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ABSTRACT
The low quality of service provided by wireless networks
does not facilitate the setup of long-awaited services, such
as video conversations. In a cellular network, handoffs are
an important cause of packet losses and delay jitter. These
problems can be mitigated if proactive measures are taken.
This requires each cell to guess the next handoff of each mo-
bile terminal, a problem known as mobility prediction. This
prediction can occur thanks to some clues (such as signal
strength measurements) giving information about the ter-
minals motion. For example, a clue that locates on which
road a mobile is moving is likely to be interesting for all the
prediction-enabled cells along that road —and should there-
fore be sent to them. This paper proposes a new method
aimed at selecting the most relevant clues and finding where
to propagate those clues so as to optimize mobility predic-
tions. The pertinence of a clue is measured using informa-
tion theory and by means of decision trees. This pertinence
estimation is exchanged between the cells and allows to build
a “relevance map” that helps determine where clues should
be sent. It is adapted to the characteristics of wireless ter-
minals such as low bandwidth and processing power.
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1. INTRODUCTION
Next generations of wireless networks are expected to al-

low new multimedia services requiring a high QoS level and
characterized by a high throughput.

Mobile terminals experience frequent handoffs which are
likely to cause delay jitter and packet losses. One way to mit-
igate this problem is to act proactively against next handoffs
(using packets bicasting, anticipated address resolution, re-
source reservations,. . . ).
Mobility prediction allows those proactive actions to take

place. Its purpose is to guess where (and possibly when) ter-
minal’s next handoff(s) will occur. This involves monitoring
the mobiles to infer a model of their motion. The kind of
information used to perform this monitoring is varied: GPS
coordinates, motion speed, access router identification, sig-
nal strength,. . .

It has been shown that the prediction ratio (i.e. the ratio
between the number of correct next-cell predictions and the
total number of predictions made) can strongly impact the
network QoS ([2]). It is thus important to design mobility
prediction schemes that are as accurate as possible and fit-
ted to mobile networks mainly characterized by bandwidth,
energy, and processing constraints.

Mobility prediction techniques can be divided into two
schemes:

• either mobiles store their most frequent paths locally
(at the expense of memory consumed) or they get them
from a “home repository” (increasing delays and con-
suming bandwidth [7, 5]);

• or prediction is done locally, usually in each access
router, using the typical behaviour of mobiles encoun-
tered in the past ([9]).

Both methods have pros and cons. Keeping pieces of in-
formation —such as the frequent paths of mobiles— for long
periods of time can be profitable if they help guess mobile
movements later on.
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Figure 1: Overview.

Ideally, each mobile would know where each piece of in-
formation could be exploited and only keep those having
a high probability of being used. This leads to a hybrid
method which combines the advantages of both schemes.
This hybrid method can be implemented thanks to informa-
tion theory.

Some concepts directly linked to information theory —
such as text compression algorithms— have already been
used to tackle similar problems ([1, 6]). This is a sensible
approach since good text compressors usually are good pre-
dictors. The method proposed in this paper might at first
seem very different from those works since their aim is to
reduce the update/paging overhead while this article shows
a way to efficiently spread the data used to perform pre-
diction. To decrease that overhead, [1, 6] build Lempel-Ziv
tries that are used to predict each mobile’s next cells; those
tries could thus be compared to the decision trees used in
this paper.

Section 2 gives an overview of the proposed method. Sec-
tion 3 is a short introduction to information theory and de-
cision trees. Sections 4 and 5 detail the approach and give
some results of simulations. Section 6 shows results related
to long-term predictions that would be difficult to achieve
using standard schemes. The last two sections gives some
future works and concludes.

2. PRINCIPLE
First, let’s give an overview of the framework studied here.

We suppose that mobile nodes (MNs) cross a cellular net-
work and stay connected through access routers (ARs, one
per cell).

Some clues gathered during the motion of a MN can help
guess its future movements. They can be collected by the
MN itself or by ARs. Those routers can use them to predict
MNs’ next cell. The precise way those clues are generated
and exchanged between MNs and ARs will be described in
section 4.1.

