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Nonoverlap of the Star Unfolding*

Boris Aronovt and Joseph O’Rourke$

The star unfolding of a convex polytope with
respect to a point x is obtained by cutting the
surface along the shortest paths from z to ev-

ery vertex, and flattening the surface on the
plane. Reestablish twomaiu properties of the
star unfolding: (1) It does not self-overlap: its

boundary is a simple polygon. (2) The ridge

tree in the unfolding, which is the locus of

points with more than one shortest path from

z, is precisely the Voronoi diagram of the im-

ages of z, restricted to the unfolding.

These two properties permit the conceptual

simplification of several algorithms concerned
with shortest paths on polytopes, and some-

times a worst-case complexity improvement as
well: for constructing the ridge tree, for find-

ing the exact set of all shortest-path “edge se-

quences,” and for computing the

ameter of a polytope.

Our results suggest conjectures

ings” of general convex surfaces.

geodesic di-

on “unfold-
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1 Introduction

A new way of organizing the set of all shortest

paths from a fixed point z on the surface P of

a (convex) polytope was introduced by Agar-

wal et al in [AAOS90] and by Chen and Han

in [CH90], independently and simultaneously.

The main idea already appears in Aleksan-

drov’s work forty years ago, although he uses it

only to show that P can be triangulated. 1 We

will follow [AAOS90] and refer to this structure

as the star unfolding of a polytope, so called be-

cause of the “star-like” appearance of the pla-

nar unfolding of the paths.2 The star unfolding

may be obtained by cutting the polytope along

the shortest paths from z to each vertex of P,

and flattening the surface on the plane. The

star unfolding contrasts with the source unjcdd-

ing [SS86], which simply lays out all shortest

paths around the source z. In comparison, the

star unfolding arranges the paths around their

destinations, the ends opposite z. These no-

tions will be made precise in Section 1.1.
The star unfolding has proven to be a use-

ful structure for algorithms that involve short-

est paths, as detailed in [AAOS90] and [CH90].

However, an unfortunate complication was left

unresolved in both of these papers: it was
not known whether the star unfolding might

overlap in a planar layout. This uncertainty
forced the algorithms to be unpleasantly com-
plex. The first result of this paper is that in-
deed the star unfolding does not overlap (The-
orem 9.1).

The second result is that the “ridge tree,”
the locus of points with more than one shortest

path from the source, is precisely the Voronoi

diagram of the source images in the star unfold-

lSee [Ale58, p. 171] aud [Ale55, p. 226].

‘The star unfolding is uot necessarily a star-shaped
polygon!
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ing, restricted to the unfolding (Theorem 10.2).
This relationship was suspected by researchers,

but never established. An illustration is shown

in Fig. 1.

Figure 1: (a) A polytope of 11 corners; z is

marked. (b) The star unfolding with respect

to z, with theridgetreesbown.

Together these results both conceptually

simplify previous algorithms, and in several in-

stances improve the worst-case time complexity

as well. In particular, algorithms for construct-

ing the ridge tree, for finding shortest-path

edge sequences, and for computing the diam-

eter of a polytope are all improved. These con-

sequences are discussed briefly in Section 12;

details will appear in [AAOS91].

1.1 Definitions and Basic Proper-

ties

In this section we give formal definitions of the

star unfolding and the ridge tree, taken largely

from [AAOS90]. Consider the surface P of a

convex polytope in IR3 with n vertices. We

reserve the term corn ers to refer to vertices of

P.

1.1.1 Ridge Trees

Given a point x on P, y c P is a ridge point
with respect to x if there are two or more dis-

tinct shortest paths between z and y. Ridge

points with respect to x form a ridge tree TX

embedded on P,3 whose leaves are corners of

P, and whose internal vertices have degree at

least three and correspond to points of P with

three or more distinct shortest paths to z. To

simplify our discussion we assume that x does

not lie at a corner and has a unique shortest

path to each corner. We define a ridge as a

maximal connected subset of Ta consisting of

points with exactly two distinct shortest paths

to z, and cent aining no corners of P. These are

the “edges” of Tz. Ridges are (open) shortest

paths [AAOS90]. A ridge vertex is a point of

the ridge tree shared by more than one ridge.

