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ABSTRACT

Garbage collection yields numerous software engineering benefits,
but its quantitative impact on performance remains elusive. One
can compare the cost of conservative garbage collection to explicit
memory management in C/C++ programs by linking in an appro-
priate collector. This kind of direct comparison is not possible for
languages designed for garbage collection (e.g., Java), because pro-
grams in these languages naturally do not contain calls to free.
Thus, the actual gap between the time and space performance of
explicit memory management and precise, copying garbage collec-
tion remains unknown.

We introduce a novel experimental methodology that lets us quan-
tify the performance of precise garbage collection versus explicit
memory management. Our system allows us to treat unaltered Java
programs as if they used explicit memory management by relying
on oracles to insert calls to free. These oracles are generated
from profile information gathered in earlier application runs. By
executing inside an architecturally-detailed simulator, this “oracu-
lar” memory manager eliminates the effects of consulting an oracle
while measuring the costs of calling malloc and free. We eval-
uate two different oracles: a liveness-based oracle that aggressively
frees objects immediately after their last use, and a reachability-
based oracle that conservatively frees objects just after they are last
reachable. These oracles span the range of possible placement of
explicit deallocation calls.

We compare explicit memory management to both copying and
non-copying garbage collectors across a range of benchmarks us-
ing the oracular memory manager, and present real (non-simulated)
runs that lend further validity to our results. These results quantify
the time-space tradeoff of garbage collection: with five times as
much memory, an Appel-style generational collector with a non-
copying mature space matches the performance of reachability-
based explicit memory management. With only three times as much
memory, the collector runs on average 17% slower than explicit
memory management. However, with only twice as much memory,
garbage collection degrades performance by nearly 70%. When
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physical memory is scarce, paging causes garbage collection to run
an order of magnitude slower than explicit memory management.
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1. Introduction

Garbage collection, or automatic memory management, provides
significant software engineering benefits over explicit memory man-
agement. For example, garbage collection frees programmers from
the burden of memory management, eliminates most memory leaks,
and improves modularity, while preventing accidental memory over-
writes (“dangling pointers™) [50, 59]. Because of these advantages,
garbage collection has been incorporated as a feature of a number
of mainstream programming languages.

Garbage collection can improve programmer productivity [48],
but its impact on performance is difficult to quantify. Previous re-
searchers have measured the runtime performance and space im-
pact of conservative, non-copying garbage collection in C and C++
programs [19, 62]. For these programs, comparing the performance
of explicit memory management to conservative garbage collection
is a matter of linking in a library like the Boehm-Demers-Weiser
collector [14]. Unfortunately, measuring the performance trade-off
in languages designed for garbage collection is not so straightfor-
ward. Because programs written in these languages do not explic-
itly deallocate objects, one cannot simply replace garbage collec-
tion with an explicit memory manager. Extrapolating the results of
studies with conservative collectors is impossible because precise,
relocating garbage collectors (suitable only for garbage-collected
languages) consistently outperform conservative, non-relocating gar-
bage collectors [10, 12].

It is possible to measure the costs of garbage collection activity
(e.g., tracing and copying) [10, 20, 30, 36, 56] but it is impossi-
ble to subtract garbage collection’s effect on mutator performance.
Garbage collection alters application behavior both by visiting and
reorganizing memory. It also degrades locality, especially when
physical memory is scarce [61]. Subtracting the costs of garbage
collection also ignores the improved locality that explicit memory
managers can provide by immediately recycling just-freed mem-
ory [53, 55, 57, 58]. For all these reasons, the costs of precise,
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Figure 1: The oracular memory management framework.

copying garbage collection versus explicit memory management
have never been quantified.

Contributions

In this paper, we conduct an empirical comparison of garbage col-
lection to explicit memory management in Java. To enable this
comparison, we develop an “oracular” memory manager. This mem-
ory manager relies on an oracle that indicates when the system
should deallocate objects (i.e., by calling free on them). During
a profiling run, the system gathers object lifetimes and generates a
program heap trace that is later processed to generate the oracles.
We use two different oracles that span the range of possible explicit
deallocation calls. The lifetime-based oracle is the most aggressive:
it uses object lifetimes to instruct the memory manager to free ob-
jects after their last use — the earliest time they can safely be freed.
The reachability-based oracle is the most conservative: it reclaims
objects at the last moment a program could call free (i.e., when
they become unreachable). The reachability-based oracle relies on
precise object reachability information obtained by processing the
program heap traces with the Merlin algorithm [33, 34]. We discuss
these two approaches in detail in Section 3.

We find that an on-line version of the reachability-based oracle
interferes with mutator locality and increases runtime from 2%-—
33%. We eliminate this problem by executing the oracular memory
manager inside an extended version of Dynamic SimpleScalar, an
architecturally-detailed simulator [15, 39]. This approach allows
us to measure the cost of Java execution and memory management
operations while excluding disruptions caused by consulting the
oracle. We believe this framework is of independent interest for
studying memory management policies.

We use this framework to measure the impact of garbage collec-
tion versus explicit memory management on runtime performance,
space consumption, and page-level locality. We perform these mea-
surements across a range of benchmarks, garbage collectors (in-
cluding copying and non-copying collectors), and explicit memory
managers.

We show that GenMS, an Appel-style generational collector with
a mark-sweep mature space, matches or exceeds (by up to 9%) the
runtime performance of the best explicit memory manager when
given five times as much memory. With three times as much mem-
ory, garbage collection slows performance by 17% on average. Gar-
bage collection performance degrades further at smaller heap sizes,
ultimately running 70% slower on average. Explicit memory man-
agement also exhibits better memory utilization and page-level lo-
cality, generally requiring half or fewer pages to run with the same
number of page faults and running orders-of-magnitude faster when
physical memory is scarce.

