
Dynamic point location in arrangements of hyperplanes

Ketan Mulmuleyl * and Sandeep Sen2

I: Computer Science Dept, The University of Chicago

2: AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

We present algorithms for maintaining data struc-

tures supporting fast point location queries in ar-

rangements of hyperplanes with dimension less than

or equal to four. This data structure allows for

deletion and insertion of hyperplanes. Our alg~

rithms use random bits in the construction of the

data-structure but do not make any assumptions

about the update sequence or the hyperplanes in

the input. In two dimensions, we are able to ob-

tain O(log n) query time, O(n log n) update time

and 0(n2) space bound. In dimensions three and

four we obtain near-optimal bounds for space, query

time and also update time, where all these bounds

hold with high-probability. (The probability is

with respect to randomization in the data struc-

ture.) Our algorithm is simple and its extension

to arbitrary dimensions is closely tied to efficient

local point-searching in triangulated convex poly-

topes. Moreover, our approach has a versatile qual-

ity which is likely to have further applications to

other dynamic algorithms.

1 Introduction

Maintaining data structures that allow periodic up-

dates has received much attention in the past and

in recent years. Typical operations include inser-

tion and deletion of elements from a given universe

like points, segments etc. and at any given stage we

may have to answer queries about the present set

of elements. One of the challenging goals in design-

ing data-structure for such dynamic environment is

*Supported by NS~ grant CCR 8906799 and Packard
Feltowshlp

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Association for Computing Machinety. To copy otherwise, or to

republish, requires a fee and/or specific permission.

to be able to match the query time with that of

the static case (one in which the set of elements

remain fixed but each instance of query could be

different). At the same time it is also critical that

one does not expend too much space for the data-

structure and also keep the update time minimal.

Balanced binary trees supporting dictionary opera

tions is perhaps the most commonly used dynamic

data structure and it also matches the asymptotic

performance of searching in an ordered set. In order

to compete with the static case, the dynamic data

structures typically need to be more sophisticated

and sometimes turn out to be prohibitively difficult

to implement. Examples of some sophisticated dy-

namic data structures include data structures for

planar point location [6, 9, 12, 13].

A more recent line of attack for designing dy-

namic data structures has been the use of random-

ization. The term randomized algorithms in this

paper will refer to algorithms that do not assume

any distribution of the input but use random bits to

make choices at different stages of the algorithm for

any input. Skip Lists ([14]) and Randomized Search

Trees ([1]) are examples of dynamic data structures

proposed recently and use randomization. Their

performance bounds compare very favorably with

their deterministic counterparts (that is the bal-

anced binary trees) and are much simpler to im-

plement. The obvious trade-off is that the perfor-

mance bounds are guaranteed with certain probabil-

ities which in spite of being less than 1 are usually

acceptable for most applications. In particular, if

one can guarantee performance bounds with prob-

ability y 1 — l/na for a large enough a > 1, where

n is the input size, then even for moderate values

of n this is very close to 1. Bounds of these form

are often referred to in the literature as high prob-

ability bounds. These are stronger than bounds on

the mean behavior, which cannot predict the proba-

bility of deviation from the ezpected behavior. The

following not ation will be used in the paper. We

o 1991 ACM 0-89791-426-0/91/0006/0132 $1.50 132

http://crossmark.crossref.org/dialog/?doi=10.1145%2F109648.109663&domain=pdf&date_stamp=1991-06-01

say a randomized algorithm has resource (like time,

space, etc.) bound b(g(n)) if there is a constant c

such that the amount of resource used by the algo-

rithm (on any input of size n) is no more than cg(n)

with probability ~ 1 — l/na, for a ~ 1; a depends

on c. By choosing c large enough, one can get a

large enough value for a.

The static point location problem for arrange-

ments of hyperplanes haa been satisfactorily solved

[4] by making use of randomization and then sub-

sequent y derandomizing it efficiently ([3]). In this

paper, we further investigate the use of randomiza-

tion for searching in arrangements of hyperplanes

in a dynamic environment. In dimension two, we

are able to obtain a very simple algorithm which

guarantees ~(log n) query time, ~(nz log n) space,

and ~(n log n) update time. The expected space

requirement is 0(n2). In dimension three and four

too, we obtain near optimal bounds (up to a poly-

logarithmic factor). Our data structure for dynamic

point location in arrangements of lines is extremely

simple in comparison with the sophisticated data

structures in [6, 9, 12, 13]. No efficient dynamic

algorithms were earlier known for this problem in

dimensions higher than two. A possible extension

of our algorithm to arbitrary dimensions is closely

tied to efficient local point-searching in triangulated

convex polytopes. In dimension higher than four

we can give a very simple algorithm which achieves

~(fipolylogn) query time and d(nd-lpolylogn)

amortized update time; it is omitted in this ab-

stract. Random sampling results in ([10, 4, 15])

have cent ributed significantly towards our arrange-

ment searching algorithms.

Notation: In this paper, we shall use I I to denote

the size operation. Thus if N is a set, IN I denotes

its size, if ~ is a convex polytope, 1~1 is the number

of its all subfaces, and so on.

