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ABSTRACT 
We describe (and demonstrate) the execution model of a computing 
platform where computation is both incremental and data-driven.  
We call such an approach delta-driven.  The platform is intended as 
a delivery vehicle for semantically integrated software, and thus 
lends itself to the semantic web, domain-driven development, and 
next-generation software development environments.  Execution is 
transparent, versioned, and persistent.  This technology - still at an 
early stage - is called domain/object. 

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments – 
interactive environments; D.2.11 [Software Engineering]: 
Software Architectures – data abstraction, patterns; D.2.12 
[Software Engineering]: Interoperability – data mapping; D.3.2 
[Programming Languages]: Language Classifications - data-flow 
languages; D.3.3 [Programming Languages]: Language 
Constructs and Features – constraints; D.3.4 [Programming 
Languages]: Processors – code generation, incremental compilers, 
run-time environments. 

General Terms: Design, Languages 

Keywords: Delta-driven execution, incremental computation, 
adaptive functions, lazy memoization, relational programming 

1. OVERVIEW 
Domain/object is a functional, persistent, versioned, transparent, 
incremental, reactive execution environment embedded in Java.  
Data values are “live” and update automatically in response to 
changes in dependent values, like cells in a spreadsheet.  The design 
philosophy places a premium on simplicity and emphasises elegance 
over featurism.  Our goal is to enable a new breed of application 
where components are integrated in a way only possible today with 
the help of large amounts of manual boilerplate.  Suitable 
applications include domain-driven development, the semantic web 
and next-generation software development tools. 

The execution model of domain/object is a radical departure from 
that of most programming languages and virtual machines in use 
today, in that execution takes place solely by the propagation and 
interpretation of structural deltas.  When a data value changes, the 
effects of that change are propagated recursively to all dependent 
data values, meaning that data values are “live” [32], not snapshots 
like variables are in traditional programming languages.  
Domain/object is thus a kind of  dataflow language, and abstractly 

more similar to a spreadsheet than a standard programming 
language. 

When changes propagate across domains, the change propagation 
process plays the role of an interpreter in the traditional computer 
science sense, incrementally translating changes in the “source” 
language as they are received into changes in the “target” language.  
Domain/object is therefore ideal for hosting interactive applications 
whose architectures are best considered to be sets of interconnected 
domain models. 

The plan of this paper is as follows.  In section 2 we briefly describe 
the background and motivation for our research.  Section 3 
describes the broad principles which underly the platform, such as 
the unification of compile-time and run-time, and key behavioural 
characteristics such as incrementality and “liveness”.  We also 
discuss in detail various design decisions and their relevant context.  
Section 4 presents a short case study of a “domain-driven” 
implementation of Java called domain/j, which was the primary 
motivation for the development of domain/object.  Section 5 
summarises some of our experiences of embedding a functional 
dataflow language in Java.  In section 6, we attempt to summarise 
the large body of related work.  Finally, section 7 closes with some 
thoughts on the many exciting possibilities for future research. 

2. BACKGROUND AND MOTIVATION 
Domain/object began life as a core infrastructural component of a 
new Java programming environment called domain/j which follows 
in the footsteps of research projects such as Harmonia [17], the 
Mjølner system [22] and Self [33].  Domain/j is a language-centric 
implementation of Java where the user interacts directly with the 
Java language itself rather than a separate “IDE”.  As such it relies 
heavily on the availability of various views or models of the user's 
program, including a “physical” or syntactic view, a more abstract 
“logical” view (sometimes, somewhat confusingly, known as a 
“semantic” model), dataflow and control-flow models of the 
program, and so on.  These views must be live, in other words kept 
up-to-date as the user edits code; incremental, so the user does not 
have to continually rebuild or refresh; bidirectional, in that the user 
can in principle make changes at any level of description (e.g. 
textually or semantically) and have the models remain synchronised; 
and transactional, so that changes can be safely rolled back if a 
failure occurs deeply nested within a compound edit and so that 
flexible granularities of view synchronisation can be obtained. 

Designing an application with these traits using existing 
programming languages involves the development of a considerable 
amount of infrastructure for managing change discovery and 
notification.  Moreover, one might interpret many areas of growing 
interest in the field of software development – including domain-
driven development [14], aspect-oriented programming [21], 
intentional programming [30] and generative programming [6] – as 
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to some extent facets of an emerging and compelling paradigm 
where any application can be thought of as a set of intrinsically 
connected models or views. 