Figure 1 shows a situation where each cell (a) monitors

each MN’s mean signal strength (SS) experienced during
its journey and (b) compute each MN’s cell travelling time
(CTT). Those clues have a subscript describing to which cell
they are related (e.g. CTT1 denotes the time needed to cross
cell 1). Mobiles moving along the railway have received a
special ’train’ clue (when they enter a station, for example).
The clues can be considered as random variables.

Cell 2 is crossed by 3 roads and a railway; it should figure
out if a MN’s next cell will be cell 3 or 4. This prediction
can be done using CTT1 alone: mobiles located on road 1
are characterised by a short travelling time. On the other
hand, the signal strengths SS1 associated with roads 1 and 3
are about the same: this variable does not help much cell 2’s
prediction process.

Cell 4 must also guess if MNs passing by are located on
road 2, road 3, or on the railway. Fortunately, this can be
inferred from SS1 (mobiles on road 3 are characterized by a
weaker signal since this road is on the cell periphery) and the
train clue (which discriminates between road 2 and the rail-
way). Consequently, some variables should be propagated
from one cell to another. For example, the train variable
is certainly pertinent for all the cells along the railway; the
same could be said about any variable that pinpoints the
road a mobile is driving on.

We assume that MNs are responsible for sending variables
from cell to cell. Since, in general, those terminals have
strong memory and bandwidth constraints, we consider that
the maximum number of clues it can hold is low. Other
strategies could be conceived, such as asking the cells to
broadcast data to neighbouring cells, or to rely on a MN’s
home repository, but both methods are likely to be more
complex, consume bandwidth, and add delays.

This short example emphasizes two kinds of problems.
Problem 1: information estimation. Each cell has to

estimate the relevance of each variable regarding next cell
prediction. It is proposed to use the mutual information
between the next cells and each variable as a relevance es-
timation. Mutual information is a direct measure of how
the next cell prediction uncertainty is reduced thanks to the
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Figure 2: A simple decision tree. This tree guesses a mobile’s next cell using two measurements: a cell
traveling time (CTT) and a signal strength (SS); those are the tree attributes V1 and V2. The X variable is
the next cell and, consequently, the classes for this problem are cells 1 to 5.

considered variable (section 3 gives a short reminder of in-
formation theory).

Problem 2: data spreading. Once —a reasonable ap-
proximation of— the information held by each variable for
each cell is known, a sensible way of selecting the variables
memorized by the MNs should be found. This selection
scheme should be chosen so as to maximize the information
gained by the cells along the mobiles paths.

One could argue that wireless terminals now have a com-
fortable amount of memory and could simply record all
the collected clued, relevant or not. This calls for four
comments. First, we will see that clues have to be ex-
changed regularly between the MN and ARs; thus, keep-
ing unrelevant variables means wasting bandwidth. Second,
this method should be fitted to mobiles’ least common de-
nominator: down-market terminals should not be omitted.
Third, the amount of variables to consider could quickly
grow since they could be frequently generated (e.g. GPS
updates) and stay relevant for a long period of time. Fi-
nally, the technique presented here is expected to be appli-
cable to other contexts and could therefore be considered a
general “data routing” strategy aimed at maximizing data
relevance.

3. INFORMATION THEORY AND
DECISION TREES

Information theory ([10]) and decision trees ([8]) are build-
ing blocks of the work presented in the following sections.
Those topics are thus briefly introduced here.

3.1 Information theory
Consider a discrete random variable X , its entropy H(X )

and its conditional entropy knowing Y H(X|Y) defined as:

H(X ) = −
X

x∈X

P (x) log P (x) (1)

H(X|Y) = −
X

x∈X

X

y∈Y

P (x, y) log P (x|y) (2)

where P (x) is the probability of the event x, P (x, y) the
joint probability of x and y, P (x|y) the probability of x
given y, and X (resp. Y ) the sample space of X (resp. Y).
In the following, the logarithm function is always supposed
defined in base 2. The entropy quantifies the predictability
of a random variable; an entropy equal to zero corresponds
to a variable whose realizations values are known in advance.