2 The Basic Algorithm

In this section we present a high-level, dimension in-

dependent description of our basic approach. Some

steps of our algorithm are dependent on the dimen-

sion. We shall present the implementation of these

steps in later sections where we shall instantiate our

basic algorithm in various dimensions.

We begin by describing a procedure for building a

point-location data-structure in the static case and

subsequently argue that its extension to dynamic

situation is straightforward. The static algorithm

is reminiscent of an algorithm due to Clarkson [4]

turned upside-down. Given a set N of h,yperplanes

in Rd, we shall denote the induced arrangement by

G(N). The d-cells of G(N) can have an unbounded

number of facets and this turns out to be problem-

atic. Hence, we shall work with a certain triangula-

tion H(N) of G(N) that is obtained by decompos-

ing each d-cell of G(N) into simplices or, in general,

cells wit h bounded number of facets. We shall leave

the exact nature of H(N) completely abstract at

this point, except that it will assumed to satisfy the

following condition: Each d-cell ~ of G(N) is de-

composed into 0(If 1) simplices, or in general cells,

each of which is “defined” by a bounded number of

hyperplanes. As an abuse of notation, we shall refer

to the d-cells of H(N) as d-simplices, even though,

strictly speaking, they need not be simplices.

The following basic algorithm builds a point lo-

cation structure E(N) that can be used to locate

the d-simplex of H(N) cent aining any query point

P E Rd.

Let N = N1. E(N) = ~(N1) is defined recur-

sively as follows:

1.

2.

3.

4.

Build the triangulation 17(NI).

For each hyperplane in NI, toss an unbiased

coin. Let N2 be the set of hyperplanes in N1

for which the toss turned out to be head. Build

fi(N2) recursively.

Associate with each d-simplex A of H(N2) a

list L(A) of hyperplanes in NI \ N2 that inter-

sect A and conversely with each hyperplane in

N1 \ N2, we associate a list of d-simplices in

H(N2) that it intersects. We also say that the

hyperplanes in L(A) conflict with A and L(A)

is called its conflict list.

Build a data structure Descent [2, 1) that pro-

vides a “descending link” between fi(N2) “and

H(N). This structure is used in point loca-

tion queries, in a manner to be described soon.

At this stage, we shall leave the nature of this

descent structure completely abstract.

An important fact regarding our point location

structure is that, for every 1 > 1, Nl is a random

sample of Nl_ 1 of roughly half the size. Hence,

the random sampling results in [4, 10] imply that,

with very high probability, for every d-simplex A of

lf(N() and every I > 1, [L(A)[= ~(log n). This

immediately implies that the space requirement of

this data structure is ~(nd log n), where n is the

size of N. We shall denote the size of N1 by nl.

133

To locate a point p in H(N) = II(N1), we recur-

sively locate the d-simplex AZ in L?(N2) cent aining

p. We assume that we are given a descent oracle

so that given A2, L(A2) and the Descent structure

.Descent(2, 1), the d-simplex Al in lf(Nl) cent ain-

ing p can be located quickly, i.e. in time propor-

tional to the size of L(A2), up to a polylog factor.

An analogous condition is assumed to hold at ev-

ery recursive level. If Ai denotes the d-simplex of

H(Ni) containing p then we already know that, for

all ~, lL(Ai) I is ~(log n). As the number of levels

in H(N) is easily seen to be b(log n), this implies

b(poiylog(n)) bound on the query time. Of course,

we have proven this bound for a fixed query point.

But as we shall see later, this easily translates into

a poly-logarit hmic bound for any query point, be-

cause there will be only polynornially many distinct

search paths in our data structure. To get a tighter

bound on the query time, such as O(log n) bound

in dimension two, we need to use refined random

sampling results that will be proven later in this

paper.

To make our data structure dynamic we adopt
the following scheme. Our procedures for addition

and deletion of a hyperplane will be such that, at

any given time, the state of our data structure will

be independent of the actual sequence of updates

that built it. Thus if N were to denote the set of

currently existing hyperplanes that have added but

not deleted so far, then ~(N) will be as if it were

built by the above static procedure applied to N.

This will ensure that the random sampling results

that are crucial to analyze our static data structure

carry over, more or less unaffected, to the dynamic

setting.

Let us now see how to add a new hyperplane h to

fi(i’v’). We first toss an unbiased coin successively

until we get a tail. Let j be the number of heads ob-

tained before getting a tail. We shall simply “add”

h to levels 1 through j + 1. For 1<1 s j+ 1, let

N1 denote Nl U {h}. Addition of h to the Lth level

is carried out in three steps.

1. Update IY(NJ) to ll(~l).

2. Construct conflict lists of the new d-simplices

in lY(Nr).

3. Update Descent(l + 1, /).

The third step is dependent on the exact nature of

the descent structures. Hence, we shall only elabo-

rate the first two steps.

The zone of a hyperplane (in d dimension) is de-

fined as the following.

Let ho be a hyperplane in an arrangement G(H).

A k–face t for O < k < d – 1 is said to be visible

from ho if there is a line segment s that connects ~
and ho such that the interior ofs is contained in ho

or in a cell of A(H). The zone of ho is the set of

k–faces that are visible from ho.