Additionally we consider each corner a ridge

vertex. Under the above assumptions on z each

corner has exactly one incident ridge.

Let a ridge point be a point of P that lies

on the ridge tree of some vertex. We will often

rest rict the source of shortest paths to be a non-

ridge point.

1.1.2 Star Unfolding

Let x E P be a non-corner, non-ridge point,

so that there is a unique shortest path con-

necting z to each corner of P. These paths

are called cuts and are comprised of cut points.

The cuts together with edges of P induce a con-

vex decomposition of P, which we will treat as

a surface P= of a polytope. It is geometrically

identical to P, but combinatorially different.

Now form a two-dimensional complex from

the faces of Pz as follows. The cells of the com-

3Por smooth surfaces (Rlemannkm manifolds), the
ridge tree is known as the “cut locus” [Kob67].
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plex are the faces of P=, each a compact con-

vex polygon. For each pair of adjacent faces

of P% sharing an edge of Pa, which is a por-

tion of an edge of P, topologically identify the

two faces along that edge. We define the star

unfolding S$ as the resulting two-dimensional

complex.4 We assume that the complex carries

with it labeling information consistent with PZ.

Its polygonal boundary OSC consists entirely

of edges originating from cuts. It is shown

in [AAOS90] that S$ is topologically equivalent

to a closed disk.

We think of Sr as laid out in the plane with

adjacent faces placed on opposite sides of the

line containing their shared edge. The essence

of Theorem 9.1 is that non-adj scent faces in

such a layout do not overlap either.

1.1.3 Image Map

For p c P, let lrn(p) be the set of points in

S= to which p maps. Thus lm(p) for a point

p not on a cut is a single point, Ire(z) is a set

of n distinct points in S=, a non-corner point

v G P distinct from x and lying on a cut haa
exactly two images in S=, and the corners of

P map to single points. A “segment” in S=

is a connected object that maps to a line seg-

ment when S= is unfolded in the plain. More

formally, a curve s C S= is a segment in Sz if

its preimage lrn-l (s) is a geodesic on P. In

particular, 8S= is a cycle of 2n segments. In

addition, for a point y E P, any shortest path

T from z to g maps to a segment r“ C SZ con-

necting an element of lm(y) to an element of

Irrt(z) [AAOS90].

In [AAOS90] care was taken to distinguish

objects on P and in Sc. Here we will be inten-

tionally less careful, to take advantage of the

notational simplification gained from the nat-

ural correspondence between a set Q ~ P and
lm(Q) ~ S=: unless confusion is possible, we
will call both Q.

1.1.4 Source Images

Let X = Irn(x) = {z1, x2, . . . . x~}, the source

images in a planar layout of SC. We label the

source images and the corners so that they ap-

pear as plxlpzxz... z~-lp~z~p~+lz~+l...pnzl in

counterclockwise order around SZ.

4We will not distinguish the complex from the nat-
ural intrinsic metric space defined on the complex.

1.1.5 Peels

Let a peel be the closure of a connected com-

ponent of the set obtained by removing from

P both the ridge tree T= and the cuts. A

peel is isometric to a convex polygon [SS86].

Each peel’s boundary consists of z, the short-

est paths to two consecutive corners of P, pi

and pi+l, and the unique path in T~ connect-

ing pi to ~i+l. A peel can be thought of as the

collection of all the shortest paths emanating

from z “between” T(Z, pi) and T(Z, pi+l).

1.2 Key Ideas

Both main theorems are proved by induction

on the number of corners. There are three key

ideaa to their proofs.

First, the reduction from n to n – 1 corners

is chosen to occur in a particular part of the

ridge tree, a spot that is shown to always exist.

Second, a powerful theorem of Aleksandrov

is used to show that the reduction indeed re-

sults in a polytope, to which the induction hy-

pothesis then applies.

