
Securing XML Data in Third-Party Distribution Systems ∗

Barbara Carminati
University of Insubria at Como

Como, Italy

barbara.carminati@uninsubria.it

Elena Ferrari
University of Insubria at Como

Como, Italy

elena.ferrari@uninsubria.it

Elisa Bertino
CERIAS, Purdue University

Lafayette, USA

bertino@cerias.purdue.edu

ABSTRACT
Web-based third-party architectures for data publishing are today
receiving growing attention, due to their scalability and the abil-
ity to efficiently manage large numbers of users and great amounts
of data. A third-party architecture relies on a distinctionbetween
the Owner and the Publisher of information. The Owner is the
producer of information, whereas Publisher provides data manage-
ment services and query processing functions for (a portionof) the
Owner’s information. In such architecture, there are important se-
curity concerns especially if we do not want to make any assump-
tion on the trustworthy of the Publishers. Although approaches
have been proposed [4, 5] providing partial solutions to this prob-
lem, no comprehensive framework has been so far developed able
to support all the most important security properties in thepresence
of an untrusted Publisher. In this paper, we develop an XML-based
solution to such problem, which makes use of non-conventional
digital signature techniques and queries over encrypted data.

Categories and Subject Descriptors:[D.4.6] Security and Pro-

tection Access

General Terms: Security.

Keywords: XML, Third-party architecture, Data outsourcing.

1. INTRODUCTION
Third-party information dissemination represents today an in-

teresting paradigm for data-intensive web-based applications in a
large variety of contexts, from grid computing to web services or
P2P systems. Relevant applications include large-scale federated
Digital Libraries, e-commerce catalogs, e-learning, collaborative
applications, content distribution networks. The main idea of third-
party architectures is that the informationOwner outsources all
or some portions of its data to one or morePublishersthat pro-
vide specialized data management services and query processing
functions. Such an approach is scalable, results in highly efficient
query execution, and reduces the management costs of the Owner.

∗The work reported in this paper has been partially supportedby
the Italian MIUR under the project ‘Web-based management and
representation of spatial and geographical data’.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

Clearly, such architecture has challenging security requirements.
Requiring the Publishers to be trusted wrt security properties is not
always an appropriate solution in that large web-based systems can-
not be easily verified to be trusted and can be easily penetrated.
Thus, our goal is to ensure security properties even in the presence
of untrusted Publishers.

The main security properties that should be assured are:confi-
dentiality, integrity, andauthenticity. Confidentiality has two as-
pects. The first, that we callconfidentiality wrt the user, refers to
protecting data against unauthorized accesses by users. The second,
that we callconfidentiality wrt the Publisher, deals with protecting
data from accesses by Publishers. Integrity requires that data con-
tents are not altered during their transmission.1 Finally, authentic-
ity assures that a user receiving some data can verify that the data
have been generated by the Owner and that the Publisher has not
modified their contents. To provide strong guarantees aboutdata
contents to users, we need to complement the three basic security
properties with an additional property that we refer to ascomplete-
ness. By completeness we mean that the user receiving a portion
of data is able to verify whether he/she has received all the infor-
mation is allowed to see according to the specified access control
policies. Although some proposals exist assuring the satisfaction
of some of these properties [4, 5], no comprehensive framework
exists able to enforce all such properties.

In this paper, we develop such a comprehensive solution, by fo-
cusing our attention on data expressed in XML [10]. Our solu-
tion relies on the use of encryption and non-conventional signature
techniques. Encryption is used to support confidentiality.The basic
idea is that the Publisher does not operate on clear text data, but on
an encrypted version. Encryption is driven by the specified access
control policies: all data portions to which the same policies apply
are encrypted by the Owner with the same key. Then, each user is
provided by the Owner with all and only the keys corresponding
to the portions of data he/she is allowed to access. Clearly,both
users and Publishers must be provided with additional informa-
tion to make them able to submit and answer queries on encrypted
data. Authenticity/integrity requirements cannot be ensured by tra-
ditional digital signature techniques. The reason is that since a user
may be returned only selected portions of a document, depending
on his/her queries and the specified policies, it is not enough that
the Owner signs each document it sends to the Publisher. Thus, we
propose an alternative solution, based on Merkle hash trees[8], to
generate document signatures.

Finally, completeness is verified through the so-calledquery tem-
plate, which consists of the encrypted structure of the original doc-
ument. We show that, by executing the queries submitted to a Pub-

1Here we do not consider integrity wrt the specified access control policies,
since third-party architectures are mainly conceived for read accesses.

99

lisher on the query template, a user is able to verify the complete-
ness of the query answer without accessing information he/she is
not allowed to see.

Our work has been inspired by the work by Hacigumus et al. [5,
6], which developed a method for querying encrypted data stored
in relational databases. From such work we borrow the method
for querying encrypted data, which is based on partitioningthe do-
mains of the relation attributes. The same method has been ex-
ploited also in the context of XML data in [7]. However, such ap-
proaches only consider confidentiality wrt the Publisher, and they
do not address the requirement of confidentiality wrt the users, nor
authenticity/integrity and completeness. By contrast, inthis paper
we extend these approaches to data encrypted with differentkeys,
thus providing confidentiality wrt the users. In addition, we con-
sider also all the other security properties. Other relatedwork is by
Miklau and Suciu [9], which proposed a method for a controlled
sharing of XML data, dealing only with confidentiality. As inour
approach, confidentiality is ensured by the use of cryptographic
techniques. However, the main difference with our proposalis that
they do not rely on a Publisher for managing data, rather dataare
simply published on the web in an encrypted form and each user
can access the authorized portions, using the keys he/she receives
from the data Owner. However, we strongly believe that relying on
a data Publisher has many benefits, in terms of efficiency and opti-
mization of resource usage. Indeed, simply publishing the data over
the web would make them the target of a huge number of attacks,
with many users trying to perform queries over them, and thuscon-
suming a huge amount of computational resources. By contrast, the
Publisher can be equipped with sophisticated anti-intrusion tools
and techniques avoiding queries floods. Additionally, not relying
on a Publisher requires each user be equipped with a query engine
able to process queries over encrypted contents.

