Securing XML Data in Third-Party Distribution Systems

Barbara Carminati
University of Insubria at Como
Como, ltaly

barbara.carminati@uninsubria.it

ABSTRACT

Web-based third-party architectures for data publishirgtaday
receiving growing attention, due to their scalability ahe &bil-

ity to efficiently manage large numbers of users and greauatso

of data. A third-party architecture relies on a distincttmtween
the Owner and the Publisher of information. The Owner is the
producer of information, whereas Publisher provides dataage-
ment services and query processing functions for (a podipthe
Owner’s information. In such architecture, there are intgoatrse-
curity concerns especially if we do not want to make any agsum
tion on the trustworthy of the Publishers. Although appleec
have been proposed [4, 5] providing partial solutions te frbb-
lem, no comprehensive framework has been so far develoged ab
to support all the most important security properties ingtesence

of an untrusted Publisher. In this paper, we develop an XNkehl
solution to such problem, which makes use of non-conveation
digital signature techniques and queries over encryptead da

Categories and Subject Descriptors[D.4.6] Security and Pro-
tection Access

General Terms: Security.

Keywords: XML, Third-party architecture, Data outsourcing.

1. INTRODUCTION

Third-party information dissemination represents todayira
teresting paradigm for data-intensive web-based appitatn a
large variety of contexts, from grid computing to web seegior
P2P systems. Relevant applications include large-scdkrdeed
Digital Libraries, e-commerce catalogs, e-learning, atmrative
applications, content distribution networks. The mairaidéthird-
party architectures is that the informati@wner outsources all
or some portions of its data to one or mdrablishersthat pro-
vide specialized data management services and query pioges
functions. Such an approach is scalable, results in higfilyient
guery execution, and reduces the management costs of therOwn

*The work reported in this paper has been partially suppdsed
the Italian MIUR under the project ‘Web-based managemedt an
representation of spatial and geographical data’.

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'05, October 31-November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010$5.00.

99

Elena Ferrari
University of Insubria at Como
Como, ltaly

elena.ferrari@uninsubria.it

Elisa Bertino
CERIAS, Purdue University
Lafayette, USA

bertino@cerias.purdue.edu

Clearly, such architecture has challenging security reguents.
Requiring the Publishers to be trusted wrt security praperis not
always an appropriate solution in that large web-base@systan-
not be easily verified to be trusted and can be easily pepdtrat
Thus, our goal is to ensure security properties even in tbgegorce
of untrusted Publishers.

The main security properties that should be assured cnefi-
dentiality, integrity, andauthenticity Confidentiality has two as-
pects. The first, that we catlonfidentiality wrt the usemrefers to
protecting data against unauthorized accesses by usersetbnd,
that we callconfidentiality wrt the Publishedeals with protecting
data from accesses by Publishers. Integrity requires #tatabn-
tents are not altered during their transmissidfinally, authentic-
ity assures that a user receiving some data can verify tbaldta
have been generated by the Owner and that the Publisher has no
modified their contents. To provide strong guarantees atiatat
contents to users, we need to complement the three basidtgecu
properties with an additional property that we refer teasplete-
ness By completeness we mean that the user receiving a portion
of data is able to verify whether he/she has received allrifo-i
mation is allowed to see according to the specified accedsoton
policies. Although some proposals exist assuring thefaatisn
of some of these properties [4, 5], no comprehensive framewo
exists able to enforce all such properties.

In this paper, we develop such a comprehensive solutionpby f
cusing our attention on data expressed in XML [10]. Our solu-
tion relies on the use of encryption and non-conventiorgiaiure
techniques. Encryption is used to support confidentialibe basic
idea is that the Publisher does not operate on clear text lolattan
an encrypted version. Encryption is driven by the specifbsas
control policies: all data portions to which the same pekcapply
are encrypted by the Owner with the same key. Then, eachsser i
provided by the Owner with all and only the keys correspogdin
to the portions of data he/she is allowed to access. Cledaolyy
users and Publishers must be provided with additional méer
tion to make them able to submit and answer queries on ematypt
data. Authenticity/integrity requirements cannot be eediy tra-
ditional digital signature techniques. The reason is timaesa user
may be returned only selected portions of a document, dépgnd
on his/her queries and the specified policies, it is not endbgt
the Owner signs each document it sends to the Publisher, Weus
propose an alternative solution, based on Merkle hash [B¢e®
generate document signatures.

Finally, completeness is verified through the so-cadjeery tem-
plate which consists of the encrypted structure of the origirel-d
ument. We show that, by executing the queries submitted tda P

Here we do not consider integrity wrt the specified accesgalgolicies,
since third-party architectures are mainly conceived éadraccesses.

lisher on the query template, a user is able to verify the detap
ness of the query answer without accessing informatiorhbeats
not allowed to see.