The mutual information between variables X and Y is
equal to:

I(X ;Y) = H(Y) − H(Y|X ) = I(Y;X ) (3)

and measures the dependence between X and Y (i.e. the
information gained on Y knowing X ; I(X ;Y) = 0 if X and
Y are independent).

3.2 Decision trees
A decision tree encodes a set of tests related to random

variables (say V1,V2, . . . ) as a tree. This tree aims at encod-
ing a conditional probability law P (X|V1,V2, . . . ) where X
is a discrete random variable. A tree T defines a leaf distri-
bution and each leaf Ti matches a probability distribution
P (X|Ti).

The tree is built in such a way that the entropy H(X|T ) is
reduced as much as possible; this means that once the trees
tests have been applied, the remaining uncertainty about X
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Figure 3: Mobility prediction overview. Each cell performs a variable selection. Variables names have a
subscript describing where they have been generated; thus, CTTj and SSi represent the time taken to cross
cell j and a signal strength measurement done in cell i.

is small. The left part of figure 2 shows a simple decision
tree.

In this context, variables’ realizations are often denoted
samples, Vi variables attributes and X the goal attribute.

We will see that the tree learning algorithm plays an im-
portant role in what follows. It is thus briefly described
below1.

The problem is to deduce the distribution P (X|V1,V2, . . . )
given a set of realizations (or learning set, LS). A test is
first chosen for the root node; this node has two sons, Ntrue

and Nfalse corresponding the test’s possible outcomes. The
node Ntrue (resp. Nfalse) matches a subset of the learning
set —denoted LS(Ntrue) (resp. LS(Nfalse))— so that the
test applied to the proper attribute of its elements is true
(resp. false). The same procedure can be repeated for both
root’s son nodes.

Tree tests are chosen so as to maximize the information
gained on the goal attribute; this quantity of information
is estimated by subtracting the learning set entropy once
the test outcome is known to the entropy before the test
is applied. Formally, the information brought by the test
matching node Nf is estimated by:

I(Nf) = H(LS(Nf)) −
|LS(Nls)|
|LS(Nf)|

H(LS(Nls))

− |LS(Nrs)|
|LS(Nf)|

H(LS(Nrs))

(4)

where Nls and Nrs are the left and right sons of Nf and where
|S| denotes the cardinality of set S. A set of samples’ entropy
is estimated using (1) applied to the estimated distribution
of X for this set.

1This work could easily be adapted to other learning
methods (e.g. [3, 4]).

The tree is recursively expanded until a pruning criterion
is met (refer to [8] for in-depth explanations).

An interesting property links the tests information, the
learning set entropy and the leaves entropy: the sum of the
weighted tests information (as estimated by equation 4) is
equal to the learning set entropy (|LS|H(LS)) minus the
weighted entropy of the samples sets associated with leaves
(as given by equation 1). The weights are given by the
number of samples matching the corresponding node.

This section is summarized in figure 2. It shows a small
tree that could be used in a cellular network to guess in
which cell a mobile might be going given the time it took to
cross the cell (its cell traveling time, CTT) and a measured
signal strength (SS). This tree has been pruned (N3 and N4

might have been split).
The right-hand side of the figure depicts that the learning

set entropy can be divided into two parts: the tests infor-
mation (dark grey) and the leaves entropy (light grey). The
formulas needed to compute the information gained in N2

and the entropy of N4 —which are particular cases of (4)
and (1)— are explicitly given. This example tree is quite
inefficient: the information collected by its tests is only two
thirds of the learning set entropy.

Each leaf Nl can be labelled with a class, i.e. the most
frequent value of the X attribute for the set LS(Nl).

