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ABSTRACT
A new field in distributed computing, called Ambient In-
telligence, has emerged as a consequence of the increasing
availability of wireless devices and the mobile networks they
induce. Developing software for such mobile networks is
extremely hard in conventional programming languages be-
cause the network is dynamically defined. This hardware
phenomenon leads us to postulate a suite of characteris-
tics of future Ambient-Oriented Programming languages. A
simple reflective programming language kernel, called Am-
bientTalk, that meets these characteristics is subsequently
presented. The power of the reflective kernel is illustrated
by using it to conceive a collection of high level tentative
ambient-oriented programming language features.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—distributed languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms
Design, Languages

Keywords
ambient intelligence, mobile networks, actors, language ker-
nel

1. INTRODUCTION
Software development for mobile devices is given a new

impetus with the advent of mobile networks. Mobile net-
works surround a mobile device equipped with wireless tech-
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nology and are demarcated dynamically as users move about.
Mobile networks turn the applications running on mobile de-
vices from mere isolated programs into smart applications
that can cooperate with their environment. As such, mobile
networks take us one step closer to the world of ubiquitous
computing envisioned by Weiser [44]; a world where (wire-
less) technology is gracefully integrated into the everyday
lives of its users. Recently, this vision has been termed Am-
bient Intelligence (AmI for short) by the European Council’s
IST Advisory Group [21].

Mobile networks that surround a device have several prop-
erties that distinguish them from other types of networks.
The most important ones are that connections are volatile
(because the communication range of the wireless technol-
ogy is limited) and that the network is open (because devices
can appear and disappear unheraldedly). This puts extra
burden on software developers. Although low-level system
software and networking libraries providing uniform inter-
faces to these wireless technologies (such as JXTA [17] and
M2MI [26]) have matured in the last couple of years, devel-
oping application software for mobile networks still remains
difficult. One of the main reasons for this is that current-
day programming languages lack abstractions to deal with
the mobile hardware characteristics. For instance, in tra-
ditional programming languages failing remote communica-
tion is usually dealt with using a classical exception handling
mechanism. This results in application code polluted with
exception handling code because mobile network failures are
the rule rather than the exception. Observations like this
justify the need for a new Ambient-Oriented Programming
paradigm (AmOP for short) that consists of programming
languages that explicitly incorporate potential network fail-
ures in the very heart of their basic computational steps.

As very little experience exists in writing applications that
fully explore the potential of mobile networks, it is hard
to come up with a definition of AmOP based on software
engineering requirements. Therefore, our research has fo-
cussed on the hardware phenomena that distinguish mobile
networks from existing stationary networks. These phenom-
ena are listed in section 2.1 and form the basis from which
we distill a number of fundamental programming language
characteristics that define the AmOP paradigm. These char-
acteristics are the topic of section 3. A concrete scion of
the AmOP paradigm — called AmbientTalk — is presented
starting from section 4. AmbientTalk was conceived as an
improvement on the classical actor model that is particu-
larly focused on mobile networks. Moreover, AmbientTalk
was designed as a minimalist extensible language kernel be-
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cause of two reasons. First, it was our goal to investigate the
impact of the new hardware context on existing distributed
programming language features. Second, the lack of exten-
sive software engineering experience for AmI fosters an ex-
perimental approach to distill the list of language features
necessary for AmI. Both goals are achieved by conceiving
AmbientTalk as a reflectively extensible kernel that allows
us to explore the boundaries of the paradigm. A description
of the reflective features is presented in section 4.3. Finally,
section 5 presents a concrete experiment we conducted in a
particular extension of AmbientTalk. The experiment com-
prises the implementation of an ambient peer-to-peer instant
messaging application deployed on smart phones.

2. MOTIVATION
In the context of mobile networks, one sometimes makes

a distinction between nomadic and ad hoc distributed sys-
tems depending on whether a shared infrastructure is used
to support the mobile communication [30]. Nomadic sys-
tems use such an infrastructure (e.g. cellular phones hop-
ping from one cell to another) whereas ad hoc ones do not
(e.g. two PDA’s that encounter each other). The techni-
cal hardware properties of the devices which constitute ad
hoc and nomadic distributed systems engender a number of
phenomena that have to be dealt with by the middleware
and/or distributed programming language processors. We
summarize these hardware phenomena below and describe
how existing programming languages and middleware fail
to deal with them. This forms the main motivation for our
work.