Merkle hash trees are a well-known mechanism used in several
computer areas for certified query processing. For instance, they
have been exploited for authenticating XML documents by De-
vanbu et al. in [4]. However their approach has many differences
wrt our proposal. First, it addresses only authenticity, whereas we
address all security properties. Moreover, our approach toauthen-
ticity verification does not have limitations on the structure of XML
documents to which it can be applied, whereas the approach byDe-
vanbu et al. does not handle attributes and it assumes that data con-
tents can be only present in leaf nodes. Another important differ-
ence is that we can certify the authenticity for each possible kind
of XPath queries, whereas the approach by Devanbu et al. only
handles queries returning whole sub-trees. The work reported in
this paper builds on a previous paper by us [1], where we develop
the technique for authenticity verification that we use in the current
paper. However, the current paper significantly extends ourpre-
vious work with techniques for confidentiality and completeness
enforcement. Moreover, we define also an architecture and related
data structures supporting security properties verification.

The remainder of this paper is organized as follows. Next sec-
tion presents an overview of the proposed framework. Sections 3
and 4 describe authenticity and confidentiality enforcement; Sec-
tion 5 introduces the XML encoding we propose to represent the
needed security information, whereas Section 6 focuses on query
processing. Section 7 deals with completeness. Section 8 formally
states some properties of the proposed framework, whereas Section
9 concludes the paper.

SE
SE
-
-
ENC XML
ENC XML

documents
documents

Query
Query

Template
Template

documents
documents

OWNER
OWNER

Subscription
Subscription

Request
Request

User
User
Policy
Policy
Configuration
Configuration

+ encryption
+ encryption

Keys
Keys

Reply
Reply
Document
Document

User
User
Policy
Policy
Configuration
Configuration
 +
+
Query
Query

User

Query

Answer

User_ID
User_ID

entry
entry
Key
Key

Publisher
Publisher

entry
entry
key
key

Subscription
Subscription

Request
Request

Directory server
Directory server

SE
SE
-
-
ENC XML
ENC XML

documents
documents

Query
Query

Template
Template

documents
documents

OWNER
OWNER

Subscription
Subscription

Request
Request

User
User
Policy
Policy
Configuration
Configuration

+ encryption
+ encryption

Keys
Keys

Reply
Reply
Document
Document

User
User
Policy
Policy
Configuration
Configuration
 +
+
Query
Query

User

Query

Answer

User_ID
User_ID

entry
entry
Key
Key

Publisher
Publisher

entry
entry
key
key

Subscription
Subscription

Request
Request

Directory server
Directory server

Figure 1: Overall architecture

2. SYSTEM OVERVIEW
In the architecture we propose (see Figure 1) users submit queries

to Publishers through aclient, that the user can download from the
Owner site, and which makes the user able to verify the security
properties on the received answers. The novelty of our proposal is
that we do not make any assumption on the trustworthy of Publish-
ers. In the following we give a general overview of the techniques
we have devised.

Because the proposed framework requires additional informa-
tion to be transmitted by the Owner to both Publishers and users,
we store all such information into a directory server (whichcan
also be shared among different Owners belonging to the same do-
main or to federated ones), to limit the overhead that these oper-
ations require. In particular, as depicted in Figure 1, the directory
server contains three kinds of entries: thePublishersentry, which is
shared by all Publishers and contains all encrypted documents that
they are entitled to manage, plus additional information they need
for the correct functioning of the system; theUsersentry, shared by
all the subscribed users, storing common information; and adistinct
User ID entry for each single user, containing needed information
to verify the security properties. Thus, after a mandatory registra-
tion phase, each user/Publisher receives by the Owner the keys for
accessing the corresponding entries in the directory.

We now briefly discuss how the security properties are enforced.
Confidentiality wrt final users are expressed by the Owner by means
of a set of access control policies, regulating the operations that
can be performed on its data [2]. To enforce confidentiality wrt the
Publisher, the Owner encrypts its data before delivering them to the
Publisher. Following an approach we will explain in Section4, the
Publisher is able to answer user queries, without the need ofde-
crypting the data. Thus, it returns the requesting user an encrypted
answer. If the Publisher operates according to the Owner policies,
this answer contains all and only the portions of the requested data
the user can access. Otherwise, it may contain a superset of the
data the requesting user is allowed to see. The key aspect is thus
that a user must be able to decrypt all and only the portions of
the returned answer he/she is authorized to see. This is obtained
by selectively encrypting the documents in the Owner source: the
Owner encrypts them in such a way that all the portions that are
protected by the same policies, hereafter calledpolicy configura-
tion, are encrypted with the same key.2 These keys are then stored
in theUser ID entries by the Owner, on the basis of the policies the

2Here and in the following we refer to symmetric encryption.

100

corresponding users satisfy. Additionally, the entry stores theuser
policy configuration, a certificate signed by the Owner maintaining
information on the access control policies the user satisfies, which
are determined according to the credentials the user submits during
a mandatory subscription phase.

To make a Publisher able to correctly answer queries over en-
crypted data, the Owner provides the Publisher with information
on which users can access which portions of the managed docu-
ments, according to the access control policies it has specified. Ad-
ditionally, the Owner supplies the Publisher some information that
makes it able to query encrypted data. The basic idea is that the
Owner divides the domain of each document node (i.e., attribute
and element) into distinguished partitions, to which a unique id is
assigned. Then, the Owner provides the Publisher together with
the encrypted nodes also the ids of the partitions corresponding to
their values. The Publisher is thus able to perform queries directly
on the encrypted documents, by exploiting the partitioningids (see
Section 4 for more details). Similarly, users find in the common
Usersentry information on the partitioning techniques adopted by
the Owner.

Authenticity and integrity are assured by the use of theMerkle
signature, a signature generated by the Owner using a bottom-up
computation on the whole document, based on Merkle hash trees
[8]. Such signature is generated before encrypting a document and
it is provided to the Publisher along with the correspondingdoc-
ument. The Publisher will then forward it to a user querying the
document to which it refers to. The problem here is that, since the
Publisher answer may not contain all the document portions over
which the signature has been generated, a user may not be ableto
validate the signature. To avoid this shortcoming, the Owner gives
the Publisher a set of additional hash values, one for each node,
which represent the information needed to validate the signature if
the corresponding node is not inserted into the Publisher answer.
Thus, when a user queries a certain document, the Publisher sends
him/her, besides the corresponding Merkle signature, alsothese ad-
ditional hash values, referring to the document portions not con-
tained in the query answer. This makes the user able to locally
perform the computation of the Merkle signature and comparing it
with the one generated by the Owner.