Our work has been inspired by the work by Hacigumus et al. [5,
6], which developed a method for querying encrypted dateedto
in relational databases. From such work we borrow the method
for querying encrypted data, which is based on partitiotiregdo-
mains of the relation attributes. The same method has been ex
ploited also in the context of XML data in [7]. However, sugit a
proaches only consider confidentiality wrt the Publishaed they
do not address the requirement of confidentiality wrt thesjser
authenticity/integrity and completeness. By contrasthia paper
we extend these approaches to data encrypted with diff&esst
thus providing confidentiality wrt the users. In additiore won-
sider also all the other security properties. Other relatedk is by
Miklau and Suciu [9], which proposed a method for a contiblle
sharing of XML data, dealing only with confidentiality. As dur
approach, confidentiality is ensured by the use of crypagca
technigues. However, the main difference with our propisstidat
they do not rely on a Publisher for managing data, rather alaga

simply published on the web in an encrypted form and each user

can access the authorized portions, using the keys he/sbives
from the data Owner. However, we strongly believe that ngjyon
a data Publisher has many benefits, in terms of efficiency ptid o
mization of resource usage. Indeed, simply publishing #te dver

the web would make them the target of a huge number of attacks,

with many users trying to perform queries over them, and tons
suming a huge amount of computational resources. By cantinas
Publisher can be equipped with sophisticated anti-inbrusools
and technigues avoiding queries floods. Additionally, redying
on a Publisher requires each user be equipped with a queiyeeng
able to process queries over encrypted contents.

User Policy Confi
+ encryption
Keys

SE-ENC XML
documents

bscription
Re t

) ‘El Publisher
entry key
E

User Policy Configuration + Query g g
Reply Document —=—-

o Qury
 —
—

Answer

User

Figure 1: Overall architecture

2. SYSTEM OVERVIEW

In the architecture we propose (see Figure 1) users subsriegu
to Publishers through @ient, that the user can download from the
Owner site, and which makes the user able to verify the sgcuri
properties on the received answers. The novelty of our ape
that we do not make any assumption on the trustworthy of Blabli
ers. In the following we give a general overview of the tegfueis
we have devised.

Because the proposed framework requires additional irderm
tion to be transmitted by the Owner to both Publishers andsuse
we store all such information into a directory server (whazn
also be shared among different Owners belonging to the same d

Merkle hash trees are a well-known mechanism used in severalmain or to federated ones), to limit the overhead that thesg-o

computer areas for certified query processing. For instahey
have been exploited for authenticating XML documents by De-
vanbu et al. in [4]. However their approach has many diffeesn
wrt our proposal. First, it addresses only authenticityereas we
address all security properties. Moreover, our approactutioen-
ticity verification does not have limitations on the struetof XML
documents to which it can be applied, whereas the approableby
vanbu et al. does not handle attributes and it assumes tizat ola:
tents can be only present in leaf nodes. Another importdferdi
ence is that we can certify the authenticity for each posdibid

of XPath queries, whereas the approach by Devanbu et al. only

handles queries returning whole sub-trees. The work regart
this paper builds on a previous paper by us [1], where we dpvel
the technique for authenticity verification that we use md¢hrrent
paper. However, the current paper significantly extendspoes
vious work with techniques for confidentiality and compitetss
enforcement. Moreover, we define also an architecture datece
data structures supporting security properties verificati

The remainder of this paper is organized as follows. Next sec
tion presents an overview of the proposed framework. Sestio
and 4 describe authenticity and confidentiality enforcem8ec-
tion 5 introduces the XML encoding we propose to represeat th
needed security information, whereas Section 6 focusesueryq
processing. Section 7 deals with completeness. Sectiomé&fty
states some properties of the proposed framework, wheszdin s
9 concludes the paper.

100

ations require. In particular, as depicted in Figure 1, tinectory
server contains three kinds of entries: Ehélishersentry, which is
shared by all Publishers and contains all encrypted doctsteat
they are entitled to manage, plus additional informatiaytheed
for the correct functioning of the system; tbisersentry, shared by
all the subscribed users, storing common information; agtidtanct
User.ID entry for each single user, containing needed information
to verify the security properties. Thus, after a mandategjistra-
tion phase, each user/Publisher receives by the Owner ytsefte
accessing the corresponding entries in the directory.

