
Efficient Hidden Surface

Matt%ew J. Katzf

Abstract

Removal for Objects

Mark H. Overmars~

with Small Union Size*

Micha Sharir$

rithms run in time O((n log log n + k) log2 n). (iii) The

Let S be a set of n non-intersecting objects in space for

which we want to determine the portions visible from

some viewing point. We assume that the objects are

ordered by depth from the viewing point (e.g., they

are all horizontal and are viewed from infinity from

above). In this paper we give two algorithms that com-

pute the visible portions in time 0((17(n) + k) log2 n),

where U(n’) is a super-additive bound on the maxi-

mal complexity of the union of (the projections on a

viewing plane of) any n’ objects from the family un-

der consideration, and k is the complexity of the result-

ing visibility map. Both algorithms use O(U(n) log n)

working storage. The algorithms are useful when the

objects are “fat” in the sense that the union of the

projection of any subset of them has small (i.e., sub-

quadratic) complexity. We present three applications

of these general techniques: (i) For disks (or balls in

space) we have U(n) = O(n), thus the visibility map

can be computed in time O((n + k) log2 n). (ii) For ‘fat’

triangles (where each internal angle is at least some fixed

0 degrees) we have U(n) = O(n log log n) and the algo-

*Work by Mark Over-mars has been partially supported by the

ESPRIT Basic Research Action No. 3075 (project ALCOM) and

by the Dutch Organisation for Scientific Research. Work on this

paper by Matthew Katz and Micha Sharir has been supported

by a Grant from the G .I.F., the German- Israefi Foundation for

Scientific Research and Development. Work by Micha Sharir has

also been supported by Office of Naval Research Grant Nooo14-

90-J-1284, by National Science Foundation Grant CCR-8%01484,

and by grants from the U .S .- Israeli Binationaf Science Founda-

tion, and the Fund for Basic Research administered by the Israeli

Academy of Sciences.

t School of Mathematical Sciences, Tel Aviv University, Tel
Aviv 69978, Israel.

$ Department of Computer Science, Utrecht University,

P. O.Box 80.089, 3508 TB Utrecht, the Netherlands.

5 School of Mathematical Sciences, Tel Aviv University, Tel

Aviv 69978, Israel, and Courant Institute of Mathematical Sci-

ences, New York University, New York, NY 10012, USA.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the pubhcatlon and

its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy othem+ise, or to

republish, requires a fee and/or specific permission.

o 1991 ACM 0-89791-426-0/91/0006/003 1 $1.50

methods also apply to computing the vi;lbility map for

a polyhedral terrain viewed from a fixed point, and yield

O((rm(n) + k) log n) algorithms.

1 Introduction

In the past few years much attention has been given in

computational geometry to the hidden surface removai

problem, one of the central problems in computer graph-

ics. In a typical setting of the problem we are given a

collection of n non-intersecting polyhedral or other ob-

jects in 3-space, and a viewing point v, and our goal is

to construct the view of the given scene, as seen from v.

Most solutions to the problem as applied in graph-

ics use an “image-space” approach, in which one tries

to calculate, for each pixel in the viewed image, which

object is visible at that pixel (see e.g. [26]).

Recently a considerable effort has been made to ob-

tain efficient “object-space” methods that try to com-

pute a discrete combinatorial representation of the view

of the scene, whose complexity does not depend on the

screen size, but only on the combinatorial complexity

of the scene. This view consists of a subdivision of the

viewing plane into maximal connected regions in each

of which (some portion of) a single object can be seen,

or no object is seen. The obtained subdivision is called

the vistbdity map of the given collection of objects.

A major challenge in this direction is to obtain output-

sensitive algorithms, namely algorithms whose running

time depends on the actual combinatorial complexity,

k, of the visibility map, so that if k is small the al-

gorithms will run more efficiently. Early object-space

methods have a running time of 0(n2), independent of

the complexity of the resulting visibility map [i’, 14].

Other implementations run in time O((n + 1) log n),

where 1 denotes the number of intersections between

the projected edges [8, 10, 16, 25], which may also be

insensitive to the output size (there are easy examples

where 1 = @(n2) but k is a constant). Another recent

technique [15] uses a randomized incremental approach.

leading to expected running time that is expressed as a

weighted sum over the 1 intersection points; however,

this technique is also not output-sensitive.

The most general output-sensitive hidden surface re-

moval method to date is due to Overmars and Sharir

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F109648.109652&domain=pdf&date_stamp=1991-06-01

[17] (see also [18, 24]). It computes the view of a set

of horizontal triangles (or other flat objects with a sim-

ple shape), as seen from above, in time O(nfilog n).

Although the method is output-sensitive, the running

time is still quite high (a somewhat improved, but more

complicated, algorithm is given in [18]; see also [1]).

Better results have been obtained for special cases, like

axis-parallel rectangles [2, 9, 22], c-oriented polyhedra

[4, 10], polyhedral terrains [23], and unit disks [19].

In this paper we develop two new techniques for

output-sensitive hidden surface removal. The tech-

niques are fairly general and simple, but their efficiency

shows up when the objects have the property that the

union of the projections on the viewing plane of any

subcollection of j of them has small combinatorial com-

plexit y (by ‘small’ we mean o(j2), and typically close

to linear in j). We refer to objects with this property

aa being “fat”. Let U(n) be a bound on the maximum

combinatorial complexity of the union of the projections

of any n objects from such a family, and suppose that

U(n) is super-additive, i.e., 17(n~)+U(nZ) < U(n~ +nz).