All the additional information needed by the Publisher for confi-
dentiality and authenticity/integrity enforcement is encoded in XML
and attached to the encrypted document, forming the so called secu-
rity enhanced encryption(SE-ENC) of the original document. All
the SE-ENC documents are stored by the Owner in the Publishers
directory entry. Similarly, all information needed by a user to ver-
ify the security properties are encoded by the Publisher in XML
and attached to the query answer, resulting in what we have called
thereply document.

Finally, to make a user able to verify the completeness of a query
result, the Owner generates aquery template, containing the en-
crypted structure of the original document. The query template has
the twofold goal of making a user able to verify the completeness
of the received answers, as well as to make easier the task of query
submission, in that by inspecting the query template a user can ob-
tain information on the structure of the documents (or portions)
he/she is allowed to access. The query template is encryptedby
the Owner using the same strategy employed for XML documents.
This means that a user can see only the portions of the query tem-
plate on which he/she can perform the queries, according to the
specified access control policies. The query template is digitally
signed by the Owner, through a Merkle signature, to prevent al-
terations. All the query templates are stored by the Owner inthe
Usersdirectory entry.

<Investments>
<Investment Partner=‘Partner1’>

<Inv Date=‘’ Amount=‘’ Type=‘’> ...</Inv>
<Inv Date=‘’ Amount=‘’ Type=‘’> ...</Inv>

</Investment>
<Investment Partner=‘Partner2’>

<Inv Date=‘’ Amount=‘’ Type=‘’> ... </Inv>
</Investment>

</Investments>

Figure 2: An example of XML document

3. AUTHENTICITY ENFORCEMENT
For authenticity enforcement we adopt an alternative way tocom-

pute the digest value of an XML document wrt traditional digital
signature techniques [1]. The function we use to compute thedi-
gest value is theMerkle hash function. This function univocally
associates an hash value (referred to asMerkle hash value) with a
whole XML document through a recursive bottom-up computation
on its structure. The basic idea is to associate a Merkle hashvalue
with each noden of the XML document, denoted asMhX(n): the
Merkle hash value associated with an attribute is obtained by apply-
ing an hash function over the concatenation of the attributevalue
and the attribute name; the Merkle hash value associated with an
element is the result of the same hash function computed overthe
concatenation of the element content, the element tag name,and
the Merkle hash values of its children nodes, both attributes and
elements. The digest of the XML document is thus the Merkle
hash value of the root of the document. Once the digest has been
computed, it is signed by the Owner, generating what we call the
Merkle Signatureof the document. The Merkle signature is in-
serted by the Owner into the corresponding SE-ENC document,
by adding aSign subelement to the document root, which con-
tains the signature value. When a user submits a query to the Pub-
lisher, the Publisher returns him/her, besides the query result, also
the Merkle signatures of the documents on which the query is per-
formed. Moreover, to make the user able to validate the signature,
the Publisher sends him/her a set of hash values, referring to the
portions of the requested documents not returned in the query an-
swer. This additional information is calledMerkle hash paths.

EXAMPLE 3.1. Let us consider the XML document presented in Fig-
ure 2, and suppose that the Owner states two access control policies al-
lowing the manager of Partner1, (Partner2, respectively) to access all the
subtree rooted at theInvestment element related to Partner1 (Partner2,
respectively). These policies allow the manager of Partner1 (Partner2, re-
spectively) also to access the type of the investments done by Partner2 (Part-
ner1, respectively), that is, only theType attributes of theInv elements.
Suppose that a manager belonging to Partner2 requires all the investments
of Partner1. Then, the Publisher returns the manager theInv elements
with only theType attributes. We show now which are the additional hash
values needed by the manager to validate the signature of therequested
document. First of all, the manager needs to compute the Merkle hash
value of theInv element. Since the query result contains only theType
attribute of such element, the manager needs the Merkle hashvalues of
Type’s siblings (i.e.,Amount andDate attributes) plus the hash value of
the tagname and element content ofInv. Once the Merkle hash value of
Inv is computed, the manager needs the Merkle hash values of allInv’s
siblings (i.e., the secondInv element), to compute the Merkle hash value
of theInvestment element. Finally, to compute the Merkle hash value
of the root, he/she needs the Merkle hash value ofInvestment’s sib-
lings (i.e., theInvestment element referring to Partner1). Thus, the
hash values needed by the manager are: MhX(Amount); MhX(Data);

101

h(Inv.content3); h(Inv.tagname); MhX(Inv); h(Investment.
content); h(Investment.tagname); MhX(Investment);
h(Investments.content); h(Investments.tagname);
MhX(Investments), where h() is a collision-resistant hash function, used
to compute the Merkle hash values.

More formally, given two nodesv, w such thatv ∈ Path(w)4,
the Merkle hash pathbetweenw andv is the set of hash values
necessary to compute the Merkle hash value ofv having the Merkle
hash value ofw. The Merkle hash path betweenw andv consists
of all the Merkle hash values ofw’s siblings, together with the hash
value of tagname and content ofw’s father node. Indeed, accord-
ing to Merkle hash function definition, givenw, these hash values
make possible the computation of the Merkle hash value ofw’s
father node. Thus, given this Merkle hash value to compute the
Merkle hash value ofv are necessary also the Merkle hash values
of all the siblings of the nodes belonging to the path connecting
v to w. Thus, for each noden belonging to the query result, the
user must be supplied by the Publisher with the Merkle Hash path
betweenn and the root element. Since the Publisher operates on
encrypted data, it is not able to compute the Merkle hash values,
and, as a consequence, to generate the appropriate Merkle hash
paths to be returned to the user submitting the query. For this rea-
son, the Owner gives Publisher some additional information, called
Authenticity information, which makes the Publisher able to com-
pute the Merkle hash values of all the document nodes, respecting,
at the same time, confidentiality requirements. Such information
are attached to the SE-ENC document using the strategy we will
illustrate in Section 5.