We refer to this broad emerging paradigm as semantic computing 
because it emphasises the fact that computation is about semantic 
interpretation [29] – the translation of one domain into another.  
Truly semantic computing requires a much tighter connection 
between software components, such that merely to express 
(declaratively) the relationship between x and y is to ensure that x is 
automatically re-synchronised as y changes. 

 
3. KEY PRINCIPLES OF DOMAIN/OBJECT 
3.1 Liveness 
Liveness is the property by which data values always appear up-to-
date and is the essence of the “connectedness” required for true 
semantic computing.  Liveness eliminates in quite a profound way 
any distinction between compile-time, in the traditional sense, and 
runtime.  For example all test assertions are “live”; a test fails as 
soon as the programmer makes a change which violates the 
assertion.  It also dispenses with the notion of control flow, leaving 
dataflow as the only mechanism by which work gets done.  
Continuing with the testing example, tests do not need to be written 
in the “make a change; make an assertion; make a change; make an 
assertion” style common with Java or C#.  Test assertions must hold 
generally, not just when “control” flows over them.  This is a 
significantly simplified programming model for reasons argued for 
in detail by other authors [10].  

3.1.2 Programs as mutable queries 
In simple terms the domain/object execution model can be described 
as the incremental modification of structure interwoven with the 
incremental reactive change of any dependent structure. To 
understand the incremental execution model, we first need to 
consider the structure of the domain/object “universe”. 

Domain/object represents all data and programs ultimately as 
functions.  A function is a left-univalent relation, a set of ordered 
pairs with unique left-hand sides.  Certain species of function which 
satisfy particular properties are of significance in domain/object.  
For example a tree is a function where there is exactly one path 
between any two objects.  There is a tree-like function called 
contains (or where grammatically convenient, containment), and we 
define a domain to be any maximal set of objects which is closed 
under containment. 

Functions, however are not mutable but rather are static, purely 
extensional entities.  What we traditionally think of as a program is 
in domain/object a live projection of this extensional structure, 
consisting of a graph of mutable references each of which points to 
an underlying constant or function application (see Figure 1 below).  
A reference represents the “selection” – either explicitly, via the 
user, or implicitly, via the reactive propagation of updates to the 
program – of a particular argument for some function f.  Mutating 
the reference selects which part of f's extension is being “looked at” 
by the reference.  It is quite accurate therefore to describe the 
program as a mutable query of the underlying extensional structure, 
and computation as the synchronisation of the output of the query in 
response to changes to the inputs to the query.  To interact with a 
domain/object program – either as a programmer or an end-user – is 
simply to mutate one or more of the references in the graph and 
observe the propagation of changes to the graph of references in 
response to that change.  The approach is reactive [8] in that the 

system is passive in the absence of external changes and responds to 
any such changes by propagating the changes to all dependent 
values. 

References roughly subsume the roles of expressions and variables 
in traditional programming languages.  The main difference is that 
they are live, rather than snapshots taken at a particular point in the 
control flow, like traditional procedural variables.  Although 
references are somewhat like variables, there is nothing that 
corresponds directly to the traditional notion of assignment.  Instead, 
one relates references to other references by connecting them 
together into applications of functions.  These applicative structures 
are the structures through which data flows, responding to deltas on 
their “source”, or input, references by generating the appropriate 
deltas in their “target” references, or outputs.  An applied function is 
either primitive, in which case its workings are completely hidden, 
or aggregate, in which case its workings are transparent, the 
functions being realised by a graph of internal references mediating 
between the argument references and the output references.  
Functions return values by writing to an output reference. 

Since there is no way to mutate an object other than by applying a 
delta to it, there need be no separate difference discovery and 
notification mechanism, whereby modified objects inspect their state 
in response to external requests and fire a description of the 
resulting change to all dependent objects.  Instead the same delta 
serves (in the future tense) as a request for change and (in the past 
tense) as a description of the resulting change.  The Observer pattern 
[11] thus comes “built in”. 

Finally, we should note that domain/object structures are algebraic, 
in other words uniquely built out of applications of primitive 
constructors.  Effectively, an object is nothing more than the 
canonical delta that builds it from the null object.  Since everything 
that happens in domain/object happens ultimately by way of the 
translation of one delta sequence into another, this simple algebraic 
notion of object is sufficient for all purposes. 