The remainder of this paper is organized as follows: Section 2
presents the oracular memory management framework in detail,
and Section 3 discusses its implications and limitations. Sections 4
and 5 present experimental methodology and results comparing ex-
plicit memory management to a range of different garbage collec-
tors. Section 6 addresses related work, Section 7 discusses future
directions, and Section 8 concludes.

2. Oracular Memory Management

Figure 1 presents an overview of the oracular memory management
framework. As Figure 1(a) shows, it first executes the Java pro-
gram to calculate object lifetimes and generate the program heap
trace. The system processes the program heap trace uses the Mer-
lin algorithm to compute object reachability times and generate
the reachability-based oracle. The lifetime-based oracle comes di-
rectly from the lifetimes computed during the profiling run. Using
these oracles, the oracular memory manager executes the program
as shown in Figure 1(b), allocating objects using calls to malloc
and invoking free on objects when directed by the oracle (see
Figure 2). Because trace generation takes place inside the simu-
lator and oracle generation happens off-line, the system measures
only the costs of allocation and deallocation.

Below we describe these steps in detail and discuss our solutions
to the challenges of generating our oracles, detecting memory allo-
cation operations, and inserting explicit deallocation calls without
distorting program execution. We discuss the implications and lim-
itations of our approach in Section 3.

2.1 Step One: Data Collection and Processing

For its Java platform, the oracular memory manager uses an ex-
tended version of Jikes RVM version 2.3.2 configured to produce
PowerPC Linux code [2, 3]. Jikes is a widely-used research plat-
form written almost entirely in Java. A key advantage of Jikes and
its accompanying Memory Management Toolkit (MMTK) is that it

can be explicitly freed
—
. i freed by
live i lifetime-based oracle dead
reachable freed by 7 unreachable D]

reachability-based oracle _

can be collected

Figure 2: Object lifetime. The lifetime-based oracle frees ob-
jects after their last use (the earliest safe point), while the
reachability-based oracle frees them after they become un-
reachable (the last possible moment an explicit memory man-
ager could free them).



allows us to use a number of garbage collection algorithms [11].
The oracular memory manager executes inside Dynamic Simple-
Scalar (DSS) [39], an extension of the SimpleScalar superscalar
architectural simulator [15] that permits the use of dynamically-
generated code.

Repeatable Runs

Because the oracular memory manager uses allocation order to
identify objects, we must ensure that the sequence of allocations
is identical from run to run. We take a number of steps in Jikes
RVM and the simulator to ensure repeatable runs. We use the
“fast” configuration of Jikes RVM, which optimizes as much of
the system as possible and compiles it into a prebuilt virtual ma-
chine. Jikes RVM uses timer-based sampling at runtime to optimize
methods once they reach a certain “hotness” level. To eliminate
this considerable source of nondeterminism, we use a pseudoadap-
tive methodology [38, 49], which optimizes only “hot” methods,
as determined from the mean of 5 runs. We also employ deter-
ministic thread switching, which switches threads based upon the
number of methods executed rather than at regular time intervals.
Finally, we modify DSS to update the simulated OS time and reg-
ister clocks deterministically. Rather than use cycle or instruction
counts, which will change when we add calls to free, our modi-
fications advance these clocks a fixed amount at each system call.
These changes ensure that all runs are perfectly repeatable.

Tracing for the Liveness-Based Oracle

During a profiling run, the simulator calculates object lifetimes and
generates program heap traces for later use. The simulator obtains
per-object lifetime information by recording the location of every
allocated object. At each memory access, the simulator then looks
up the object being used and updates its latest lifetime (in alloca-
tion time). Unfortunately, this does not capture every use of an
object. For example, testing for equality is a use of both argu-
ment objects, but Java’s equality operation compares addresses and
does not examine memory locations. To capture these object uses,
we also mark all root-referenced objects as being in use. This ex-
tended definition potentially overestimates object lifetimes slightly,
but eliminates the risk of freeing an object too early.

The system also preserves objects that we feel a programmer
could not reasonably free. For instance, while our system can de-
tect the last use of code and type information, these objects are not
something that a developer would be able to deallocate in a real
program. Similarly, our system will not free objects used to opti-
mize class loading. These optimizations include objects mapping
class member, string names, and type information in class files to
their Jikes internal representation. Other objects that a programmer
would not free and we therefore preserve enable lazy method com-
pilation and reduce the time spent scanning jar files. At the end of
the profiling run, the system preserves all of these objects and those
to which these objects refer by extending their lifetime to the end
of the program.

Tracing for the Reachability-Based Oracle

To generate the reachability-based oracle, we compute object reach-
ability information efficiently and precisely using the Merlin algo-
rithm [33, 34]. Our off-line implementation of the Merlin algo-
rithm operates by analyzing a program heap trace. During this
trace processing, the Merlin algorithm updates a timestamp asso-
ciated with an object whenever it might become unreachable, e.g.,
when a pointer to it is overwritten. Once the entire trace has been
processed, it generates “death records”, a list ordered by allocation
time that indicates which objects become unreachable at that time.

A key difficulty is capturing all the information required by the

Merlin algorithm without affecting program execution. We need
to execute the same code during step one (trace collection) as we
do during step two (simulation). Otherwise, memory allocation
and object lifetimes will be different, as the compiler will generate
differently-sized chunks of code. However, there is a significant
amount of information that the Merlin algorithm requires, includ-
ing all object allocations, intra-heap pointer updates, and program
roots whenever an object could be freed. It is not possible to obtain
this information from the normal optimized code.

Replacing normal opcodes with illegal ones is at the heart of
our approach for non-intrusively generating the needed heap traces.
The new opcodes uniquely identify key events such as when new
objects are allocated. When the simulator encounters such an op-
code, it outputs a record into the trace. It then executes the illegal
opcode exactly like its legal variant.