We now briefly discuss how the security properties are eefbrc
Confidentiality wrt final users are expressed by the Owner &g
of a set of access control policies, regulating the opanatibat
can be performed on its data [2]. To enforce confidentialitiytine
Publisher, the Owner encrypts its data before deliveriegitto the
Publisher. Following an approach we will explain in Sectéorthe
Publisher is able to answer user queries, without the neetk-of
crypting the data. Thus, it returns the requesting user arypted
answer. If the Publisher operates according to the Ownécips)
this answer contains all and only the portions of the reqakdata
the user can access. Otherwise, it may contain a superseé of t
data the requesting user is allowed to see. The key aspduids t
that a user must be able to decrypt all and only the portions of
the returned answer he/she is authorized to see. This inedta
by selectively encrypting the documents in the Owner soutoe
Owner encrypts them in such a way that all the portions that ar
protected by the same policies, hereafter cafleticy configura-
tion, are encrypted with the same Keffhese keys are then stored
in theUserID entries by the Owner, on the basis of the policies the

2Here and in the following we refer to symmetric encryption.

corresponding users satisfy. Additionally, the entry esaheuser
policy configurationa certificate signed by the Owner maintaining
information on the access control policies the user sagisfidich
are determined according to the credentials the user ssiblioniing

a mandatory subscription phase.

To make a Publisher able to correctly answer queries over en-

crypted data, the Owner provides the Publisher with infdioma

on which users can access which portions of the managed docu

ments, according to the access control policies it has SpeciAd-
ditionally, the Owner supplies the Publisher some infororathat
makes it able to query encrypted data. The basic idea isieat t
Owner divides the domain of each document node (i.e., at&ib
and element) into distinguished partitions, to which a ugidd is
assigned. Then, the Owner provides the Publisher togethbr w
the encrypted nodes also the ids of the partitions corretipgro
their values. The Publisher is thus able to perform querirestly
on the encrypted documents, by exploiting the partitionisysee
Section 4 for more details). Similarly, users find in the camnm
Usersentry information on the partitioning techniques adoptgd b
the Owner.

Authenticity and integrity are assured by the use oferkle

signature a signature generated by the Owner using a bottom-up

computation on the whole document, based on Merkle hash tree
[8]- Such signature is generated before encrypting a dootiarel

it is provided to the Publisher along with the correspondiiog-
ument. The Publisher will then forward it to a user queryihg t
document to which it refers to. The problem here is that,esthe
Publisher answer may not contain all the document portizes o
which the signature has been generated, a user may not btoable
validate the signature. To avoid this shortcoming, the Qvgnees

the Publisher a set of additional hash values, one for eadk,no
which represent the information needed to validate theasige if

the corresponding node is not inserted into the Publishswean
Thus, when a user queries a certain document, the Publishds s
him/her, besides the corresponding Merkle signature thése ad-
ditional hash values, referring to the document portioniscon-
tained in the query answer. This makes the user able to Yocall
perform the computation of the Merkle signature and conmggiti
with the one generated by the Owner.

All the additional information needed by the Publisher fonfi-
dentiality and authenticity/integrity enforcement is eded in XML
and attached to the encrypted document, forming the saisslzu-
rity enhanced encryptio(SE-ENC) of the original document. All
the SE-ENC documents are stored by the Owner in the Pubdisher
directory entry. Similarly, all information needed by a usever-
ify the security properties are encoded by the Publisher MiLX
and attached to the query answer, resulting in what we hdlegica
thereply document

Finally, to make a user able to verify the completeness ofayqu
result, the Owner generatesgaery templatecontaining the en-
crypted structure of the original document. The query tettgphas
the twofold goal of making a user able to verify the completen
of the received answers, as well as to make easier the tasleof q
submission, in that by inspecting the query template a ws®0b-
tain information on the structure of the documents (or pos)
he/she is allowed to access. The query template is encrypted
the Owner using the same strategy employed for XML documents
This means that a user can see only the portions of the query te
plate on which he/she can perform the queries, accordingeo t
specified access control policies. The query template iisalig
signed by the Owner, through a Merkle signature, to prevent a
terations. All the query templates are stored by the Ownéhén
Usersdirectory entry.