We show that the view of n such fat objects can be com-

puted in time O((f.J(n) + k) log2 n), using O(U(ra) log n)

working storage. Both methods are simple and, hence,

potentially practical.

We present three applications of these techniques:

. If the given objects are horizontal disks (or, for

that matter, pairwise disjoint balls) viewed from

any direction from infinity, then U(n) = O(n) [11].

In this case our techniques yield algorithms with

running time O((n + k) log2 n).

● If the given objects are horizontal ‘fat’ triangles,

namely triangles whose angles are all at least some

fixed angle 0, which are viewed from any direction

from infinity, then U(n) = O(n log log n) [13]. In

this case our techniques yield algorithms with run-

ning time O((n log log n + k) log2 n).

● Finally we consider the case of viewing a polyhe-

dral terrain from any fixed point. Here one haa

u(n) = O(ncr(n)), where a(n) is the extremely

slowly growing inverse of Ackermann’s function [6].

In this case our techniques yield algorithms with

running time O((rm(n) + k) log n). (The simpler

structure of the visibility map in this case facili-

tates a saving of a log n factor in the time bound.)

Finally, a caveat for the reader: like most of the pa-

pers cited so far, our techniques assume a depth order

among the viewed objects, which is easy to compute

and which excludes cyclic overlaps among them. Prob-

lems in which such an order is not avaiIable or does not

exist are much harder to handle (see e.g. [5, 20] for the

extra techniques that may be required; see also [4] for a

technique that does not require such an order, although

it applies only in some special cases).

The paper is organized aa follows. In Section 2 we

describe the first algorithm. In Section 3 we analyze its

run-time and show how to improve the storage to the

bound given above. In Section 4 we describe the sec-

ond algorithm. In Section 5 we present the applications

listed above. The paper is concluded in Section 6 with

a discussion of our results and some open problems.

2 The First Algorithm

We first present a simpler version of the method where

we do not optimize the working storage. This version

is really simple — it involves two divide-and-conquer

passes over the objects ordered by depth from the view-

ing point. At each recursive call we compute the union,

intersection, or difference of two planar regions, using

standard line-sweeping methods. In this version the

working storage is O((U(n) + k) log n). Optimizing the

storage requires a more careful handling of the recursive

process.

As a first step the method sorts the objects by depth

order and stores them in this order in the leaves of a bal-

anced binary tree T, the nearest object in the leftmost

leaf. For each node 6 of ‘T we compute the following

two maps:

● U6 — the union of the projections of the objects in

the subtree T6 of T rooted at 6.

● V6 — the visible portions of Uh, i.e. the subset of

U6 consisting of those points that are not contained

in the projection of any nearer object (stored in T

to the left of 6).

Both U6 and VJ are planar regions, possibly with

holes. Their boundary consists of portions of projected

edges of the original objects. Clearly VS ~ U6. In fol-

lowing the description of the algorithm, It is helpful

to visualize U& aa a new nominal object obtained by

“squashing” all objects stored below d onto some com-

mon in-between plane and gluing them together. Vd can

be thought of as the portions of the new object that are

visible in the standard sense.

Once we have computed V6 for each node b in the

tree we are done, because for each leaf 6, Vb consists

precisely of those parts of the object stored in this leaf

that are visible. So reporting V& for all leaves gives

the entire visibility map (those VJ’s can easily be glued

together in a final step of the algorithm to obtain the

global visibility map).

Computing U15for all nodes is quite easy. We do this

in a bottom-up manner by first computing the unions

for all leaves (being the objects themselves) and then

merging unions towards the root, using the fact that

U6 = U1.W.(6) U Urson(6).

Merging two unions is done by computing all inter-

sections between their boundaries. Note that any such

intersection point is necessarily a vertex of the overall

union. This can be done using e.g. the red-blue in-

tersection algorithm of Mairson and Stolfi [12] in time

O((ul,on(6) + u,,~n($)) log n + u~), where u~ denotes the

complexity of U6. For our purpose we can as well

use the standard intersection algorithm by Bentley and

Ottmann [3] (see also [21]) without increasing the over-

all asymptotic time complexity.

After computing the union U8 at each node, we com-

pute V6 for all nodes in a topdown manner, starting

at the root and working our way down the tree. The

method is based on the following lemma:

Lemma 2.1 The maps V6 stored at nodes b satisfy the

following equations:

Vroot= uroo~

V...(6) = V6 n Ulson(6)

Vmon(6) = V6 – ULson(6) .

Proof. The first equation is easy, because the whole
union of the set of objects is obviously visible in the
sense defined above — there is no nearer object to
hide it. The second equation follows from the fact that

UI.0.(6) can only be covered by objects that also cover
U6. Moreover, Ul@@ is a subset of U6. V6 can be in-

terpreted as the window through which we can see U8

and, hence, the portions of U1~On(6) that can be seen are

exactly those that lie inside V6. The third equation fol-

lows from the fact that V6 – U1.0.(6) consists of those

points of Ur,0n(6) that are not hidden by objects stored

to the left of 6 or below lson(6); by definition, these

points constitute Vr.On(b). ❑

We apply this lemma to compute the regions V6,

starting at the root and working our way down. To

compute ~~O.(@ (resp. Vrson(b)) we simply computethe

intersection (resp. difference) of V6 and WI...(6) using

any of the techniques above, say the red-blue intersec-

tion algorithm of [12]. This takes time O((~]@b) +

VJ) log n + v),O”(b)), where vb denotes the complexity of

V6. (Note that in both cases any intersection between

the boundaries of V6 and U1.0.(6) must be a vertex of

the resulting intersection or difference.)