Sample classification (i.e. finding a sample’s most likely
X attribute value) can be done efficiently. It only requires
to cross the tree from its root down to a leaf according to
the outcomes of the nodes’ tests applied to the sample. The
complexity of tree building is not considered a critical issue
since this operation is not supposed to occur frequently2.

2The complexity of the tree building algorithm is
KN log N where K is the number of attributes and N the
cardinality of the training set.
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4. MOBILITY PREDICTION

4.1 Principle
We suppose that MNs travel a cellular network and collect

clues related to their motion. Those clues can be generated
by the network (e.g. a cell identifier) or by the mobile ter-
minal itself (e.g. a received signal strength measurement).
Since, in general, MNs are small terminals, we consider that
the maximum number of clues it can hold is low. The prob-
lem is thus to find which clues are worth keeping.

Figure 3 shows how the clues can be handled. We consider
that MNs send these pieces of information to an AR which
is responsible for analyzing them so as to guess the termi-
nal’s next cell (i.e. collecting them in a samples database as
depicted figure 2 and building a decision tree). Clues can be
considered by the ARs as realizations of random variables
likely to give information on the random variable matching
the a priori distribution of possible next cells.

Notice that the memory and processing consuming tasks
(i.e. collecting a samples database and using it to predict a
mobile’s destination) are left to the ARs: the mobile acts as
a dumb terminal.

The ARs use the mobile’s variables to guess its proba-
ble next cell, and then take appropriate actions (such as
resources reservation). This requires the samples database
to be populated with the actual next cells reached by the
mobiles; this can be solved by asking all the cells to warn
the previous cell each time a handoff occurs.

During the mobile’s cell crossing, the AR generates new
variables that can be added to those the mobile already
holds. Since the MN’s amount of memory is limited, the AR
asks to remove variables considered not relevant enough.

The next section is dedicated to next cell prediction. The
following two deal with problems we have already mentioned:
determining the information received from a variable real-
ization and choosing which variable should a MN keep or
remove.

4.2 Next cell prediction
The samples database collected by an AR can be repre-

sented as a table where each row is a sample and each column
matches a variable; we denote Ak the set of those variables
for cell k. This set holds all the variables that have already
been observed.

All the mobiles entering a given cell will not hold the same
variables (since it is likely that they did not cross the same
cells). The variables that belong to Ak but not to the set
of variables held by an incoming mobile are assigned the
special notApplicable value. This value should be easy to
discriminated from the other realizations by the tree (e.g. a
negative number if the variable domain is positive numbers).

An AR can build a decision tree as soon as the database
is considered populated enough. Cell k’s tree is denoted Tk;
notice that it models the probability distribution of next
cells given the mobile clues. Next cell prediction just amount
to classify the sample made of the MN’s variables using the
tree.

4.3 Information estimation

4.3.1 Principle
Once a mobile leaves a cell, the AR should filter its vari-

ables and remove those expected to be less useful to the
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MN’s next cells. Section 4.4 will show that this requires
that each cell estimates how useful a variable is to its own
prediction (i.e. the information it gives regarding next cell
guessing).

This can be estimated thanks to the decision tree intro-
duced in the previous section. We have seen that the infor-
mation I(N ) of each test node N composing the tree can be
estimated by (4); a way to evaluate the information related
to an attribute A is thus to sum the information of all the
tree’s tests involving A. This leads directly to the following
formula:

I(A) =
X

Test node N

|LS(N )| · I(N )

|LS| (5)

where the sum operates over the nodes testing A.

4.3.2 Example
Figure 4 gives a simple application of (5). A mobile speed

and angle of arrival are used to figure out on which road it
is located. There are three roads, each with a specific mean
speed (80, 90 or 100 km/h) and angle of arrival (160, 170 or
180◦). The speed and angle values are distributed according
to:

Vspeed = Vspeed + α · N(0; 25)

VAoA = VAoA + (1 − α) · N(0; 15)

where N(µ, σ) denotes a normal distribution with mean µ
and standard deviation σ. The α factor is a constant be-
tween 0 and 1 describing if the Gaussian noise is added to
one variable or the other. The first two plots of figure 4 de-
picts those distributions. The roads are equally populated,
yielding an a priori system entropy of ∼ 1.6 bits (log 3).