Define Zone(iV1, h), the Zone of h in the arrange-

ment G(iV1). The Zone Theorem in [8] states that

Theorem 1 (Zone theorem) The baximum

cardinality of Zone(Nr, h) is O(n~-l), where ni aS

the size N;, and moreover, Zone(N1, h) can also be

determined in O(n#- 1) time.

Let ~ be any d-cell in Zone(N1, h). We remove

all d-simplices in the old triangulation of ~. Next

we split ~ along h into two d-cells -fI and fz and

triangulate ~1 and ?2 all over. All triangulation

schemes to be considered in this paper are simple

enough so that triangulation of fl and f2 can be

carried out in 0(1~1 I + 1~21)= 0([~~) time.

We also need to construct conflict lists of all d-

simplices in the triangulation of ~1 and ~2. Let h’ be
a hyperplane in N/ — Nl _ 1 that intersects ~. From

the old conflict information, we can figure out all

l-faces (edges) of f intersecting h’. Hence, by a

straightforward search in the new triangulations of

~1 and ~2, we can determine all a!-simplices within

$1 and ~2 that intersect h’ in time proportional to

their number. Because the size of every conflict list,

new or old, is d(log n), with high probability y, it

follows t~at the total cost o: updating the conflict

lists is O(~t I.fl log n) = O(n~-l log n), where f

ranges over all d-cells of G(Nl) intersecting h.

To summarize:

~emma 1. The cost inserting a new hyperplane in

H(N) is O(nd-l log n), ignoring the cost of updat-

ing the descent structures.

Deletion is the exact reversal of addition, that

is, the cost of deletion is no more than inserting

the hyperplane immediately afterwards. Hence, we

shall merely state:

Lemma !2- The cost deleting any hyperplane from

H(N) is O(nd- 1 log n), ignoring the cost of updat-

ing the descent structures.

In higher dimensions, the descent oracle becomes

a critical bottle-neck. Our broad objective in di-

mension d is to obtain a polylogarithmic search time

and O(nd– 1 logs n) update time, for some fixed con-

stant a, where n denotes the number of hyperplanes

134

1,

Figure 1: A trapezoidal decomposition.

currently in the data structure. We are able to ob-

tain an efficient implementation of the descent ora-

cle up to dimension four. An efficient (polylogarith-

mic time) implementation of this step to arbitrary

dimensions would extend our results likewise. In

the next section, we instantiate the basic algorithm

given here in dimension two. Dimension three and

four will be dealt with in Section 4.

3 Two dimensional arrange-

ments

Let N be a set of n lines in R2 and let G(N) de-

note the induced arrangement. The convex regions

of G(N) need not have a bounded number of sides.

Hence, using a well known scheme, we decompose

each convex region of G(N) into vertical trapezoids.

~From each vertex of the convex region (polygon)

extend a vertical ray directed towards the interior

until it meets an edge of the polygon (See Fig.1).

This partitions the convex polygon into trapezoids.

(If required these trapezoids can be triangulated by

drawing a diagonal. But this is not necessary, since

each trapezoid is obviously “defined” by a bounded

number of lines.) When the above procedure is re-

peated for all convex regions of G(N) we get the

triangulation H(N) that we shall use in our basic

algorithm.

The only thing that remains to be specified in the

definition of our search structure E(N) is the na-

ture of the descent structures. The descent struc-

ture Descent(l, I – 1) between two successive lev-

els 1 and / – 1 will be defined as simply the su-

perposition of the triangulation H(Nl) and the

arrangement G(N?– 1) (not its triangulation). We

shall also denote this superposition by II(NI) 6
G(Nr_l).

Equipped with this descent structure, it is really

easy to descend from level 1 to level 1—1 during point

location. Let Al be the trapezoid in If(N/) con-

taining the query point q. Let Al n G(N1_1) denote

the restriction of the arrangement G(NI_l) to Ar,

which is available to us from Descent (l, 1 – 1). We

can easily locate the trapezoid within Al n G(NI- 1)
containing q in O(]L(A)I) time. One easy way to

do this is as follows. We determine the first line

h in N,_ ~ that intersects the vertical ray from q

directed upwards. Let q’ be the point of intersec-

tion. Obviously h is either the line bounding the

upper side of Al or it belongs to L(AI). Next we

locate q’ in Al n G(N/_ I) by simply walking along h

within G(N1.- 1). Once we know where q is located

in 17(Nf) 6 G(Nl_l), in additional O(IL(A1)I) time,

we can figure out the trapezoid Al_ 1 of 17(Nl_ 1)

containing q.

Thus we can descend from level 1 to level 1 – 1 in

O(IL(A1)I) time. With high probability, IL(A1)I =

O(log n), for all 1, and the number of levels is

O(log n). It follows that t~at the time required

to locate a fixed point q is 0(log2 n). The follow-

ing theorem shows that the query time is, in fact,

~(log n).

Th:orem 2 For a jized query point q, >~i lL(Ai)l

is O(log n), where Ai ‘is the trapezoid containing q

in ll(Ni).