This concludes the description of (the simpler ver-

sion of) the algorithm. In the following section we will

slightly modify the algorithm so as to reduce its work-

ing storage. After we have computed the regions V6 at

all nodes of the tree, we simply collect (and properly

glue) the regions computed at the leaves, to construct

the whole visibility map. Note that the algorithm is

very simple and only requires as a subroutine an im-

plementation of the red-blue intersection algorithm (or

some other intersection algorithm like the one in [3]),

suitable for computing unions, intersections, and differ-

ences bet ween two regions in the plane.

3 Analysis of the First Algo-

rit hm

It immediately follows from the above description that

the total time required for the algorithm, after the initial

sorting and construction of the tree (which requires time

O(n log n)), is bounded by

~o((u6+v6)log~) = @f@(~u6+~%) . (1)

6 6 6

So we have to estimate both X8 U6 and X6 ‘V6. As in-

dicated in the introduction, we assume that the objects

involved are “fat” in the sense that the complexity of

the union of (the zy-projections of) any subset of n’ ob-

jects is bounded by (the subquadratic function) U(n’)

which we also assume to be super-additive. Now let nb
denote the number of objects in the subtree rooted at
6. Then clearly

log n

~~6 < ~U(n6) = ~ ~ U(%)=

6 6 d=O 6 at depth d

log n

~ O(u(n)) = O(U(n)logn) . (2)

d=o

Estimating vb is slightly more complicated. The

bound is based on the following lemma:

Lemma 3.1 Any vertex of V6 is a vertex of Vb! for

some leaf iS in the subtree rooted at 6.

Proof. V6 has four different types of vertices: visible
vertices of U6, visible intersections between the bound-
aries of U6 and the projection of a nearer object, visible
vertices of nearer objects that lie inside U6, and visible

intersections between the (projections of the) bound-

aries of two nearer objects, which lie inside U6. All of

these are obviously vertices of the final visibility map.

It remains to show that there exists an object stored in

the subtree rooted at 6, such that the intersection shows

up aa a vertex of the individual visibility map of the ob-

ject. This claim is immediate for vertices of the first or

second type, because each of them is either an original

33

vertex of an object stored below 6, or the intersection

of the boundary of such an object with the boundary

of another higher object. Fora vertex v of the third or

fourth type, note that U6 must be visible on some side

of w in a sufficiently small neighborhood, which means

that an object stored below 6 is visible there. Hence v

is a vertex of V6t for the leaf 6’ that stores this object.

As stated above, the collection of maps V$ over all

leaves forms together the full visibility map. Moreover,

as in the proof of the preceding lemma, it is easily veri-

fied that each vertex of the map can appear in at most

two ‘leaf-regions’ V6. As a result we have:

x VJ=o(k) .
6 a leaf

It follows from the above lemma that the overall com-

plexity of the maps V6 on each level of the tree is also
O(k). Hence,

log n

D = ~ ~ v,.
6 d=O 6 at depth d

log n

~ o(k)= o(klogn) . (3)
d=O

This leads to the following result:

Proposition 3.2 Given a set ofn non-intersecting ob-

jects, such that the union of the projections on a view-

ing plane of any n’ of them has complexity U(n’), where

U(n’) is super-additive (and hopefully subquadratic), the

vtstbtlity map of the objects can be computed in iime

O((U(n) + k) log2 n).

Proof. This follows immediately from equation (l),

plugging in the results of equations (2) and (3). ❑

Remark. As noted earlier, this technique is rather gen-

eral — it only requires a (known) depth ordering of the

objects relative to the viewing point. It also applies

when U(n) is large, up to quadratic, except that the

result is then much less exciting.

It remains to analyze the amount of working stor-

age required by the algorithm. Unfortunately, using

the method aa described above, the amount of required

working storage becomes O((U(n)+k) log n). TO reduce

this we have to modify the method slightly.

First we construct the whole tree, together with the

UJ’s for all nodes. All U6’s at any particular level of

the tree use O(U(n)) overall storage, so the total tree

uses so far O(U(n) log n) storage. Next we recursively

traverse the tree in preorder, computing the V~ for all

nodes, in the following way:

- if 6 is a leaf, output V8; otherwise,

- compute KSO*(6) from fJison(~) and vi;

- recursively treat the left subtree;

- remove ~~onfd) (it is no longer required);

- compute VnO~ft] from UlSO~(5) and V6;

- recursively treat the right subtree;
- remove Vmon(q.

As a result, at any time during the algorithm we only

store the regions Vt along a single path of the tree, i.e.,

for at most O(log n) nodes. It remains to bound the

size of one V6. Let U be the union of the projections of

all the objects that lie nearer than U~ (i.e. objects that

are stored in the tree to the left of the subtree rooted at

6). Any vertex of V6 is either a vertex of U$, or a vertex

of U, or an intersection point between the boundaries

of Ub and U, and, hence, a vertex of Ud U U. The total

number of these vertices is clearly bounded by O(U (n)).

