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1 Introduction

Given a smooth curve or polygon C of length 1 in the

plane, can one add “short cuts” to C of small total

length so that any two points on C are within distance

(along the curve and short cuts) at most a constant

factor away from their Euclidean distance?

Peter Jones haa solved this problem in the atiirma-

tive [1]:

Theorem 1 (P. Jones) There are constants Co, Cl

such that for every polygon P there is a rectifiable set

l?, P c 1? with total iength L(I’) < CoL(P) satisfying:

if z, y E P there is a suba~ y C I’ from x to y with total

Zength L(-Y) < Cl la – y{.

Actually he proves this (and more) for P any connec-

ted rectifiable set. His proof, however, uses some dif-

ficult techniques from harmonic analysis, and the con-

struction in [I] is not necessarily computable.

We supply here a geometric proof of the above theo-

rem, along with a simple construction and algorithm

using the skeleton of the polygon P, a subgraph of the

Voronoi diagram of the edges.

Our construction necessarily adds an infinite num-

ber of segments, but in practice when one only needs

finite precision, it is finite. The construction also gene-

ralizes to smooth curves and planar graphs. It can be

implemented easily, the two major subroutines being a

convex hull algorithm and a Voronoi diagram algorithm

(for edges).

In section 2, we describe the construction of the short

cuts across the polygon. In section 3, we give an algo-

rithm for finding a short path (using P and the short

cuts) between any pair of points on the boundary of

P. In section 4, we analyze the total length of the short

cuts added, and show that it is at most a constant times
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the length of P. In section 5, given a pair of points on

the boundary, we analyze the length of the path found

by our algorithm, and show that it is at most a con-

stant times their Euclidian dktance. Most of the proofs

of the lemmas use elementary geometry only they are

only sketched here and will be detailed in the full paper.

2 The Construction.

We need to construct a family of segments linking tcr-

gether points of the polygon which are too far apart.

We first construct the convex hull of P. This divides

the plane into several connected regions. All the finite

regions (which we call &) are polygons.

We construct short cuts in each region separately. We

first construct the skeleton of the polygonal boundary

of Ri, defined as the set of centers of circles contained

in Ri and which touch the boundary at two or more

points. Such circles are called Voronoi circles.

It is easy to see that the skeleton is a tree whose leaves

are exactly the convex vertices of the boundary, and

whose branching points have degree 3 exactly except

in degenerate cases (the skeleton is a subgraph of the

Voronoi diagram of the edges of the boundary). Its

edges are formed with pieces of straight lines and pieces

of parabolas: straight lines for the centers of all the

Voronoi circles which pass through two concave vertices

of the boundary, and for the centers of all the Voronoi

circles which are tangent to two edges of the boundary;

parabolas for the centers of all the Voronoi circles which

go through a concave vertex and are tangent to an edge.

Let a be a constant greater than 1. Our first ope-

ration is called “trimming the acute leaves”. For each

convex vertex w of the boundary such that the angle at v

is smaller than 2A TC sin (l/a), we consider the straight

edge of the skeleton leading to that vertex, and choose

some point co on that edge. It is the center of a circle

tangent at points p. and q. to the two edges adjacent

to v. We add segment poqo to the list of short cuts.

We move from co on the skeleton towards v, adding seg-

ments pi qi to the list of short cuts, defined inductively

250

http://crossmark.crossref.org/dialog/?doi=10.1145%2F109648.109676&domain=pdf&date_stamp=1991-06-01


.- V

Figure 1: Trimming the acute vertices

as follows: given q_l, ~_l, q;_l, we move from c~_ 1 on

the skeleton towards v. Any point c corresponds to two

points p and q on the boundary let ~(p, q) be the length

of the path

p- pi-l + qi-1 4 q

going from p to pi_l along the boundary, along the

short cut pi_ lqi _ 1, and from there along the boundary

to q. Let lp – q\ be the EuclidIan dkitance between p

and q. As we move towards v, ~(p, q) increases and

Ip – q! decreases. We define ci to be the point such

that ~(~, qi) = alpi – qi 1. See figure 1 for an illustra-

tion. Thus we add an infinite sequence of cuts which

get shorter and shorter as we get closer to v. We can

now erase the part of the skeleton from co to v. After

this is done for every acute vertex of the skeleton, we

are finished with trimming.