To enable the generation of these illegal opcodes, we extend
Jikes RVM'’s compiler intermediate representations. Jikes RVM in-
cludes nodes in its IRs to differentiate between method calls within
the VM and calls to the host system, minimizing the modifications
needed to support different OS calling conventions. We build upon
these by adding a set of nodes to represent calls to malloc. This
extension allows the compiler to treat object allocations like any
other function call, while emitting an illegal opcode instead of the
usual branch instruction. We also modify Jikes RVM to replace
intra-heap reference stores with illegal instructions. These opcodes
allow us to detect events needed for heap tracing without inserting
code that would distort instruction cache behavior.

2.2 Step Two: Simulating Explicit Memory Management

Before each allocation, the simulator consults the oracle to deter-
mine if any objects should be freed. When freeing an object, it
saves the function parameter (the size request for malloc) and
jumps to free instead, but sets the return address so that execution
returns to the malloc call rather than the following instruction.
The simulator repeats this cycle until there are no objects left to be
reclaimed, and then allocation and program execution continues as
normal. Both malloc and free are invoked via method calls.
When these functions are implemented outside of the VM, they are
called using the Jikes foreign function interface (VM_SysCall);
we discuss the impact of this in Section 3.2.

2.3 Validation: Live Oracular Memory Management

In addition to the simulation-based framework described above,
we implemented a “live” version of the oracular memory manager
which uses the reachability-based oracle but actually runs on a real
machine. Like the simulation-based oracular memory manager, the
live oracle executes Java programs, but uses the actual instructions
in place of the illegal ones. This live oracular memory manager
uses the object lifetime information and a buffer recording where
objects are allocated to fill a special “oracle buffer” containing the
addresses of the objects to be freed. To determine the program’s
running time, we measure the total execution time and then sub-
tract the time spent checking if objects should be freed and time
spent refilling the buffer containing the addresses of the objects to
free.

To measure the distortion introduced by the oracle, we compare
the cost of running garbage collection as usual to running with a
null oracle. The null oracle loads the buffers in the same way as
the real oracular memory manager, but otherwise execution pro-
ceeds normally (it does not actually free any objects). We found
that the distortion introduced is unacceptably large and erratic. For
example, with the GenMS collector, the -228_jack benchmark with
the null oracle reports a 12% to 33% increase in runtime versus
running with no oracle. By contrast, the null oracle slows the same



collector down by at most 3% when running the _213_javac bench-
mark. Other collectors also show distortions from the null oracle,
but without any obvious or predictable patterns. We attribute these
distortions to pollution of both the L1 and L2 caches induced by
processing the oracle buffers.

While the live oracular memory manager is too noisy to be re-
liable for precise measurements, its results lend credence to the
simulation-based approach. As Figure 5 shows, the live version
closely mirrors the trends of the reachability oracle simulation re-
sults.

3. Discussion

In the preceding sections, we have focused on the methodology we
employ, which strives to eliminate measurement noise and distor-
tion. Here we discuss some of the key assumptions of our approach
and address possible concerns. These include invoking free on
unreachable and dead objects, the cost of using foreign function
calls for memory operations, the effect of multithreaded environ-
ments, unmeasured costs of explicit memory management, the role
of custom memory allocators, and the effects of memory managers
on program structure. While our methodology may appear to hurt
explicit memory management (i.e., making garbage collection look
better), we argue that the differences are negligible.

3.1 Reachability versus Liveness

The oracular memory manager analyzes explicit memory manage-
ment performance using two very different oracles. The liveness-
based oracle deallocates objects aggressively, invoking free at the
first possible opportunity it can safely do so. The reachability ora-
cle instead frees objects at the last possible moment in the program
execution, since calls to free require a reachable pointer as a pa-
rameter.

As described in Section 2.1, the liveness-based oracle preserves
some objects beyond their last use. The liveness-based oracle also
frees some objects that the reachability oracle does not. The num-
ber of objects involved is small: only pseudoJBB at 3.8% and
_201_compress at 4.4% free more than 0.8% more objects. The
liveness-based oracle makes these additional calls to free only for
objects that do not become unreachable but which plausibly could
be deallocated by a knowledgeable programmer.

Real program behavior is likely to fall between these two ex-
tremes. We would expect few programmers to reclaim objects im-
mediately after their last use, and similarly, we would not expect
them to wait until the very last point objects are reachable before
freeing them. These two oracles thus bracket the range of explicit
memory management options.

We show in Section 5.1 that the gap between these two oracles
is small. Both oracles provide similar runtime performance, while
the liveness oracle reduces heap footprints by at most 15% over
the reachability oracle. These results generally coincide with pre-
vious studies of both C and Java programs. Hirzel et al. compare
liveness to reachability on a benchmark suite including seven C ap-
plications [37]. For these, they find that when using an aggressive,
interprocedural liveness analysis, they find a significant gap for two
of their benchmarks, reducing average object lifetime by 11% for
gzip (in allocation time) and 21% for yacr2); for the others, the
gap remains below 2%. In a study including five of the benchmarks
we examine here, Shaham et al. measure the average impact of in-
serting null assignments in Java code, simulating nearly-perfect
placement of explicit deallocation calls [51]. They report an av-
erage difference in space consumption of 15% over deallocating
objects when they become unreachable.

3.2 malloc Overhead

When using allocators implemented in C, the oracular memory
manager invokes allocation and deallocation functions through the
Jikes VM_SysCall foreign function call interface. While not free,
these calls do not incur as much overhead as JNI invocations. Their
total cost is just 11 instructions: six loads and stores, three register-
to-register moves, one load-immediate, and one jump. This cost
is similar to that of invoking memory operations in C and C++,
where malloc and free are functions defined in an external li-
brary (e.g., 1ibc. so).

We also examine an allocator which implements malloc and
free within the Jikes RVM. In this case, the oracular memory
manager uses the normal Jikes RVM method call interface rather
than the VM_SysCall interface. Because we still need to deter-
mine when an allocation occurs and, where appropriate, insert calls
to free, we still cannot inline the allocation fast path. While this
may prevent some potential optimizations, we are not aware of any
explicitly-managed programming language that implements mem-
ory operations without function call overhead.

