanisms.

The semantics forisExt; resembles that for AspectJ. Indeed, our
approach can be applied to implementing the pointcut anécadv

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

mechanism of Aspect] as an aspect extensions to Java. More-

over, our approach is not limited to the pipe-and-filter cosip
tion architecture. Introduction of a generalized aspeathmaism
model would enable sophisticated compositions of thindypas-
pect mechanisms. This would further provide a practical teay
compose AspectJ with new domain-specific aspect extensions

9. REFERENCES
[1] Concern manipulation environment, 2004.
http://www.research.ibm.com/cme.

[2] Jboss aspect oriented programming, 2005.
http://aop. jboss.oraq.

[3] K. Arnold and J. GoslingThe Java Programming Language
The Java Series. Addison—Wesley Publishing Company,
1996.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. K.
Montreal, J. Lhotak, O. Lhotak, C. O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: An extensible aspectj
compiler. In Tarr[[41].

15

[14]

[15]

[16]

[17]

(18]

D. Balzarotti and M. Monga. Using program slicing to
analyze aspect-oriented composition. In C. Clifton,

R. Lammel, and G. T. Leavens, editof&)SD 2004

Workshop on Foundations of Aspect-Oriented Languages
pages 25-29, Lancaster, UK, Mar. 23 2004. Technical Report
04-04, Department of Computer Science, lowa State
University Ames, lowa, USA, lowa State University.

J. Bonér. What are the key issues for commercial AOP use:
how does AspectWerkz address themPtaceedings of the
39 International Conference on Aspect-Oriented Software
Developmentpages 5-6, Mancaster, UK, 2004. AOSD 2004,
ACM Press.
http://aspectwerkz.codehaus.org/index.html.

J. Boneér. Invited talk: AspectWerkz 2 and the road to
AspectJ 5. Innvited Industry Talks at AOSD 2008hicago,
lllinois, USA, Mar. 14-18 2005. AOSD 2005.

G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings of ECOOfDbject-Oriented Programming
Systems, Languages, and Applicatigmeges 303-311,
Ottawa, Canada, Oct. 21-25 1990. OOPSLA90, ACM
SIGPLAN Notices 25(10) Oct. 1990.

L. Cardelli, editor.Proceedings of the 7European
Conference on Object-Oriented Programmingmber 2743

in Lecture Notes in Computer Science, Darmstadt, Germany,
July21-25 2003. ECOOP 2003, Springer Verlag.

C. Clifton, G. T. Leavens, and M. Wand. Formal definitimhn
the parameterized aspect calculus. Technical Report TR
#03-12, Dept. of Computer Science, lowa State University,
Oct. 2003.

C. Clifton, G. T. Leavens, and M. Wand. Parameterized
aspect calculus: A core calculus for the direct study of
aspect-oriented languages. Technical Report TR #03-13,
Dept. of Computer Science, lowa State University, Nov.
2003.

A. Colyer. Aspectj. In Filman et al[T17], pages 123-143

W. R. Cook.A Denotational Semantics of InheritandehD
thesis, Brown University, May 15 1989.

K. Czarnecki and U. Eisenecké&enerative Programming:
Methods, Tools, and Applicationaddison-Wesley, T
edition, 2000.

M. Felleisen and D. Friedman. Control operators, thelse
machine, and the lambda-calcul&srmal Descriptions of
Programming Concepts llpages 193-217, 1986.

M. Felleisen and D. Friedman. A reduction semantics for
imperative higher-order languages.Rroceedings of the
Parallel Architectures and Languages Europe 198dges
206-223, 1987.

R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors
Aspect-Oriented Software Developmekddison-Wesley,
Boston, 2005.

P. Fradet and M. Sudholt. AOP: towards a generic fraotkw
using program transformation and analysis. In S. Demeyer
and J. Bosch, editor§bject-Oriented Technology.
ECOOP’'98 Workshop Readerumber 1543 in Lecture

http://www.research.ibm.com/cme
http://aop.jboss.org
http://aspectwerkz.codehaus.org/index.html

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Notes in Computer Science, pages 394-397. Workshop
Proceedings, Brussels,
Belgium, Springer Verlag, July 20-24 1998. Extended versio

http://www.irisa.fr/lande/fradet/PDFs/AOP98-1ong.