Proofi Let Nl?(s) denote the random variable that

is equal to the number of tails obtained before ob-

taining s heads in succession of binomial trials with

a fair coin. N13(s) is the familiar Negative Bi-

nomial distribution. When s = 1, it is the ge-

ometric distribution. We shall show that, for all

i, lL(Ai)l = O(Nll(a)), for some fixed constant

a. Because the coin tosses at each level, used in

the definition of data structure, are independent

from the coin tosses used in the preceding lev-

els, it then follows that, for any fixed constant c,

Xi<clogn l~(A~)l = o(N~(ca@ ~)) = f% n))
usi~g Chernoff bound [21 for negative binomial dis-

tributions. As the nurnb& of le;els is ~(log n), this

will prove the theorem.

So fix a level i. Also fix the set Ni of lines occur-

ring in the i-th level of the data structure. The set

Ni+l is determined by flipping a fair coin for each

line in Ni and retaining those lines for which the

toss was head. We shall prove that:

135

ik
=~

l\”>43

; .\~
.

\
/

(in= i* U/””-l-””~ --- “f

! i’ -- !
. . ..-

. . . . ---- ------

Figure2:

Lemma 3 There is an imaginary, online ordering

hl, h2,.. . of all lines in Ni such that the set of

lines “dejining” or intersecting the trapezoid Ai+l

always occurs as an initial subsequence of hl, hz,

By online ordering we mean that hk+l can be cho-

sen on the basis of the known coin toss results for

hi,.. ., hk. Note that Ai+l is not known to us a pri-

OTZ, because it depends on the results of coin tosses

for the lines in Ni.

As the number of lines defining any trapezoid is at

most four, it follows from the lemma that lL(Aj+l) I

is O(N13(4)).

Proof of the lemma: Consider the ordered set Vu

of lines (in the increasing Y direction) in Ni in-

tersecting the vertical line extending upward from

query point q. See fig.2.

Initially we shall toss coins for these lines in vu,

in the increasing Y direction away from q, until we

obtain a head, and then (temporarily) stop. Let la

be the line for which we obtained head. Let U ~

VU denote the set of lines before 1. for which we

obtained tails. Clearly, lU ~ N~+l, whereas no line

in U belongs to Ni+l. Thus /u is obviously going to

be bounding the top of the trapezoid Ai+l, which

we do not know completely as yet. Moreover, all

lines in U obviously conflict with Ai+l.

Now we resume our coin tossing, in a symmetric

manner, for the lines in Ni intersecting the vertical

line extending downward from q, until we obtain a

head, and then we again stop temporarily. Let D be

the set lines for which we obtained tails and let 1~ be

the line for which we obtained head. Obviously, !d

is going to be bounding the bottom of the trapezoid

Ai+l, which we know partially by now.

Now discard (hypothetically) the lines in U and

D and consider the intersections of the remaining

lines with 1. and id. Let Rq be the set of remaining

lines that intersect either lU or id to the right of

the vertical line through g. We order R.g as follows.

Given two lines /l and 12 in Rg, we say that 11<<12,

if the y-coordinate of either 11 il /u or 11 rl id is less

than the y-coordinates of both 12 n lU and 12 n Id.
Fig.2 shows ordering of R4. Now we resume tossing

coins for the lines in Rq in the increasing order,

until we obt tin head. Let lr be the line for which

we obtained head. It is then clear that lr defines the

right side of Ai+l in the sense that the right side

of Ai+l will be extending from the intersection of

either lU or ld with [T. Moreover, all lines for which

we obtained tails, will conflict with Ai+l.

Now discard (hypothetically) the lines in Rq too.

Let L~ be the set of remaining lines intersecting

either lU or zd to the left of the vertical line through

q. We order Lq in a symmetric fashion, and resume

tossing coins for the lines in Lq in the increasing

order (away from q) until we get head and then

temporarily stop. Let 1~ be the line for which we

obtained head. It is clear that it “defines” the left

side of the trapezoid Ai+l, and all lines for which

we obtained tails conflict with Ai+l.

At this point the trapezoid Ai+l containing q in

the (i+ 1)-st level has been completely determined.

Indeed lU, !d, 1.,11 are the lines defining Ai+l and the

lines for which we obtained tails so far are precisely

the lines in conflict with Ai+l. (We did not t ake into

account the exceptional cases such as when Ai+l is

unbounded or when it is, in fact, a triangle. But a

slight modification to the argument will cover these

cases too.)

We can now toss coins for the remaining lines

in any order whatsoever. It follows that the above

online sequence of tosses has the desired property.

❑

In the_above theorem, we showed that the query

time is O(log n) for a fixed query point. We further

note that there are only polynomially many distinct

combinatorial search paths for a given data struc-

ture. By combinatorially distinct, we imply differ-

ent sequence of triangles in the search path. More

precisely, let G(N) be the refinement of G(N) ob-

tained by passing infinite vertical lines through all

intersections among the lines in N. Then, for a fixed

region R in G(JV), it is easy to see that the search

path in H(N) remains the same if the query point

136

lies anywhere in R. ~his implies that the cost of

\

\
locating any point is O(log n).

i,
●

The space requirement of our data structure is

~(nz log n), because with high probability [L(A) I is

O(log n), for every trapezoid A ~ J7(NI) and every

1. Using the results in [5], it can be shown that the

“average” conflict size of a trapezoid in any level

is O(1), because NJ is a random sample of N1_ 1 of

roughly half the size. This implies that the expected

space required by our data structure is 0(n2).