The algebraic approach unifies construction with discovery, merging 
the Composite and Visitor patterns [11] into one.  If two non-empty 
objects o1 and o2 are connected semantically for the first time, it is as 

Figure 1: Application as the replacement of an unbound 
reference by another reference. 
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though o2 were empty at the point of connection and then 
immediately populated with its sub-structure.  Equivalently we can 
say that o1 and o2 were always connected but that the actions 
describing the construction of o2 were batched up and published in 
one go rather than propagated incrementally. 

3.1.3 Application and partial application 
To apply a domain object function to an argument reference is to 
copy its prototypical definition into the calling context, splicing in 
the argument reference in place of one of the unbound inputs of the 
function.   This is shown in bottom half of Figure 1 above, where 
the function times() is shown applied to to 5 and plus(3,4). 

The question marks in Figure 1 indicate a reference whose referent 
is the primitive constant indeterminate.  This represents either an 
unbound or an unknown input, or an output whose value cannot be 
determined (say because insufficient inputs are determinate).  
Indeterminacy of references is a general enough concept in 
domain/object to serves a number of purposes, including support for 
non-strictness, trivalent logic, and partial application. 

Partial application is intrinsically supported because all functions are 
curried.  The iterated application of an n-ary function f() to m 
arguments (where m ≤ n) yields an (n-m)-ary function.  (The partial 
application times(5) appears in the top half of Figure 1.)  Under our 
prototype-based model of application (where to apply is simply to 
bind an unbound input), composition is just a special case of partial 
application.  Composing f() and g() is the same as applying f() to g();  
in both cases, the output of g() is passed as the input to f(). 
Composition is just a name we might give to application when g() 
has unbound inputs, as Figure 2 below shows: 

 

In the figure, the upper graph corresponds to the application of not() 
to the expression isVowel(character('c')), and the lower graph 
corresponds to the composition of not() with the function isVowel(). 

As a convenience for embedding domain/object code in Java, the 
constant unbound, which is an identity element of apply() for any 
function (apply(f,unbound) = f for any f), can be used to carry out a 
positional form of partial application.  For example the fact that 
lessThan() is not commutative might lead to the following 
programming error: 
    lessThanFive = lessThan(number(5)); 
    assert_(lessThanFive(number(3))); // fails! 

which could then be remedied as follows: 
    lessThanFive = lessThan(unbound(),number(5)); 
    assert_(lessThanFive(number(3)); // OK 

The use of unbound allows number(5) to be bound to the second 
rather than the first argument of lessThan().  (Primitive types such as 
integers and characters are denoted via an equivalent primitive 
function, e.g. number() or character().  Sometimes these functions 
are omitted from examples for brevity.) 

3.1.4 Recursion and non-strictness 
Since to call a domain/object function by name is to copy its body 
into the calling context, a function which directly or indirectly calls 
itself induces an infinitely deep structure, at least conceptually.  (In 
this respect domain/object differs from dataflow languages which 
model recursion with cyclic structures, distinguishing invocation 
context by associating a suitable label with each dataflow token, e.g. 
[34], [15]). 

We avoid instantiating an infinite structure by taking the approach 
of Subtext [10] and ignoring infinitely deep parts of the structure 
which are contained within dead branches of conditionals.  This 
emulates the behaviour of non-strict lazy functional languages when 
a non-terminating but unused argument is passed to an otherwise 
terminating function, and is achieved by making the actual copying 
of the function body demand-driven (lazy).  When a calling function 
f() connects to the output of another function g(), as in f(g()), the 
body of g() is not actually spliced into f() unless f() actually requires 
the value of g().  Certain primitives such as and(), or() and if() are 
non-strict in their arguments and will ignore arguments whose 
values they are not concerned with.  if() for example only queries the 
value of either the “then” branch or the “else” branch, leaving the 
other branch effectively dead. 

3.2 Incrementality 
Incrementality is another fundamental characteristic of the 
domain/object system.  Incrementality makes domain/object 
functions very flexible and naturally suited to interactive 
applications such as user interfaces, document editors and 
programming environments.  In some cases, the incremental 
computation is actually faster overall than batch computation, 
because it can take advantage of intermediate results, particularly 
with problems that are amenable to the “strength reduction”-type 
optimisation common in optimising compilers [25].  Full 
incrementality is clearly slower than batch computation for certain 
other kinds of problem, however; an area for future investigation is 
allowing non-incremental optimisations to be added transparently to 
a domain/object application. 