The information theory related values we have discussed
so far have been estimated using decision trees built for vari-
ous values of α (bottom of figure 4). When α is nearly equal
to zero (resp. one), the system entropy is entirely com-
pensated by the information given by the speed (resp. an-
gle) variable. Notice that the attribute’s information curves
cross each other when α ≈ .37 (not .5) since the variables’
standard deviations are different. At this moment, the curves
have a small gap because the tree’s root node’s attribute
changes; the algorithm presented here over-estimates the in-
formation brought by attributes near the tree’s root. Thus,
in practice, it cannot be assumed that equally meaningful
attributes will receive the same information measurement.

Prediction success ratios have been estimated with the
learning set (i.e. classifying the samples used to build the
tree) and with an independent test set. The resulting curves
are nearly merged, showing that no over-learning (leading to
over-estimated variable information) has occurred. The sum
of the entropy of each trees’ leaves has been plotted. This
sum shows the remaining uncertainty about the samples’
class once all the tree’s tests have been applied. As expected,
the success ratio is low when the leaves entropy is high.

4.3.3 Biasing the tree building
When two variables V1,V2 hold the same information re-

garding X (i.e. I(X ;V1) ≈ I(X ;V2) ≈ I(X ;V1,V2)), (5)
tends to divide the information I(X ;V1,V2) evenly among
V1 and V2. Unfortunately, as we will see later, it would be
preferable to clearly differentiate those variables and to as-
sociate a high information with one of them —and a low
information with the other.

Procedure spread(Vj
i ) Information spreading of Vj

i for
cell k

var IVj
i

: NVj
i
→]0; 1];1

if NVj
i

= ∅ and j �= k then2

∀p ∈ PVj
i

: send treeInfo(Tk,Vj
i ) to p;3

return;4

end5

∀n ∈ NVj
i
: receive IVj

i
(n);6

if NVj
i
�= ∅ and j �= k then7

∀p ∈ PVj
i

: send treeInfo(Tk,Vj
i ) +8

P
n∈NVj

i

IVj
i
(n) · fVj

i
(n) to p;

end9

return IVj
i
(·)10

To get this behaviour, we slightly change the way node
tests are chosen while building a tree. We have said that
tests are selected so as to maximize the test information
given by (4); we propose to slightly change this behaviour.
A test is chosen in the set of tests T such that:

• it contains the test t that maximize (4), let Imax be t’s
information;

• the difference between Imax and the information of the
other tests in T is smaller than a constant chosen equal
to 0.01 bit3.

The ”first” test among the elements of T is finally cho-
sen using an arbitrary order relation defined on the tests’
attributes a priori. This way, the problem mentioned above
is mitigated since, when it is reasonable, the same variable
is chosen for most tree nodes.

4.4 Data spreading
The previous section shows how to estimate the informa-

tion carried by a variable for a specific cell. Our aim is to
maximize the information collected by the cells during the
mobile journey, so we need (a) to let a cell figure out the
expected information brought by an attribute along a mo-
bile’s future path and (b) to deduce from that information
which attributes should be carried by a mobile.

In the following, Vj
i will denote cell j’s i-th variable and

V j
i its realization. For example, the variables generated by

cell i in figure 3, CTTi and SSi, might be denoted Vi
0 and

Vi
1.

4.4.1 Attribute’s expected information
We try to guess how much information can the V variable

give to the cells on a MN’s path.
We first consider an AR that has never seen any MN leav-

ing its cell with V in its attributes set. Obviously, V will not
give any information to the MN’s next cells and the expected
information for V amounts to the information given to the
current cell (see procedure spread, lines 2–5 —the treeInfo
procedure is given by (5)).