Finally, the induction hypotheses are strong-

er than the bare statements of nonoverlap and

the indicated Voronoi property: for both theo-

rems we prove additional structural properties

of the unfolding to establish the results.

1.3 Clutline

The next section establishes a lemma about

ridge trees that identifies the area where the

reduction is made. Section 3 then details the

reduction. Section 4 describes Aleksandrov’s

theorem, and Section 5 works out the conse-

quences for the star unfolding. The baais of
the induction proofs is explored in Section 6.

Key geometric properties of the reduction are

established in Section 7. All the material up to

this point is used in common for the two main

theorems.

Section 8 introduces structural constraints

on the star unfolding, and in Section 9 the

nonoverlap theorem is proved. The proof of

the Voronoi property is given in Section 10.

Extensions to smooth surfaces and algorith-

mic consequences are discussed briefly in Sec-

tions 11 and 12 respectively.5

5This paper is a 3:1 reductiou of [A091]. All omitted

proofs may be found in the full version.
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2 Tree Lemmas

This section establishes a simple property of

ridge trees (Lemma 2.2), which will be used to

identify the location on the polytope where the

reduction will be effected. The notion of “cur-

vat ure” will be used throughout the paper. The

curvature at a corner p of P is 21r minus the sum

of the face angles incident to p. The curvature

of every corner is strictly between O and 27r.

We will use aj to represent the curvature at pi.

All curvature on a polytope is concentrated at

the corners.

Lemma 2.1 (Gauss) The sum of the curva-

tures of all vertices of P is 47r.

Lemma 2.2 Any ridge tree T= contains a

m“dge vertex adjacent to two consecutive cor-

ners of P, whose sum of curvatures is no more

than 2ir. For a polytope with n > 4 verticeq

the sum is strictly less than 2x; for n = 4, the

curvatures might sum to exactly 27r.

•1

The fact that the sum can be exactly 2X

when n = 4 will necessitate special arguments

in the base cases of the induction proofs of the

two main theorems.

3 Reduction

Let v be the ridge vertex adjacent to the two

consecutive corners pi and pi+l, guaranteed by

Lemma 2.2 to have curvatures totaling at most

27r. Make a planar layout of the portion of

S= containing the peels for xi– 1, Zi, and ~i+l.

These three peels meet at v, and do not over-

lap, because each peel is convex and occupies a

disjoint angular wedge emanating from v. The

reduction that permits us to use the induction

hypothesis replaces the two corners pi and pi+l

of P with a new corner p’; eventually we will

show this produces a new polytope of n – 1

corners Pt. We now describe the reduction.

We define R c S= to be the simple poly-

gon (v,~i-l,pi,~i,pi+l,zi+l), a hexagon that
is contained in the union of the three peels dis-

cussed above. This region is shaded in Fig. 2.

R will denote the corresponding region on P as

well. We excise R from the complex Sz, and

replace it with a region R’, which is the planar

quadrilateral (v, xi-l, p’, x~+l). Let Labc de-

note the angle at b contained counterclockwise

between the rays ba and bc. The corner point p’

108

is placed on the bisector of Lxi - Ivxi+l so that

its external angle (i.e., its curvature) is the sum

of the curvatures at pi and pi+l: a’ = ~i+~i+l.

Again see Fig. 2.

Lemma 3.1 For n >4, there is a point p’ on

the ray bisecting Lxi_lvzi+l, whose external

angle is ~i + cl~+l. For n = 4, the same holds

unless ~i + ~i+l = 2X.

•1

\

Figure 2: The reduction, shown with R and R’

superimposed.

This lemma demonstrates that the region R’

is well-defined. Replacing R by R’ produces a

new complex S: = (SC – R) U R’, which has

n – 1 “corners.” The key to the success of the

induction proof is to show that this complex

corresponds to a (unique) polytope P’. This

is by no means obvious, but fortunately it is

a corollary of a beautiful theorem of Aleksan-

drov, which we describe in the next section.

4 Aleksandrov’s Theorem

Definition 4.1 A net ([Ale58, p. 44]) is a

complex of polygons with edges topologically

identified, such that

1. Identified edges have the same length.

2. There is a path from every polygon to every

other.