We choose to root the trimmed skeleton at an arbl-

trary point on an edge leading to a leaf. The main part

of our construction of short cuts will be in bottom-up

order from the leaves to the root of the trimmed ske-

leton, erasing the skeleton as we move up it. In other

words, we only deal with a branching point once all its

descendants have been dealt with (and so the skeleton

below the branching point is all erased), and we deal

with an edge once its endpoint furthest from the root

has been erased by wrdkkg along the edge from that

endpoint towards the root, erasing the edge as we move

along.

Let p and q be two points of the original polygon.

A quick path (not to be confused with short path,

which we define later) 7(p, q) between p and q is a path

along the boundary and the short cuts, with total length

at most alp – ql.

As we are doing our construction, we keep the follo-

wing invariant property: if c, a point on the skeleton,

has been erased, then there are quick paths between the

boundary points on the Voronoi circle of center c. We

observe that this property is indeed true right after the

original trimming the convex vertices with small an-

gle have been dealt with precisely so that the property

would be satisfied.

We now need to define how we deal with an edge or

with a branching point of skeleton. If c is our current

position, two cases arise: either the circle associated to

c touches the boundary at exactly two points p and q ,

trimmed
boundary
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Q

Figure 2: Constructing the short cuts: case 1
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Figure 3: Constructing the short cuts: case 2

or c is a vertex of the skeleton and touches the boundary

at three points p, q and r.

Case 1: dealing with an edge (cl, C2) in the skele-

ton. Let c1 be the endpoint furthest from the root.

c1 is already erased, so there are quick paths between

the boundary points pl, ql, rl on its Vomnoi circle. As

we move from c1 to C2, let p, q be our (current boun-

dary points, and -y(p, q) the path from p toq which goes

through pl and ql. If T(p, q) is a quick path, we erase

c and keep going. If -y(p, q) equals alp – q [, we add seg-

ment pq to the list of short cuts, and trim the boundary

further by replacing the part followed by y(p, q) by the

segment pq. See figure 2.

Case 2: dealing with a branching point: The Voronoi

circle at c touches the boundary at p, q, r. Suppose that

the root of the skeleton is “between” p and T. We know

that there is already a quick path between p and q and

between q and r. Let y(p, r) be the concatenation of

those two paths. As in the first case, if 7(p, r) ~ alp– rl

we add segment pr to the liit of short cuts and trim the

boundary by replacing 7(p, r) by segment pr; otherwise

we do nothing. Then we erase the branchhg point. See

figure 3.

For the construction to be well defined, we only need

to show that the process in the main part of the con-

struction is finite.

Lemma 1 The process is jinite.

Proof: If we remove small neighborhoods around each

vertex, any two points on the polygon are either on the

same edge or at dist ante at least e apart, c > 0. Thus

the segments we add during the main part of the con-

struction all have length at least .s. Every time we add

a segment, the boundary length is trimmed by at least

(a – l)e. Since it has finite length, we can only add a

finite number of segments. ❑
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We cannot bound the number of segments added in-

dependently of the polygon; in fact no such bound holds

for any short cut construction a polygon which has two

parallel edges very close to each other must have a large

number of short cuts. If we are operating under the as-

sumption of finite resolution, however, we ignore edges

of length less than .s, and th~ lemma gives a bound on

the number of other edges needed since the total length

is bounded.

After this construction is done, all the skeleton is era-

sed, and so, for any two points p and q which are on

the same Voronoi circle, there is a quick path between

p and q. In the next section, we will forget about the

actual construction of the short cuts and only use that

property: whenever we are on a Voronoi circle, we can

hop across to any other point on the circle with cost at

most equal to a times the Euclidian distance spanned.