3Simulations results have shown to be insensible to the
actual value of this parameter as long as it is chosen small
enough.
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This expected information can be sent to the previous
cells, i.e. the cells that have sent at least one mobile holding
V; the set of previous cells is denoted PV . Similarly, the next
cells set, NV , contains the cells where at least one mobile
holding V has gone.

It is likely that MNs will not visit cells in NV homoge-
neously. We denote fV the function NV →]0; 1] such that
fV(n) is the ratio of mobiles holding V leaving the current
cell for cell n (

P
n∈NV fV(n) = 1).

Once an AR knows, for all its next cells, the expected in-
formation received along a mobile’s path starting with cell n
—denoted IV(n)—, it can compute its own information ex-
pectation using (a) the information given by V (b) the values
IV(n) weighted by fV(n); this is summarized in the spread

procedure, line 8.
Figure 5 gives an overview of the information spreading

process for a variable emitted by cell 0. The top part shows
5 cells crossed by a few roads. The bottom part depicts
the spreading algorithm applied to this simple topology. It
shows the local information as computed by equation 5 (cir-
cled numbers), NV sets (dotted arrows), the corresponding
fV functions (dotted arrows’ labels) and the information es-
timation propagation from cells 3 and 4 back to cell 0 (plain
arrows).

Notice that the algorithm presented here does not deal
with cycles: the motion graph is supposed acyclic. Even if
this should not cause any real impact in practice, it would
be desirable to modify it to get rid of that limitation.

4.4.2 Attributes selection
In the following, we assume that every MN can stock a

fixed, finite number of attributes. Once all the cells have
learned their IVj

i
functions (one function for each variable

that might leave the cell), the network’s ARs can efficiently
select a MN’s most pertinent variables.

Ideally, this selection should be such that the expected
sum of the MNs’ variables information for all the visited
cells is maximized; we call it the optimum selection scheme.

Since the IVj
i

functions are known, the straightforward

wait to select m variables out of a variables set V is to sort
them by decreasing information expectation and pick up the
first m. A small improvement of this algorithm is to first
guess the MN’s next cell n so as to use IV(n) to measure
the usefulness of V.

Figure 6 (a) shows the normal behaviour of this algorithm.
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Figure 7: The simulation setup.

In this example, a MN handles 2 attributes (rounded rect-
angles) and crosses 3 cells laid out linearly. The bold rectan-
gles show the variables’ expected information (e.g. in cell 1,
IV1

0
(2) = 0.7); one can verify that variables are selected

as explained above. Notice that on that simple topology,
the variables information have to decrease from a cell to
the next, the difference being the information gained locally
(e.g. since V1

0 drops from 0.7 in cell 1 to 0.4 in cell 2, 0.3 bits
are local to cell 2).

This is where the observation formulated section 4.3.3 is
relevant: it helps get very contrasted variables lists with
very relevant and very irrelevant variables and few variables
in between.

Figure 6 (b) demonstrates that this simple solution is not
optimal. Cell 1 chooses to send V1

0 , but this variable is
immediately replaced by V2

0 in cell 2. The attribute V1
0 does

not give any information to cell 2, but V0
0 does: it was the

best variable to send between cell 1 and 2. The algorithm
is thus a victim of its greediness.

5. SIMULATION

5.1 Simulation setup
The work presented above has been tested on a simula-

tion. A grid made of 8x5 cells composes the simulation setup
(figure 7).

Two roads let the MNs cross the map vertically. Five
roads allow the mobiles to cross the terrain from left to right.
If the roads had been bidirectional, inferring a MN’s direc-
tion would have required to know one of its previous cells.
Since every variable is implicitly related to the cell that gen-
erated it, knowing the mobile’s direction would have been
an easy task. It has thus been decided to use a simpler con-

figuration with unidirectional roads since bidirectional ones
would not have changed the simulations results significantly.

Each cell generates two kinds of variables: the MN’s cell
travelling time (CTT) and a noise variable with randomly
generated realizations. The latter demonstrates the ability
of the system to differentiate between relevant and less rele-
vant variables. One should note that this noise variable can
nevertheless bring some information since a noise variable
indicates at least that the mobile has crossed the cell that
generated it; this might give a piece of information about
its future path.