Incrementality has two components: memoisation and adaptivity.  
Memoisation [27] is the caching of the value of a function for a 
given argument, and trades storage overhead and lookup time for 
compute time.  The fact that certain domain/object primitives such 
as if() are non-strict in their arguments means that our memoisation 
scheme must not force arguments to be evaluated; work on this 
aspect of the memoisation design has only just begun and will 
probably be based on Hughes' work on lazy memoisation [18].  
Adaptivity [1] is a strategy which ensures that only dependent data 
values are re-evaluated when change occurs and trades the cost of 
maintaining explicit dependency information for the benefit of 
avoiding unnecessary computation.  Domain/object functions are 
inherently both adaptive and memoised.  ([2] discusses how these 
features can be combined non-orthogonally.) 

3.2.1 Memoisation 
Memoisation is a technique that retains previously calculated values 
so that they can be used again without having to be recomputed.  
Memoisation takes place the first time a function is applied to a 
given argument.  If a function has already been instantiated with the 
supplied inputs (at any version of the system), the output value of 
the existing invocation is used to set the output reference.  
Otherwise, the body is instantiated as normal and used to determine 
the value of the output reference for the given inputs, and the result 
memoised.  The memoisation table is persisted between sessions, 

 
 

Figure 2: Application as composition
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which means that once any value is calculated, it never has to be 
calculated again, modulo any limits on offline storage capacity.  The 
abstraction is that computation is lazy discovery of the extensions of 
functions. 

3.2.2 Adaptivity 
Adaptivity is fundamental to the domain/object design since 
evaluation can only occur in one of two says: 
• in a data-driven fashion, in response to a dependee value 

changing and causing a dependent value to resynchronise (and 
if a delta is in turn implied in the dependent value then its 
dependents will be recursively re-evaluated, and so on); 

• in a demand-driven fashion, when a dependent data value is 
connected for the first time (or more generally, reconnected 
after a period of disconnection), which is semantically 
equivalent to a composition of data-driven updates (this is 
described in more detail in section 3.3) 

Compound functions derive their incrementality from the primitive 
functions of which they are ultimately comprised, and therefore do 
not themselves need to be written in an explicitly incremental style. 

3.3 Transactions 
Real-world applications rarely operate in a closed universe.  Users 
add new queries or connect new client applications.  Developers add 
new tests and new application code.  Even when the scope of the 
dependency closure is known in advance, it is typically too large to 
require it to be instantiated entirety up front and part of the “live” 
reactive structure of the application.  It is critical therefore to support 
the dynamic addition of new dependent references. 
What this means is that it is legal for a reference f to be instantiated 
even though one of its dependent references g (for example an 
argument reference of a caller-to-be) has not yet been instantiated.  
This violates the incremental dataflow model, where changes 
propagate as soon as they are available, since changes to f cannot be 
seen by g if g does not exist.  Instead, we allow g to be instantiated 
at a later time and only at that point receive all the changes that have 
happened to f since it was created.  We call this process of “catching 
up” with the state of a dependee reference synchronisation.  
Support for reference divergence and synchonisation is an essential 
scalability feature of the platform. 
With fully versioned references, this pattern of “just-in-time 
synchronisation” for dependent references generalises to a 
transactional model of change propagation with much broader 
utility.  Under this more general model, we allow dependent 
references to disconnect for arbitrary periods of time.  Reconnection 
with a dependee f causes synchronisation with respect to the net 
delta in f since the references were last connected, with connection 
for the first time becoming just a special case of this.  Since different 
dependent references may have been disconnected at different points 
in the history of f, this facility requires read access to all previous 
versions of f, i.e. requires f to be at least partially persistent in the 
sense of [2].  Domain/object references are actually fully persistent 
in the sense of [7] and therefore are a fortiori capable of supporting 
this paradigm. 
Any business process, collaboration model or interaction model 
which requires independent activity with well-defined 
synchronisation points - such as shared document editors, team-
based software development environments and incremental parsers 
as well as more traditional “business” applications such as an online 
shopping - could be take advantage of this very general scheme.  
The approach allows an application to choose any point on the 

spectrum between full incrementality and explicit batch-mode 
synchronisation and indeed to combine the two arbitrarily.  The self-
similarity of the architecture means that the same transactional 
mechanism could apply equally well to fine-grained concurrency 
problems as to the larger-scale business-related examples just 
mentioned.  This is an important area for future research. 