2.1 Hardware Phenomena
With the current state of commercial technology, mobile

devices are often characterised by having scarcer resources
(such as lower CPU speed, smaller memory and limited bat-
tery) than traditional hardware. However, we cannot help
but notice that in the last couple of years, mobile devices
and full-fledged computers like laptops are blending more
and more. That is why we do not consider these restrictions
as fundamental to the AmOP paradigm as we consider the
following phenomena to be:

• Connection Volatility. Two processes that perform
a meaningful task together on two cooperating de-
vices cannot assume a stable connection. The limited
communication range of the wireless technology com-
bined with the fact that users can move out of range
can result in broken connections. However, upon re-
establishing a broken connection, users typically ex-
pect the task to resume. In other words, they expect
the task to be performed in the presence of a volatile
connection.

• Ambient Resources. If a user moves with his mobile
device, remote resources become dynamically (un)available
in the environment because the availability of a re-
source may depend on the location of the device. This
is in contrast with stationary networks in which refer-
ences to remote resources are obtained based on the
explicit knowledge of the availability of the resource.
In the context of mobile networks, the resources are
said to be ambient.

• Autonomy. Most distributed applications today are
developed using the client-server approach. The server
often plays the role of a “higher authority” which co-
ordinates interactions between the clients. In mobile
networks, and especially in mobile ad hoc networks,
a connection to such a “higher authority” is not al-
ways possible. Every device acts as an autonomous
computing unit.

• Natural Concurrency. In theory, distribution and
concurrency are two different phenomena. For instance
in a client-server setup, a client might wait for the re-
sults of a request to the server in order to resume its
computation. Hence, in theory a distributed system is
not necessarily a concurrent one. However, even in the
extreme case where both communicating devices run a
single threaded program, their autonomy implies that
the resulting task is a concurrent one. Moreover, the
trend of software getting ever more multi-threaded will
also manifest itself on mobile devices. As a result, con-
currency is a natural phenomenon in software running
on mobile networks.

2.2 Distributed Languages
To the best of our knowledge no distributed language has

been designed to specifically deal with the characteristics of
mobile hardware just described. Existing distributed lan-
guages can be categorised as languages designed for local
area networks and languages that have been designed for
open networks, such as the internet.

2.2.1 Languages for Local Area Networks
A number of distributed languages have been proposed,

which target local area networks. Some of them are based
on synchronous (hence blocking) communication primitives,
such as Emerald [23] and Obliq [7], while others, like ABCL/f
[36] and Argus [27, 28] promote an intermediate form based
on futures [19]. These communication mechanisms are fea-
sible for reliable networks, where failures are the exception,
but harm the autonomy when used in high latency networks,
such as mobile networks.

2.2.2 Languages for Open Networks
Some distributed languages, such as Janus [25], Salsa [42]

and E [31], are based on the actor model. The actor model
is based on pure asynchronous communication, which pre-
serves the autonomy of devices in the context of high latency
and failures. However, these languages offer no support
to discover ambient resources or to deal with consistency
among autonomous computing units.

2.3 Distributed Middleware
An alternative to distributed languages is middleware.

Over the past few years a lot of research has been invested
in middleware for nomadic and ad hoc distributed systems
[30]. This bulk of research can be categorized into several
groups.

2.3.1 RPC-Based Middleware
Alice [18] and DOLMEN [33] are attempts to make CORBA

feasible for supporting nomadic distributed systems. These
attempts focussed mainly on making heavyweight ORBs
suitable for the lightweight devices and on improving the
resilience of the IIOP protocol to failing communication.
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Other approaches adapt the RPC protocol by supporting
queuing of RPCs [22] or enabling rebinding of resources [35].
These approaches work well when connections are lost for
a short time, but do not address disconnections over longer
periods of time.

2.3.2 Publish-Subscribe Middleware
Another, more recent, branch of middleware for mobile

computing is based on the adaptation of the publish-subscribe
paradigm [14] to cope with the characteristics of mobile com-
puting [8, 6, 9]. Such middleware allows asynchronous com-
munication, but has the disadvantage of requiring callbacks
to handle results, which clutters the code and makes the
program less understandable.

2.3.3 Tuple Space Based Middleware
In the past few years middleware has been proposed [32,

10, 29, 15] for mobile computing based on tuple spaces [16].
A tuple space acts as an intermediate data structure in
which processes can publish and query tuples to communi-
cate asynchronously with one another. Most research on tu-
ple spaces for mobile computing consists of distributing the
tuple space over a set of devices. Although tuple spaces are
an interesting communication paradigm for mobile comput-
ing, the paradigm does not integrate well with the object-
oriented paradigm because communication is achieved by
placing data in a tuple-space as opposed to sending mes-
sages to objects.