3. Every edge of a polygon is identified with

at most one edge of anoiher polygon.

Theorem 4.2 (Aleksandrov) “Every net

that is homomorphic to a sphere and whose



angle sum at every vertex is < 21r, corresponds

to a closed convex polyhedron. ” [Ale58, p. 169].

The star unfolding S=, with the identification

of the two images of cuts from z to each corner,

is a net homomorphic to a sphere, obviously

corresponding to the polytope P from which it

is derived.

Lemma 4.3 Aleksandrov’s theorem applies to

s;.
•1

5 Reduced Star Unfolding

By Lemma 4.3 and Theorem 4.2, S: folds to a

polytope P’, to which the induction hypothesis

applies. Now we concentrate on the transfor-

mation from P’ to P as represented in Fig. 3:

the region R’ is cut out and replaced by R, the

reverse of the reduction discussed in Section 3.

The goal of this section is to show that S: is

Figure 3: The reduction reversed, viewed on

the polytope surface.

precisely the star unfolding of P’. Namely, the

star unfolding of P’ is exactly the same as S=,

the unfolding of P, except for the regions R

and R’ cut and pasted. This will permit us to

reason entirely with the unfoldings.

Lemma 5.1 S; is the star unfolding of P’.

❑

Corollary 5.2 The ridge trees are the same in

SC and S; outside the regions that difler be-

tween these two unfoldings: T: – R’ = T. – R

•1

Corollary 5.3 In P’j x is not a ridge point of

any corner of S:.

❑

This permits us to assume “non-ridgeness” in-

ductively.

5.1 More Notation

Lemma 5.1 permits the following view of the

reduction, which we will adopt in the remain-

der of the paper. S. and S! differ only in the

replacement of two corners and one source im-

age in S=, by one corner in S;. If we lay S$

and S; on top of one another in the plane, the

n — 1 source images that they share will coin-

cide. We will therefore use the same labels for

these sources

and for the common corners.

P1>P2) . ..> Pi-l. Pi+2, . . ..Pn.

In what follows Zi will always refer to the

source image of S= removed by the reduction,

and pi and pi+l will refer to the two corners

removed; p’ will be used to denote the corner

added to S;. In general, primes will denote

quantities of S;.

5.2 Example

Fig. 4(a) shows an unfolding of a square pyra-

mid, with x at the midpoint of one of the base

square’s edges. Fig. 4(b) shows the star un-

folding, and a region R identified for the re-

duction step of the induction. Fig. 4(c) shows

the unfolding after R is replaced by R’. If

Fig. 4(d), which is Fig. 4(c) redrawn, is folded

along the lines shown, the result is a convex

polyhedron (a tetrahedron), as guaranteed by

Aleksandrov’s theorem. If the reduction is ap-

plied to Fig, 4(d), the base case of the induction

is reached, a doubly-covered triangle. All three

star unfoldings produced in this reduction pro-

cess are shown in Fig. 5.

6 Induction Basis

6.1 Generic case: Doubly-

covered triangle (n = 3)

Each reduction step reduces n, the number

of vertices, by 1. The “generic” basis of the

induction is n = 3, when the star unfold-

ing is a hexagon: three corners and three

source images. An example is shown in Fig. 5.

The corresponding polytope is a flat, “doubly-

covered” triangle wit h z on one side, a degener-

ate case permitted by Aleksandrov’s theorem.
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Figure 4: The star unfolding of a pyramid re-

duced to a tetrahedron.
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Figure 5: Three star unfoldings from the pyra-

mid.

Although this doubly-covered triangle has zero

volume, it behaves as the surface of any other

convex polytope.

6.2 Special case: Special tetrahe-

dron (n =4)

In the special case when n = 4 and the pair

of vertices guaranteed by Lemma 2.2 have cur-

vature sum exactly 27r, the reduction does not

apply, and the base case is a tetrahedron. The

reason the reduction does not apply to this case

is that Lemma 3.1 fails: p’ would have to be

on the bisector “at infinity.’> Although the re-

duction fails, there is a sense in which it can

be carried out nevertheless, and we proceed in

this section to demonstrate this to facilitate es-

tablishing the bases of the induction proofs.