3 Finding the short path.

Once we have constructed the short cuts of P, we need

to describe how to get quickly from one point on P to

another.

Let 1 be the line segment between two points p and

q of the polygon. We can assume that 1 does not cross

the boundary of P, since in that case consider the short

paths between successive intersections of P with 1; the

concatenation of these short paths gives a short path

from p to q.

Let c(p) be the center of the Voronoi circle C(p) which

touches p (in the region R containing 1). Similarly define

c(q). Let V(p, q) denote the unique shortest path in the

skeleton bet ween c(p) and c(q). Since p and q see each

other, the following property hold.x

Lemma 2 V(p, q) is monotone incwasing from c(p) to

c(q), in di~eciion q — p.

For any path y from p to q, contained in region R, there

is a corresponding path ~R from p to q along the boun-

dary and short cuts of R; we define ~R in the following

way.

The skeleton partitions R into (closed) regions which

we call skeleton cells. We have the initial points

VR(0) = Y(O) = p. Let zo be the first point at which
y leaves the skeleton cell S(p) containing ~ let Co be

the Voronoi circle with center Zo. Then Co contains at

least two points of the boundary of R, and exactly one

point XP in the cell S(p). Define the initial segment of

~R to be the unique path on R which goes from p to

that point Zp, and is contained in the region S(p).

The path ~ moves from Z. into a new skeleton ceII S’,

and C’. has exactly one point Xt on R in this cell.

By the construction of our short cuts, there is a quick

path from ZP to z’; extend ~R by this path. This defines

‘fR from p to z’, and by repeating the same construction

from cell to cell we define ~R for the entire path 7.

To define a short path from p to q, we consider first

the segment 1 from p to q. Unfortunately, the correspon-

ding path 71 around R constructed in the above manner

may be very inefficient (see figure 7). However the in-

efficiencies are only caused by 1 intersecting V(p, q) a

large number of times at small ~nglq we will perturb

1 slightly, creating a new path i for which yj is more

efficient.

Let a be-a given angle, a constant of our construction.

We define 1 so that it follows 1 as closely as possible, but

is constrained to lie on one side of V(p, q), unless V(p, q)

is too steep.

More precisely, ~ starts at p, and agrees with 1 until

the first intersection point, z, of V(p, q) with 1. We can

assume (by perturbing p or q slightly) that z is not a

vertex of V; since the V(p, q) at z is then smooth, we

can measure the angle of intersection of ~ and V(p, q) at

z. If this angle is larger than a, our predefine constant,

we let ~ cross V(p, q) and continue in direction 1 into the

new region.

On the other hand, if this angle is smaller than a,

we let 1 follow V(p, q), diverging from /, so as to remain

on the same side of V(p, q). We let ~ continue to follow

V(p, q) (remaining just slightly to one side) until either

we arrive at c(q), arrive at 1 again, or V(p, q) starts

diverging from 1 with angle larger than a.

In the first case, we complete ~ by simply going

straight to q. Since c(q) is the center of C’(q), this path

lies within R, and does not encounter V(p, q) again.

In the second case, we let ~ follow 1 further and react

similarly at later intersections.

In the third case, we let ~ cross V(p, q) at that point

where the angle becomes greater than a, and then let

it go st?’sight towards q, until it reaches q, or again en-

counters V(p, q). In the latter case we follow V(p, q)

without crossing it until we reach 1 again or else V(p, q)

points upward away from q, (in which case we continue

going straight towards q).

This completely defines the path ~from p to q, and (by

the construction after Lemma 2) a path vi (the short

path) along R and the short cuts of R from p to q.

4 Length of the Construction.

Let L(P) be the length of the polygon P. The convex

hull of P has length at most L(P). Let L(R) be the

length of the boundary of a region R.