2.3.4 Data Sharing-Oriented Middleware
Another branch of middleware tries to maximize the au-

tonomy of mobile devices. In most approaches, such as
Coda [34], Bayou, [37], Rover [22] and XMiddle [46], this
is achieved by introducing weak replica management facil-
ities in the middleware. Due to the connection volatility,
replicas are not always synchronized. This can lead to a se-
ries of conflicts, which are application-specific and must be
resolved at the application level.

2.4 Summary
The current state of the art in middleware does not ad-

dress all the important characteristics that are encountered
when developing a nomadic or ad hoc distributed system.
Regarding distributed languages there have been a number
of proposals suitable for open distributed networks, but they
have not yet been applied in the context of mobile computing
and do not deal with all the hardware phenomena described
in section 2.1.

3. AMBIENT-ORIENTED PROGRAMMING
In the same way that referential transparency can be re-

garded as a defining property for pure functional program-
ming, this section presents a collection of language design
characteristics that define the boundaries of the ambient-
oriented programming paradigm. These characteristics are
directly derived from the hardware phenomena we summa-
rized in section 2.1. Until now, it seems that the object-
oriented paradigm is the most successful one w.r.t. dealing
with distribution and its induced concurrency because it suc-
cessfully aligns encapsulated objects with concurrently run-
ning distributed software entities [4]. Therefore, our most
basic research assumption is that ambient-oriented program-
ming languages necessarily are concurrent distributed object-

oriented programming languages. However, ambient-oriented
programming languages differ from conventional distributed
concurrent object-oriented programming languages in at least
one of the following four ways:

3.1 Prototype-based Object Models
As a consequence of parameter passing in the context of

remote messages, objects are copied back and forth between
remote hosts. Since an object in a class-based program-
ming language cannot exist without its class, this copying
of objects implies that classes have to be copied as well.
However, a class is – by definition – an entity that is con-
ceptually shared by all its instances. From a conceptual
point of view there is only one single version of the class
on the network, containing the shared class variables and
method implementations. Hence, copying classes over the
network causes state consistency problems because objects
residing on different machines can independently update a
class variable of “their” copy of the class. Moreover, a device
might upgrade to a new version of a class thereby “updat-
ing” its methods. These are both classical distributed state
consistency problems and solving them requires replication
machinery. However, in our hardware context consisting of
autonomous devices that are connected in a volatile fashion,
solving this problem poses some fundamental paradigmatic
problems.

By definition, classes impose a sharing relation upon all
their instances. This relation is established at object cre-
ation time and remains implicit throughout the lifetime of
all its instances. However, because of independent class up-
dates performed by autonomous disconnected devices, two
instances of the same class can unexpectedly exhibit differ-
ent behaviour. In other words, the implicit relation becomes
explicitly detectable. Existing class-based languages do not
offer programmers the means to deal with this phenomenon
since classes are usually not fully reified in the language. For
instance, the instance-of link between classes and objects is
usually not made explicit in the language precluding trans-
mitted objects from changing their class to a more suitable
version upon arrival. Worse, upon dealing with inconsistent
versions of the same class, no application-independent rule
exists to prefer one class over the other. To allow program-
mers to specify how such conflicts are to be resolved, the
only viable solution is to fully reify classes and the instance-
of relation. However, this is easier said than done. Even in
the absence of wireless distribution, languages like Smalltalk
and CLOS — which do not fully reify their class system —
already illustrate that a serious reification of classes and
their relation to objects results in extremely complex meta
machinery.

A much simpler solution consists of getting rid of classes
and the sharing relation they impose on objects altogether.
This is the paradigm defined by prototype-based languages
like Self [40]. In these languages objects are conceptually
entirely idiosyncratic such that the above problems do not
arise. Sharing relations between different prototypes can
still be established (such as e.g. traits [39]) but the point is
that these have to be explicitly encoded by the programmer
at all times. Surely, a runtime environment can optimise
things by sharing properties between different objects. But
such a sharing is not part of the language definition and
can never be detected by objects. For these reasons, we
have decided to select prototype-based object models for
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ambient-oriented programming. Notice that this confirms
the design of existing distributed programming languages
such as Emerald, Obliq, dSelf and E which are all classless.