4. CONFIDENTIALITY ENFORCEMENT
To ensure confidentiality, we propose a solution based on encryp-

tion techniques. The idea is that the Owner, before outsourcing a
document to Publishers, encrypts it on the basis of the specified
access control policies. All the portions of an XML documentto
which the same policy configuration applies are encrypted with the
same secret key (we refer to the document encryption driven by the
Owner policies aswell-formed encryption). The appropriate keys
are then stored in the Owner directory server, in such a way that
each user obtains all and only the keys corresponding to the policies
he/she satisfies. Moreover, to limit the number of keys that need to
be permanently maintained we adopt an hierarchical key manage-
ment schema defined in such a way that from the encryption key
associated with an access control policy it is possible to derive all
and only the encryption keys corresponding to policy configuration
containing such a policy. In this way the number of keys that need
to be managed is linear in the number of the specified access control
policies.

Generation of the well-formed encryption ensures confidential-
ity both wrt the users and the Publishers. Each node of the result-
ing encrypted document is accessible only to authorized users, that
is, those users who have been provided with the appropriate keys.
Since the Publisher does not have keys, this solution prevents its
accesses to the managed data, thus ensuring the confidentiality wrt
Publisher. Additionally, the fact that a user submits queries to a
Publisher in encrypted form ensures a certain degree of privacy to
the user in that the Publisher does not know the details of thesub-
mitted queries.
3Given an elemente, we use the notatione.tagname, e.content to denote
the tagname and the data content ofe, respectively. Given an attributea,
the notationa.val anda.name are used to denote the value and the name
of attributea, respectively.
4Given a nodew, Path(w) denotes the set of nodes connectingw to the root
of the corresponding document.

To make the Publisher able to evaluate queries on encrypted doc-
uments, we adopt an approach similar to the one proposed in [5, 6]
for relational databases. The underlying idea of this approach is
the following: given a relationR, the Owner divides the domain
of each attribute inR into distinguished partitions, to which it as-
signs a different id. Then, the Owner sends the Publisher theen-
crypted tuples, together with the ids of the partitions corresponding
to each attribute value inR. According to this approach, the Pub-
lisher is able to perform queries directly on the encrypted tuples,
by exploiting the partition ids. As an example, consider there-
lation Employee(eid, ename, salary), and, for simplicity, con-
sider only thesalary attribute. Suppose that the domain ofsalary

is in the interval [500k, 5000k], and that an equi-partitionwith 100k
as range is applied on that domain. Thus, each encrypted tuple
is complemented with the id of the partition corresponding to the
value of thesalary attribute for that tuple. By using this id the Pub-
lisher is able to perform queries such as: “SELECT * FROM Em-
ployee WHERE salary =1000k”, which is translated into the query:
“SELECT * FROM Employee WHERE salary =XX”, where XX is
the id of the partition containing the value 1000k. It is interesting
to note that this query returns an approximate result, in that it re-
turns all the tuples of theEmployeerelation whosesalary attribute
belongs to the range [1000K, 1100K). A further query processing
has thus to be performed by the client to refine the answer returned
by the Publisher.

We adapt such an idea to the XML context. This requires first
of all to deal with partition generation. In general, the choice of
the most appropriate partitioning technique mainly depends on the
attribute domain. Thus, in defining the partitioning techniques for
an XML document, we need to consider the data types that it may
contain. For numeric data (such as integer, real, etc.), a strategy
based on an equi-partitioning of the domain could be appropriate.
However, an XML document mainly contain textual information
(for instance, the data content of an element). For this reason, it is
necessary to devise ad-hoc partitioning techniques for textual data,
which are not so important in the relational context. The solution
we propose for partitioning textual data requires a first phase dur-
ing which the Owner preprocesses the textual data containedin an
attribute/element and extracts from them a set of keywords.5 Then,
a partition id is associated with each keyword. More precisely, all
possible keywords are organized into a dictionary. Therefore, parti-
tion ids are associated with groups of dictionary terms (forinstance,
assuming that the terms in the dictionary are in alphabetic order, we
can generate a different id for each group ofN terms). In the rest
of the paper, we assume that there exists a functionPI() that given
as input a valueval returns the index of the partition to whichval

belongs to.

5. SECURITY-ENHANCED ENCRYPTION
All information for confidentiality and authenticity enforcement

is encoded in XML and attached to the well-formed encryption,
forming the SE-ENC document. Generation of SE-ENC docu-
ments consists of two main steps: generation of 1) the well-formed
encryption, and 2) security information.

Generation of well-formed encryption is done by first marking
the nodes of the input document with the policies that apply to
them. Then, all the nodes to which the same marking applies are
encrypted with the same key. In the literature, there existsdifferent
proposals for the encryption of an XML document (see for instance
[7, 10]). However, we prefer to adopt a slightly different approach,

5Several techniques developed in the Information Retrievalfield can be
used to this purpose.

102

to preserve as much as possible the structure of the originalXML
document in the document encryption. Indeed, since users formu-
late queries according to the structure of the original document, this
choice makes query processing easier. Thus, given an XML docu-
mentd, the well-formed encryption ofd is an XML documentde,
which preserves the elements/attributes relationships ofthe original
document, but which has the names and contents of all the nodes
encrypted. More precisely, the resulting document is formally de-
fined as follows.

DEFINITION 5.1. (Well-formed encryption of an XML docu-
ment). Let d = (Vd, v̄d, Ed, φEd

)6 be an XML document. Let
PCPB(d) be the set of policy configurations which apply tod. Let
Key(pc) be the encryption key associated with policy configura-
tion pc, and letVd(pc) be the set of nodes to whichpc applies. The
well-formed encryption ofd is an XML documentde = (Vde , v̄de ,
Ede , φEde), such that:

• de preserves the elements/attributes relationships ofd;

• ∀pc ∈ PCPB(d), ∀v ∈ Vd(pc), ∃v′ ∈ Vde such that:
v’.tagname= Enc(v.tagname,Key(pc)), v’.content=Enc(v.con-
tent, Key(pc)), if v ∈ V e

de ;
v’.name= Enc(v.name,Key(pc)), v’.val= Enc(v.val,Key(pc)), if
v ∈ V a

de ;
whereEnc(string, key) encrypts astring with the inputkey.