Now let us estimate the cost of adding or delet- /

ing a line. We shall only consider addition, be-

cause deletion is the exact reversal of addition. By

Lemma 1, we only need to worry about the cost of

updating the descent structures Descent (l, 1 – 1),

1 < 1 < j + 1, where j is the number of succes-

sive heads obtained. We shall only consider the a)

case 1 ~ 1 ~ j, the remaining case (when the line

is not chosen in the sample) being straightforward

from the Zone theorem. Fix 1. Fig.3a shows the

old descent structure IJ(Nr) @ G(Nr_l). The lines

in N1 are shown dark, whereas the lines in NJ–l

are shown light. The new line h being added is

shown dashed. The vertical sides of the trapezoids

are shown dotted. We have only shown the restric-

tion of L?(N/) @ G(Nr_l) to Zone(Nl, h), because

all the changes take place in this zone.

Our goal is to update the old descent struc-

ture ll(Nl) @ G(Nl_ 1) to the new descent struc-

ture H(NI) @ G(~l_l), where ~1 = NI U {h} and

~l_l = N/-l U {h}. This is done as follows.

1. The vertical sides of the trapezoids in 17(Nl)

intersecting h are split. See fig.3b.

b)

2. We add vertical segments through the inter-

sections of h with the lines in NI, one at a

time, in the the increasing order of their Z-

coordinates. Fig.3c shows addition of the ver-

tical segment through an intersection v on h,

assuming that vertical segments through all in-

tersections to the left of v have already been

added. We insert this vertical segment, start-

ing at v and traveling in the upward and down-

ward direction, by successively traversing the

faces in 11(~1) @G(~l _ 1) (or more precisely, its

part computed so far). During any face traver-

sal, we visit only those vertices of that face that

lie to the left of the vertical segment being in-

serted. This ensures that when the insertion

of all vertical segments is complete, any given

junction of ~(~~) @ G(~l–l) could have been

visited in only O(1) face traversals. c)

Figure 3: Updating the descent structure

137

It is easy to see that the time taken by the whole

procedure is

O(n/_l + ~ IL(A) I + nq),

A

where nr_l is the size of IVl_ 1, A ranges over all

destroyed and newly created trapezoids in H(Nl_l)

and lJ(~J_ 1) respectively, and m~ denotes the to-

t al number of intersections among the lines in Nl_ 1

that lie within Zone(N/, h). By Zone Theorem and

the fact that the conflict size of every trapezoid

is d(log n), it follows that the second term in the

above bound it b(nI- 1 log n). We shall now show

that ml is also 6(nl_1 log n).

Lemma 4 The total number of uertic~s of G(N/-I)

lying in Zone(Nl, h) can be bound by O(nl_l log n).

Proof (sketch): We account for the intersec-

tions by charging it to the intersecting lines (so the

actual number of intersections is half this number).

Consider a line of L c N/-1 that is not in Nt and

look at the ordered list of intersections with lines

of N/_ 1. For L, we denote the number of lines that

it intersects in a trapezoid Aj (in 13(Ni)) by l~,j.

To make the proof technically precise, we need to

apply the kind of arguments about an on-line order-

ing used in Lemma .9, but we leave out the details

here. Clearly IL,j is upper-bounded by a geometric

random variable with parameter 1/2 and moreover

IL,j’s are independent over different trapezoids (two

lines intersect in only one point and all the nz_ 1 lines

are tot ally ordered with respect to their intersec-

tions with L). It can be shown again from Chernoff

bounds that , ~~~ IL,j, = ~(k) for k > clog n for

some constant c > 1.

Now consider all the trapezoids in the zone of

h and let tidenote the number of trapezoids that

line Li c N1–l \ Nl intersects. We know that

xi ti = ~(nl log n). Let 1 denote the set of indices

of lines L~ that intersect less than clog n zone-cells.

Clearly the total ~umber of intersections that they

contribute to is 0(IZI log n). For i E Nt_ 1 \ Z, let

m~ be the number of intersections L~ contributes to.

Let VL denote the set of vertices in the zone of h.

Then we consider the equivalence class of lines that

intersect the same zone-cells. The number of such

equivalence classes is bound by the semispaces of Vj

which is O(n~) since VL = O(nl). This implies that

for all Lij i not in Z, m~ = O(ti) (t~ is at least the

number of zone-cells that Li intersects). Hence the

total number of intersections can be bound by

with high probability which is 6(nl_ 1 log n).

This bound is for a fixed zone of h. The number of

combinatorially different zones can again be bound

by the number of semispaces of the vertices of the

arrangement which is 0(n4). The lemma follows.