3.3 Multithreaded versus Single-threaded

In the experiments we present here, we assume a single-processor
environment and disable atomic operations both for Jikes RVM and
for the Lea allocator. In a multithreaded environment, most thread-
safe memory allocators also require at least one atomic operation
for every call to malloc and free: a test-and-set operation for
lock-based allocators, or a compare-and-swap operation for non-
blocking allocators [46]. These atomic operations are very costly
on some architectures. For example, on the Pentium 4, the cost
of the atomic CMPXCHG operation (compare-and-swap) is around
124 cycles. Because garbage collection can amortize the cost of
atomic operations by performing batch allocations and dealloca-
tions, Boehm observes that it can be much faster than explicit mem-
ory allocation [13].

However, the issue of multithreaded versus single-threaded en-
vironments is orthogonal to the comparison of garbage collectors
and explicit memory managers, because explicit memory alloca-
tors can also avoid atomic operations for most memory operations.
In particular, a recent version of Hoard [6] (version 3.2) main-
tains thread-local freelists, and generally uses atomic operations
only when flushing or refilling them. Use of these thread-local
freelists is cheap, normally through a register reserved for access-
ing thread-local variables. On architectures lacking such support,
Hoard places the freelists at the start of each thread stack (aligned
on 1MB boundaries), and accesses them by bitmasking a stack vari-
able.

3.4 Smart Pointers

Explicit memory management can have other performance costs.
For example, C++ programs might manage object ownership by
using smart pointers. These templated classes transparently im-
plement reference counting, which would add expense to every
pointer update. For example, on the gc-bench benchmark, the per-
formance of the Boost “intrusive pointer” that embeds reference-
counting within an existing class is up to twice as slow as the
Boehm-Demers-Weiser collector. !

However, smart pointers do not appear to be in widespread use.
We searched for programs using the standard auto_ptr class or
the Boost library’s shared_ptr [16] on the open-source web site
sourceforge.net and found only two large programs that use
them. We attribute this lack of use both to their cost, since C++

IRichard J ones, personal communication.



Benchmark statistics
Benchmark Total Alloc  Max Reach  Alloc/Max
_201_compress 125,334,848 13,682,720 9.16
202 _jess 313,221,144 8,695,360 36.02
_205_raytrace 151,529,148 10,631,656 14.25
_209_db 92,545,592 15,889,492 5.82
218 javac 261,659,784 16,085,920 16.27
_228_jack 351,633,288 8,873,460 39.63
ipsixql 214,494,468 8,996,136 23.84
pseudoJBB 277,407,804 32,831,740 8.45

Table 1: Memory usage statistics for our benchmark suite. To-
tal allocation and maximum reachable are given in bytes. Al-
loc/max denotes the ratio of total allocation to maximum reach-
able, and is a measure of allocation-intensiveness.

programmers tend to be particularly conscious of expensive opera-
tions, and to their inflexibility. For example, the same smart pointer
class cannot be used to manage scalars and arrays, because C++ ar-
rays require a different syntax for deletion (delete []).

Instead, C and C++ programmers generally use one of the fol-
lowing conventions: a function caller either allocates objects that it
then passes to its callee, or the callee allocates objects that it returns
to its caller (as in strncpy). These conventions impose little to
no performance overhead in optimized code.

Nonetheless, some patterns of memory usage are inherently dif-
ficult to manage with malloc and free. For example, the al-
location patterns of parsers makes managing individual objects an
unacceptably-difficult burden. In these situations, C and C++ pro-
grammers often resort to custom memory allocators.

3.5 Custom Allocation

Many explicitly-managed programs use custom allocators rather
than general-purpose allocators both to simplify and to accelerate
memory management. In particular, Berger et al. show that region-
style allocation is both useful for a variety of workloads and can be
much faster than general-purpose allocation, but that they gener-
ally consume much more space than needed [8]. Exploring custom
allocation policies like regions is beyond the scope of this paper.

3.6 Program Structure

The programs we examine here were written for a garbage-collected
environment. Had they been written in a language with explicit
memory management, they might have been written differently.
Unfortunately, we do not see any way to quantify this effect. It
would be possible (though onerous) to attempt to measure it by
manually rewriting the benchmark applications to use explicit deal-
location, but we would somehow have to factor out the impact of
individual programmer style.

Despite the apparent difference in program structure that one
might expect, we observe that it is common for Java programs to
assign null to objects that are no longer in use. In this sense,
programming in a garbage-collected environment is at least occa-
sionally analogous to explicit memory management. In particular,
explicit nulling of pointers resembles the use of delete in C++,
which then can trigger a chain of class-specific object destructors.

4. Experimental Methodology

To quantify the performance of garbage collection versus explicit
memory management, we compare the performance of eight bench-
marks across a variety of garbage collectors. Table 1 presents our
benchmarks. We include most of the SPECjvm98 benchmarks [18].
ipsixql is a persistent XML database system, and pseudoJBB is a

Garbage collectors
MarkSweep  non-relocating, non-copying single-generation
GenCopy two generations with copying mature space
SemiSpace two-space single-generation
GenMS two generations with non-copying mature space
CopyMS nursery with whole-heap collection
Allocators
Lea combined quicklists and approximate best-fit
MSExplicit MMTk’s MarkSweep with explicit freeing

Table 2: Memory managers examined in this paper. Section 4
presents a more detailed description of the allocators and col-
lectors.

fixed-workload variant of the SPECjbb benchmark [17]. pseudo-
JBB executes a fixed number of transactions (70,000), which sim-
plifies performance comparisons.

For each benchmark, we run each garbage collector with heap
sizes ranging from the smallest in which they complete to four
times larger. For our simulated runs, we use the memory and proces-
sor configuration of a PowerPC G5 processor [1], and assume a 2
GHz clock. We use a 4K page size, as in Linux and Windows.
Table 3 presents the exact architectural parameters.