Lemma 6.1 An unbounded hexagon that re-

sults from applying the reduction to Sz for

n = 4 with CHi+ CYi+l = 2x, is an unfolding of

a doubly-covered unbounded triangle, one with

one bounded edge and two parallel unbounded

edges.

•1

With this lemma available we may use n = 3 as

the only base of the induction proofs, with the

understanding that the doubly-covered triangle

may be unbounded in the sense above.

7 Reduction Geometry

In this section we establish a crucial geometric

lemma concerning the relative angles of edges

in R’ and R. This relationship derives ulti-

mately from the fact tha~ the curvature a’ at

p’ is the sum of the curvatures ai and CYi+l.

Lemma 7.1 (Reduction angles) In the re-

duction SC ~ S;, edge xj_lp’ of S; is “ezte-

rior” to edge xi-lpi of SX, and edge Xi+lp’ is

‘exterior” to edge ~i+lpi+l, ia the sense that

.L~’X~-lV > Lp~Zj_lV

Lvzi+lp’ > Lvzi+lpi+l

See Fig. 2: the dashed line bounding

terior to R in the vicinity of zi~l.

❑

R’ is ex-
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8 Sectors

Examination of Fig. 2 shows that in the S; =)
S$ transition, R may extend beyond R’, which

presents a fundamental difficulty for a proof

of nonoverlap of S= from the nonoverlap of

s:: nonoverlap of S; does not suffice – we

need something stronger. The key “something

stronger” is provided by a structural geometric

constraint on the shape of the star unfolding,

which we phrase in terms of circle sectors that

lie just outside /lSZ.

8.1 Definition of Sectors

We now define a region of the plane associated

with each corner of a layout of S=. The defini-

tion does not assume that S. does not overlap,
. .

as it only depends on the posltlons of xi-1, pi,

and xi in the layout.

Define the sector Si associated with pi as the

closed sector of the disk centered on pi bounded

by the radii piZi _ 1 and pixi, and exterior to

SC near pi. The sectors for the unfolding of

the pyramid shown in Fig. 4 are depicted in

Fig. 6. We will see that the sector interiors are

Figure 6: Sectors for the pyramid unfolding.

pairwise disjoint and exterior to S..

8.2 Sectors Nested

The key property of sectors is that the reduc-

tion implies a “nesting” of sectors in a certain

sense, as illustrated in Fig. 7. We will see in

the next section that this nesting implies that

the sector interiors are pairwise disjoint and lie

outside Sc. In preparation, we show that adja-

cent sectors are disjoint:
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t- v

48
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Figure 7: Nesting of sectors,

Lemma 8.1 The interiors of adjacent sectors

are disjoint.

❑

Lemma 8.2 (Sector nesting) In the S: +

S. transition, R U s~ U Si+l C R’ U s’.

Proofi Recall that R is the hexagon

(v, ~i-,,pi, ~i,pi+~, Zi+l) and R’ is the quadri-

lateral (v, xi-l, p’, ~i+l) (see Fig. 7). Since

R and R’ have identical “inner” boundaries

~i- IV U vx~, we only need to show that the

“outer” boundary of Si U si+l falls inside the

outer boundary of s’. This follows from the

reduction angles lemma, Lemma 7.1. As

ZVXi-lp’ > LVZi-lf)~, the normal to Zi_l~’,

which is tangent to s’, falls outside the normal

to xi_ lpi, which is tangent to si. The same is

true at ~i+l. Thus the boundary arc of si inci-

dent to xi-1, and the boundary arc of si+l inci-

dent to ~i+l, both fall inside s’ in the vicinity

of *i_ 1 and ~i+l, respectively. Both of these

arcs end at xi. It therefore only remains to

show that ~i falls inside the outer boundary of

s’.