3.2 Non-Blocking Communication Primitives
The fact that every hardware device is an autonomous

computational entity (inducing natural concurrency) com-
bined with the fact that connections are volatile, implies
the necessity for non-blocking communication primitives.
Blocking communication is a source of (distributed) dead-
locks [43]. Deadlocks and distributed deadlocks in local net-
works are not considered to be that harmful, since the cause
of the deadlock can be easily debugged with contemporary
remote debugging environments. However, in mobile net-
works, not all parties are necessarily available for communi-
cation making the resolution of deadlocks extremely hard.
Another, more important consideration when designing a
concurrency model for a language that is to run on mobile
networks, is that the communication mechanism should min-
imize the duration resources are locked. This is very impor-
tant, because the extremely high latency of communication
(over volatile connections) in mobile networks would dimin-
ish the availability of resources. Indeed, having blocking
communication primitives would imply a program or device
to block upon encountering unstable connections or tempo-
rary unavailability of another device. This has previously
been remarked on several occasions [30, 9, 32]. We thus
conclude that an ambient-oriented concurrency model is a
concurrency model without blocking communication primi-
tives.

Quite often, the issue of non-blocking communication is
confused with asynchronous message sending. Asynchronous
message sending implies that the send operation is non-
blocking, but tells us nothing about the (possibly implicit)
receive operation. A typical example of asynchronous send
operations combined with blocking receive operations is found
in the tuple-space based middleware (discussed in section 2.3.3),
which provide explicit, blocking receive operations on the
tuple-space.

3.3 Reified Communication Traces
Non-blocking communication (both send and receive) com-

bined with the autonomy of the communicating devices im-
plies that they will have to foresee some form of handshaking
given the fact that these devices are performing a meaning-
ful task together. Since the communication is non-blocking,
both senders and receivers will continue their execution irre-
spective of what happened after a message send. This means
that the parties might end up in a state that is not consis-
tent with the semantics of whatever the task it is that they
are solving. Whenever such an inconsistency is detected,
the parties must be able to restore their state to whatever
previous consistent state they were in, such that they can
decide what to do based on the final consistent state they
agreed upon. Examples of the latter could be overruling
one of the two computations or deciding together on a new
state with which both parties can resume their computa-
tion. Therefore, a programming language in the ambient-
oriented paradigm will have to provide us with reversibility
provisions giving programmers a way to manipulate their
execution state based on an explicit representation (i.e. a
reification) of the communication details that led to the in-
consistent state. The explicit representation will allow them

to take the appropriate actions to reverse (part of) the com-
putation. Notice that any implicit way to prevent the com-
municating parties from ending up in an inconsistent state
implies that communication primitives are blocking, which
was precluded above. Having an explicit reified represen-
tation of whatever communication that happened, allows a
device to properly recover from an inconsistency by revers-
ing part of its computation.

Several degrees of message delivery guarantee can be as-
sociated with non-blocking communication. For example, in
the many-to-many invocations library [26], where all com-
munication occurs via asynchronous messages, there are no
delivery guarantees. When a message is sent and there is
no process listening for messages, the message is lost. Such
communication paradigm is lightweight with respect to the
usage of resources and is suitable when no delivery guaran-
tees are to be met. On the other end of the spectrum there is
the actor model, where all asynchronous messages that are
sent must eventually be received [1]. Such an approach is
perhaps feasible when there are abundant resources, but in
the context of mobile computing, where devices have scarce
resources, it is clear that such an approach is not practi-
cable. This shows that there is no single “right” message
delivery guarantee policy because a tradeoff will have to be
made based on the requirements of the application and on
the available resources. Programming languages belonging
to the ambient oriented paradigm should make this tradeoff
possible instead of imposing a single strategy. Explicit con-
trol over the communication traces allows one to make the
tradeoff between different delivery guarantees.

3.4 Ambient Acquaintance Management
The fact that hardware devices are autonomous, combined

with the fact that resources are dynamically detected as the
devices are roaming means that all devices potentially have
the same capabilities to interact with each other directly
without relying on a third party. This is in contrast to client-
server communication models where clients usually interact
through the mediation of a server (such as is the case with
chat servers or white boards). The fact that communicat-
ing parties do not need an explicit reference to each other
(whether directly or indirectly through a server) requires
what is known as distributed naming [16]. For example, in
tuple-space based middleware this property is achieved, be-
cause a process can publish data in a tuple space, which can
then be consulted by the other processes based on a pattern
matching basis. Another example is many-to-many invoca-
tions [26], where broadcasts to all objects implementing a
certain interface can be expressed. Distributed naming is
especially important in the context of ad hoc distributed
systems, because it provides a mechanism to communicate
without knowing the address of an ambient resource.