❑

There exists a simpler argument to bound the

total cost of step 2 by observing that the actual

cost of step 2 for any vertical segment is bounded by

the size of the zone of O(log n) lines within the left

trapezoid that is bordered by this verticaJ segment;

see fig.3c. Over the O(nr) such segments this adds

up to b(nl log n). However we feel that the previous

lemma could be of independent interest which also

has a natural analogue in higher dimensions.

To summarize: the cost of updating

Descent(/, 1 – 1) is 6(n~_l log n). Summing over all

levels, it follows that the total cost of updating the

descent structures is ~(log n xl nl) = d(n log n).

We summarize our main result aa follows:

Theorem 3 Let A be an arrangement of n lines in

a plane. There exists a dynamic point location data

structure with expected space 0(n2) and query time

6(log n) which-also allows for insertion/deletion of

lines in time O(n log n). The space bound is also

O(n2 log n).

Remark: Using the best known deterministic

schemes for dynamic point location [6, 13], one can

achieve O(log2 n) and O(n log n) bounds for search

and update times respectively. These are consider-

ably more involved procedures.

4 Extension to higher dimen-

sions

In this section, we specify the descent structures for

dimension three and four. To pinpoint the bottle-

neck in higher dimensions, we imagine giving a dy-

namic point location algorithm in arbitrary dimen-

sion d, assuming that this has already been clone for

dimension less than d. The base case, d = 2, has

already been described in Section 3.

Let N be a set of hyperplanes in Rd, and let

G(N), as before, denote the induced arrangement.

The triangulation H(N) of G(N) that we shall use

is defined w follows. We triangulate the j-faces of

G(N), j s d, by induction on j. If j = 2, we use

the scheme in Section 3 to decompose the 2-faces,

which are convex polygons, into trapezoids by pass-

ing segments through their vertices that are parallel

to, say, {*1 = O} hyperplane. Otherwise, let f be

138

any j-face of G(N), j > 2. Let v denote the vertex

of ~ with the smallest xd coordinate; it is possible

that v lies at “infinity”. By our inductive hypoth-

esis, all facets of ~ have been triangulated. So we

simply extend the “simplices” on the boundary of

~ to cones with apex at v. This gives us a simple

triangulation of j. When all j-faces of G(N) are

triangulated in this fashion, we get the t riangula-

tion H(N) that we sought. A d-cell of H(N) will

be called a d-simplex, though, strictly speaking, it

is not a simplex. But it is defined by a bounded

number of hyperplanes.

Now let us turn to the descent oracle. We assume

that Descent(i, i – 1) contains a recursively defined

dynamic point location structure for the lower di-

mensional arrangement G(Ni _ 1) n Q, for each hy-

perplane Q c Ni _ 1. We shall denote this structure

by fi(Ni _ ~, Q). Its maintenance is done by recur-

sively applying our lower dimensional point location

algorithm. In addition, Descent(i, i – 1) will con-

tain a certain static point location structure ~ for

every d-cell ~ of G(Ni _ 1), so that given any point

p ~ f, we can locate in poly-log time the d-simplex

A E If(Ni _ ~) cent aining p in the triangulation of

~. We shall come to the construction of ~ later.

For a moment, let us assume that we can associate

such a point location structure with every d-cell of

G(Ni_l).

Now the descent from level i to level i – 1 during

point location is easy to carry out. Given a sim-

plex A = Ai G 17(Ni) containing the query point

p, we can locate the simplex Ai _ ~ in .H(Ni_ ~) con-

taining pas follows. Examine the conflict list L(A)

consisting of the hyperplanes in Ni _ I — Ni inter-

secting A. If L(A) is empty, we are lucky. Any

vertex v of A will tell us the d-cell-~ of G(Ni _ 1)

containing p. Now we simply use ~ to locate the

d-simplex in 17(Nj_ 1) containing p. If L(A) is not

empty, we proceed as follows. Let v be any fixed

vertex of A. Let (p, v) denote the ray starting at p

directed towards v. If (p, v) does not intersect any

hyperplane in L(A), then v again tells us the d-cell

of G(Ni _ 1) cent aining p, and we proceed as before.

Otherwise, let Q be the first hyperplane in L(A)

that (p, v) hits, and let q be the point of intersec-

tion. By using the dynamic point location structure

associated with Q in Descent (i, i— 1), we locate q in

G(Ni-1, Q) = G’(Ni-l) n Q. This tells us the d-cell

.f E G(Ni_l) containing p, and we again proceed as
before.

So what remains now is to keep a point location

structure $ associated with every d-cell ~ E G(Ni),

for all i. A careful examination of the basic algo

rithm in Section 3.1 will reveal that ~ only needs to

be a static point location structure. Indeed, every

time a new d-cell ~ gets created at any level, we

can afford to construct ~ from scratch, by mercy of

the Zone Theorem. The following theorem now tells

us that such structure ~ can be constructed fast, if

d= 3,4.