Once the well-formed encryption has been generated, it under-
goes a second phase, during which it is complemented with infor-
mation for authenticity and confidentiality enforcement. All this
information are wrapped into a unique element, calledSecurity In-
formation element. The SE-ENC document contains a different
Security Information element for each element of the well-formed
encryption. Such element is added as an additional child of the
corresponding element and contains confidentiality and authentic-
ity information of both the element itself and of all its attributes.

The authenticity information associated with each noden of the
original document consists of the hash values needed to compute
the Merkle Hash Path to be sent to users (cfr. Section 3). More
precisely, these are the hash value of the name ofn (i.e., the tag-
name or the attribute name, depending on whethern is an attribute
or an element) and the hash value of the content ofn (i.e., the data
content or the attribute value, respectively). All these values are
contained into a unique element, calledAuth-Info element, child
of the Security Information element corresponding ton.

Confidentiality information associated with a node consists of
policy informationand query-processing information. Policy in-
formation gives the Publisher information on which access control
policies apply to each node of the original document, and is en-
coded into a string of hexadecimal values. With each noden in the
well-formed encryptionde we associate a binary string of length
equal to the cardinality of the set of access control policies which
applies to the corresponding clear-text documentd, where, starting
from the left side, the value of thei-th bit is: 1, if thei-th policy
7 applies ton; 0, otherwise. Then, we translate each 4-bits block
of the resulting binary string into the corresponding hexadecimal
representation. This information is then stored as an additional at-
tribute of the Security Information element. Finally, to make pol-
icy configurations meaningful to Publishers it is necessaryto insert
an additional element into the SE-ENC document. This element,
6We exploit a graph-based representation of an XML document.More pre-
cisely, we define an XML document as a tupled = (Vd, v̄d, Ed, φEd

),
where:Vd = V e

d
∪ V a

d
is a set of nodes representing elements (V e

d
), and

attributes (V a
d

); v̄d is a node representing the document element (called
document root); Ed is the set of edges representing element-subelement,
element-attribute relationships, or links between elements; φEd

is the edge
labelling function.
7The order is given by the policy identifier values.

<Sec-Info>
<Node-Info Name=‘Enc(Investment,Key(PC(Investiment)))’
PC=‘b’>

<Auth-Info>
<H-Name> h(Investment.tagname)< /H-Name>
<H-Content> h(Investment.content)< /H-Content>

< / Auth-Info>
< Query-Info></ Query-Info>

</ Node-Info >
<Attributes>
<Node-Info Name=‘Enc(Partner,Key(PC(Partner)))’ PC=‘b’>

<Auth-Info Name=‘Enc(Partner,Key(PC(Partner))))’>
<H-Name> h(Partner.tagname)< /H-Name>
<H-Content> h(Partner2.content)< /H-Content>

</ Auth-Info >
<Query-Info>

<Id Value=‘PI(Partner2)’/>
</Query-Info >

</ Node-Info >
</Sec-Info >

Figure 3: An example ofSec-Info element

calledPolicy, contains the identifiers of the policies which apply
tod. These identifiers help the Publisher to match a user policy con-
figuration with the policy information in the SE-ENC document.

Query-processing information associated with a node consists of
the partition ids corresponding to it. All partition ids arecontained
into a unique element, calledQuery-Info element, child of the
Security Information element. We are now ready to formally intro-
duce the Security Information element.

DEFINITION 5.2. (Security Information element). Let de =
(Vde , v̄de , Ede , φEde) be the well-formed encryption of an XML
documentd. Letv′ ∈ V e

de be the encrypted element corresponding
to v ∈ V e

d . The Security Information element associated withv′ is
an XML elements such that:

• s.tagname=Sec-Info;

• s contains two subelements:Node-Info andAttributes, where:
- Node-Info has two attributes:Name, which contains the en-
crypted name of the node;PC, which contains the policy information
associated withv. Node-Info has two subelements:Auth-Info
and Query-Info. Auth-Info has two subelements:H-Name,
storingh(v.tagname) (v.name, respectively); andH-Content,
storingh(v.tagname) (v.value, respectively).Query-Info has
as manyId subelements as the number of partition ids associated
with v.content.
- Attributes has manyNode-Info subelements as the number
of attributes inv, with the same structure described above.

When all theSec-Info elements have been added to a well-
formed encryption, the final SE-ENC document is obtained by ad-
ding thePolicy element previously illustrated, and theSign el-
ement described in Section 3. Figure 3 reports an example of the
Sec-Info element associated with theInvestment element of
Partner2 (see Figure 2), computed by considering the accesscontrol
policies presented in Example 3.1.8

6. QUERY PROCESSING
In this section, we explain how the user can formulate queries to

the Publisher. We assume that users submit queries by means of
XPath expressions. XPath allows one to traverse the graph struc-
ture of an XML document and to select specific portions on the
document according to some properties, such as the type of the el-
ements, or specified content-based conditions. In this paper, we
consider conditions specified by means of equality or comparison
8Given a noden, we denote withKey(PC(n)) the encryption key asso-
ciated with the policy configuration applied onn.

103

Enc
(tg1,K1)

Enc
(tg2,K2)
 Enc
(tg2,K2)

Enc
(tg3,K1)

Enc
(
Att
,K1)

Enc
(tg3,K3)

Enc
(
Att
,K3)

a

tg1

tg3

Att
 Att

b

Figure 4: An example of view of a query template

operators on data content. Moreover, among the functions sup-
ported by XPath, we consider thecontains()function, which allows
the specification of conditions on textual data. In general,an XPath
expression consists of alocation path, that allows one to select a
set of nodes from the target documents. A location path consists
of one or morelocation steps, separated among each other by a
slash. A location step consists of: anaxis, specifying the tree re-
lationships between the nodes selected by the location stepand the
current node (e.g., ancestor, ancestor-or-self, attribute, child, de-
scendant, descendant-or-self); anode test, used to identify a node
within an axis, by specifying a node type or the node name (e.g.,
text(), node()); and zero or morepredicates, placed inside square
brackets, used to further refine the set of nodes selected by the lo-
cation step (e.g., [@Type=‘IT’]). In the following, given aloca-
tion stepls we use the dot notation to identify its components (i.e.,
ls.axis, ls.nodetest, ls.p).