3.4 Bidirectionality 
Bidirectionality – the ability to modify the output of a function and 
have its inputs adjust accordingly, as well as the other way around – 
is central to the ultimate vision for the platform and also critical to 
its current intended use.  Since bidirectionality, which is probably 
best understood more generally as a requirement to support non-
deterministic computation, is fraught with both theoretical and 
practical issues, and intersects with many interesting areas of 
computer science research, it is likely to remain an active area of 
investigation for many years.  For now our goal is to enable 
bidirectionality to an extent sufficient for our current purposes 
without the introduction of excessive ad hocery.  See section 7 for 
some thoughts on future directions. 
A simple example of bidirectionality is the filter() function which 
selects only those elements of a list which satisfy a given predicate.  
The result of a filter() can also be modified directly, causing its 
argument to be modified in such a way that the definition of filter() 
is satisfied. 
When two references are connected via a mapping which does not 
support bidirectionality, the target reference is effectively 
immutable.  That is to say, an attempt may be made to apply a 
primitive action to that reference but the action will be rejected by 
the mapping function.  The action cannot be applied not because the 
reference itself is immutable, but because the action cannot be 
interpreted in terms of the source domain.  Since one broken link 
can undermine the bidirectionality of the containing expression, our 
current support requires all primitive functions to define a sensible 
backwards mapping.  The general heuristic for backwards mapping 
is “minimal change”.  For example, for the backwards mapping for 
the boolean functions and() and or(), we make a minimal number of 
modifications to the inputs such that the desired output is obtained, 
such as only setting one input to false if that is sufficient. 
A compound function's inverse is simply the composition of the 
inverse of its constituent functions.  It should be obvious that even a 
small amount of local indeterminacy rapidly amplifies into the 
realms of the intractible on a global scale.  There are a number of 
complementary strategies we can use to manage this problem: 
• lazy generation of alternatives (alternatives only materialised 

when they are explored) 
• support for hand-coded inverses for specific functions 
• simple general-purpose heuristics 
• allow user interaction, when possible 
• prefer paths the user has visited previously 
To understand how the backwards mapping of a compound function 
might work, consider a simple example, the function size() for lists, 
whose body is: 
 
    if_(  
        empty(list), 
        integer(0), 
        add(integer(1), size(tail(list))) 
    ); 
 

Assume that the input list contains a single element, and that we 
want to set the size to zero, as in: 
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    Reference list = cons(character('a'), nil()); 
    Reference size = size(list); 
 
    assert_(identical(size, integer(1))); 
    set(size, integer(0)); 
    assert_(empty(list)); 
 

A suitable interpretation of setting the output of size() to zero is that 
we are changing the output of the if() function from the “else” 
branch to the “then” branch.  A straightforward inverse mapping for 
this is to modify the condition of the if() from false to true.  This in 
turn requires the backwards mapping for the empty() function.  The 
definition of empty() is simply: 
  identical(list, nil()); 

So to make empty() true, we must change the output of identical() 
from false to true.  This inverse mapping can be relatively easily 
achieved by simply setting the list argument to nil().  (Setting 
identical() from true to false, by contrast, might be achieved by 
setting one of the inputs to indeterminate.) 
This example, although simple, suggests that bidirectional mappings 
are perhaps achievable in practice with a well-chosen combination 
of techniques, such as brute-force search and heuristic pruning, 
while remaining intractable in a more theoretical sense. 

One reason to take the bidirectionality requirement seriously in the 
longer term is that today's applications are rich in behavioural 
redundancies which are rarely noticed, let alone discussed, mainly 
because they are obscured by complex notification schemes and 
irregular language mechanisms.  For example any application which 
allows one object which is derived from another to be mutated in 
such a way that changes eventually end up being “written back” to 

the dependee object - a pattern common in user interfaces and 
database applications - must generally duplicate some logic in order 
to make the mapping bidirectional.  And similarly, any application 
which allows structures to be deconstructed as well as constructed 
must contain redundancy to the extent that deconstruction is just 
construction running in reverse.  Domain/object's highly 
systematised approach makes these redundancies much more 
explicit and ultimately more amenable to elimination through 
automation. 

4. CASE STUDY: A “DOMAIN-DRIVEN” 
DEVELOPMENT TOOL 
Figure 3 below gives the overall flavour of the incremental approach 
in the context of domain/j, a Java development tool where the user 
interacts directly with a number of interconnected domain models 
representing aspects of the Java language.  Two distinct domain 
models are shown, Java and JavaPhysical.  Java is the abstract, 
“logical” view of Java (consisting of entities such as packages, 
types, methods, and so forth), whereas JavaPhysical is the more 
concrete syntactic view, consisting of characters, syntax nodes such 
as class and method declarations, source folders, and so forth.  Each 
is a separate domain in that it is closed under containment. 
The diagram shows what happens as change occurring in the 
JavaPhysical domain causes incremental update of the Java domain.  
The JavaPhysical structure on the left shows part of a Java class 
declaration, where each yellow box represents a Java syntax object 
and each grey box represents the value of contains() for that object.  
The Java structure on the right shows part of a Java class along with 
some of the functions it participates in, including implements(), 
which is the set of Java interfaces it implements.