One third of the MNs are created with a special emergency
variable. This variable flags mobiles that are certainly going
to cell (7,1). This shows that variables could be associated
with destinations when the mobile path is known in advance;
this emergency variable could be associated with emergency
vehicles that are very likely to go to the nearest hospital or
police station. Another possibility would be to flag mobiles
entering a train.

Each road is labelled with a weight w that indicates its
significance; the higher this number, the faster the cell is
crossed and the higher the number of mobiles using it. The
cell travelling time is related to the road weight w by the
relation CTT = 120 − 30 w/100 + N(0; 5).

Crossroads are depicted with a black dot. When applica-
ble, an arrow gives the ratio of mobiles going in each direc-
tion.

Dark grey cells are those where mobility prediction is
needed: the next cell of MNs leaving those cells is not known
in advance.

Three variable selection methods have been compared.
The first is the most obvious scheme where the oldest vari-
able is removed first; this is equivalent to putting variables
in a bounded FIFO queue. The second method is based on
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decision trees; each cell learns the parameters of a tree and
use it to measure variables relevance. The less relevant vari-
ables are removed first. The cells do not exchange variable
relevance estimations with each other. The rational behind
this scheme is that if a cell finds a variable interesting, it is
likely that it will also be relevant for its neighbours. Those
schemes have been compared to the entropy-based scheme
explained above.

Notice that those three methods differ only in the way the
relevant variables are chosen. A direct consequence is that
the amount of information exchanged between the mobiles
and the ARs is the same; the only difference resides in the
processing required by the ARs.

All the mobiles can carry the same fixed number of vari-
ables; this number is a simulation parameter. Its influence
on the next cell prediction ratio has been quantified.

5.2 Results
Figure 8 shows, for 4 different cells, the ratio between the

number of correct next cell predictions and the total number
of predictions

The first plot is related to cell (2,2); it shows that all
the methods perform equally. This is not surprising since
mobiles are crossing the map from left to right: variable
selection can only happen after a few cells have been crossed,
so the interesting cells are on the right-hand side of the map.

Thus, the other plots are related to cells (4,2), (5,1) and
(5,3); they allow to draw several conclusions. On this simple
cell topology, the information-based method gives an opti-
mum result with as few as 3 variables4. When the MNs’
memory is low, the other methods always gives lower pre-
diction ratios. The number of variables required to catch up
varies from cell to cell but it can be as high as 11, which is
more than one would expect for such a small map.

The improvement of the locally optimized method over
the simple, older-first scheme does not seem to be worth the
increased implementation complexity. This shows that the
upstream propagation of variable relevance measurements is
needed: variable significance is not a local property.

Even if they should be confirmed on a large scale experi-
ment, those results are encouraging since the method’s use-
fulness is expected to increase with the number of cells —
and, thus, the number of potential variables— encountered.
For instance, an attribute created when a mobile user enters
a train will be useful for tens of cells along the railroad; the
data spreading paradigm should allow to bring this obser-
vation to the fore.

6. LONG TERM PREDICTIONS
In some circumstances, it is possible to guess not only

one, but several cells the mobile will eventually cross. Such
long-term predictions can be achieved accurately when, for
example, mobiles are moving in a train or on a highway and
can be used, for example, to lower the number of location
updates needed to perform paging.

A terminal destination can also be determined thanks to
the value of one (or several) random variables realization(s)
— such as the emergency variable introduced in section 5.
The nature of those variables lets them give information to

4Experiments using an arbitrary large number of vari-
ables have shown that the prediction ratio cannot be in-
creased further.
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Figure 8: Simulation results for 4 cells depicted in
figure 7.
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a large number of cells, increasing the probability of being
picked up by the cells on the mobile path thanks to the
information spreading method. Such variables should allow
to determine which cells the mobile will go through to reach
its destination.