Let us first analyze the length of the segments ad-

ded during the preliminary trimming. The length of

the short cuts poqo, plql, . . . . (see section 2), form a de-

creasing geometric progression. Since the angle at the
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vertex v is at most 2Arc sin I/a, it is easy to see that

After trimming the boundary, the boundary of the

trimmed region R’ has length L(R’) =

= ‘(R)+ ~. trinm,d(k– !/01 – bO – WI– lo– qOl)
< ‘(R) + ~. trirnmd(b– VI+’ Iv– qol)(~– 1).

Let R: be the region trimmed after adding the ith

segment of the main construction, R; = R!. Whenever

we add the short cut pq, the boundary gets trimmed,

and its length is reduced by at least (a – 1) Ip – ql. In

the end it is still non-negative. Thus:

L(R’) > (a– 1) ~ Ip– ql.

cuts pq

The total length of the short cuts added in region R

is overall at most

--&( R’) + ~ +(IPO -4 + b - qol)
v trimmed

< A(1 + :) L(R).

As we sum over all the regions, every edge of P is

counted at most twice, and every edge of the convex

hull is counted only once. Thus the total length of the

construction is at most

3 a+ 1 L(P).
a(a– 1)

5 Analysis of Path Length.

Let p and q be two points of polygon P which are visible

across region R. In section 3 we defined a path going

from p to q. We must now show that this path y really

is a sho~t path between p and q, i.e. its length is at most

a constant times Ip – ql.

The path -y can be decomposed into several parts:

sections where the path follows the boundary of R, sec-

tion where it hops across V(p, q) (when V(p, q) diverges

from 1 with angle larger than a), and sections where it

hops across other Voronoi circles.

In our analysis we will use the fact that ~ is not too

long compared to Ip – ql.

Lemma 3 The length of j is at most

1P– !71(1+ sins)/coscr.

Proofi r is a path from p to q, monotone in direction

1, and can never diverge from 1 at angle steeper than a.

❑

5.1 Analysis of the boundary sections.

Consider a section where the path y follows the boun-

da~y. Except near p and q, the corresponding section

of 1 goes between two successive intersections c1 and C2

of 1 with the skeleton. Thus the boundary section is all

within one skeleton cell, hence concave.

Case 1. The Voronoi circles of centers c1 and C2 inter-

sect. The concave path must stay outside the circles,

and so its length is at most equal to the distance from

c1 to cz (see figure 4).

Figure 4 A concave path as shown cannot be longer

than ICI – C21.

Thus the length of the bounda~y secticm is at most

equal to the length of the part of 1 between c1 and CZ.

Case 2. The circles of centers c1 and C2 are disjoint.

Lemma 4 In that case, the length of the boundary sec-

tion is at most equal to

2(1 + &)lc, – C21.

Proof id~a: The concave path must not intersect the

section of 1 bet ween c1 and C2. The path 1 is not necessa-

rily a straight line between c1 and C2, but it is constrai-

ned with respect to direction 1; thus 1 has to lie inside

a certain quadrilateral, and so does the concave path.

Elementary geometric arguments (project the path out-

ward to the boundary of the parallelogram) give the

bound, see figure 5.

,.
..””

Figure 5: A concave path between separated circles
must lie within a quadrilateral.

Case 3: Boundary sections near p and q. Initially, we

follow the boundary of the region from p to the point

on the first hopping circle.

253



Lemma 5 This initial length is at most Ip – c(p) 1.

Proof: Let ~ be the first hopping point. The boundary

between p and pl must be concave, and cannot intersect

either 1 or the first hopping circle, see figure 6. The

-eP,

P C(P)

Figure 6: The initial section of ~ is not too long.

section near q is dealt with similarly.

As we sum over all the cases, we find that the total

length of the boundary sections of ~ is at most

cob(~)”2(1 + —

5.2 Analysis of the hops

r is a monotone path from p to q. ye draw the sequence

of centers of hopping points along 1, along with the cor-

responding circles (see figure 8). The union of the circles

form a region R.