Recall that ~i_ 1, xi, and ~i+l all fall on a

circle C centered on v (by the definition of the

reduction). Because p’ necessarily falls on the

ray bisecting Lxi _ Ivxi+l, C’ is inside the St arc

between ~i _ ~ and ~i+l. Therefore xi falls in-

side the s’ arc. ❑

9 Nonoverlap

Let Q3 = S= U (Uj sj ) be the “complex” consist-

ing of the star unfolding with the sectors glued

in at their shared edges.



Theorem 9.1 (Nonoverlap) The star un-

folding augmented by the sectors, Q=, does not

overlap: S= does not overlap with itself, the sec-

tors do not overlap each other, and the sectors

do not overlap with S$.

Proof: The proof is by induction.

Basis. As discussed in Section 6, the ba-

sis is a doubly-covered triangle, n = 3, al-

though we must consider both bounded and

unbounded triangles. We first discuss bounded

triangles. Clearly SC itself does not overlap in

the bounded case, for it is the union of three

peels glued together at the single ridge vertex.

Each sector is clearly exterior to S.. And ev-

ery pair of the three sectors are adjacent to one

another, so Lemma 8.1 shows that the sectors

do not overlap one another. See Fig. 8.

Figure 8: Sectors in the base case.

The proof for unbounded triangles is omit-

ted. This completes the proof of nonoverlap in

the unbounded case.

General Step. Assume Q’ = Sj U (Uj sj ) does

not overlap by induction. This means, in par-

ticular, that R’Us’, which is just a subset of Q’,

does not overlap with Q’–(R’Us’). But now by

sector nesting (Lemma 8.2), RUsi USi+I C R’U

s’, so none of the changes made in the Sj * S=

transition cause overlap with Q’ – (R’US’). And

clearly the port ion added, R U Si U Si+ 1, does

not overlap itself R does not overlap si or si+l

by construction, and the sectors are adjacent so

Lemma 8.1 applies. Therefore

Qc = [Q’ – (R’ U s’)] U (R U Si U s~+l)

does not overlap. ❑

In particular, we have shown that S$ is a simple

polygon.

10 The Voronoi Property

We prove in this section that the ridge tree is

a subset of the Voronoi diagram of the source

images. Recall that X is the set of source im-

ages in the unfolding. Let V(X) be the Voronoi

diagram of X, viewed as a set of points in

a layout of S$ in the plane. We prove that

T= = V(X) n S=. We will establish this by

showing that a certain collection of “Voronoi

disks” are empty of source images. Let DY be

the open disk centered on a point y E S= with

radius equal to the shortest path distance from

z to y. We call DV a Voronoi disk. The proof

has the following outline:

1.

2.

3.

4.

Q= (S= augmented by the sectors) contains

the union of the Voronoi disks Dv for all

ridge points v c TZ.

This containment implies that the Voronoi

disks of all ridge points are empty of source

images.

This implies that the Voronoi disk Dv of

any point y G Sc is empty of source im-

ages. Moreover, among points in S=, only

ridge points have more than one source im-

age on the boundary of their Voronoi disk.

The emptiness of the disks in turn implies

the Voronoi property.

Steps (2)-(4) of the proof are easy, and we dis-

pense with them prior to launching into the

more difficult step (1).

(2) Suppose Q= contains the Voronoi disks for

all ridge points. The source images lie on the

boundary of S$, and the exterior arc bound-

ing sector sj begins and terminates at consecu-

tive source images. As QZ does not self-overlap

(Theorem 9.1), the sources are on the bound-

ary of Q=. The emptiness of the disks follows

immediately, as they are all open and contained

in Qz.

(3) Assume that the Voronoi disk of every

ridge point is free of source images. Let y G

Sz – Tc. Suppose that y lies in the peel of

xi. Since peels are convex, by extending the

shortest path ~(x, y) past y we obtain a point

z E T= with the property that all of rr(z, z) lies

in the same peel. By assumption, Dz is free of

source images and, by construction, Xj lies on

the boundary ~Dz of Dz. By definition of a

Voronoi disk, Dv has radius Iyxj I and thus lies

inside D.; moreover 8D. n 8DY = {zj }. So DV
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is empty and its boundary contains exactly one

source point, as claimed.