To query an XML document through XPath, it is thus necessary
to know the corresponding schema. For this reason, the user re-
trieves from theUsersentry thequery templateof the interested
document, which consists of the encrypted structure of the corre-
sponding document. This operation is required only the firsttime
the user inquiries a document. To make a user able to submit
queries on encrypted documents, the query template contains fur-
ther information. One of this information is thePolicy element
andPC attributes contained in the SE-ENC document, that allow
the client to correctly encrypt the queries to be submitted to the
Publisher.9

We explain now how the user can exploit the query template for
formulating an XPath expression on encrypted documents. First of
all, it is important to point out that a user can access only selected
portions of the query templates, that is, only the nodes for which
he/she has the appropriate decryption keys. Thus, as a first step, the
client extracts the authorized view from the query template. To de-
crypt a node, the client has to know which key has to be used. This
information can be derived from thePC attribute contained in the
query template. The view of the query template is built by a func-
tion, calledV iew(), which takes as input the policy configuration
of a useru and the query template, and turns the set of decrypted
nodes, into a well-formed XML document. This resulting viewis,
then, displayed to the user, making him/her able to formulate XPath
queries on it. However, before the user XPath queries can be sub-
mitted to the Publisher they have to be properly transformedand
encrypted. The following example clarifies the discussion.

EXAMPLE 6.1. Consider the query template in Figure 4a, where, for
simplicity, we do not report policy and query-processing information. Sup-
pose that the view of the query template for a useru is the one presented in
Figure 4b. Moreover, suppose thatu is interested only in those nodestg3
whose attributeAtt is equal to ‘IT’. Thus, according to the view in Figure

9We postpone the details of the query template generation in the next sec-
tion, where we will explain the role played by this document in the com-
pleteness verification.

ALGORITHM 1. The Client Query Generator

INPUT:
1. An XPath expressionexp given in input by a useru
2. The query templateqt of the documentd to whichexp applies
3. V iewu(qt), that is, the view of the query templateqt generated,
according to the policies satisfied byu

OUTPUT:
The set of XPath expressionsEXP to be submitted to the Publisher

1. Letls, expnew, andexps be initialized to be empty
2. EXP =Transform(ls,exp,expnew,exps)
3.Return EXP
FunctionTransform (lsprec,exp,expnew,exps)
1. Letls be the location step followinglsprec in exp
2. If ls is emptythen:

a. Insertexpnew into exps

b. Return exps

3. LetNodes be the set of nodes ofV iewu(qt) identified by
ls.nodetest

4. For eachn ∈ Nodes:
a. Letpath be the absolute path connecting the

root ofqt to Enc(n, Key(PC(n)))
b. Letprec.node be the node specified inlsprec.nodetest

belonging topath
c. LetLsmiss be the missing location steps between

Enc(prec.node,Key(PC(pre.node))) and
Enc(n, Key(PC(n))) in path

d. Insert theLsmiss location steps intoexpnew

e. Letlsnew be an empty location step
f. lsnew.axis=ls.axis
g. lsnew.node=Enc(n,Key(PC(n)))
h. lsnew.p = [/Sec-Info//Node-Info[@Name=Enc(

ls.p.node,Key(PC(ls.p.node))]/Query-Info/id
[@Valuels.p.⊕ PI(ls.p.value)]]

i. Insert lsnew into expnew

l. exps= exps
⋃

Transform(ls,exp,expnew,exps)
EndFor

Figure 5: The Client Query Generator Algorithm

4b, u formulates the following XPath query: /tg1/tg3[@Att=‘IT’]. Obvi-
ously, this path cannot be directly evaluated on the corresponding SE-ENC
document, because it is not encrypted and refers to a partialview.

There are three main transformations to which each locationstep
of a user XPath expression must undergo before being submitted to
the Publisher. Since the user XPath expression has been generated
on a partial view of the query template, it is first necessary its com-
pletion, by inserting all the missing location steps. For instance,
considering again Example 6.1, between the first and the second
location step of the user query it is necessary to insert the location
step referring to element ‘tg2’. Moreover, since the SE-ENCdocu-
ment is encrypted, it is necessary to encrypt the tagnames specified
in the node test of the location steps with the proper keys, sothat
they can be evaluated by the Publisher. Finally, the third trans-
formation is the transformation of the location step predicates, by
computing the ids of the partitions, using the information obtained
during the subscription phase, and by adapting the resulting predi-
cates to the SE-ENC structure.

An Algorithm doing all the above mentioned operations is pre-
sented in Figure 5. For simplicity, the algorithm considersonly
XPath queries whose predicates contain a unique condition;how-
ever, it can be easily extended to consider more complex predi-
cates. Due to the nature of well-formed encryption, where nodes
with the same name could be encrypted with different keys, the en-
cryption of a location step does not always return a unique value.
For instance, the second location step of the XPath query in Ex-
ample 6.1 (i.e., ‘/tg3[@Att=‘IT’]’) must be transformed intwo dif-

104

ferent location steps: ‘/Enc(tg3,K1)[...]’ and ‘/Enc(tg3,K3)[...]’
(cfr. Figure 4). Let us see how Algorithm 1 works. It receivesas
input an XPath expressionexp submitted by a useru, the query
templateqt on which the query is submitted, and the view ofqt

generated by the client according to the policies satisfied by u. To
generate the set of XPath queries to be submitted to the Publisher,
the algorithm exploits a recursive function, calledTransform(),
which recursively applies the same transformations to eachlocation
step ofexp. TheTransform() function first verifies whether all
the location steps inexp have been processed. If this the case,
step 2.a returns the resulting set of XPath expressions. Other-
wise, theTransform() function computes the set of nodes, called
Nodes, whose tagname is specified by the node test of the current
location step. Then, in step 4 the algorithm iteratively considers
each node inNodes. For each of these nodes theTransform()
function generates a different location step by applying the above-
mentioned transformations. After the insertion of this newloca-
tion step into the XPath expression (step4.i), theTransform()
function recursively calls itself, to consider the next location step
of exp. Let us see how the algorithm applies the needed trans-
formations to each location step. At first, the algorithm completes
the input XPath expression by inserting the missing location steps
(steps4.a− d). To verify whether the path between the considered
location step and the previous one in the input XPath expression
must be completed, the algorithm first computes the absolutepath
connecting the node identified by the current location step to the
root of the query template (step4.a). Then, in step4.c it deter-
mines the nodes that are missing in the input XPath expression wrt
the absolute path. Note that, since the query template contains en-
crypted nodes, the nodes are first encrypted with the corresponding
key. The second transformation is performed by step4.g, and en-
crypts the tagname of the current node. The encrypted name is
inserted as node test in an empty location step. Finally, thelast
phase is the translation of the predicates in the location step. In
general, a predicatep of a location step specifies a node (p.node)
to which a comparison operator⊕ is applied (e.g.,<,<=,>,>=,
contains()), matching it with the contained value (p.value). Ob-
viously, the Publisher can not evaluate⊕ directly on thep.node