101

<Investments-

<lInvestment Partner='Partnerd’
<Inv Date=" Amount="
<Inv Date=" Amount="
</Investment-

<Investment Partner='Partner2’
<Ilnv Date=" Amount="
</Investment-

</Investments-

Figure 2: An example of XML document

Type="> ...</Inv>
Type="> ..</Inv>

Type="> ... </Inv>

3. AUTHENTICITY ENFORCEMENT

For authenticity enforcement we adopt an alternative wapio-
pute the digest value of an XML document wrt traditional thgi
signature techniques [1]. The function we use to computalthe
gest value is théMerkle hash function This function univocally
associates an hash value (referred td/laskle hash valuewith a
whole XML document through a recursive bottom-up compatati
on its structure. The basic idea is to associate a Merkle Velske
with each node: of the XML document, denoted ddh X (n): the
Merkle hash value associated with an attribute is obtaiyexpply-
ing an hash function over the concatenation of the attrikatee
and the attribute name; the Merkle hash value associatddanit
element is the result of the same hash function computedtbeer
concatenation of the element content, the element tag nantk,
the Merkle hash values of its children nodes, both attribated
elements. The digest of the XML document is thus the Merkle
hash value of the root of the document. Once the digest has bee
computed, it is signed by the Owner, generating what we ball t
Merkle Signatureof the document. The Merkle signature is in-
serted by the Owner into the corresponding SE-ENC document,
by adding aSi gn subelement to the document root, which con-
tains the signature value. When a user submits a query toutre P
lisher, the Publisher returns him/her, besides the quexyitrealso
the Merkle signatures of the documents on which the quergis p
formed. Moreover, to make the user able to validate the tigaa
the Publisher sends him/her a set of hash values, refemwitiget
portions of the requested documents not returned in theyqrer
swer. This additional information is calldderkle hash paths

ExXAMPLE 3.1. Let us consider the XML document presented in Fig-
ure 2, and suppose that the Owner states two access contiolggoal-
lowing the manager of Partnerl, (Partner2, respectivetyptcess all the
subtree rooted at thenvest ment element related to Partnerl (Partner2,
respectively). These policies allow the manager of Pattr{artner2, re-
spectively) also to access the type of the investments gdePertmer2 (Part-
nerl, respectively), that is, only tieype attributes of thel nv elements.
Suppose that a manager belonging to Partner2 requires aliriiestments
of Partnerl. Then, the Publisher returns the managerIthe elements
with only theType attributes. We show now which are the additional hash
values needed by the manager to validate the signature ofetipgested
document. First of all, the manager needs to compute the IBldr&sh
value of thel nv element. Since the query result contains only Thee
attribute of such element, the manager needs the Merkle walstes of
Type’s siblings (i.e. Anount andDat e attributes) plus the hash value of
the tagname and element content ofv. Once the Merkle hash value of
I nv is computed, the manager needs the Merkle hash values lohals
siblings (i.e., the secondnv element), to compute the Merkle hash value
of thel nvest ment element. Finally, to compute the Merkle hash value
of the root, he/she needs the Merkle hash valuérofest nent’s sib-
lings (i.e., thel nvest nent element referring to Partnerl). Thus, the
hash values needed by the manager are: Mim¥unt); MhX(Dat a);

h(l nv. cont ent 3); h(l nv. t agnane); MhX(l nv); h(l nvest nent .
content); h(l nvest ment . t agnane); MhX(l nvest nent);

h(l nvest ment s. cont ent); h(l nvest nent s. t agnane);
MhX(nvest ment s), where h() is a collision-resistant hash function, used
to compute the Merkle hash values.

More formally, given two nodes, w such thaty € Path(w)?,
the Merkle hash pattbetweenw andw is the set of hash values
necessary to compute the Merkle hash valuelwdiving the Merkle
hash value ofv. The Merkle hash path betweenandwv consists
of all the Merkle hash values af’s siblings, together with the hash
value of tagname and content ofs father node. Indeed, accord-
ing to Merkle hash function definition, given, these hash values
make possible the computation of the Merkle hash value 'sf
father node. Thus, given this Merkle hash value to compute th
Merkle hash value of are necessary also the Merkle hash values
of all the siblings of the nodes belonging to the path coringct
v to w. Thus, for each node belonging to the query result, the
user must be supplied by the Publisher with the Merkle Hagh pa
betweenn and the root element. Since the Publisher operates on
encrypted data, it is not able to compute the Merkle hashegalu
and, as a consequence, to generate the appropriate Mesdtle ha
paths to be returned to the user submitting the query. Ferda-
son, the Owner gives Publisher some additional informatiated
Authenticity informationwhich makes the Publisher able to com-
pute the Merkle hash values of all the document nodes, résgec
at the same time, confidentiality requirements. Such inftion
are attached to the SE-ENC document using the strategy we wil
illustrate in Section 5.