This leads to our main result:

Theorem 3.3 Given a set of n non-intersecting objects

in space and a viewing point z (that may be at tnjinity),

such that there exists a known (and easily computable)

depth ordering of the objects with respect to z, and such

that the union of the projections of any n’ of the objects

on a viewing plane has complexity U(n’), where U(n’)

is super-additive (and subquadratic), then the visibility

map, as seen from z, can be computedin time O((U(n)+

k) log2 n), using O(U(n) logn) working storage.

4 The Second Algorithm

In this section we present another algorithm for comput-

ing the visibility map &f. It also computes ill in time

O((U(n)+k) log2 n) and working storage O(U(n) log n).

It is a variant of a previous technique of the authors [19].
The first part of the algorithm is identical to the first

part of the first algorithm. We sort the objects by depth
and store them in the leaves of a balanced binary tree

7, the nearest object in the leftmost leaf. Then for each
node b of ‘T, we compute U6, the union of the projections

of the objects in the subtree whose root is 6. We do this

in a bottom-up manner aa described in Section 2.

The second part of the algorithm resembles the merg-

ing algorithm of [19]. In this part a left-to-right plane

sweep is performed through the regions U6 simultane-

ously such that at any point during the sweep, the part

of the visibility map M to the left of the sweepline has

already been computed.

A few comments before we begin our presentation:

denotes the set of objects stored in the leaves of

the subtree of ‘T whose root is 6. The edges of the

34

boundary of a region U6 are portions of the projected

edges of the objects in 06. We will say that edge e of UJ

belongs to object O if e is a portion of a projected edge

of O. A vertex of the boundary of a region U6 is either

a projected vertex of one of the objects in 06, or an

intersect ion point bet ween two projected edges of two

different objects in 06. We refer to the latter type of

vertices as the ‘interesting’ vertices of U6. For simplicity

of exposition, we assume that the edges of the objects

are straight segments, though the technique described

below is also applicable, with appropriate modifications,

in more general settings.

As mentioned, we perform a plane sweep through the

regions U6 simultaneously. Instead of maintaining one

Y-structure we maintain for each region U6 a separate

Y-structure Y6. Y6 is a balanced binary tree that stores

in its nodes the edges of the boundary of U6 that are

currently cut by the sweepline L. We also ‘implant’

in Y6 certain other edges that are currently visible and

belong to objects that lie nearer than the objects in 06.

It is the ‘responsibility y’ of these ‘foreign’ edges to detect

the vertices of M that are formed as intersection points

bet ween themselves and the edges of US — see below.

Initially, the event points for the sweep are the ver-

tices of the regions U6, which are stored, sorted by x-

coordinate, in a priority queue Q. With such an event

point we record the node of T from which it comes. A

point p may appear as many as log n times in Q, since all

nodes 15on the path from the root to the lowest common

ancestor of the leaves that store the objects defining p

could have p as a vertex of their region U6. During the

sweep new event points, referred to as (candidates for)

branching points, are added to Q. A new event point

is either an ‘interesting’ vertex of M, or a candidate for

such a vertex, which is removed later before it reaches

the front of Q.

An event point p initially in Q is either an extreme

point of two projected edges of some object O E 06, or

is an intersection point between two projected edges of

two different objects in 06. In the former case, either

two edges of O begin, two edges of O end, or one edge

of O begins and another edge of O ends. In the latter

case, one of the edges stops appearing on the boundary

of U6 and the second starts appearing there.

Temporarily, assume that event points are not added

to the queue during the sweep. When the sweepline

reaches some event point, p, we determine the two rel-

evant edges of the boundary of U$ (the region p comes

from), and delete/insert them from/into Y6. If q is a

point with x-value between the previous event point and

the current one, we can easily determine in O(log n)

whether q belongs to the region U6, for any node 6, by

searching in Y6. Therefore, by searching in O(log n) Y-

structures, we can determine whether a point a of an

object O that belongs to this range is visible — we sim-

ply search in the Y-structures associated with the left

sons of the nodes along the path from the root of 7 to

the leaf storing O that are not on the path. Using a

similar technique, we can also determine which object

(if any) lies immediately behind a; we refer to such an

object as the background object of a. To find this ob-

ject, we search in the Y-structures of the right sons of

the nodes along the path from the root to the leaf stor-

ing O that are not on the path, starting from the son

representing the nearest depth range and proceeding to

the son representing the farthest depth range until we

reach a son 6’ whose associated region covers a. Now we

move down 76/ towards the leftmost leaf that is behind

a. These two types of queries — testing a point for be-

ing visible, and computing its background object — cost

0(log2 n) each. The entire sweep takes O(U(n) log2 n),

because handling an event point, i.e., updating the ap-

propriate Y-structure requires O(log n) time, and there

are O(U(n) log n) event points.