Theorem 4 Let C be any convex polytope in Rd,

d <4. We assume that all vertices of C have dis-

tinct Xd coordinates, using the usual perturbation

arguments. Assume that we are given the facial

structure of C. Let ICI denote the size of C, i.e., to

say the total number of its vertices. Let C’ denote

the triangulation of C defined above. Then one can

construct a point location structure in O(ICI) time

and space, for d = 3, and O(lCllogn) time and

space, for d = 4, so that given any point p lying

within C, one can locate the d-simplex in C’ con-

taining p in O(log n) time, ford= 3, and O(log2 n)

time, for d = 4.

Proof: When d = 3, one can use the point lo-

cation structure of [7], for example. We shall only

consider the most interesting case d = 4. Let v de-

note the x&minimum on C; if v lies at infinity only

a simple modification to the argument is needed.

Let P(v) be any fixed hyperplane through v that

supports C. Let P # P(v) be any hyperplane par-

allel to P(v) that intersects C. Let Lp denote the

linear projection through v onto P. More precisely,

any point q E R4 is mapped to the point of intersec-

tion Lp(q) between P and the line through v and q.

Let Lp(C’) denote the projection of C’ onto P. The

triangulation C’ of C is such that point location in

C’ is reducible to point location in Lp(C’): to locate

the d-simplex in C’ containing a given point q G C,

we simply locate Lp(q) in Lp(C’). But D = L(C’)

is a convex partition of the three dimensional hyper-

plane P. Hence, we shall be done by the following

theorem. ❑

Theorem !5 Let D be any convex partition of R3.

Let m denote the size of D. Assume that the fa-

cial structure of D is available to us. One can con.

struct a point location structure in O(m log m) time

so that, given any point q E R3, we can locate q in

D in 0(log2 m) time.

Proof (sketch): Our basic idea is to extend the

planar point, location algorithm of Sarnak and Tar-

jan [16] to dimension three in a very natural way.

Fix the coordinates ~, y, z in R3. Let V1, Vz, Vm

be the ordered list of the vertices of D, ordered ac-

cording to their z-coordinates. As a convention,

139

let v~ = (O, O, –00) and Vm+l = (O, O, co). Let

Di, O < i ~ m denote the intersection of D with the

open slab {z(vi) < z < z(~i+l)}. For a moment, as-

sume that these slabs are given to us in some form.

Then it is very easy to locate q. One locates tii such

that Z(vi) < z(q) < Z(vi+l). Then one locates q in

Di. Of course, one can not construct the slabs Di

explicitly, because the total size of these slabs can

be much larger than the size of D. Let Di denote

the intersection of Di with any plane of the form

{Z = a}, where z(~i) < a < z(~i+l). It is easy to

see that the facial structure of Di is “isomorphic”

to Di, for any such choice of the hyperplane. Each

~i is a two-dimensional convex partition. If only,

we had a point location structure for each Di avail-

able to us in some form, we could, with some care,

reduce point location in Di to point location in Di.

Of course, for the same reason as before, we can not

construct the point location structure for each ~i

explicitly. However, notice that the successive pla-

nar partitions Di and ~i+l do not differ that much.

Hence, it should be possible to obtain a point lo-

cation structure for ~i+l by simply remembering

its “difference” with respect to the point location

structure for ~i. This is not possible in arbitrary

dimension. But, because each ~i is a planar par-

tition, one can use the dynamic point location al-

gorithm of [6, 13] as follows. Let us sweep D with

a plane P, = {z = t} moving in the z direction,

starting at z = –00 At every time t, during the

sweep, we maintain a dynamic point location struc-

ture for the frontier Di = D n Pt, which is a planar

partition. When Pt sweeps past a junction vi, we

update the point location structure for Di in the

vicinity of vi to obtain a point location structure for

Di+l. Using the update operations in [6] this can be

done in O(s(i) log m), where s(i) denotes the struc-

tural change in the frontier at vi. However, we must

somehow make sure that the point location struc-

ture for Di is still accessible to us—in some implicit

form. This is achieved by using a persistent [16]

form of the data structures in [6]. This will give us,

at the end of the sweep, one global data structure

that contains a point location structure for each D~

as an implicit substructure, so that one can perform

point location in each ~i in 0(log2 m) time. ❑

We have now completely specified the descent

structures, for d = 3 and 4. Let us bound the query

time. For the basis case, d = 2, we already know

from Theorem 3, that point location takes O(log n)

time. As the conflict size of every d-simplex in our

data structure is O(log n), Using Theorem 4 it is

easily seen that the descent from level i to level i– 1,

using the procedure given in the beginning of the

section takes b(log2 n) time, for d = 3. For d = 4,

the bound is seen to be O(log3 n), by using one

more call to the recursive argument. From Theo-

erm 3 and Theorem 4, and the fact that the conflict

size of every d-simplex is ~(log n), it also follows

that the space requirement of our data structure is

b(n3 logn), for d = 3, and 6(n4 logn), for d = 4.

The expected space bound for d = 3 is 0(n3). This

follows because IVi is a random sample of IVi_ 1 of

roughly half the size, hence the “average” conflict

size [5] of any simplex in the i-th level is O(1), for

all i.

Let us now see how to add a new hyperplane h

to our data structure fi(N). By Lemma 1 we only

need to worry about updating the descent struc-

tures. Descent(i, i – 1) is updated as follows:

1. Update the lower dimensional point location

structures associated with the arrangements

G(N;_l, Q) = G(Ni_l) n Q, for every Q E

Ni_l.