We are not arguing that all ambient-oriented applications
must be based on distributed naming. It is perfectly pos-
sible that a programmer (or even a suite of running pro-
cesses) sets up a server for the purposes of a certain applica-
tion. However, an ambient-oriented programming language
should allow applications to rely on distributed naming if it
is required. In other words, the acquaintances of an object
must be dynamically manageable.

3.5 Discussion
Having analysed the implications of the hardware phe-

34



nomena on the design of programming languages, we have
come up with the above four characteristics. We will hence-
forth refer to programming languages that adhere to them
as Ambient-oriented Programming Languages. Surely, it is
impossible to prove that these are strictly necessary char-
acteristics for writing the applications we target. After all,
AmOP does not transcend Turing equivalence. However,
we do claim that an AmOP language will greatly enhance
the construction of such applications because their distribu-
tion characteristics are designed with respect to the hard-
ware phenomena presented in section 2.1. AmOP languages
incorporate temporal disconnections and evolving acquain-
tance relationships in the heart of their computational model.

The current state of the art in distributed languages does
not conform to all characteristics of AmOP. On the one
hand, languages for local area networks do not have the non-
blocking communication characteristic. On the other hand,
languages for open networks usually have the non-blocking
communication characteristic, but do not allow for ambi-
ent acquaintance management and are not equipped with
reversibility provisions.

4. THE AMBIENTTALK KERNEL
Now that we have established the characteristics of the

AmOP paradigm, the stage is set for the introduction of an
exemplar ambient-oriented programming language, called
AmbientTalk. AmbientTalk was designed as a minimal re-
flectively extensible language kernel. We begin by explaining
the essential characteristics of its object model.

4.1 The Object Model
AmbientTalk has a modern object model that was built on

previous research especially regarding its concurrency model
which was heavily based on ABCL/1 [45]. This model is
basically a marriage between two extremes in object con-
currency, to wit a functional model based on actors and
messages, and an imperative model based on threads that
run through multiple objects. The marriage proposed in
ABCL/1 features active objects which consist of a perpet-
ually running thread, updateable state and a message queue.
These concurrently running active objects communicate with
each other by asynchronous message passing. Upon recep-
tion, messages are scheduled in the object’s message queue
and are processed by the object’s thread one by one. By ex-
cluding simultaneous message processing, race conditions on
the updateable state are avoided. The merit of this model
lies in the fact that it unifies imperative object-oriented
and concurrent programming without suffering from om-
nipresent race conditions.

In order to avoid the fact that every single object has to be
equipped with rather heavyweight concurrency provisions,
and to preclude that every single message has to be thought
of as a concurrent one, a more fine-grained object model that
distinguishes between active and passive (i.e. ordinary) ob-
jects is desired. This allows programmers to deal with con-
currency only when strictly necessary (i.e. when consider-
ing semantically concurrent and/or distributed tasks). Since
passive objects are not equipped with an execution thread,
the “currently running” thread simply runs from the sender
into the receiver, thereby implementing synchronous mes-
sage passing. However, when combining active objects with
passive ones, it is important to ensure that a passive ob-
ject is never shared by two different active ones because this

easily leads to race conditions. AmbientTalk’s object model
avoids this by obeying the following principles:

• Containment A passive object is never shared by two
active ones. Every passive object is therefore owned
by exactly one active object. The only thread that
can enter the passive object is the thread of the active
object in which the passive one is contained.

• Parameter Passing When an asynchronous message is
sent to an active object (either from within an active
or a passive object), passive objects may be exchanged
as arguments and return values. In order not to violate
the containment principle, a passive object that crosses
the boundary of its active container is therefore always
passed by copy. Active objects are simply passed by
reference.

This pragmatic marriage between the functional actor model,
the imperative thread model and the ordinary passive proto-
type-based model was chosen as the basis for AmbientTalk’s
distribution model. The fact that messages sent to passive
objects are always synchronous messages is not reconcilable
with the non-blocking communication characteristic derived
in section 3. Therefore, active objects are the unit of distri-
bution in AmbientTalk. Hence, applications in AmbientTalk
are conceived as suites of active objects deployed on differ-
ent devices. Each active object can contain a plethora of
passive ones but these can never be exposed to the network
due to the rules specified above.