Of course this procedure does not compute any new

vertex of M, so we must do some more work. Let q be

an ‘interesting’ vertex of M. q is an intersection point

between (the projections of) two edges of two different

objects. The nearer edge ei is visible both to the left

and to the right of q, and the farther edge ej is visible at

one side of q and not visible at the other side of q (where

the nearer object is hiding it). We also refer to points

like q aa branching points, and associate them with the

nearer edges. The nearer edge ei will be ‘responsible’ for

finding the vertex q. To facilitate this, we insert et into

the Y-structures of certain nodes 6, including a node for

which ej is part of the boundary of U6. The edge e, will

search for intersect ions bet ween it and adj scent edges

of Y6 in a manner that will guarantee the detection of

q. See below for more details.

We now present the (second part of the) algorithm

for computing M in detail. Actually, we only describe

how to compute the vertices of M; the other features

of M are easily found afterwards without increasing the

asymptotic complexity.

Let p denote the current event point at the front of

Q. We distinguish between the original event points and

the event points that were added after the sweep action

has begun. If p is an original event point, let 6 denote

the node of T from which it comes. Apply two of the

following four procedures (Procedures A--D) according

to the underlying case. If p is a branching point, apply

Procedure E (which is based on the former procedures).

A. 6 is a leaf of 7, and p is the left endpoint of

an edge e of the object 0, stored in 6:

1. Add e to YJ.

If one of the neighbors e’ of e in YJ is an implanted

edge, check whether e’ intersects e. If it does and

35

2.

3.

e’ does not yet have a candidate branching point in

Q, add this intersection point to Q, and in the leaf

storing the object of the implanted edge e’, set a

pointer attached toe’ to this new candidate branch-

ing point in Q. If the implanted edge e’ already

has a candidate branching point, check whether the

new point appears earlier in the sweep than the ex-

ist ing point. If it is, remove the existing point from

Q, insert the new point into Q, and update the

appropriate pointer accordingly.

Determine whether p is visible.

(This is done aa explained above. The presence of

implanted edges in the Y-structures requires some

slight modifications of the search as described in

the remark below.)

If p is visible,

●

●

●

Output p as a vertex of M.

Find Oj, the background object of p (if it ex-

ists).

(This is done as explained above, with some

modifications to handle the presence of im-

planted edges, aa described below.)

‘Implant’ e in the Y-structures of the nodes of

‘T that are sons of nodes on the paths to the

leaves of Oi and Oj and their depth range is

strictly between 0~ and Oj (there are at most

2 log n such nodes), and in the Y-structure of

the leaf storing Oj. During this action check

for candidate branching points for e and up

date Q and the appropriate pointer accord-

ingly. In other words, assume e has just been

implanted in some Y-structure and j is one of

its neighbors (in this Y-structure). If ~ is not

an implanted edge and e intersects it, a new

candidate branching point for e has been dis-

covered. Through the pointer attached to e,

determine whether this new candidate branch-

ing point appears earlier in the sweep than

the one currently in Q (if there exists such a

point). If it is, remove the existing point from

Q, insert the new point into Q, and update

the pointer accordingly. If this new candidate

branching point is the first candidate branch-

ing point found for e, simply insert it into Q

and set the pointer accordingly.

Remark: Let e be an implanted edge in Y$, where 6

is an internal node of 7. Since the depth range of 6

is strictly between the object containing e and the

background of e, it easily follows that (the projec-

tion of) e lies outside U6. Hence, when searching for

visibility or for a background object, if the interval

B.

along Y6 containing the query point p is bounded

by at least one implanted edge, we conclude that

p lies outside U6. Thus the presence of implanted

edges in the Y-structures of internal nodes does not

pose any difficult y for these searches. If 6 is a leaf of

T, then Yf haa at most 2 non-implanted edges (of

the object stored at b), so searching among them

can be done in constant time.

6 is an internal node of T, and p is the left

endpoint of an edge e of the boundary of U6:

1. Add e to YJ and check for candidate branching

points aa described in the first step of Procedure A.

C. 6 is a leaf of 7, and p is the right endpoint of

an edge e of the object Oi stored in 6:

1.

2.

Remove e from Y6 and check for a candidate

branching point, that is, if exactly one of the two

new neighbors is an implanted edge and it inter-

sects the other, act accordingly, aa in Procedure A.

If p is visible (equivalently, if there exists implants

of e), output p as a vertex of M, and remove the im-

plants of e. During this action check for candidate

branching points at the nodes where the implants

are removed, aa above.

D. 6 is an internal node of ‘T, and p is the right

endpoint of an edge e of the boundary of U6:

1. Remove e from Y6 and check for a candidate

branching point, as above.

E. 6 is a branching point of an edge e of object

Oi, and the branching (farther) edge is f of

object Oj:

1.

2.

3.

4.

Output pas a vertex of M.

We treat p as the right endpoint of e (the portion

of e that ends at p), and apply Procedure C at the

leaf storing 0~.

Now we treat p as the left endpoint of e (the portion

of e that begins at p), and apply Procedure A at

the leaf storing O,.

(The removal and reinsertion of e is necessary since

the background object of e has changed — it is now

either Oj or, if Oj waa the background object, a

new background object lying farther than Oj.)

If at p ~ disappears, treat p aa its right endpoint

and apply step 2 of Procedure C at the leaf storing

Oj. Also, if -f has a candidate branching point in

Q, remove it. If at p ~ (reappears treat p as its

36

left endpoint and apply step 3 of Procedure A at

the leaf storing Oj.