Lem-ma 6 The boundary of R has length L(t3R) ~

24L(1).

Proof: Let O < /3 <1. We group the circles in batches.

Let Cl be the largest circle, with center c1 and radius

T1. We associate all the circles before it and after it on

the path r, which have center at a d~tance less than ~rl

away from the center of Cl, stopping at the first circle

we meet (both before and after) which has center farther

than f?rl away. ThE defines the first batch of circles; the

second batch is defined starting with the largest circle

left, and so on until all the circles are in some batch.

We claim that the union of the circles in the ith batch

has boundary length < c(~)ri} where

(this follows from elementary geometric considerations:

the region is starred around G, has radius at most (1+

~)r,, and none of the tangents to the boundary is too

steep with respect to Ci). Thus the boundary of R haa

length at most c(/3) ~C, ~i. On the other hand, we have

qi) 2 ~ Ici – 13+112 ~ @j
batcbes

Thus we have

L(8R) <
c(p)
~L(i).

By adjusting P, we arrive at the constant stated. ❑

We now look at the path y. For every hop between

two points above V(p, q), we map the hopping segment

onto the arc of circle on its left, and for every hop bet-

ween two points below V(p, q), we map the hopping

segment onto the arc of circle on its right. See figure 8.

It is easy to argue that two different hops which do not

cross V(p, q) must have disjoint images under this map,

and that the image is on the boundary of R. Thus the

total length of the hops which are not across V(p, ~) is

at most equal to the boundary of R, hence s *L(1).

For the hops in the batch which do cross V(p, q), we

project them onto direction 1; if a is not too sm~ in

particular if

sin(a/2) > @/(l – ~),

the projections of these hops are disjoint. Thus we have

a contribution from these hops of

x diam(batch) < 2(1+ @L(r)

batches
sin a /3sina “

Finally, if we consider all the contributions to 7, we

find that the total length is O(1P – ql), hence the theo-

rem. The constants we obtain by minimizing over O and

a are

Cl = 77a when Co = 3
(a+ 1)

a(a – 1)”

There is, however, a lot of room for more careful geo-

metric analysis for the constant Cl, which is in practice

much smaller.

6 Smooth curves and further ge-

neralizations

Having solved the short cut problem for polygons, we

can solve it for smooth curves as follows.

Given a smooth curve S, define c >0 so that any disk

of diameter less than e intersects S in a connected set,

and in any disk of diameter e centered on a point of S,

the curve S does not deviate much from a straight line.

Take a polygon P approximating S to within c/10,

such that the vertices of the polygon are not too acute,

and let u be a map which is a one-to-one Lipschitz pro-

jection of the polygon onto the curve (in which n moves

points by at most c/10, and the Lipschltz constant Lip=

is close to 1). We can find such a polygon and ~ since

the curve S looks locally flat.

When we construct short cuts for the polygon P,

there are no trimmed vertices, since the vertices of P

are sufficiently obtuse. Given a short cut pq for P of

length at least c, we construct the short cut r(p)~(q)

on S. Note that this short cut has length at most 1.2

times the length of pq.

These are the only short cuts we use on S; their total

length is at most 1.2 times the total length of the short
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cuts on P. We claim that they allow us to construct
short paths for pairs of points on S.

To construct a short path ikom S1 to S2 if Isl – S2I < e,
simply follow the boundary, which is approximately a
straight line horn S1 to S2. If Isl – S2I > q first construct
a short path from the corresponding points m–1(s 1) to

7r-’(s2) on P; and then project the path using ~ to the
set S and its short cuts. The length of the projection
is at most max{l.2, Lipr} times the length of the short
path on P. •1

The preceding construction works for arbitrary rec-
tifiable sets in the planq these are the most general sets
which are not locally ‘twisted’, which is the condition we
need to make this approximation by polygonal shortcuts
work.
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Figure 8: Dealing with the hops.
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