 
Figure 3: Incremental synchronisation of domain models 

67



 
The sequence of events is roughly as follows: 
1. A “separator” object (representing a comma character, in this 

case) is appended to the contains() list of the comma-separated 
list of names in the class declaration's implements clause. 

2. The mapping function which incrementally derives the 
supertypes() set of the class does nothing in response to this 
particular event. 

3. A “name” object (whose referent happens to be the interface B) 
is appended to the contains() list of the name list. 

4. The mapping function responds to this action by adding the 
referent of the newly-appended name to the implements() set of 
the class. 

This glosses many details.  First, it is important to remember that all 
the reactive structures involved change incrementally.  Thus, when 
the name is added to the name list, it appears empty at first and then 
its immediate children are added recursively.  The mapping must 
therefore be capable of responding to the insertion of an empty 
name, and also to the insertion of an individual identifier or “.” into 
that name.  (In Java a name is a period-delimited sequence of 
identifiers [13].)  Even when whole objects are moved, perhaps as 
part of a cut-and-paste operation, the runtime decomposes the 
operation into the incremental movement of sub-structure with the 
mapping receiving and responding to each primitive action.  
Although this is somewhat slower in a batch-mode style of 
operation, it is optimal in interactive mode, which is the primary 
mode of operation. 
This example also glosses what actually happens inside the 
mapping.  In this case, the mapping code would look something like 
this: 
 implements = orderedSet(  
     map(  
         filter(  
             nameList.contains,  
             instanceOf( Name ) 
         ), 
         referent 
     ), 
     simpleNameComparator 
 ) 

The various functions named here - orderedSet, map, filter, 
instanceOf, referent and simpleNameComparator - are themselves 
incremental and respond to individual atomic changes in their input 
to produce the corresponding incremental change in their output.  
The orderedSet function for example inserts a single element into a 
list representing an ordered set in a position which respects the 
ordering defined by the comparator.  Structural induction guarantees 
that the list elements are always correctly ordered.  In a similar 
fashion map incrementally responds to insertion of a new element 
into its input list by applying its functional argument to it and 
inserting the result into its output list.  The incremental version of 
map relates to the batch version of map by satisfying the following: 
      current = mapbatch( list, f ) � 
                       mapincremental( action, current, f ) =  
          mapbatch( apply( action, list ), f ) 
where action is a primitive list operation (the insertion or removal of 
an element). 
In all cases the input and the output of these incremental functions 
are references.  One therefore can think of references as expressions 
which have been “lifted” into a purely reactive evaluation scheme.  
Bearing in mind that domain/object is implemented in Java, the 
execution of the Java code equivalent to the above pseudo-code only 

sets up the meta-level dependency structure between the references 
qua sub-expressions.  It does not do any actual application-level 
computation.  Computation is purely reactive, in response to a 
change being initiated somewhere in the system, typically via user 
input. 
This domain/j example also sheds some light on the ultimate utility 
of bidirectional interpretative mappings.  In the context of the 
relationship between the Java and JavaPhysical domains that we 
have just seen, the inverse mapping – in this case the mapping from 
Java to JavaPhysical – corresponds to the traditional notion of 
“forward engineering”.  The Java domain is more “abstract” than the 
JavaPhysical domain to the extent that it contains less information.  
Making the Java domain mutable with respect to JavaPhysical 
therefore means making various lossy mappings invertible, by 
adopting various strategies and techniques for restoring the lost 
information.  (The lost information in this case includes information 
about particular syntactic forms used for various Java semantic 
concepts, layout/whitespace information, etc.)  These “range 
restricting” strategies, whose job it is to make a non-deterministic 
inverse deterministic, all amount to quality-of-implementation 
decisions for particular mappings and are not intrinsic to the 
domain/object platform itself.  But the more support provided by the 
runtime environment itself for bidirectionality, the easier it is for 
domain implementors to provide high-quality, robust, customisable 
inverse mappings.  Some of these opportunities are discussed in 
section 7. 
 