Remark. Event points coming from internal nodes of

T are handled by Procedure B and Procedure D. These

procedures merely insert/delete the appropriate edges

of U6 into/from Yt (and check for candidate branching

points), and leave the rest to the other procedures. Let

p be a visible event point coming from an internal node

6. If p is an endpoint of an edge of an object in Ob, Pro-

cedure A or Procedure C will output it when handling

the copy of p coming from the leaf storing this object.

If p is an intersection point between two edges of two

different objects in 06, Procedure E will output it as a

branching point of the nearer edge.

Lemma 4.1 The algorithm correctly computes all the

vertices of M.

Proof. Consider the leftmost vertex, v, of M which

is not detected by the algorithm (assuming there is one).

If v is a visible vertex of some object O, it is found by

Procedure A (if v is a left endpoint of an edge of O) or

by Procedure C (if v is a right endpoint of an edge of

O). Assume v is an ‘interesting’ vertex of M, that is,

v is a visible intersection point between edges e and f

of objects Oi and Oj, respectively, where Oi is nearer

than Oj. We will prove that v is inserted into Q as a

(final) candidate branching point of e.

Let v’ be the vertex of M lying on e to the left of v

and nearest to it along e. By assumption, the algorithm

has detected v’ as a vertex of M. Regardless of which

type of vertex v’ is, Procedure A (perhaps called by

Procedure E) will have (reinserted e into various Y-

structures with v’ as its left endpoint. Let ok be the

background object of v’. It is easily seen that the object

Oj bounded by f is either oh or an object whose depth

is between those of Oi and ok. In the former case,

since e is implanted at the leaf containing ok, v will be

detected there. In the latter case, there is a node b with

Oj in its object set so that e is implanted into Y6. It is

easily verified that, just slightly to the left of v, the two

edges e and f are adjacent edges in Y6, so that e is an

implanted edge and f is an edge of U6. Go left from v

until the first time where this property no longer holds.

It is easily seen that at this point the sweepline passes

either through v’, or through the point w most recently

handled along f, or through another vertex z that lies

in Y6 between e and f. It is easily checked that z is a

vertex of U6. In either case, it is easily verified that the

action taken by the algorithm at this point (U’, w, or z)

detects v. For example, suppose that the relevant vertex

is v’. Whatever action waa taken by the algorithm at rJ’,

it (reinserts e into Yd, and then checks for candidate

branching points for e (as in Step 3 of procedure A),

thereby detecting v. Similar reasoning applies in the

other cases.

To complete the proof we must show that the algo-

rithm does not output points that are not vertices of M,

i.e., it does not output vertices or intersections of the

project ions of the objects that are not visible. Consider

a point p which reaches the front of Q and is output

by the algorithm. If p is an original event point, only

Procedure A and Procedure C could have output it and

these procedures carry out a visibility test before they

output a point. If p is not an original event point, it is

a branching point of some edge e. e was visible at the

point p’ where p was inserted for the final time into Q.

If at some point q between p’ and p e has disappeared, q

must have been a branching point of some nearer edge

g. When processing g the implants of e were removed

and so was the candidate branching point p of e (step 4

of Procedure E). We conclude that e remains visible at

p, thus p is a vertex of M. D

Thus, we obtain the following theorem which is anal-

ogous to Theorem 3.3.

Theorem 4.2 Given a set ofn non-zntersecizng ob]ecis

satisfying the conditions of Theorem 3.3, the second al-

gorathm computes the vtsibihty map tn ttme O((U(n) +

k) Iogz n), using O(U(n) log n) working siorage.

Proof. The sweepline stops at O(U(rr) log n + k)

event points. The processing of any event point origi-

nating from the objects at the leaves or added to the

queue as a branching point requires 0(log2 n) time,

while the processing of any other event point (origi-

nating from the unions at internal nodes) requires only

O(log n) time. Thus the number of event points whose

handling requires 0(log2 n) time is O(n + k), and the to-

tal time complexity of the algorithm is therefore O((n +

k) logz n + U(n) logn . logn) = O((U(n) + k) log2 n).

At any moment during the sweep there are at most

O(n) branching points, because every object edge can

have at most one branching point in the queue. Thus,

the total working storage used by the algorithm is

dominated by the total size of the regions U6, namely

O(U(n) logn). 0

5 Applications

In this section we present the three applications men-

tioned in the introduction. In the first application we

have a set of non-intersecting balls in space viewed from

infinity at some direction, say from above. The view of

such a set is the same as the view from above of a set

37

of horizontal disks. The best known result for output-

sensitive hidden surface removal in such a set is due to

Sharir and Overmars [24] who give a method that runs

in time O(n@i log n + k). In the special case of unit

disks considered in [19] a method is given that runs in

time O((n + k) logz n). Here we apply our techniques to

obtain the same improved running time for the case of

disks of arbitrary radii.

To apply our methods we need a bound on the union

of a set of n (arbitrary) disks in the plane. It is well-

known [11] that such a union has linear complexity, i.e.,

U(n) = O(n). Now applying Theorem 3.3 or Theo-

rem 4.2 we obtain:

Theorem 5.1 Given a set of n non-intersecting balls

tn space, the view of this set from above (or any other

dzrectzon) can be computed in time O((n + k) log2 n),

using O(n log n) storage.