of the SE-ENC document, since it contains only encrypted data.
By contrast, the predicate has to be adapted to the SE-ENC docu-
ment. This implies that the condition has to be evaluated directly
on theValue attribute of theId subelements, that is, the attribute
containing the partition id. More precisely, the new XPath expres-
sion must be applied to theId subelements of theQuery-Info
element contained into theNode-Info element corresponding to
p.node in the SE-ENC document. Thus, the predicate that replaces
p in the new location step is the following: [/Sec- Info//Node-
Info[@Name=Enc(ls.p.node, Key(PC(ls.p.node))]/Query-
Info /id[@Value⊕PI(ls.p.value)]], wherePI() is the func-
tion returning the partition id corresponding to the input value (step
4.h).

EXAMPLE 6.2. Let us consider the user XPath expression presented in
Example 6.1: ‘/tg1/tg3[@Att=‘IT’]’. The algorithm startsto consider the
first location step, i.e., ‘/tg1’. According to Figure 4b, only the root ele-
ment is referred by the node test of this location step. This implies that the
for cycle is iterated only once. Moreover, the location stephas no miss-
ing paths and no predicates. Thus, the only transformation performed in
the cycle is the encryption, obtaining thusexpnew=‘Enc(tg1, K1)’. By
contrast, the node test of the second location step, i.e., ‘tg3[@Att=‘IT’]’,
indicates two different nodes, which are separately transformed by differ-
ent iteration of the for cycle. Let us consider the first iteration, for the first
‘tg3’ node. At first the Transform() function computes the missing path,
that is, Enc(tg2,K2), which is added toexpnew. Then, it encrypts the
node with the appropriate key, i.e., Enc(tg3,K1). Finally, it transforms the
‘[@Att=‘IT’]’ predicate in ’[/ Sec-Info//Node-Info[@Name=Enc(Att,

K1)]/Query-Info/id[@Value=‘PI(IT)’]]’. The last step of the for cycle
recursively calls the Transform function. However, since the new call of the
Transform function does not find further location steps to betransformed, it
adds the new expression (i.e., ’[/Sec-Info//Node-Info[@Name=Enc(Att,
K1)]/Query-Info/id[@Value=‘PI(IT)’]]’) into expnew and it ends.

The second iteration of the cycle is similar to the first, withthe difference
that the encryption key used isK3 instead ofK1. When the Algorithm stops
set EXPs is equal to {Enc(tg1,K1)/Enc(tg2,K2)/Enc(tg3,K1)[/Sec-
Info Node-Info[@Name=Enc(Att,K1)]/Query-Info/id[@Value=
‘PI(IT)’]]; Enc(tg1, K1)/Enc(tg2,K2)/Enc(tg3,K3)[/Sec-Info//Node-
Info[@Name= Enc(Att,K3)]/Query-Info/id[@Value=‘PI(IT)’]].

7. COMPLETENESS ENFORCEMENT
In this section we show how the client can verify the complete-

ness of the query answer by using the query template. The query
template ofd is generated by the Owner, by applying a simple
XSLT transformation [10] on the corresponding SE-ENC docu-
ment. This transformation prunes from the SE-ENC document the
encrypted data contents and authenticity information, which are not
necessary for completeness verification. To prevent alterations of
the query template, the Owner signs it with a Merkle signature,
which is stored into aSign element. Once the client receives a
query template, it is able to verify the completeness of the queries
submitted on XML documents conforming to the template. Com-
pleteness verification can be done for all XPath queries whose con-
ditions are based on=, <, <=, >, >= operators or thecontains()
function.

The node-set returned by evaluating a query on the query tem-
plate could be a superset of the nodes the user is entitled to see,
according to the Owner access control policies. Thus, in order to
verify the completeness, the client must also consider the access
control policies specified on the document. For this reason,the
query template contains also policy information (i.e., thePolicy
element andPC attributes).

EXAMPLE 7.1. Consider the query template associated with the XML
document in Figure 2 and the access control policies presented in Exam-
ple 3.1. Suppose that a Partner1 manager submits a query asking for all
the Inv elements associated with Partner1. Suppose, moreover, that an
untrusted Publisher sends the manager only the firstInv element. The
completeness verification process executed by the manager first verifies
the authenticity and integrity of the query template. Then,it considers
the query submitted to the Publisher, that is, the XPath expressions re-
turned by Algorithm 1. More precisely, the user XPath expression ‘/Invest-
ments/Investment[Partner=‘Partner1’]/*’ is transformed into: Enc(Invest-
ments,Key(PC(Investiments)))/Enc(Investment,Key(PC(Invest-
ment))) [[/ Sec-Info//Node-Info[@Name=Enc(Partner,Key(PC(
Partner)))]/ Query-Info/id[@Value =PI(Partner2)]]]. The eval-
uation of this query on the query template returns two elements with tag-
name Enc(Inv,Key(PC(Inv))). Moreover, for each of them three at-
tributes are returned, that is, ‘Enc(Date,Key(PC(Data)))’, ‘Enc(Amount,
Key(PC(Amount)))’, and ‘Enc(Type,Key(PC(Type)))’. The client
must then prune from these nodes, those for which the user hasno au-
thorization. To do that, the client verifies the policy configuration of each
of these nodes by checking thePC attribute stored into the corresponding
Node-Info element. Thus, considering the value of thePolicy element,
the nodes for which the Partner1 manager has an authorization are those
whose policy configuration has the 1-st bit set equal to 1.10 Thus, all the
possible values are 0001, 0011, to which characters ‘a’ and ‘c’ correspond.
Thus, the nodes that the Partner1 manager is authorized to access are all
the nodes returned by the client evaluation on the query template. There-
fore, he/she verifies that in the answer received by the Publisher an element
is omitted.