4.2 First-class Mailboxes
AmbientTalk’s concurrent object model presented above

was explicitly designed to meet two of the characteristics
presented in section 3 (namely a prototype-based object
model supporting non-blocking communication). However,
with respect to the other two characteristics, the model pre-
sented so far still has some limitations which it directly in-
herits from the original actor model as proposed by Hewitt
and Agha [20, 2]:

• Ambient Acquaintance Management: The model
does not support the Ambient Acquaintance Manage-
ment characteristic of the AmOP paradigm, because
actors can only gain acquaintances through other ac-
tors. The ActorSpace model [5], an extension of the
actor model, enables distributed naming by introduc-
ing an actor grouping mechanism, named spaces. How-
ever, these spaces are managed by centralized authori-
ties, which is infeasible in a mobile computing setting.

• Reified Communication Traces: Actors and Ac-
torSpaces do not support reified communication traces.
As a consequence, it is e.g. impossible to introduce
language constructs which retract messages that were
sent, but not yet transmitted. This kind of flexibility
is sometimes needed to resolve conflicts in the case of
network partitions as argued in section 3.3.

To enable these two properties, AmbientTalk replaces the
single message queue of the original actor model by a sys-
tem of first-class mailboxes which is described below. Am-
bientTalk’s first-class mailboxes are based on a formal ex-
tension of the actor model, called the ambient actor model
[12]. In the remainder of the paper, the term actor will be
used to refer to an active object (as described above) that
is equiped with first-class mailboxes.
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4.2.1 Reified Communication Traces
When scrutinising the communication structure of an ac-

tor, we observe four types of messages. Each type is stored
in a dedicated mailbox by AmbientTalk. The in mailbox
stores incoming messages, which have been received without
having been processed yet. Those that have been processed
are transferred from the in mailbox to the rcv mailbox. The
out mailbox stores those messages which an actor has sent
but which are not yet delivered. Upon successful delivery,
a message is transferred from the out mailbox to the sent

mailbox. Notice that the combined behaviour of the in and
out mailboxes was already implicitly present in the original
actor model in the form of a simple message queue. It is the
basis for non-blocking communication.

Apart from the four predefined mailboxes of an actor, ev-
ery actor can create its own custom mailboxes. Operators
exist to explicitly add and delete messages that reside in
both the predefined and the custom mailboxes. Moreover,
the changes in a mailbox can be monitored by registering
observers. These mechanisms provide us with all facilities
necessary to fully reify an actor’s communication traces. For
example, by removing a message from the out mailbox it can
be stopped from being delivered. In the same vein, a mes-
sage can be removed from the in mailbox to prevent it from
being processed by the actor.

Conceptually, the mailboxes rcv and sent allow one to
have a peek in the past of the communication history of
an actor. Likewise, the mailboxes in and out represent its
continuation, because they contain the messages the actor
will process and deliver in the future. These four explicit
mailboxes provide a gate to the past and the future of the
actor’s communication state; i.e. the reified communication
traces that have been prescribed by the AmOP paradigm.

4.2.2 Ambient Acquaintance Management
In section 3.4 we argued that an ambient acquaintance

management facility forms an essential ingredient of an AmOP
language. To achieve this, AmbientTalk actors have four
additional predefined mailboxes named joined, disjoined,
required and provided.

An actor that wants to make itself available for collabora-
tion can advertise itself by placing one or more descriptive
tags (e.g. strings) in its provided mailbox. Conversely, an
actor that needs other actors in its ambient places such de-
scriptive tags in its required mailbox. When two or more
actors enter one another’s communication range and have a
corresponding descriptive tag in their mailboxes, the mail-
box joined of the actor that required the collaboration is
updated with a resolution. Such a resolution is a pair con-
sisting of the matching tag and a reference to the actor that
provided the tag. Conversely, when two actors with a cor-
responding tag in their mailboxes are pulled out of com-
munication range, the resolution is moved from the joined

mailbox to the disjoined mailbox. This mechanism allows
an actor not only to detect new acquaintances in its am-
bient, but also to detect when they have disappeared from
the ambient. It is AmbientTalk’s technical realisation of the
ambient acquaintance management characteristic discussed
in section 3.4.

4.3 AmbientTalk as a Reflective Kernel
As explained before, AmbientTalk is a minimalist reflec-

tive kernel that has the essential built-in features to deal

with the AmOP characteristics outlined in section 3. The
kernel basically consists of the above object model together
with the system of eight built-in mailboxes. An actor’s
mailboxes are “causally connected” to the outer world as
their content reflects the history and future of its compu-
tational state and the hardware constellation that currently
surrounds it.