Rather than relying on reported heap usage, we compare actual
heap footprints by examining each run’s maximum number of heap
pages in use. Pages are “in use” only if they have been allocated
from the kernel and touched. We do not include unused pages,
such as allocated but untouched pages or pages that have been un-
mapped, since they are not assigned physical memory. Counting
pages in use ensures the proper accounting of all memory usage,
including metadata space, which is occasionally underreported.

For the oracular memory management experiments, we use both
the Lea (GNU libc, “DLmalloc”) allocator [44] and a variant of the
MMTk MarkSweep collector. The Lea allocator is an approximate
best-fit allocator that provides both high speed and low memory
consumption. It forms the basis of the memory allocator included
in the GNU C library [28]. The version used here (2.7.2) is a hy-
brid allocator with different behavior based on object size, although
objects of different sizes may be adjacent in memory. Small ob-
jects (less than 64 bytes) are allocated using exact-size quicklists
(one linked list of freed objects for each multiple of 8 bytes). The
Lea allocator coalesces objects in these lists (combining adjacent
free objects) in response to several conditions, such as requests for
medium-sized objects. Medium objects are managed with imme-
diate coalescing and splitting of the memory on the quicklists and
approximates best-fit. Large objects are allocated and freed us-
ing mmap. The Lea allocator is the best overall allocator (in terms
of the combination of speed and memory usage) of which we are
aware [40].

While the Lea allocator is an excellent point of comparison, it
differs significantly from the garbage collectors we examine here.
Perhaps most importantly, it is written in C and not Java. In order
to isolate the impact of explicit memory management, we added in-
dividual object freeing to MMTk’s MarkSweep collector and large
object manager (“Treadmill”). Each block of memory maintains
its own stack of free slots and reuses the slot that has been most
recently freed. This “allocator” is labelled as MSExplicit in the
graphs.

Table 2 lists the garbage collectors we examine here, all of which
are high-throughput “stop-the-world” collectors. These include a
non-copying collector (MarkSweep [45]), two pure copying collec-
tors (SemiSpace [25], and GenCopy [5]) and two hybrid collectors
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Figure 3: Geometric mean of garbage collector performance
relative to the Lea allocator using the reachability oracle.

(GenMS and CopyMS). The generational collectors (the collector
names starting with “Gen”) use an Appel-style variable-sized nurs-
ery [5]: the nursery shrinks as survivors fill the heap. We use the
versions of these collectors included with the MM Tk memory man-
agement toolkit; the descriptions below are adapted from Black-
burn et al. [11].

MarkSweep: MarkSweep organizes the heap into blocks divided
into fixed-size chunks, which it manages with freelists. Mark-
Sweep traces and marks the reachable objects, and lazily
finds free slots during allocation.

SemiSpace: SemiSpace uses bump pointer allocation and has two
copy spaces. It allocates into one, and when this space fills,
it copies reachable objects into the other space and swaps
them.

GenCopy: GenCopy uses bump pointer allocation. It is a clas-
sic Appel-style generational collector [5]. It allocates into a
young (nursery) copy space and promotes survivors into an
old SemiSpace. Its write barrier records pointers from old
to nursery objects. GenCopy collects when the nursery is
full, and reduces the nursery size by the size of the survivors.
When the old space is full, it collects the entire heap.

GenMS: This hybrid generational collector is like GenCopy ex-
cept that it uses a MarkSweep old space.

CopyMS: CopyMS is a non-generational collector (i.e., without
write barriers) that uses bump pointer allocation to allocate
into a copy space. When this space fills, CopyMS performs a
whole-heap collection and copies survivors to a MarkSweep
old space.

5. Experimental Results

In this section, we explore the impact of garbage collection and ex-
plicit memory management on total execution time, memory con-
sumption, and page-level locality.

5.1 Runtime and Memory Consumption

Figure 3 presents the geometric mean of garbage collection perfor-
mance relative to the Lea allocator using the reachability oracle.
We present runtime versus space results for individual benchmarks
across all garbage collectors in Figure 4 . Each graph within this
figure compares the garbage collectors and the Lea allocator using

the reachability oracle. Points in the graph represent the heap foot-
print (the x-axis) and runtime (y-axis) for the garbage collection
algorithm relative to the explicit memory manager. For readabil-
ity, we do not include individual graphs for two of the benchmarks,
_201_compress and _205_raytrace. Table 4 summarizes the re-
sults for the relative performance of GenMS, the best-performing
garbage collector.

These graphs compactly summarize these results and present the
time-space tradeoff involved in using garbage collection. Because
we present pages actually touched rather than the requested heap
size, they occasionally exhibit a “zig-zag” effect that can be sur-
prising. As heap size increases, the number of heap pages normally
also increases, but an increase in heap size can sometimes reduce
the number of heap pages visited. For example, because of frag-
mentation or alignment restrictions, a larger heap size may cause
objects to straddle two pages. This effect tends to be most pro-
nounced for MarkSweep, which cannot reduce fragmentation by
compacting the heap.

As the graphs show, the garbage collectors exhibit similar trends.
Initially, in small heaps, the cost of frequent garbage collection
dominates runtime. As heap sizes grow, the number of full-heap
garbage collections correspondingly decreases. Eventually, total
execution time asymptotically approaches a fixed value. For GenMS,
this value is somewhat lower than the cost of explicit memory man-
agement. At its largest heap size, GenMS equals the performance
of the Lea allocator. Its best relative performance on each bench-
mark ranges from 10% faster for ipsixql to 26% slower for _209_db,
a benchmark that is unusually sensitive to locality effects.