4. CONFIDENTIALITY ENFORCEMENT

To ensure confidentiality, we propose a solution based arypnc
tion techniques. The idea is that the Owner, before outsuyiz
document to Publishers, encrypts it on the basis of the fpéci
access control policies. All the portions of an XML documemt
which the same policy configuration applies are encryptet thie
same secret key (we refer to the document encryption driyeheb
Owner policies asvell-formed encryption The appropriate keys
are then stored in the Owner directory server, in such a wal th
each user obtains all and only the keys corresponding todticgs
he/she satisfies. Moreover, to limit the number of keys teatrto
be permanently maintained we adopt an hierarchical key gena
ment schema defined in such a way that from the encryption key
associated with an access control policy it is possible tivelall
and only the encryption keys corresponding to policy coméigan
containing such a policy. In this way the number of keys ttesch
to be managed is linear in the number of the specified acces®to
policies.

Generation of the well-formed encryption ensures confident
ity both wrt the users and the Publishers. Each node of thdtres
ing encrypted document is accessible only to authorizedsuteat
is, those users who have been provided with the appropréate k
Since the Publisher does not have keys, this solution pteven
accesses to the managed data, thus ensuring the confiigmtial
Publisher. Additionally, the fact that a user submits ceetio a
Publisher in encrypted form ensures a certain degree cdigyito
the user in that the Publisher does not know the details ofube
mitted queries.

3Given an element, we use the notatioa.tagname, e.content to denote
the tagname and the data conteniepfespectively. Given an attribute

the notationa.val anda.name are used to denote the value and the name
of attributea, respectively.

4Given a nodav, Path(w) denotes the set of nodes connectingp the root

of the corresponding document.

102

To make the Publisher able to evaluate queries on encrypied d
uments, we adopt an approach similar to the one proposed @ [5
for relational databases. The underlying idea of this agghids
the following: given a relatiom?, the Owner divides the domain
of each attribute iR into distinguished patrtitions, to which it as-
signs a different id. Then, the Owner sends the Publisheetthe
crypted tuples, together with the ids of the partitions esponding
to each attribute value iR. According to this approach, the Pub-
lisher is able to perform queries directly on the encryptgules,
by exploiting the partition ids. As an example, consider tee
lation Employee(eid, ename, salary), and, for simplicity, con-
sider only thesalary attribute. Suppose that the domainsefary
is in the interval [500k, 5000k], and that an equi-partitieith 100k
as range is applied on that domain. Thus, each encrypted tupl
is complemented with the id of the partition correspondioghie
value of thesalary attribute for that tuple. By using this id the Pub-
lisher is able to perform queries such as: “SELECT * FROM Em-
ployee WHERE salary =1000k”, which is translated into thergu
“SELECT * FROM Employee WHERE salary =XX", where XX is
the id of the partition containing the value 1000k. It is netgting
to note that this query returns an approximate result, ihitha-
turns all the tuples of thEmployeeelation whosealary attribute
belongs to the range [1000K, 1100K). A further query process
has thus to be performed by the client to refine the answemedu
by the Publisher.

We adapt such an idea to the XML context. This requires first
of all to deal with partition generation. In general, the ickeoof
the most appropriate partitioning technique mainly depemdthe
attribute domain. Thus, in defining the partitioning tecfugs for
an XML document, we need to consider the data types that it may
contain. For numeric data (such as integer, real, etc.)ategly
based on an equi-partitioning of the domain could be appatgpr
However, an XML document mainly contain textual informatio
(for instance, the data content of an element). For thiooreasis
necessary to devise ad-hoc partitioning techniques fouaéxlata,
which are not so important in the relational context. Theioh
we propose for partitioning textual data requires a firstsphdur-
ing which the Owner preprocesses the textual data contéinea
attribute/element and extracts from them a set of kewaFEisen,

a partition id is associated with each keyword. More préyisd|
possible keywords are organized into a dictionary. Theegfoarti-
tion ids are associated with groups of dictionary termsi(fstance,
assuming that the terms in the dictionary are in alphabetierowe
can generate a different id for each groupMotterms). In the rest
of the paper, we assume that there exists a fundtidf) that given
as input a valueal returns the index of the partition to whielal
belongs to.

5. SECURITY-ENHANCED ENCRYPTION

All information for confidentiality and authenticity enftement
is encoded in XML and attached to the well-formed encryption
forming the SE-ENC document. Generation of SE-ENC docu-
ments consists of two main steps: generation of 1) the wethéd
encryption, and 2) security information.

Generation of well-formed encryption is done by first magkin
the nodes of the input document with the policies that apply t
them. Then, all the nodes to which the same marking applies ar
encrypted with the same key. In the literature, there exiigfisrent
proposals for the encryption of an XML document (see foranse
[7, 10]). However, we prefer to adopt a slightly differenpapach,

5Several techniques developed in the Information Retriéeddl can be
used to this purpose.

to preserve as much as possible the structure of the orijival
document in the document encryption. Indeed, since usersufo
late queries according to the structure of the original duent, this
choice makes query processing easier. Thus, given an XMu-doc
mentd, the well-formed encryption af is an XML documenti®,
which preserves the elements/attributes relationshipigeasriginal
document, but which has the names and contents of all thesnode
encrypted. More precisely, the resulting document is folgnae-
fined as follows.