A mailbox is reified as a passive object associated with
exactly one actor and can (like any other passive object)
only be passed by copy to other actors1. Although a mailbox
is private to a single actor, it is manipulated by two different
entities. On the one hand, it can be explicitly manipulated
by its owner due to AmbientTalk’s reflective properties. On
the other hand, the underlying actor system also updates
the mailbox when certain low-level events occur, for example
when a message is transmitted from the out mailbox of one
actor to the in mailbox of another. The implementation
of AmbientTalk ensures that the manipulation of mailboxes
by these two entities cannot occur concurrently in order to
avoid race conditions on the contents of a mailbox.

The AmbientTalk kernel is used for conducting experi-
ments in AmOP language design by relying on the following
four provisions:

Mailbox Operations to add, delete and iterate over the
content of a mailbox.

Mailbox Observers are first-class functions that will be
invoked every time a message is added to the mailbox.

A Metaobject Protocol that allows the programmer to
override the default handling of message reception and
message sending [13].

Syntax Extensions can be made using a fairly simple Scheme-
like macro facility, further detailed in [11].

A plethora of tentative AmOP language constructs have
been reflectively implemented in AmbientTalk. Due to space
limitations, it is impossible to present them all in this paper.
Examples include adaptations to the communication prim-
itives (i.e. introducing future-type message passing [45]),
redundant communication primitives which route messages
via different paths, group communication abstractions such
as M2MI’s omnihandles [26] and synchronisation primitives
such as guards, chords [3] and behaviour sets [24]. The im-
plementation of some of them is explained in-depth in [13].
More exotic language constructs such as dSelf’s distributed
delegation [38], which allows prototype objects to delegate to
a parent located on a remote device, have been implemented
as well. For the details, we refer to [41]. In the following
section, one such language construct is used to conduct a
realistic experiment.

5. AN EXPERIMENT: AMBIENTCHAT
This section describes an experiment that shows how Am-

bientTalk reconciles the expressive power of a high-level lan-
guage with the ability to cope with the difficulties engen-
dered by the hardware phenomena described in section 2.1.
The experiment involves the implementation of what we call
ambient references which can be thought of as a kind of
network reference which is stable w.r.t. temporarily broken

1Notice that a copy of the mailbox is no longer causally
connected with its owner.
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network connections. This concept was subsequently used
to implement a peer-to-peer instant messaging client that
runs on a portable smartphone2. As a result, users partici-
pating in a chat session can temporarily leave one another’s
communication range without interrupting the session. At
the application level, the code does not have to deal with
this phenomenon.

The essence of the instant messenger actor is shown in the
following code excerpt. As can be seen from the code, Am-
bientTalk uses a fairly conventional syntax. The token :: is
used to declare a public immutable slot, : is used to declare
a private mutable slot and := is used for assignment. The
conventional dot-operator is used for synchronous message
sending to ordinary objects whereas the <- operator is used
to send asynchronous messages to actors. The code below
describes the prototypical behaviour of an actor which can
be cloned by sending it the message new. The exemplar ac-
tor defines a private slot to store its ID and another for the
messenger’s buddylist. Since a buddy is designated by its
unique device-independent ID (e.g. a nickname), this is a
hashtable mapping IDs to remote actors. The messenger ac-
tor allows a user to add buddies and to send text messages
to a particular buddy. Calling these two methods is the re-
sponsibility of the user interface and is beyond the scope of
the example.

InstantMessenger :: actor({

buddies : void;

identity : void;

cloning.new(id) :: {

buddies := Hashtable.new();

identity := id;

provided.add(id)

};

addBuddy(buddyId) :: {

buddies.put(buddyId,AmbientRef<-new(buddyId))};

sendMessageTo(buddyId,text) :: {

buddies.get(buddyId)<-receive(identity,text) };

receive(from, text) :: {display(from,": ",text)}

});

When calling the addBuddy method given the ID of a
buddy, an ambient reference is constructed (by calling
AmbientRef<-new(buddyId)3). This ambient reference lo-
cally represents the buddy, and will be used to discover the
remote actor whenever it becomes available. Furthermore,
the ambient reference is resilient to the effects of broken
network links, and will attempt to reconnect when possible.
The InstantMessenger uses the ambient reference to send a
text message to the designated buddy in the sendMessageTo
method.

