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ABSTRACT
We present a numerical study for two systems of conserva-
tion laws using a spacetime discontinuous Galerkin (SDG)
method with causal spacetime triangulations and the piece-
wise constant Galerkin basis. The SDG method is consistent
with the weak formulation of conservation laws, and, in the
case of strictly hyperbolic systems, also with the Lax en-
tropy condition. Convergence of the method was shown for
a special class of hyperbolic systems (Temple systems).

The initial data we consider lead to nonclassical shocks.
The first part of our study is for the Keyfitz-Kranzer system.
We compute the SDG solutions approximating overcompres-
sive and singular shocks, and note that our results are consis-
tent with those obtained by [Sanders, and Sever 2003] using
a finite difference scheme. The second system we consider
is an approximation of a three-phase flow in the petroleum
reservoirs. Numerical solutions for this system were com-
puted by [Schecter, Plohr, and Marchesin 2004] using the
Dafermos regularization and a technique for numerical solv-
ing of ordinary differential equations. We compute the SDG
approximation to a solution containing a transitional shock.

We note that even though convergence of the SDG method
was shown so far only for Temple systems, numerical ex-
amples herewith show that it can be successfully used in
approximating solutions of more general conservation laws.

Categories and Subject Descriptors
G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions—finite element methods, hyperbolic equations

General Terms
Performance of a numerical method
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1. INTRODUCTION
Conservation laws describe various phenomena involving

advective transport or wave motion, as gas dynamics, elasto-
dynamics, biomechanics, chromatography, oil recovery, etc.
The study of these partial differential equations is very chal-
lenging because they poses some special features that are not
seen elsewhere in the PDE theory. Solutions may become
discontinuous after a finite time even for smooth initial data
and one has to define weak solutions. Weak solutions are not
necessarily unique, and to distinguish a physically meaning-
ful solution additional conditions are needed (see [Lax 1973],
[Serre 1999], [Dafermos 2000]).

The development of numerical methods for conservation
laws involves an interplay between physical modeling, math-
ematical theory and numerical analysis. Finite difference
methods (for eg., [Lax, and Wendroff 1964], [Glimm 1965],
[Osher 1984]) and finite volume methods (for eg., [LeVeque
2002]) are the most studied and widely used numerical meth-
ods for conservation laws. In finite difference methods, the
solution is approximated pointwise at the grid points, while
the finite volume methods are based on the integral form
of conservation laws instead, and one is approximating the
cell average of the exact solution. Discontinuous Galerkin
methods (see [Cockburn, Karniadakis, and Shu 2000]) use
an element-wise representation of a solution and enforce the
conservation law locally. The Runge-Kutta DG methods
([Cockburn 2001]) are based on a finite element discretiza-
tion of a spatial domain and a special Runge-Kutta type
discretization is used to propagate the solution in time.

In this paper we consider a DG method based on space-
time discretizations.

2. NUMERICAL STUDY OF CONSERVA-
TION LAWS USING THE SDG METHOD

Consider an initial value problem for a one-dimensional
system of conservation laws

ut + f(u)x = 0, (t, x) ∈ [0,∞) × R,
u(0, x) = u−(x),

(1)

where u : [0,∞) × R → D ⊆ Rn denotes the vector of
densities of conserved variables (such as mass, momentum,
energy), f : D → Rn is the spatial flux, and u− : R → D
is a function of bounded total variation. Let Df denote
the gradient matrix of f and let λi and ri denote the i-th
eigenvalue and the i-th right eigenvector of Df , respectively.



Given u ∈ D, if λ1(u), . . . , λn(u) are real and distinct, the
system (1) is strictly hyperbolic in the domain of conservation
states D. If for each i ∈ {1, . . . , n}, λi is strictly monotone
along the i-th integral curve, meaning Dλi(u) · ri(u) 6= 0,
u ∈ D, the system is genuinely nonlinear in D.

2.1 Definition of the SDG Method
The spacetime discontinuous Galerkin method is a finite

element method based on spacetime partitions of the domain
[0,∞) × R. The Galerkin basis consists of functions which
are polynomials of a fixed degree k ≥ 0 within each space-
time element, but might be discontinuous across element
boundaries. The values of approximants on adjacent ele-
ments are coupled through the Godunov flux. The method
can be used on both layered and unstructured grids. A di-
rect element-by-element solution procedure is possible, and
the computational complexity of the method is O(N), where
N denotes the number of elements within the mesh.