Note that the bound U(n) = O(n) applies also to

pseudo disks, i.e. planar regions with the property that

the boundaries of any pair of them intersect in at most

2 points. Hence the preceding theorem can be extended

to the case of objects whose projections on the viewing

plane behave like pseudodisks, assuming the shape of

each object is not too complicated.

As an application of this extension, consider the case

of a set of n non-intersecting convex homothetic objects

(i.e., objects that are translated and scaled copies of a

fixed convex object). Here again, the boundaries of the

projections of any pair of the objects, in any parallel

view, intersect at most twice, so that the union has

linear size. The depth ordering can be computed as in

the case of balls or disks. Hence we have:

Theorem 5.2 Given a set ofn non-intersecting convex

homothetic objects in space, the (parallel) view of this

set from any direcfion can be computed in time O((n +

k) log2 n), using O(n logn) storage.

Next consider a set of horizontal ‘fat’ triangles viewed

in parallel from any direction. A set of triangles is called

fat when there exists some positive constant L9such that

any internal angle of the triangles is at least 0. For such

a set of triangles it is proven by Matou5ek et al. [13]

that the union has complexity at most O(n log log n).

Note that the parallel project ions of a set of fat triangles

need not in general be fat, but it is still the cme that

the union of any subfamily of n’ of these projections

has complexity O(n’ log log n’). (To see this, project the

triangles in the required direction, but make the viewing

plane horizontal.) Hence, we can apply Theorem 3.3 or

Theorem 4.2 to obtain the following result:

Theorem 5.3 Given a set of n horizontal fat tri-

angles, the view of this set from any direction can

be computed in tzme O((n log log n + k) log2 n), using

O(n log n log log n) storage.

Finally consider the case of a polyhedral terrain X

with n faces, viewed from some fixed point a lying above

it. A polyhedral terrain is thegraph of a piece wise linear

continuous function z = X(x, y). It has been shown in

[6] that the faces of Z can be ordered by depth with re-

spect to a (although it might be necessary to cut some

faces of X to ensure that the resulting order is indeed

acyclic). Cole and Sharir [6] give an efficient technique

for implicitly computing the visibility map. Reif and

Sen [23] give an output-sensitive construction of the

map that runs in time O((n + k) log n log log n). Their

technique, which is based on dynamic ray-shooting in

monotone polygonal chains, is fairly complicated. Us-

ing our much simpler algorithms we can obtain faster

solutions.

To apply our techniques, imagine that we replace Z

by a collection of semi-unbounded vertical prisms, each

consisting of all points lying below a face of X. Ob-

viously, the visibility map from a does not change by

this transformation. The prisms have the fatness prop

erty, since the union of the projections of any n’ of them

has complexity U(n’) = O(n’cr(n’)) (see [6] for details).

We can thus apply Theorem 3.3 or Theorem 4.2 to the

modified scene. In this case we can even improve the

bound on the running time by a factor of log n. Indeed,

in the first algorithm, the regions U6 and VJ are all

monotone polygons, and it is easily checked that each

of the Boolean operations on them performed by the

algorithm can be done in linear time. In the second

algorithm, each Y6 structure contains only one edge of

UJ (because of the monotonicity). We also claim that

each YJ contains at most one implanted edge at a time.

Indeed, suppose Yb contains two such edges, e, e’, with

e’ lying higher than e. Since X is a terrain, it is easily

checked that the depth ranges between e and its back-

ground and between e’ and its background are disjoint,

which is impossible by definition. Hence the cost of ac-

cessing a Yj structure is constant. The computation of

the sets UJ can be done in total time O(rm(n) log n),

using the same technique aa in [6]. The O(na(n) log n)
initial events that are put in the priority queue can be

obtained in sorted order as the sets U6 are constructed,

so that we can retrieve them from the queue at constant

time per event point. Putting all these observations to-

gether, it follows that the time of both algorithms can

be improved to O((ncr(n) + k) log n). We thus have:

Theorem 5.4 The visibility map of a polyhedral ter-

rain consisting of n faces, viewed from some jixed point

above it, can be computed in time O((n~(n) + k) log n)

and working storage O(ncr(n) logn).

38

6 Conclusion

In this paper we have presented two new methods for

computing the visibility map of a set of non-intersecting

objects in 3-space. They run in time O((U(n) +

k) logz n) and use O(U(n) log n) working storage, where

U(n’) is the maximum complexity of the union of the

projections on a viewing plane of any subset of n’ of

the objects, and k is the complexity of the output vis-

ibility map. The methods are quite simple, apply to

general scenes where a depth ordering of the objects

is available, and are efficient whenever U(n) is small.

This is the case for sets of fat objects like disks (balls),

fat triangles, homothets, and polyhedral terrains. This

condition might also occur for many sets of non-fat ob-

j ects. It is also worth noting that for any set of objects

U(n) = O(n + 1) where 1 is the number of intersections

in the projection. Hence, even for non-fat objects, the

time bound is never worse than O((n + 1) logz n) which

is only a factor log n worse than the techniques in [25].

Although we did not exploit this observation, it is inter-

esting to note that our techniques also apply when the

objects can be split into a small number of subfamilies

so that within each subfamily the union complexity is

small. An example where this observation can be ap-

plied is the case of axis-parallel horizontal rectangles

(see [19] for details), although the resulting algorithm

would be inferior to the best known solutions for this

case.