(4) Suppose now that the Voronoi disk for

each point of S= is empty of source images and

no point of S= outside Ts has more than one

source image on the boundary of its Voronoi

disk. This immediately implies that T= =

V(X) n Sz, M V(X) is by definition the col-

lection of points y in the plane for which the

largest open disk centered at y and free of

points of X touches two or more points of X.

The essence of the Voronoi property then

reduces to (1) above, which we prove via in-

duction based on the reduction used in the

nonoverlap proof.

Lemma 10.1 Qc, the star unfolding aug-

mented by the sectors, includes the union of all

Voronoi disks for ridge points:

u Dvc Q..

yGT=

•1

Finally we may claim the second main result

of this paper:

Theorem 10.2 (Voronoi property)

The ridge tree is the portion of the Voronoi di-

agram of the source images that lies inside the

star unfoiding: Tc = V(X) (l S=. •1

11 Smooth Convex Sur-

faces

There is every reason to expect that our main

theorems hold true for arbitrary convex sur-

faces as well as for polytopes. This leads us

to make three conjectures for arbitrary convex

surfaces:

1.

2.

The cut locus “develops” (“unfolds”)

in the plane without self-intersection.

That the ridge tree unfolds without self-

intersection is a consequence of nonover-

lap, Theorem 9.1.

The star unfolding of the surface is a

simple closed region of the plane, whose

boundary is the locus of all source images.

This is the generalization of Theorem 9.1,

but we need to define what the star un-

folding is in this context.

First, develop the cut locus. Second, from

each point y of the cut locus, draw seg-

ments in the plane corresponding to all the
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3.

shortest paths from the source x that are

incident to y. Draw each segment to have

the length of the corresponding shortest

path, and to make the same angle at the

point y with the cut locus, aa it does on

the surface of P. The star unfolding is this

particular layout of all the shortest paths

from x on P.

The developed cut locus is the medial axis

of the locus of the source images. The

“medial” or “symmetric” axis of a Jor-

dan curve is the locus of centers of interior

disks that meet the curve in more than one

point. This is the analog of the Voronoi

property, Theorem 10.2.

12 Algorithmic

Consequences

The primary consequence of our results is that

it is now an easy matter to construct the ridge

tree, formerly an object of formidable concep-

tual complexity: find shortest paths to all cor-

ners, build the star unfolding in the plane, and

compute the conventional Voronoi diagram of

the set of source images.6 In particular, our re-

sults now justify Chen and Han’s simple and ef-

ficient algorithm for single-source shortest path

queries [CH90].

Second, in [AAOS91], an algorithm is pre-

sented for computing the exact set of edge se-

quences in 0(n7 log n) time. An edge sequence

is a list of edges crossed by a shortest path;

they are used for finding shortest paths amidst

polyhedra [SS86]. A major factor in the algo-

rithm’s time complexity is the number of com-

binatorial changes the ridge tree may undergo

as the source moves along a straight line with-

out crossing a ridge of any corner. The only

bound proved in [AAOS91] was 0(n4). But

knowing by Theorem 10.2 that the ridge tree is

actually a subgraph of a Voronoi diagram, we

may obtain an 0(n3) bound on the number of
changes using lower-envelope theory. This ob-

servation simplifies the algorithm and its anal-
ysis, but leaves its complexity at 0(n7 log n).

Third, the O(nl”) algorithm of [AAOS90]

for computing the “geodesic diameter” of a

polytope (the maximum possible separation be-

tween two points on its surface) may be im-
proved by our results in two ways. At the

‘This is how Fig. 1 was produced.



center of O(ng) iterations in that algorithm is

a linear-time calculation to disambiguate pos-

sible overlap of the star unfolding, and an

O(n) visibility calculation. The first is obvi-

ated by our nonoverlap theorem (Theorem 9.1)

and the second by the Voronoi property (The-

orem 10.2). The result is an O(ng log n) algo-

rithm for the diameter.

These algorithmic consequences will be de

veloped in [AAOS91].
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