5. EMBEDDING DOMAIN/OBJECT IN JAVA 
The domain/object platform is implemented on top of the Java 5 
platform and takes advantage of certain new language features in 
Java 5 such as static import declarations and “vararg” argument lists.  
Although these new features of Java are mainly syntactic sugar, they 
make it somewhat easier to implement an embedded language.  
Varargs in particular make it relatively easy to support partial 
application and composition in a syntactically tidy fashion. 

The Java 5 generic type system turned out to be impractical for our 
purposes and so domain/object is currently untyped.  Section 7 
discusses some possibilities for using domain/object's own features 
to augment the language with a modern type system like that of 
Haskell. 

The combination of varargs and static imports allow Lisp-like, 
human-readable domain/object code to be embedded in a Java 
program.  The following shows the definitions of the two functions 
which comprise a naive insertion sort: 

sort (list, comparator): 
if_( 
    empty(list), 
    nil(), 
    insert( 
        head(list),  
        sort(tail(list), comparator),  
        comparator 
    ) 
); 

insert (object, list, comparator): 
if_( 
    empty(list), 
    cons(object, nil()), 
    if_( 
        apply(comparator, object, head(list)), 
        cons(object, list), 
        cons( 
            head(list),  
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            insert(object, tail(list), comparator) 
        ) 
    ) 
); 

Currently the above definitions require some supporting scaffolding 
in the form of Java classes, although it is likely that these can be 
eliminated with further effort. 

One scalability issue still to resolve is avoiding stack overflow 
during the demand-driven traversal of large recursively-defined 
structures.  Similar problems are faced by implementations of 
languages such as Scheme on the Java virtual machine (e.g. Kawa 
[4]). The solution will probably involve explicitly managing our 
own stack in the Java heap. 

Domain/object code can be interfaced to regular Java code via the 
set()/get() methods on a reference and via standard notification 
schemes along the lines of the Observer pattern [11]. 

6. RELATED WORK 
The Mjølner system [22] and the Harmonia project, previously 
known as Ensemble [17], were the original inspiration for our work 
and perhaps explain why the first application to be delivered on the 
domain/object platform is a fully incremental software development 
tool.  In emphasising simplicity and regularity over baroque 
language features, the programming languages Self [33] and Beta 
[26] contributed much of the philosophy. 

There are several more recent influences too.  We have adopted the 
SDF2 meta-syntax, used on the Stratego program transformation 
project [31] for the purpose of defining syntactic domains.    
Squeak's [19] meta-circular user interface and “horizontal 
inheritance” paradigm is similar in several ways to domain/object.  
Most recently, Subtext [10], as has already been mentioned, shows 
some striking similarities to domain/object, particularly in its 
reactive model of computation and its elimination of the distinction 
between runtime and compile-time.  Subtext has also suggested 
some interesting avenues for future research. 

There is a large body of related work in the literature of visual 
programming languages (e.g., [32]) and dataflow languages such as 
Lucid [34], which have not been a direct influence, although there is 
considerable common ground.  Forms/3 [5] is a declarative, 
spreadsheet-based visual programming language. The developer 
directly places cells on a form, and defines formulae relating cells to 
other cells via a graphical user interface.  The Form/3 notion of 
“time travel” [3] closely corresponds to domain/object's versioned 
runtime. 

SCIL-VP [23] is a visual programming language which allows 
users to combine arbitrary high-level functions into a dataflow 
graph, which can be visualised for debugging and optimisation. 

Lucid [34] was initially developed as a language in which it would 
be straightforward to prove assertions about programs.  Lucid is a 
non-imperative dataflow language; computation is precipitated by 
eduction, which is simply demand-driven dataflow.  Under this 
model, when the value of an object is requested, then if it is 
available in a cache it is returned; otherwise it is computed thorough 
other means, recursively applying the same pattern.  In 
domain/object the mechanism for eduction is the demand-driven 
means by which values are calculated, and the memoisation table 
plays the role of a cache. 

 

7. FUTURE DIRECTIONS 
7.1 Types and abstract interpretation 
One exciting possibility is how a type system might be integrated 
into domain/object.  In eliminating the distinction between compile-
time and runtime, domain/object might ironically lend itself better to 
a powerful type system, if we understand a type system as an 
abstract interpretation [9] and consider that abstract interpretation 
itself is a perspective on program analysis where “static” analysis 
and the detection of “actual” runtime conditions lie on a continuum.   