The performance gap between the collectors is lowest for bench-
marks with low allocation intensity (the ratio of total bytes allo-
cated over maximum reachable bytes). For these benchmarks, Mark-
Sweep tends to provide the best performance, especially at smaller
heap multiples. Unlike the other collectors, MarkSweep does not
need a copy reserve, and so makes more effective use of the heap.
As allocation intensity grows, the generational garbage collectors
generally exhibit better performance, although MarkSweep pro-
vides the best performance for ipsixql until the heap size multi-
ple becomes quite large (over 6x). The two generational collec-
tors (GenMS and GenCopy) exhibit similar performance trends, al-
though GenMS is normally faster. GenMS’s MarkSweep mature
space also makes it more space-efficient than GenCopy’s mature
space, which is managed by SemiSpace.

The shape of the garbage collection curves confirms analytical
models that predict the performance of garbage collection to be in-
versely proportional to heap size [4; 41, p.35]. Note that the cost of
explicit memory management does not depend on heap size, and
is linear in the number of objects allocated. While this inverse
proportionality relationship holds for MarkSweep and SemiSpace,
we find that, on average, GenMS runs in time inversely propor-
tional to the square of the heap size. In particular, the function
execution time factor = a/ (b — heap size factor?) + ¢ characterizes
the trend for GenMS, where the execution time factor is perfor-
mance dilation with respect to Lea, and heap size factor is the
multiple of the minimum required heap size. With the parameters
a=—0.246, b = 0.59, and ¢ = 0.942, the curve is an excellent fit.
Visually, the curves are indistinguishable, and the rms (root mean
square) error of the fit is just 0.0024, where 0 is a perfect fit. We
find a similar result for GenCopy, whose rms error is just 0.0067
(a=—-0.297, b =0.784, ¢ = 1.031). As far as we know, such
inverse quadratic behavior has not previously been noted. We do
not yet have an explanatory model, but conjecture that this behav-
ior arises because the survival rate from nursery collections is also
inversely proportional to heap size.
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Figure 4: Runtime of garbage collectors versus the Lea allocator using the reachability oracle. The x-axis gives the maximum
number of heap pages visited — the “zigzag” effect is primarily caused by fragmentation (see Section 5.1). The graphs are presented
in increasing allocation intensity (alloc/max, given in parentheses); lower graphs are more allocation-intensive.



Simulated PowerPC GS5 system

Actual PowerPC G4 system

L1, I-cache 64K, direct-mapped, 3 cycle latency
L1, D-cache | 32K, 2-way associative, 3 cycle latency
L2 (unified) | 512K, 8-way associative, 11 cycle latency

32K, 8-way associative, 3 cycle latency
32K, 8-way associative, 3 cycle latency
256K, 8-way associative, 8 cycle latency

L3 (off-chip) | N/A
all caches have 128 byte lines

RAM 270 cycles (135ns)

2048K, 8-way associative, 15 cycle latency
all caches have 32 byte lines
95 cycles (95ns)

Table 3: The memory timing parameters for the simulation-based and “live” experimental frameworks (see Section 2.3). The simu-
lator is based upon a 2GHz PowerPC G5 microprocessor, while the actual system uses a 1GHz PowerPC G4 microprocessor.

GenMS
vs. Lea w/ Reachability vs. Lea w/ Liveness
Heap size | Footprint | Runtime Footprint | Runtime

1.00 210% 169% 253% 167%
1.25 252% 130% 304% 128%
1.50 288% 117% 347% 115%
1.75 347% 110% 417% 109%
2.00 361% 108% 435% 106%
2.25 406% 106% 488% 104%
2.50 419% 104% 505% 102%
2.75 461% 103% 554% 102%
3.00 476% 102% 573% 100%
3.25 498% 101% 600% 100%
3.50 509% 100% 612% 99%
3.75 537% 101% 646% 100%
4.00 555% 100% 668% 99%

Table 4: Geometric mean of memory footprints and runtimes
for GenMS versus Lea. The heap sizes are multiples of the min-
imum amount required to run with GenMS.

MSExplicit vs. GenMS
w/ Reachability w/ Liveness
Benchmark Footprint | Runtime || Footprint | Runtime
_201_compress 162% 106% 251% 101%
202 _jess 154% 104% 165% 103%
_205_raytrace 131% 102% 147% 100%
_209_db 112% 118% 118% 96%
_213_javac 133% 95% 124% 93%
_228_jack 158% 103% 168% 105%
ipsixql 149% 100% 163% 97%
pseudoJBB 112% 106% 116% 87%
Geo. Mean 138% 104% 152% 98%

Table 5: Memory footprints and runtimes for MSExplicit ver-
sus Lea. In this table, we present results comparing results
when run with similar oracles.

Finally, Table 5 compares the footprints and runtimes of MSEx-
plicit (explicit memory management based on the MMTk Mark-
Sweep implementation) and the Lea allocator when both use the
same oracle. MSExplicit is substantially less memory-efficient than
Lea, requiring between 38% and 52% more space. However, the
results for runtime performance are similar. With the reachability
oracle, MSExplicit runs an average of 4% slower than Lea; with the
liveness-based oracle, it runs 2% faster. The worst-case for MSEx-
plicit is for the locality-sensitive -209_db, where its segregated size
classes cause it to run 18% slower when using the reachability or-
acle. On the other hand, it runs 5% faster than Lea for _213_javac
with the reachability oracle, because this benchmark stresses raw
allocation speed.

With the exception of _209_db, the two allocators are roughly
comparable in performance, confirming the good performance char-
acteristics both of the generated Java code and of the MMTk in-
frastructure. Figure 4(f) is especially revealing: in this case, the
runtime performance of MSExplicit is just 3% greater than that of
Lea, but MarkSweep, using the same allocation infrastructure, runs
from over 300% to 50% slower. These experiments demonstrate
that the performance differences between explicit memory man-
agement and garbage collection are due to garbage collection itself
and not to underlying differences in allocator infrastructure.

Comparing Simulation to the Live Oracle

We also compare the runtime performance of the various garbage
collectors with the live oracle described in Section 2.3. For these
experiments, we use a PowerPC G4 with 512MB of RAM running
Linux in single-user mode and report the mean value of 5 runs. The
architectural details of our experimental machine can be found in
Table 3.