2. Remove the static point location structures as-

sociated with the d-cells in G(Ni _ I) intersect-

ing h.

3. Construct a completely new static point loca-

tion structure for each d-cell of G(~i_ 1) adja-

cent to h, where ~i_l = Ni_l U {h}.

For d = 3, it easily follows from recursive con-

siderate ions and Theorems 3 and 4 that the cost of

updating Descent (i, i– 1) is b(n~_l log n+~f I.fl),

where $ ranges over all 3-cells of G(IVi_ 1) inter-

secting h. By Zone Theorem, the second term is

O(n~_ ~). Thus the total cost of updating the de-

s~ent structures, for d = 3, is 6(~i n? log n) =

O(n2 log n). In dimension four, it similarly follows

that the total cost of updating the descent struc-

tures is 0(n3 log n).

Deletion is the exact reversal of addition, and

hence will not be discussed any further. To sum-

marize:

Theorem 6 The query time of our algorithm is

d(log2 n), in dimension three, and ~(log3 n), in di-

mension four. The cost of update is ~(n2 log n), in

dimension -three, and ~(n3 log n) in dimension four.

The space boundsjn dimensions three and four are

0(n3 log n) and 0(n4 log n) respectively, The ez-

pected space bound in dimension three is 0(n3).

140

5 Conclusion

In this paper we have presented a very simple

scheme for maintaining a dynamic point location

structure for arrangements of hyperplanes, with

d ~ 4. Its extension to arbitrary dimension de-

pends critically on static point location in trian-

gulated convex polytopes, which is a fundamental

problem in its own right.

We have not discussed variations of our basic

scheme and further simplifications at the cost of

poly-logarithmic blow-up in update time. For ex-

ample, in Section 4, Descent(i, i – 1) associated re-

cursively defined lower dimensional dynamic point

location structures with each hyperplane in Ni_l.

It is possible avoid this recursion, by making use of

the “superposition” technique in Section 3. Another

aspect that will be discussed in the full version of

the paper is parallelization of the update procedure.

We shall present efficient polylogarithmic time par-

allel algorithm for the update procedure.

One of the main contributions of this paper has

been adaptation of the skip-list methodology [14]

for dynamic algorithms. We believe that this is a

versatile and powerful tool which is likely to have

further applications [11].

References

[1]

[2]

[3]

[4]

[5]

C. Aragon and R. Seidel, “Randomized Search

Trees~ Proc. of the 30th Annual Symposium

on Foundations of Computer Science, 1989, pp.

540-545.

Chernoff, H., “A Measure of Asymptotic Effi-

ciency for Tests of a Hypothesis Based on the

Sum of Observations,” Annals of Math. Statis-

tics 23, 1952, pp. 493-507.

Chazelle B., Friedman J., “A deterministic

view of random sampling and its in geometry”,

Proc. of the FOCS 88.

K.L. Clarkson, “New applications of random

sampling in computational geometry,” Discrete

and Computational Geometry, 1987, pp. 195-

222.

K.L. Clarkson and P. Shor, “Applications of

Random Sampling in Computational Geome-

try, II: Discrete and Computational Geome-

try, 4, 1989, pp. 387-421.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Cheng, R. J anardan, “New results on dy-

namic planar point location”, Proc. of the

FOCS, 1990.

D. Dobkin and D. Kirkpatrick, “A linear time

algorithm for determining the separation of

convex polyhedra,” “Journal of Algorithms,

6(3), 1985, pp. 381-392.

H. Edelsbrunner, J. O’Rourke, R. Seidel, “Con-

structing arrangements of lines and hyper-

planes with applications”, SIAM J. Comput-

ing, 15, 1986, pp. 341-363.

0. Fries, K. Mehlhorn, S. Naeher, “Dynamiza-

tion of geometric data structures”, Proc. of

the first ACM Symp. on Comp. Geom., 1985,

pp. 168-1’76.

D. Haussler and E. Welzl, “c-nets and Sim-

plex range queries,” Discrete and Computa-

tional Geometry, 2(2), 1987, pp. 127-152.

K. Mulmuley, “Randomized multidimensional

search trees: dynamic sampling”, in this vol-

ume.

M. Overmars, “The design of dynamic data

structures”, Lecture notes in computer sci-

ence, Springer- Verlag, 1983.

F. Preparata, R. Tamassia, “Fully dynamic

point location in a monotone subdivision”,

SIAM J. of Comp., 18 (1989), pp. 811-830.

W. Pugh, “Skip Lists: A Probabilistic Alter-

native to Balanced Trees~ Communications of

the ACM, Volume 33 Number 6, June 1990,

pp. 668-676.

J .H. Reif and S. Sen, “Optimal randomized

parallel algorithms for computational geome-

try,” Proc. of the 16th International conference

on Parallel Processing, 1987, full version to ap-

pear in A lgorithmica.

Sarnak N., Tarjan R., “Planar point location

using persistent search trees”, Comm. ACM

29(1 986), 669-679.

141