10We suppose that the ids of access control policies applied ondocument in
Figure 2 are 15 and 16, respectively.

105

8. FORMAL RESULTS
In this section, we state the correctness of the proposed solution,

proofs can be found in [3]. In particular, we show how the proposed
framework is able to enforce the considered security properties.
Before presenting the formal results, we introduce thereply doc-
ument, that is, the XML document generated by the Publisher and
containing the query answer plus additional information needed for
authenticity verification.

DEFINITION 8.1. (Reply document) Letg = (Vg, v̄g, Eg, φEg)
be the SE-ENC version of an XML documentd, letu be a user, and
q be a query ond submitted byu to a Publisher. LetV iew(q, u) =
(Vq, v̄q , Eq, φEq) be the XML document answer toq, according to
the policy configuration ofu. Thereply document of queryq with
respect to uis an XML documentr = (Vr, v̄r, Er, φEr) such that:

• V e
r =V e

q

⋃
V e

ATT

⋃
Sign, where:

-V e
ATT contains a node, calledAttributeElement, for each

attribute a ∈ V a
q . This node represents an element whose data

content is the value ofa. The name ofa is stored into an additional
attribute ofAttributeElement, calledAttrName. The node
is a direct child of the node inV e

r corresponding to the element in
V iew(u, q) to whicha belongs to;

- Sign is an element, direct child of̄vr containing the content of
Sign in g;

• each nodee ∈ V e
r contains an attribute, calledMhPath, containing

the Merkle hash path betweene and its father.

The following theorem states the correct enforcement of confi-
dentiality requirements.

THEOREM 8.1. LetO be an Owner,P be a publisher managing
a portionPS of the Owner source. LetPB be the policy base ofO
and letu be a user subscribed toO. Letd be a document belonging
to P , and letVd(u) be the portion ofd that u is allowed to see
according to the policies inPB. Let q be a query ond submitted
by u to P and letr be the corresponding reply document. Then,
1) P is not able to read information inPS. 2) there does not exist
a noden in d such thatn 6∈ Vd(u) and u is able to accessn by
processingr.

As far as authentication is concerned, the correctness is based on
the fact that the Merkle hash paths sent by the Publisher are suffi-
cient for the user to authenticate all the elements he/she isallowed
to see in the reply document. We need thus to first state the notion
of authenticable element.

DEFINITION 8.2. (Authenticable element). Letd = (Vd, vd, Ed,

φEd
) be an XML document, letg = (Vg, v̄g, Eg, φEg) be the SE-

ENC version ofd, and r = (Vr, v̄r, Er, φEr) be the reply docu-
ment corresponding to a query submitted ond by a useru. Let
VT be the set of terminal nodes ofr. For eachv ∈ V e

r , v is a
authenticable by s, iff there existsvt ∈ VT , with v ∈ Path(vt),
such that it is possible, through a recursive bottom-up computa-
tion, to compute the Merkle hash value ofvd using only the values
in {w.MhPath|w ∈ Path(vt)}.

Note that authenticability is required only for the nodes ofthe
reply document that represent elements. Indeed, attributenodes in
the reply document (i.e.,MhPath attributes) are inserted only to
store values needed to check the authenticity and completeness of
the answer.

THEOREM 8.2. LetP be a Publisher, letd be a document, and
let de be the SE-ENC version ofd managed byP . Let r be the
reply document corresponding to a query submitted ond by a user
u. Each element node belonging tor is authenticable byu.

Finally, completeness enforcement is ensured by the following
theorem.

THEOREM 8.3. LetP be a Publisher,O be an Owner andPB
its policy base. Letq be a query submitted by a useru to P on a
documentd. Let qt be the query template associated withd. Let
r be the reply document returned byP to u, and letVd(u) be the
portion of d that u is allowed to see according to the policies in
PB. By using the information inqt andr, u can verify that he/she
receives all the portions ofVd(u) answering queryq.

9. CONCLUSIONS
In this paper we have provided a comprehensive framework able

to ensure security properties in the context of a third-party architec-
ture. Our approach also includes a suite of strategies for minimiz-
ing the overhead due to updates to the policy base or the document
source [3]. The strategies are based on incrementally maintaining
the document encryption and the related data structures, upon each
update operation, without rebuilding them from scratch each time
an update occurs. The work reported in this paper can be extended
along several directions. First, we would like to complement our
framework with privacy enforcement. An implementation of the
proposed system is currently underway. Up to now we have com-
pleted the modules for authenticity and completeness verification.
We plan to develop also the modules for confidentiality enforce-
ment to test the system performance and to assess the overhead due
to update management.

10. REFERENCES
[1] E.Bertino, B.Carminati, E.Ferrari, B. Thuraisingham,A.

Gupta. Selective and Authentic Third-Party Distribution of
XML Documents.IEEE Transactions on Knowledge and
Data Engineering (TKDE), 16(10):1263–1278, 2004.

[2] E. Bertino and E. Ferrari. Secure and Selective
Dissemination of XML Documents.ACM Transactions on
Information and System Security (TISSEC), 5(3):290–331,
2002.

[3] B. Carminati, E. Ferrari, E. Bertino. Securing XML Data in
Third-Party Distribution Systems. Technical Report,
University of Insubria at Como. Available at
http://scienze-como.uninsubria.it/carminati/SE-ENC.pdf

[4] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,
and S.G. Stubblebine. Flexible Authentication of XML
documents. InProc. of the 8th ACM Conference on
Computer and Communications Security, ACM Press, 2001.

[5] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing
SQL over Encrypted Data in the Database Service Provider
Model. In Proceedings of the SIGMOD Conference, 2002.

[6] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database
as a service, ”In Proceedings of ICDE Conference, 2002.

[7] R. Jammalamadaka and S. Mehrotra. Querying Encrypted
XML Documents . UCI Technical report TR-DB-04-03,
2003.

[8] R.C. Merkle A Certified Digital Signature. InAdvances in
Cryptology-Crypto ’89, 1989.

[9] G. Miklau and D. Suciu. Controlling Access to Published
Data Using Cryptography, In Proc. of the29th VLDB
Conference, Berlin, Germany, 2003.

[10] World Wide Web Consortium. Available at
http://www.w3.org

106