D. P. Friedman, M. Wand, and C. T. Hayn&ssentials of
Programming Language$IT Press, Cambridge, MA,
second edition, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@eEssign
Patterns: Elements of Reusable Object-Oriented Software
Professional Computing. Addison-Wesley, 1995.

S. Herrmann. Object teams: Improving modularity for

crosscutting collaborations. In M. Aksit and M. Mezini,
editors,Proceedings of the™3 International Conference

Net.ObjectDays, NODe 200Erfurt, Germany, Oct. 7-10
2002.

J. Hugunin. The next steps for aspect-oriented prograng
languages (in Java). KSF Workshop on New Visions for
Software Design & Productivity: Research & Applications
Vanderbilt University, Nashville, TN, Dec. 13-14 2001.
National Coordination Office for Information Technology
Research and Development (NCO/IT R&D). White Paper.

Proceedings of the”ACM SIGPLAN International
Conference on Functional Programmindppsala, Sweden,
Aug. 2003. ACM Press.

R. Jagadeesan, A. Jeffrey, and J. Riely. An untypedubadc
for aspect oriented programs. In Cardé€lli [9], pages 54-73.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rRal
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editorProceedings of the 1’5European
Conference on Object-Oriented Programmingmber 2072
in Lecture Notes in Computer Science, pages 327—-353,
Budapest, Hungary, June 18-22 2001. ECOOP 2001,
Springer Verlag.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 1"1European Conference on
Object-Oriented Programmingiumber 1241 in Lecture
Notes in Computer Science, pages 220-242, Jyvaskyla,
Finland, June 9-13 1997. ECOOP’97, Springer Verlag.

R. Lammel. A semantical approach to method-call
interception. InProceedings of the®linternational

Conference on Aspect-Oriented Software Development
pages 41-55, Enschede, The Netherlands, Apr. 2002. AOSD
2002, ACM Press.

R. Lammel. Adding Superimposition To a Language
Semantics (Extended Abstract). In C. Clifton and G. T.
Leavens, editorsAOSD 2003 Workshop on Foundations of
Aspect-Oriented LanguageBoston, Massachusetts, Mar. 18
2003. Technical Report, Department of Computer Science,
lowa State University Ames, lowa, USA, lowa State
University.

C. 1. V. Lopes.D: A Language Framework for Distributed
Programming PhD thesis, Northeastern University, 1997.

16

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

C. V. Lopes, P. Dourish, D. H. Lorenz, and K. Lieberherr.
Beyond AOP: Toward Naturalistic ProgrammigCM
SIGPLAN Notices38(12):34-43, Dec. 2003. OOPSLA03
ppECial Track on Onward! Seeking New Paradigms & New
Thinking.

P. D. Mosses. Foundations of modular sSosMIRCS '99:
Proceedings of the 24th International Symposium on
Mathematical Foundations of Computer Sciergages
70-80. Springer-Verlag, 1999.

G. C. Murphy, R. J. Walker, and E. L. A. Baniassad.
Evaluating emerging software development technologies:
Lessons learned from assessing aspect-oriented
programminglEEE Transactions on Software Engineering
25(4):438-455, 1999.

G. C. Murphy, R. J. Walker, E. L. A. Baniassad, M. P.
Robillard, A. Lai, and M. A. Kersten. Does aspect-oriented
programming workZomm. ACM44(10):75-77, Oct. 2001.

K. Ostermann. Implementing reusable collaboratioith w
delegation layers. In D. H. Lorenz and V. C. Sreedhar,
editors,Proceedings of the First OOPSLA Workshop on
Language Mechanisms for Programming Software
Componentspages 9-14, Tampa Bay, Florida, Oct. 15 2001.
Technical Report NU-CCS-01-06, College of Computer
Science, Northeastern University, Boston, MA 02115.