Of course, the main open problem that remains is to

find an output-sensitive algorithm that is efficient for

general objects in space. Another open problem is to

improve still further our technique. For instance, can

the running time be reduced to O((U(n) + k) log n) (as

in the case of polyhedral terrains)?

References

[1]

[2]

[3]

[4]

[5]

P.K. Agarwal and M. Sharir, Applications of a new

space partitioning technique, manuscript (199 1).

M. Bern, Hidden surface removal for rectangles, J.

Comp. .%@. Sciences 40 (1990), 49-69.

J .L. Bentley and T.A. Ottmann, Algorithms for

reporting and counting geometric intersections,

IEEE Trans. Computers 28 (1979), 643-647.

M.T. de Berg and M.H. Overmars, Hidden sur-

face removal for axis-parallel polyhedra, Proc. 5’lst

IEEE Symp. on Foundations of Computer Science,

1990, pp. 252-261.

B. Chazelle, H. Edelsbrunner, L. Guibas, R. Pol-

lack, R. Seidel, M. Sharir and J. Snoeyink, Count-

ing and cutting cycles of lines and rods in space,

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Proc. 31st IEEE Symp. on Foundations of Com-

puter Science, 1990, pp. 242–251.

R. Cole and M. Sharir, Visibility problems for poly-

hedral terrains, J. Symbolzc Computation 7 (1989),

11-30.

F. D6vai, Quadratic bounds for hidden line elinli-

nation, Proc. 2nd ACM Symp. on Computational

Geometry, 1986, pp. 269-275.

M.T. Goodrich, A polygonal approach to hid-

den line elimination, Proc. 25th Allerton Conf,

on Communication, Control and Cornputzng, 1987,

pp. 849–858.

M.T. Goodrich, M.J. Atallah and M .11. Overmars,

An input-size/output-size trade-off in the tinle-

complexity of rectilinear hidden surface removal,

Proc. ICALP ’90, Springer-Verlag, Lecture Notes in

Computer Science 443, 1990, pp. 689-702.

R.H. Guting and T. Ottmann, New algorithms for

special cases of the hidden line elimination prob-

lem, Comp. Vision, Graph~cs and Image Process-

ing 40 (1987), 188–204.

K. Kedem, R. Livne, J. Path and M. Sharir, On the

union of Jordan regions and collision-free transla-

tional motion amidst polygonal obstacles, Dw-crete

Comput. Geom. 1 (1986), 59-71.

H. Mairson and J. Stolfi, Reporting and count-

ing intersections between two sets of line segments,

Theoretical Foundations of Computer Graphzcs and

CAD, R.A. Earnshaw, Ed., NATO ASI Series, Vol

F-4o, Springer Verlag, 1988, pp. 307-326.

J. Matou&ek, J. Path, M. Sharir, S. Sifrony and E.

Welzl, Fat triangles determine linearly many holes,

Tech. Report 174/90, Eskenasy Institute of Con~-

puter Sciences, Tel Aviv University, May 1990.
.

M. McKenna, Worst-case optimal hidden surface

removal, ACM Trans. Graphzcs 6 (1987), 19–28.

K. Mulmuley, An efficient algorithm for hidden sur-

face removal, I, Computer Gr-aphtcs 23 (1989), 3i’9-

388.

0. Nurmi, A fast line-sweep algorithm for hidden

line elimination, BIT 25 (1985), 466--472.

[17] M.H. Overmars and M. Sharir, Output-sensitiv(.

hidden surface removal, Proc. 30t)] IEEE Symp o)2

Foundations of Computer Science, 1!389, pp 59s-

603.

39

[18] M.H. Overmars and M. Sharir, An improved tech-

nique for output-sensitive hidden surface removal,

Techn. Rept. RUU-CS-89-32, Dept. of Computer

Science, Utrecht University, 1989.

[19] M.H. Overmars and M. Sharir, Merging visibility

maps, Computational Geometry, Theory and Ap-

plications (1991), to appear.

[20] M. Paterson and F.F. Yao, Binary space partitions

with applications to hidden surface removal and

solid modeling, Proc. 5th ACM Symp. on Compu-

tational Geometry, 1989, pp. 23–32.

[21] F.P. Preparata and M.I. Shames, Computational

Geometry, an Introduction, Springer-Verlag, New

York, 1985.

[22] F.P. Preparata, J.S. Vitter and M. Yvinec, Com-

putation of the axial view of a set of isothetic par-

allelepipeds, ACM Trans. Graphics 9 (1990), 278–

300.

[23] J. Reif and S. Sen, An efficient output-sensitive hid-

den surface removal algorithm and its paralleliza-

tion, Proc. Jth ACM Symp. on Computational Ge-

ometry, 1988, pp. 193–200.

[24] M. Sharir and M.H. Overmars, A simple output-

sensitive algorithm for hidden surface removal,

ACM Trans. Graphics, 1990, to appear.

[25] A. Schmitt, Time and space bounds for hidden line

and hidden surface algorithms, Eurographics ’81,

pp. 43–56.

[26] I.E. Sutherland, R.F. Sproull and R.A. Schu-

macher, A characterization of ten hidden-surface

algorithms, Comprding Surveys 6 (1974), 1-25.

40