The SDG method was first introduced in [Palaniappan,
Haber, and Jerrard 2004] with numerical examples for scalar
hyperbolic conservation laws. The method considered in
[Lowrie 1996] is similar to the SDG method, but is based on
uniform layered spacetime grids and uses an approximation
of the Godunov flux on certain element boundaries.

Analysis of the SDG method is rather challenging due
to spacetime partitions and coupling of values of approxi-
mate functions via the Godunov flux. As in [Jegdic 2004],
throughout this work we assume that the domain partitions
are triangulations, and we impose two simplifying assump-
tions:

(a) if Th is a spacetime triangulation (h stands for the
maximal diameter of an element in the considered triangu-
lation), then for each edge Γ of an element T ∈ Th with the
outward unit spacetime normal ν = (νt, νx), we require that

either (1, λi(u)) ν < 0 or (1, λi(u)) ν > 0, (2)

for every i ∈ {1, . . . , n} and all u ∈ D, and
(b) the Galerkin basis consists of piecewise constant func-

tions, i.e., k = 0. Given a spacetime triangulation Th, we
denote the corresponding Galerkin basis by Ph.

The condition (2) is called the causality constraint. Given
an edge Γ of an element T ∈ Th with the outward spacetime
normal ν, if the expression (1, λi(u)) ν is negative (positive)
for all i ∈ {1, . . . , n} and u ∈ D, than the edge Γ is said to
be inflow (outflow) for T .

Then, the formulation of the causal spacetime discontinu-
ous Galerkin method is:

Given a causal spacetime triangulation Th of the domain
[0,∞) × R, find uh ∈ Ph such that

Z

∂T−

(u−

h , f(u−

h )) ·ν dH1 +

Z

∂T+

(uh, f(uh)) ·ν dH1 = 0, (3)

holds on each element T ∈ Th. Here, ∂T− and ∂T+ stand for
the inflow and outflow part of the boundary ∂T , respectively,
u−

h denotes the value of the approximant along ∂T− which
is computed on an adjacent mesh element, and H1 denotes
the one-dimensional Hausdorff measure.

In the case of strictly hyperbolic systems of conservation
laws, we show in [Jegdic 2004] and [Jegdic, and Jerrard 2004]
that given a causal spacetime triangulation Th, if a SDG
approximation uh ∈ Ph exists, then it must satisfy certain
discrete entropy inequalities. These entropy inequalities are
discretized versions of the Lax entropy-entropy flux condi-

tion in the context of the SDG method. Furthermore, in the
case of strictly hyperbolic genuinely nonlinear Temple sys-
tems, as introduced in [Temple 1983], we show that given a
sequence of causal spacetime triangulations {Th}, the corre-
sponding sequence {uh} of SDG approximations exists and
is precomact in L1

loc([0,∞) × R;Rn). The main point in
the proof is to show local Riemann invariant bounds which
relies heavily on the structure of Temple systems. Once this
local property is established, we show that any limit of any
convergent subsequence of {uh} is a weak solution to the
initial value problem (1).

2.2 Numerical Study of the Keyfitz-Kranzer
System

The first three examples of our numerical study are for
the Keyfitz-Kranzer system

(u1)t + (u2
1 − u2)x = 0,

(u2)t + ( 1
3
u3

1 − u1)x = 0.
(4)

(For more details, see [Keyfitz, and Kranzer 1995].) This
system is strictly hyperbolic and genuinely nonlinear in Rn

with eigenvalues λ1(u) = u1 − 1 and λ2(u) = u1 + 1. It
is known that for some choices of the initial data there is
no solution to (4) consisting of classical rarefaction waves
and shocks, and that the candidates for solutions include
distributions.

We consider the initial data studied in [Sanders, and Sever
2003] using a finite difference scheme. These data result
in overcompressive and singular shocks. A change of coor-
dinate x 7→ x̄ := x − st is performed to ensure that the
computed shocks are nonmoving (here, s denotes the shock
speed determined from the initial data). For each example
we use a layered triangulation, denoted by T , which is re-
fined around x̄ = 0. The size of a triangle T ∈ T is described
by two parameters

∆t := max
(t,x)∈T

t− min
(t,x)∈T

t and ∆x := max
(t,x)∈T

x− min
(t,x)∈T

x. (5)

We specify ∆t and the interval for ∆x, so that the causality
constraint (2) is satisfied on all triangles T ∈ T . Examples 1
and 2 present the SDG approximations to (4) with Riemann
initial data

u−(x) =



ul, x < 0
ur, x > 0.