K. Ostermann. Dynamically composable collaboratinith
delegation layers. In Cardel[il[9], pages 89-110.

J. A. Rees, W. D. Clinger, H. Abelson, N. I. A. IV, D. H.
Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,

R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,

D. Oxley, K. M. Pitman, G. J. Rozas, G. J. Sussman, and
M. Wand. Revise8ireport on the algorithmic language
SchemeSIGPLAN Notices21(12):37-79, Dec. 1986.

M. Shaw and D. GarlarSoftware Architecture, Perspectives
on an Emerging DisciplinePrentice-Hall, 1996.

M. Shonle, K. Lieberherr, and A. Shah. XAspects: An
extensible system for domain specific aspect languages. In
Companion to the 8 Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 28—-37, Anaheim, California, 2003. ACM
Press.

Y. Smaragdakis and D. Batory. Mixin layers: an
object-oriented implementation technique for refinements
and collaboration-based desigh&€M Trans. Softw. Eng.
Methodol, 11(2):215-255, 2002.

C. SzyperskiComponent Software, Beyond Object-Oriented
Programming Addison-Wesley, ?' edition, 2002. With
Dominik Gruntz and Stephan Murer.

P. Tarr, editorProceedings of theInternational

Conference on Aspect-Oriented Software Development
Chicago, lllinois, USA, Mar. 14-18 2005. AOSD 2005, ACM
Press.

D. Thomas. Keynote: Transitioning AOSD from research
park to main street. In TarfE[41], page 2.

W. Vanderperren, D. Suvae, B. Verheecke, M. A. Cibamd
V. Jonckers. Adaptive programming in JAsCo. In Tard[41].

http://www.irisa.fr/lande/fradet/PDFs/AOP98-long.pdf

[44] D. Walker, S. Zdancewic, and J. Ligatti. A theory of asse
In ICFP 2003[[2B], pages 127-139.

[45] R.J. Walker, E. L. A. Baniassad, and G. Murphy. Asseassin
aspect-oriented programming and design. In C. Lopes,
G. Kiczales, B. Tekinerdogan, W. De Meuter, and
M. Meijers, editorsWorkshop on Aspect Oriented
Programming (ECOOP 1998June 1998.

[46] R.J. Walker, E. L. A. Baniassad, and G. C. Murphy. An
initial assessment of aspect-oriented programming.réc.
21st Int'l Conf. Software Engineering (ICSE '9®ages
120-130, 1999.

[47] R.J. Walker, E. L. A. Baniassad, and G. C. Murphy. An
initial assessment of aspect-oriented programming. In
Filman et al.[[1¥], pages 531-556.

[48] M. Wand. Understanding aspects (extended abstract). |
ICFP 2003|[[Z8B]. Invited talk.

[49] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented
programmingACM Trans. Prog. Lang. Syst.
26(5):890—910, Sept. 2004.

[50] J. C. Wichman. Composej: The development of a
preprocessor to facilitate composition filters in the Java
language. Master’s thesis, Department of Computer Science
University of Twente, Enschede, the Netherlands, Dec. 1999

17

	Introduction
	Combining Two Aspect Extensions
	Objective and Contribution
	Outline

	Motivation
	Example
	COOL versus AspectJ
	AspectWerkz + AspectJ

	Lack of Integration Support
	No Behavior-Preserving Translation
	No Correct Order for Sequential Processing

	Problem Instance
	Syntax
	MyBase Syntax
	HisExt1 Syntax
	HerExt2 Syntax

	A Programming Example
	Third-party Composition
	Analysis
	Exposure of Aspectual Effect
	Hiding of Mechanism Implementation

	Our Approach
	Aspect Mechanisms as Mixins
	Solution Instance
	Overall Semantics
	Design Guidelines for the Base Mechanism
	Design Guidelines for an Aspect Mechanism
	Third-party Construction of an AOP Language

	Implementation
	Base Mechanism Implementation
	Aspect Mechanism Implementation
	HisExt1 Mechanism
	HerExt2 Mechanism

	Constructing an AOP language

	Discussion and Future Work
	Alternative Collaboration Semantics
	Alternative Semantical Operations
	Other Solution Instances
	Other Mechanism Descriptions
	Application

	Related work
	Composing Aspect Extensions
	AOP Semantics

	Conclusion
	REFERENCES