The implementation of the AmbientRef abstraction is shown
below and optimally exploits AmbientTalk’s reified commu-
nication traces. An ambient reference is an actor which uses
AmbientTalk’s discovery mechanism to find a remote actor
matching a given descriptive tag. The ambient reference will
essentially become a proxy to the first actor it encounters

2The AmbientTalk virtual machine is developed in pure
Java, and runs on QTek 9090 smartphones on a conventional
J2ME platform.
3This asynchronous message returns a future that is finally
resolved with a value. It requires the “futures-type message
passing” reflective extension of AmbientTalk mentioned in
section 4.3 to be loaded.

that matches the description. It is stored in the ref variable
whose value toggles between the matching actor and void

whenever the device containing the matching actor moves in
and out of communication range. An ambient reference is
constructed by sending new which will clone the actor below.
At construction time, the clone is initialised by installing
three observers on its built-in mailboxes. These will be trig-
gered when a message arrives, and whenever its joined and
disjoined mailboxes change.

Upon reception of a message, the change in the in mailbox
triggers the onReceive observer. It reacts by forwarding the
message to the remote actor if it is available (i.e. ref is
not void). Message forwarding is implemented by changing
the recipient of the message to the remote actor, and by
moving it from the in mailbox to the out mailbox. When
the device containing the remote actor joins (resp. disjoins)
the device on which the ambient reference is running, the
onJoin (resp. onDisjoin) observers are triggered. These
methods take care of toggling the ref variable. Moreover,
onJoin will flush all unsent messages in the in mailbox by
forwarding them and onDisjoin will ensure that messages
that were not transmitted yet are accumulated in the in

mailbox of the reference in order to make sure they will be
resent after rejoining.

AmbientRef :: actor({

ref : void;

cloning.new(tag) :: {

required.add(tag);

in.addObserver(this.onReceive);

joined.addObserver(this.onJoin);

disjoined.addObserver(this.onDisjoin)

};

onReceive(msg) :: {

if(not(is_void(ref)), {

out.add(msg.setReceiver(ref));

in.delete(msg)

})

};

onJoin(resolution) :: {

if(is_void(ref), {

ref := provider(resolution);

in.asVector().iterate({

out.add(element.setReceiver(ref));

in.delete(element)

})

});

joined.delete(resolution)

};

onDisjoin(resolution) :: {

if(provider(resolution) == ref, {

ref := void;

out.asVector().iterate({

out.delete(element);

in.add(element)

})

});

disjoined.delete(resolution)

}

});

The instant messenger illustrates that AmbientTalk pro-
grams can be simple, even though they are based on a com-
plex concurrency model and are deployed in very volatile,
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dynamic hardware constellations. This is possible because
of the right kind of language constructs, abstracting away
from the more “low-level” operations that directly manipu-
late an actor’s mailboxes. Although the abstractions seem
very powerful, the real power of the model lies in the mail-
boxes, which directly support the cornerstones of AmOP:
queuing messages to support non-blocking communication,
reifying communication traces and acquainting actors based
on descriptive tags.

6. CONCLUSION AND FUTURE WORK
We have defined the ambient-oriented programming (AmOP)

paradigm as a set of programming language characteris-
tics that directly deal with the hardware phenomena en-
countered when developing applications for mobile networks.
The current state of the art of neither distributed languages
nor middleware addresses all the problems resulting from
these hardware phenomena. A reflectively extensible ker-
nel language AmbientTalk was presented that fits within
this AmOP paradigm. The essence of the language consist
of an active object model that is based on concurrent dis-
tributed prototypes which are further equipped with eight
mailboxes that constantly reflect the active object’s compu-
tational state as well as the state of the hardware surround-
ing it.

We have implemented a number of tentative AmOP lan-
guage features to illustrate the power of AmbientTalk and
the AmOP paradigm it supports. Future work encompasses
additional experimentation with advanced language features
in order to unveil the design space spanned by AmOP. Apart
from this, more insight is required on how to map Ambi-
entTalk’s principles on efficient implementation technology.
More concretely, we are looking for new distributed memory
management techniques, because existing techniques are not
intended for use in partially (dis)connected networks. We
believe that, in some cases, language constructs will need to
be provided to guide the garbage collector in cleaning up lost
network references because in the context of these networks,
application level knowledge can probably be used to help de-
termining those references that are no longer reachable. It
is clear that a lot of the territory pertaining to language fea-
ture design for AmOP remains uncovered. With this paper
we hope to promote a new branch of distributed languages,
which address the problems of mobile computing from the
ground up.
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