DEefrINITION 5.1. (Well-formed encryption of an XML docu-

men). Letd = (Va,va, B4, $5,)° be an XML document. Let
PCri(d) be the set of policy configurations which applydtoLet
Key(pc) be the encryption key associated with policy configura-
tion pc, and letVy(pc) be the set of nodes to whigh applies. The
well-formed encryption of is an XML documeni® = (Vye, Uge,
Ege, ¢p,.), such that:
e d° preserves the elements/attributes relationshipg; of
e Vpe € PCpp(d), Vv € Vy(pe), Fv’' € Vge such that:
v'.tagname= Enc(v.tagnaméy ey(pc)), Vv'.content= Enc(v.con-
tent, Key(pc)), ifv € V£,
v'.name= Enc(v.nameley(pc)), v'.val= Enc(v.val, Key(pc)), if
vEVEL;
WheredEnc(string, key) encrypts astring with the inputkey.

Once the well-formed encryption has been generated, itrunde
goes a second phase, during which it is complemented with-inf
mation for authenticity and confidentiality enforcementll #is
information are wrapped into a unique element, caedurity In-
formation element. The SE-ENC document contains a different
Security Information element for each element of the weittfed
encryption. Such element is added as an additional childhef t
corresponding element and contains confidentiality andesntic-
ity information of both the element itself and of all its #ttrtes.

The authenticity information associated with each noa# the
original document consists of the hash values needed to wemp
the Merkle Hash Path to be sent to users (cfr. Section 3). More
precisely, these are the hash value of the name @fe., the tag-
name or the attribute name, depending on whethieran attribute
or an element) and the hash value of the content @fe., the data
content or the attribute value, respectively). All theskiea are
contained into a unique element, calkkat h-1 nf o element, child
of the Security Information element correspondingto

Confidentiality information associated with a node comssisft
policy informationand query-processing informationPolicy in-
formation gives the Publisher information on which accesgmol
policies apply to each node of the original document, anchis e
coded into a string of hexadecimal values. With each nodethe
well-formed encryptiond® we associate a binary string of length
equal to the cardinality of the set of access control pdigitich
applies to the corresponding clear-text documgnthere, starting
from the left side, the value of thieth bit is: 1, if thei-th policy
7 applies ton; 0, otherwise. Then, we translate each 4-bits block
of the resulting binary string into the corresponding hedciahal
representation. This information is then stored as an iadait at-
tribute of the Security Information element. Finally, to kegol-
icy configurations meaningful to Publishers it is necessaigsert
an additional element into the SE-ENC document. This elémen

Swe exploit a graph-based representation of an XML docurmdate pre-
cisely, we define an XML document as a tuple= (Vy,vq, Eq, 95,),
where: Vg = V2 U V2 is a set of nodes representing elemeff§, and
attributes V'), 74 is a node representing the document element (called
document rodt E, is the set of edges representing element-subelement,
element-attribute relationships, or links between eldsef , is the edge
labelling function.

"The order is given by the policy identifier values.

103

<Sec-I nfo>
<Node-I nf o
PC="b">
<Aut h-I nf o>
<H-Nare> h(Investment.tagname) /H-Name>
<H-Cont ent > h(Investment.contentx /H-Cont ent >
< /Auth-Info>
< Query-Info>..</Query-Info>
</ Node-I nfo >
<Attributes >
<Node-I nfo Nane='Enc(Partnet ey(PC(Partner))) PC='b">
<Aut h-I nfo Nanme='Enc(Partnet ey(PC(Partner)))) >
<H-Name> h(Partner.tagname) /H-Nane>
<H-Cont ent > h(Partner2.contentx /H-Cont ent >
</Aut h-I nfo >
<Query-Info>
<ld Val ue='Pl(Partner2)’t-
</Query-I nfo >
</ Node-I nfo >
</Sec-I nfo >

Figure 3: An example ofSec-I nf o element

Namre="Enc(Investment ey (PC(Investiment)))’

calledPol i cy, contains the identifiers of the policies which apply
tod. These identifiers help the Publisher to match a user potiny ¢
figuration with the policy information in the SE-ENC docurhen

Query-processing information associated with a node stsef
the partition ids corresponding to it. All partition ids arentained
into a unique element, calle@uer y-I nf o element, child of the
Security Information element. We are now ready to formailtya-
duce the Security Information element.