In a research context, the approximation of runtime behaviour 
comprising the type system being experimented with would be a 
reactive structure that was updated live as the researcher tweaked the 
definition of the type system.  The distinction between test 
assertions, aspects and type systems would eventually blur away 
with the freedom for any particular query of the runtime structure of 
the program to migrate between a live query in the form of an 
aspect, an application-level test, or a hard language constraint in the 
form of a component of a type system. 

7.2 Relational programming 
As discussed in section 3.4, the domain/object requirement to 
support bidirectional functions makes explicit a degree of 
redundancy which is usually hidden in today's applications and 
languages.  For example, for some query or view derived from a list, 
the remove mapping is generally the inverse of the insert mapping, 
yet this usually needs to be implemented manually. The reason is 
simply that the remove mapping is non-deterministic if the insert 
mapping is lossy.  For exactly the same reason, the reverse mapping 
required to make a query or view mutable must also usually be 
hand-coded.  Consider for example the filter() example mentioned 
earlier whose inverse is non-deterministic with respect to the 
insertion point in the underlying list. 

The ultimate problem here is that the inverse of a function is itself 
only a function if the original function is bijective, i.e. 1-1, and 
defined for every member of its range.  Otherwise the inverse is a 
relation or at best a partial function.  This suggests that a possible 
future development for domain/object would be the incorporation of 
some techniques from the relational programming field.  Relational 
programming is a marriage of functional programming and logic 
programming which explicitly supports non-determinism in the 
form of choice and cut operators.  A relational runtime for 
domain/object could exploit this non-determinism to allow for 
example the remove mapping for a list to be simply the insert 
mapping running backwards, even if the insert mapping was lossy.  
A deterministic result could be obtained by range-restricting the 
inverse using some of the techniques mentioned in section 3.4, such 
as default user preferences or explicit user interaction. 

7.2 Modal logic 
There is a potentially interesting relationship between the relational 
programming model, modal logic, and domain/object's versioned 
runtime.  In their “primary” (forward) direction, domain/object 
functions are genuine functions: they are always left-univalent, i.e. 
uniquely defined for a given set of inputs.  One way of thinking 
about bidirectionality is to imagine that applying the inverse of a 
function only injects one possibility of the (non-deterministic) 
inverse into the “current” version, placing all alternatives of the 
inverse mapping into alternate versions.  It would be natural then to 
think in terms of a “possible worlds” semantics [22], and say that 
the user inhabits a single actual world at any point in time, and 
computation is the traversing a path through the space of possible 
worlds.  The significance of this, if any, is far from clear. 
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7.3 Pattern matching 
The algebraic nature of domain/object structures suggests a natural 
fit with the decompositional, pattern-matching style common in 
functional programming languages.  Structural pattern matching - of 
the incremental kind - will therefore probably be part of any 
eventual higher-level language for expressing domain/object 
functions. 

7.4 Concurrency 
Finally, dataflow languages naturally lend themselves to 
concurrency, but we have largely dodged this important topic until 
now.  The following very simple example illustrates the kind of 
issue we currently face.  Given: 
    c = true(); 
    b = not(c); 
    d = or(c,b); 

The reference graph for the example is shown in Figure 4 below.  
Assume that we now wish to set c to false.  Clearly we should not 
observe any change in the value of d; it should always appear false 
to an observer external to the system.  This can only be achieved if it 
is not possible to observe any values in the system until the initial 
action (setting c to false) is complete in the sense that all dependent 
values are updated. 

 
When c is set to false, notification is sent along two edges to or(c,b), 
which becomes false, and not(c), which becomes true.  If change 
then propagates from or(c,b) to d before it propagates from not(c) to 
b and thence to or(c,b), then d will temporarily become false.  This 
interim state of d arises because it does not see its inputs change 
atomically from (false, true) to (true, false), but instead sees (false, 
true), (false, false), (true, false).  The observability of the interim 
state is problematic if for example it is associated with an assertion 
which will fail immediately should false be observed as a value of d. 

Domain/object's transaction support and versioned runtime will 
probably play central roles in the platform's future treatment of 
concurrency.  Dataflow languages arose from research into  
concurrent computing [35], and our future efforts will no doubt 
leverage the substantial research already undertaken in this area. 

8. CONCLUSION 
The “integration of disparate systems” is the number one priority 
facing internet-centric businesses today, according to IBM [20].  Yet 
as an industry we have spent precious little time understanding how 
to make software really connect.  While much remains to be done, 
domain/object represents an important move in the direction of truly 
semantic computing. 
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