A comparison of the results of our live oracle experiments and
simulations appears in Figure 5. These graphs compare the geomet-
ric means of executing all but three of the benchmarks. Because of
the memory demands of the heap trace generation process and dif-
ficulties in duplicating time-based operating system calls, we are
currently unable to run pseudodBB, ipsixql, and -205_raytrace
with the live oracle.

Despite their different environments, the live and simulated orac-
ular memory managers achieve strikingly similar results. Differ-
ences between the graphs could be accounted for by the G4’s L3
cache and smaller main memory latency compared to our simula-
tor. While the null oracle adds too much noise to our data to justify
its use over the simulator, the similarity of the results is strong evi-
dence for the validity of the simulation runs.

Comparing the Liveness and Reachability Oracles

‘We compare the effect of using the liveness and reachability-based
oracles in Figure 6. This graph presents the average relative ex-
ecution time and space consumption of allocators using both the
liveness and reachability-based oracles. As usual, all values are
normalized to the Lea allocator with the reachability-based ora-
cle. The x-axis shows relative execution time; note the compressed
scale, ranging from just 0.98 to 1.04. The y-axis shows the relative
heap footprint, and here the scale ranges from 0.8 to 1.7. The sum-
mary and individual runtime graphs (Figures 3 and 4) also include
a datapoint for the Lea allocator with the liveness oracle.

We find that the choice of oracle has little impact either on ex-
ecution time. We expected the liveness-based oracle to improve
performance by enhancing cache locality, since it recycles objects
as soon as possible. However, this recycling has at best a mixed ef-
fect on runtime, degrading performance by 1% for the Lea allocator
while improving it by up to 5% for MSExplicit.

When the liveness-based oracle does improve runtime perfor-
mance, it does so by reducing the number of L1 data cache misses.
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Figure 5: Comparison of the “live” to the simulated oracular memory manager: geometric mean of execution time relative to Lea

across identical sets of benchmarks.
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Figure 6: Geometric mean of explicit memory managers rela-
tive to the Lea allocator using the reachability oracle. While
using the liveness oracle reduces the mean heap footprint sub-
stantially, the choice of oracle has little effect on mean execution
time.

Figure 4(d) shows that ipsixql with the liveness-based oracle exe-
cutes 18% faster than with the reachability oracle. This improve-
ment is due to a halving of the L1 data cache miss rate. On the other
hand, the liveness-based oracle significantly degrades cache local-
ity in two other benchmarks, 209_db and pseudoJBB, causing
them to execute 23% and 13% slower, respectively. While _209_db
is notoriously susceptible to cache effects, the pseudodBB result
is surprising. In this case, using the lifetime-based oracle results in
poor object placement, increasing the L2 cache miss rate by nearly
50%. However, these benchmarks are outliers. Figure 3 shows
that, on average, the Lea allocator with the liveness-based oracle
runs only 1% slower than with the reachability oracle.

The liveness-based oracle has a more pronounced impact on space
consumption, reducing heap footprints by up to 15%. Using the
liveness-based oracle reduces Lea’s average heap footprint by 17%
and MSExplicit’s by 12%. While _201_compress’s reliance on
several large objects limits how much the liveness-based oracle can

improve its heap footprint, all other benchmarks see their space
consumption reduced by at least 10%.

5.2 Page-level locality

For virtual memory systems, page-level locality can be more im-
portant for performance than total memory consumption. We present
the results of our page-level locality experiments in the form of
augmented miss curves [52, 61]. Assuming that the virtual mem-
ory manager observes an LRU discipline, these graphs show the
time taken (y-axis) for different number of pages allocated to the
process (the x-axis). Note that the y-axis is log-scale. We assume a
fixed 5 millisecond page fault service time.

Figure 7 presents the total execution times for the Lea alloca-
tor, MSExplicit, and each garbage collector across all benchmarks.
For each garbage collector, the fastest-performing heap size was
selected.

These graphs show that, for reasonable ranges of available mem-
ory (but not enough to hold the entire application), both explicit
memory managers substantially outperform all of the garbage col-
lectors. For instance, pseudoJBB running with 63MB of available
memory and the Lea allocator completes in 25 seconds. With the
same amount of available memory and using GenMS, it takes more
than ten times longer to complete (255 seconds). We see similar
trends across the benchmark suite. The most pronounced case is
-213_javac: at 36MB with the Lea allocator, total execution time
is 14 seconds, while with GenMS, total execution time is 211 sec-
onds, over a 15-fold increase.

The culprit here is garbage collection activity, which visits far
more pages than the application itself [61]. As allocation intensity
increases, the number of major garbage collections also increases.
Since each garbage collection is likely to visit pages that have been
evicted, the performance gap between the garbage collectors and
explicit memory managers grows as the number of major collec-
tions increases.

6. Related Work

Previous comparisons of garbage collection to explicit memory man-
agement have generally taken place in the context of conservative,
non-relocating garbage collectors and C and C++. In his thesis,
Detlefs compares the performance of garbage collection to explicit
memory management for three C++ programs [19, p.47]. He finds
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Figure 7: Estimated time for six of the benchmarks, including page fault service time (note that the y-axis is log-scale). The graphs



that garbage collection generally resulted in poorer performance
(from 2% to 28% overhead), but also that the garbage-collected
version of cfront performs 10% faster than a version modified to
use general-purpose memory allocation exclusively. However, the
garbage-collected version still runs 16% slower than the original
version of cfront using its custom memory allocators. Zorn com-
pares conservative garbage collection to explicit memory manage-
ment in the context of C programs [62]. He finds that the Boehm-
Demers-Weiser collector [14] is occasionally faster than explicit
memory allocation, but that the memory consumed by the BDW
collector is almost always higher than that consumed by explicit
memory managers, ranging from 21% less to 228% more. Hicks et
al. also find that programs written in Cyclone (a type-safe variant of
C) and linked with the BDW collector can require much more mem-
ory than those using pure explicit memory management [35]. They
also find that conservative garbage collection provides throughput
equal to explicit memory management for most of their bench-
marks, but that one benchmark showed a significant performance
improvement with explicit memory management. While these stud-
ies examine conservative garbage collectors running within C and
C++ programs, we focus on the performance of code written from
the outset to use garbage collection.