DEFINITION 5.2. (Security Information element Let d°
(Vage, Ve, Ege, dr,.) be the well-formed encryption of an XML
documentl. Letv’ € V. be the encrypted element corresponding
tov € V. The Security Information element associated witts
an XML element such that:

e s.tagname=Sec-| nf o;

e scontains two subelementsibde-I nf oandAt t ri but es, where:
- Node-I nf o has two attributes:Name, which contains the en-
crypted name of the nod®C, which contains the policy information
associated withv. Node-I nf o has two subelementgut h-1 nf o
and Quer y-I nf o. Aut h-I nf o has two subelementst+Nane,
storing h(v.tagname) (v.name, respectively); andt+-Cont ent ,
storing h(v.tagname) (v.value, respectively).Quer y-I nf o has
as manyl d subelements as the number of partition ids associated
with v.content.
- Attri but es has manyNode-I nf o subelements as the number
of attributes inv, with the same structure described above.

When all theSec-I nf o elements have been added to a well-
formed encryption, the final SE-ENC document is obtaineddy a
ding thePol i cy element previously illustrated, and tBegn el-
ement described in Section 3. Figure 3 reports an exampleeof t
Sec-I nf o element associated with thewvest ment element of
Partner2 (see Figure 2), computed by considering the acoag®l
policies presented in Example $1.

6. QUERY PROCESSING

In this section, we explain how the user can formulate gedde
the Publisher. We assume that users submit queries by méans o
XPath expressions. XPath allows one to traverse the grapb-st
ture of an XML document and to select specific portions on the
document according to some properties, such as the type @fth
ements, or specified content-based conditions. In thisrpage
consider conditions specified by means of equality or coiapar

8Given a noden, we denote withK ey(PC(n)) the encryption key asso-
ciated with the policy configuration applied @n

Enc (tgl,K1)

tgl

Enc (tg2/K2) Enc (tg2,K2)

tg3

Enc (tg3,K1) Enc (tg3,K3)

o Py . o
Enc (Att, K1) Enc (Att,K3)

a b

Figure 4: An example of view of a query template

operators on data content. Moreover, among the functiops su
ported by XPath, we consider thentains()function, which allows
the specification of conditions on textual data. In genemal(Path
expression consists oflacation path that allows one to select a
set of nodes from the target documents. A location path stssi
of one or morelocation stepsseparated among each other by a
slash. A location step consists of: aris, specifying the tree re-
lationships between the nodes selected by the locatioresigphe
current node (e.g., ancestor, ancestor-or-self, at&rjbchild, de-
scendant, descendant-or-self)n@de testused to identify a node
within an axis, by specifying a node type or the node name,(e.g
text(), node()); and zero or mopredicates placed inside square
brackets, used to further refine the set of nodes selectelebipt
cation step (e.g., [@Type="IT’]). In the following, given laca-
tion stepls we use the dot notation to identify its components (i.e.,
ls.axis, ls.nodetest, 1s.p).

To query an XML document through XPath, it is thus necessary
to know the corresponding schema. For this reason, the aser r
trieves from theUsersentry thequery templateof the interested
document, which consists of the encrypted structure of theee
sponding document. This operation is required only the fiins¢
the user inquiries a document.
gueries on encrypted documents, the query template cerfiain
ther information. One of this information is th®l i cy element
and PC attributes contained in the SE-ENC document, that allow
the client to correctly encrypt the queries to be submittethe
Publisher’

We explain now how the user can exploit the query template for
formulating an XPath expression on encrypted documentst &fi
all, it is important to point out that a user can access onligcsed
portions of the query templates, that is, only the nodes foickv
he/she has the appropriate decryption keys. Thus, as aéipstke
client extracts the authorized view from the query templaitede-
crypt a node, the client has to know which key has to be used. Th
information can be derived from tHeC attribute contained in the
query template. The view of the query template is built byracfu
tion, calledView(), which takes as input the policy configuration
of a useru and the query template, and turns the set of decrypted
nodes, into a well-formed XML document. This resulting viesy
then, displayed to the user, making him/her able to forneuXath
gueries on it. However, before the user XPath queries caunlipe s
mitted to the Publisher they have to be properly transforisuedi
encrypted. The following example clarifies the discussion.

ExAamMPLE 6.1. Consider the query template in Figure 4a, where, for
simplicity, we do not report policy and query-processinfipimation. Sup-
pose that the view of the query template for a usé the one presented in
Figure 4b. Moreover, suppose thatis interested only in those nodeg3
whose attributeAt t is equal to ‘IT". Thus, according to the view in Figure

9We postpone the details of the query template generatiomeimext sec-
tion, where we will explain the role played by this documenttie com-
pleteness verification.