(6)

Example 1. Consider the Riemann problem (4), (6) with
ul = (1.5, 0) and ur = (−1.895644, 1.343466). We compute
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Figure 1: The SDG approximation of u1.

the SDG approximation on a layered causal triangulation
with ∆t = 0.0025 and ∆x ∈ [0.0075, 0.025]. The approxi-
mations to u1 and u2 at time t = 4 are depicted in Figures



1 and 2. This type of solution to (4) is known as an over-
compressive shock.
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Figure 2: The SDG approximation of u2.

Example 2. We consider (4), (6) with ul = (1.5, 0) and
ur = (−2.065426, 1.410639). The approximation is com-
puted at the time t = 4 on a causal layered triangulation
with ∆t = 0.002 and ∆x ∈ [0.008, 0.02], where ∆t and ∆x
are defined as in (5). This type of a solution to the Keyfitz-
Kranzer system is known as a singular shock and the second
component, u2, of the solution is unbounded (Figures 3, 4).

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 3: The SDG approximation of u1.
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Figure 4: The SDG approximation of u2.

Example 3. In our last example for the Keyfitz-Kranzer
system we consider the smooth initial data of the form

u−(x) =
ul + ur

2
−

ul − ur

4
x (3 − x2),

where ul and ur are as in Example 2. The second compo-
nent of this initial data is depicted in Figure 5. The SDG
approximations shown in Figures 6, 7 and 8 are computed for
the second component u2 of the solution which becomes un-
bounded. They are computed at times t = 0.3, 0.6 and 0.9,
on a triangulation with ∆t = 0.001 and ∆x ∈ [0.005, 0.01].
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Figure 5: The initial data for the component u2.
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Figure 6: The SDG approximation of u2 at t = 0.3.
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Figure 7: The SDG approximation of u2 at t = 0.6.
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Figure 8: The SDG approximation of u2 at t = 0.9.

2.3 Numerical Study of an Approximation to
a Three Phase Flow

In the second part of our numerical study of nonclassical
shocks we consider the following system of conservation laws

(u1)t + (−0.5 u2
1 + 0.5 u2

2 − 0.12 u1 + 0.23 u2)x = 0,
(u2)t + (u1 u2 − 0.23 u1 − 0.12 u2)x = 0.

(7)

This system is of mixed type with eigenvalues given by

−0.12 ±
q

u2
1 + u2

2 − 0.529.

We find the SDG approximation of the solution for one
of the Riemann problems numerically studied in [Schecter,
Plohr, and Marchesin 2004]. Using the Dafermos regular-



ization and change of variables (x, t) 7→ ξ := x/t, these au-
thors obtained a system of ordinary differential equations in
variable ξ which they numerically solved using the AUTO
continuation technique. The Riemann initial data in this
last example is given by

ul = (0.366078, 0.308156) and ur = (−0.61, 0.1).

The SDG solution is computed at the time t = 2 on a lay-
ered causal triangulation with parameters ∆t = 0.005 and
∆x ∈ [0.005, 0.01]. We note that initial data implies that
the eigenvalues become complex, and a solution consists of
a 1-shock, 1-transitional shock and a composite 2-wave (a
2-transitional shock plus a 2-rarefaction). The SDG approx-
imations for both components, u1 and u2, of this solution
are depicted in Figures 9 and 10, respectively.
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Figure 9: The SDG approximation of u1.
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Figure 10: The SDG approximation of u2.

3. CONCLUSIONS
We remark that the SDG approximations obtained in all

of the above examples are consistent with numerical solu-
tions in [Sanders, and Sever 2003] and [Schecter, Plohr, and
Marchesin 2004].

We note again that convergence of the SDG method was
proved only for a special class of hyperbolic systems (Temple
systems) using their special geometric structure. However,
the numerical experiments presented in this paper show that
the SDG method can be successfully used in approximating
solutions to more general systems of conservation laws.
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