The following explains how long-term predictions can be
obtained and, using simulations, shows how it performs.

The learning and information spreading techniques pre-
sented in section 3 and 4 do not have to be modified, thus
we assume that the expected information brought by the
variables has been computed and is known to every cell.

When a mobile enters a cell, the set of variable realizations
V it brings can be used to predict its set of potential next
cells C = {ci} and the associated probabilities pC : C →
[0, 1]. Those probabilities are directly derived from LS(Nl)
where Nl is the decision tree’s leaf corresponding to V .

The current cell can apply the variables selection algo-
rithm as before (section 4.4.2), but does not know what the
realizations of the variables added by the cell will be when
the mobile performs its handoff. Those realizations are thus
replaced by unknown values to produce a new VC vector. To
classify a sample with unknown values, a tree is allowed to
explore both possible outcomes of a test and to average the
results; the interested reader can refer to [8] for a detailed
explanation.

This vector and the probability pC(ci) can be sent to the
potential next cell ci. ci repeats the same procedure to com-
pute a vector VC′ and to get the mobile’s potential next cells
C′ = {c′i} and the probabilities function pC′ : C′ → [0, 1].
The product pC(ci) · pC′(c′j) gives the probability that the
mobile crosses cells ci and c′j . This process can be repeated
until the product Pci,c′j ,c′′

k
... = pC(ci) · pC′(c′j) · pC′′(c′′k) . . .

is small enough.
The probability to cross a given cell c is given by the sum

of the products relative to a list of cells terminated with c
(such as Pci,c′j ,...c). Figure 9 gives this probability computed

for the cells of the topology presented in the previous section.
The results shown have been obtained for a mobile using the
emergency variable, which, as explained before, is a good
candidate for long-term prediction.

As expected, both the oldest-first and local methods only
predict the first four cells the mobile will cross. Using the
information-based method, the emergency variable is kept
throughout the MN’s journey since it gives information to
several cells, increasing its probability to be picked up by
the select algorithm.

Notice that this approach applied to the problem of paging
would yield a method where the most probable cells could be
paged first; this result is similar to what could be achieved
using the work presented in [1].

7. FUTURE WORK
This work can be extended along several lines:

1. The network has been considered static; this work
could be adapted to deal with changing probabilities,
where new variables are added and the information
associated with a variable can vary with time.

2. This work applies the method to mobility prediction,
where information conveyed is used to guess the value
of a discrete random variable. It would be interesting
to use the method to maximize the information gained
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Figure 9: Simulation results of long-term pre-
dictions using different information dissemination
methods.
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about multiple and/or continuous variables (e.g. by
means of regression trees).

3. The spreading algorithm could be improved; in partic-
ular, it is desirable to compute the optimum selection
scheme (or a reasonable approximation if the problem
is proven NP-complete, see section 4.4.2).

4. The simulations shown here involve a small map and
a small number of variables. It would be desirable to
show how the method performs with real-scale scenar-
ios and real-world data.

5. The method presented in this paper is also expected to
be applicable to other contexts than mobility predic-
tion. Since is well suited to situations where sending
information is costly, it could thus be applied to sen-
sor networks where both low available energy and low
bandwidth are reasons to transmit as few data as pos-
sible. The proposed approach could select the most
relevant sensors among all those that have been scat-
tered at a given place.

8. CONCLUSIONS
This paper proposes a method for sending pieces of mobil-

ity prediction information where it is most needed. Knowing
which clues are useful is done by estimating their expected
information on the upcoming path of each mobile.

Simulations have shown that the method allows discrim-
inating relevant clues, sending them where they are needed
in the network and, consequently, improving mobility pre-
diction. It has been shown that when a clue is pertinent for
a large number of cells, it increases its probability of staying
in the network and allows to predict several next cells in
advance.

This work is expected to be applicable to other contexts
involving constraints such as scarce bandwidth and pieces of
information of varied relevance; sensor networks seem good
candidates.
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