Perhaps the closest work to that presented here is by Blackburn
et al., who measure a similar range of garbage collectors and bench-
marks in the Jikes RVM and the Memory Management Toolkit
(MMTX) [10]. They conclude that generational garbage collection
achieves locality benefits that make it faster than freelist-style al-
location. To approximate explicit memory management, they mea-
sure the mutator time of execution with the MMTk mark-sweep
garbage collector, and show that this exceeds the total execution
time with generational collectors. This approach does not account
for either cache pollution caused by garbage collection or the ben-
eficial locality effects that explicit memory managers achieve by
promptly recycling allocated objects. In addition, the MMTk mark-
sweep collector segregates objects by size and thus disrupts alloca-
tion order. The Lea allocator we use here maintains segregated free
lists but allows objects of different sizes to be adjacent in memory.
Preserving allocation order is especially important for Java, since it
approximates the locality effects of object inlining [21, 22, 23].

Numerous studies have sought to quantify the overhead of gar-
bage collection and explicit memory management on application
performance [7, 9, 40, 43, 62]. Steele observes garbage collec-
tion overheads in LISP accounting for around 30% of application
runtime [30]. Ungar measures the cost of generational scavenging
in Berkeley Smalltalk, and finds that it accounts for just 2.5% of
CPU time [56]. However, this measurement excludes the impact
of garbage collection on the memory system. Using trace-driven
simulations of eight SML/NJ benchmarks, Diwan et al. conclude
that generational garbage collection accounts for 19% to 46% of
application runtime (measured as cycles per instruction) [20].

Using a uniform cost model for memory accesses, Appel presents
an analysis that shows that given enough space, garbage collection
can be faster than explicit memory management [4] (see Miller for
a rebuttal of this claim with respect to stack allocation of activa-
tion frames [47]). He observes that the frequency of collections is
inverse to the heap size, while the cost of collection is essentially
constant (a function of the maximum reachable size). Increasing
the size of the heap therefore reduces the cost of garbage collection.
Wilson argues that this conclusion is unlikely to hold for modern
machines because of their deep memory hierarchies [60]. Our re-
sults on such a system support Appel’s analysis, although we find
that an Appel-style collector runs inversely proportionally to the
square of heap size.

7. Future Work

This paper addresses only individual object management, where all
objects are allocated with malloc and freed with free. How-
ever, custom allocation schemes like regions can dramatically im-
prove the performance of applications using explicit memory man-
agement [9, 31]. Regions are also increasingly popular as an al-
ternative or complement to garbage collection [26, 27, 29, 54]. In
future work, we plan to use our framework to examine the impact
of the use of regions and a hybrid allocator, reaps [9], as compared
to garbage collection.

The Lea allocator we use here places 8-byte object headers prior
to each allocated object. These headers can increase space con-
sumption and impair cache-level locality [24]. We plan to evalu-
ate memory allocators like PHKmalloc [42] and Vam [24] that use
BiBoP-style (big bag of pages) allocation and so avoid per-object
headers. We intend to compare the virtual memory performance
of explicit memory management with the bookmarking collector,
which is specifically designed to avoid paging [32].

Finally, this paper examines only stop-the-world, non-incremental,
non-concurrent garbage collectors. While these generally provide
the highest throughput, they also exhibit the largest pause times.
We would like to explore the effect on pause times of various gar-
bage collectors relative to explicit memory managers, which also
exhibit pauses. For example, the Lea allocator normally allocates
objects in a few cycles, but occasionally empties and coalesces its
quicklists. It also does a linear best-fit search for large objects. 2
To our knowledge, pauses caused by explicit memory manage-
ment have never been measured or compared to garbage collection
pauses.

8. Conclusion

This paper presents a tracing and simulation-based experimental
methodology that executes unaltered Java programs as if they used
explicit memory management. We use this framework to compare
the time-space performance of a range of garbage collectors to ex-
plicit memory management with the Lea memory allocator. Com-
paring runtime, space consumption, and virtual memory footprints
over arange of benchmarks, we show that the runtime performance
of the best-performing garbage collector is competitive with ex-
plicit memory management when given enough memory. In par-
ticular, when garbage collection has five times as much memory
as required, its runtime performance matches or slightly exceeds
that of explicit memory management. However, garbage collec-
tion’s performance degrades substantially when it must use smaller
heaps. With three times as much memory, it runs 17% slower on
average, and with twice as much memory, it runs 70% slower. Gar-
bage collection also is more susceptible to paging when physical
memory is scarce. In such conditions, all of the garbage collectors
we examine here suffer order-of-magnitude performance penalties
relative to explicit memory management.

We believe these results will be useful both for practitioners and
researchers. Practitioners can use these results to guide their choice
of explicitly-managed languages like C or C++, or garbage-collected
languages like Java or C#. If their applications will be deployed on
systems with at least three times as much RAM as needed, then
garbage collection should provide reasonable performance. How-
ever, if the deployed systems will have less RAM, or if their ap-
plications will have to compete with other processes for memory,
then practitioners should expect garbage collection to exact a sub-
stantial performance cost. This cost will be especially pronounced
for applications whose performance is tied to their efficient use of
memory, such as in-memory databases and search engines.

2Version 2.8.2 of the Lea allocator uses tries to optimize this search.



Researchers can use these results to guide their development of
memory management algorithms. This study identifies garbage
collection’s key weaknesses as its poor performance in tight heaps
and in settings where physical memory is scarce. On the other
hand, in very large heaps, garbage collection is already competi-
tive with or slightly better than explicit memory management.
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