104

To make a user able to submit

ALGORITHM 1. The Client Query Generator

INPUT:
1. An XPath expressiosip given in input by a usen
2. The query templatgt of the document to whichexp applies
3. Viewy (qt), that is, the view of the query templategenerated,
according to the policies satisfied by
OUTPUT:
The set of XPath expressioAsX P to be submitted to the Publisher

1. Letls, expnew, andexps be initialized to be empty
2. EX P=Transform({s,exp,expnew,exps)
3.Return EX P
FunctionTransform (lsprec,exp,expnew,exps)
1. Letls be the location step followintsprec in exp
2. If ls is emptythen:
a. Insertezpyeqw N0 exps
b. Return exps
3. LetNodes be the set of nodes dfiew., (qt) identified by
ls.nodetest
4. For eachn € Nodes:

a. Letpath be the absolute path connecting the
root of gt to Enc(n, Key(PC(n)))

b. Letprec.node be the node specified iRy -c..nodetest
belonging topath

. LetLs.ss be the missing location steps between
Enc(prec.node, Key(PC(pre.node))) and
Enc(n, Key(PC(n))) in path

d. Insert theLs,,;ss location steps intezpyew

e. Letlsnew be an empty location step

f. lsnew-axis=ls.axis

9. lSnew.node= Enc(n, Key(PC(n)))

h. Isnew.p = [/Sec-I nf o//Node-I nf o[@Name=FEnc(
ls.p.node, Key(PC(ls.p.node))l/Quer y-I nfoli d
[@Valuels.p.® PI(ls.p.value)]]

i. Insertlsyew INtO expnew

l. exps= exps | Transform{s,exp,expnew,exps)

EndFor

Figure 5: The Client Query Generator Algorithm

4b, v formulates the following XPath query: /tgl/tg3[@Att="[T’"Obvi-
ously, this path cannot be directly evaluated on the comesing SE-ENC
document, because it is not encrypted and refers to a pavitay.

There are three main transformations to which each locatem
of a user XPath expression must undergo before being suguhbit
the Publisher. Since the user XPath expression has beeragsshe
on a partial view of the query template, it is first necessergom-
pletion, by inserting all the missing location steps. Fastamce,
considering again Example 6.1, between the first and thengeco
location step of the user query it is necessary to insertabation
step referring to element ‘tg2’. Moreover, since the SE-ENMCuU-
ment is encrypted, it is necessary to encrypt the tagnaneeifigul
in the node test of the location steps with the proper keyshab
they can be evaluated by the Publisher. Finally, the thiadgy
formation is the transformation of the location step pratiés, by
computing the ids of the partitions, using the informatidmained
during the subscription phase, and by adapting the regyftiedi-
cates to the SE-ENC structure.

An Algorithm doing all the above mentioned operations is-pre
sented in Figure 5. For simplicity, the algorithm considernsy
XPath queries whose predicates contain a unique condition:
ever, it can be easily extended to consider more complexi-pred
cates. Due to the nature of well-formed encryption, whergeso
with the same name could be encrypted with different keysetit
cryption of a location step does not always return a uniguaeva
For instance, the second location step of the XPath queryin E
ample 6.1 (i.e., ‘/tg3[@ALtt="IT']") must be transformed two dif-

ferent location steps: ‘/Enc(tgB;)[...] and YEnc(tg3/3)I[...]
(cfr. Figure 4). Let us see how Algorithm 1 works. It receiass
input an XPath expressiofwp submitted by a user, the query
templateqt on which the query is submitted, and the viewgaf
generated by the client according to the policies satisfied. bTo

K1)l/Query-I nf of/i d[@Value="PI(IT)]]". The last step of the for cycle
recursively calls the Transform function. However, sifeenew call of the
Transform function does not find further location steps téréesformed, it
adds the new expression (i.e. SEc-I nf o//Node-I nf o[@Name=Enc(Att,
K1))/Query-I nf of/i d[@Value='PI(IT)]]') into expnew and it ends.
The second iteration of the cycle is similar to the first, wita difference

generate the set of XPath queries to be submitted to thedPebli
the algorithm exploits a recursive function, callEdans form(),
which recursively applies the same transformations to ksctiion
step ofexp. TheTransform() function first verifies whether all
the location steps irxp have been processed. If this the case,
step 2.a returns the resulting set of XPath expressions. Other-
wise, thel'rans form() function computes the set of nodes, called

Nodes, whose tagname is specified by the node test of the current /. COMPLETENESS ENFORCEMENT

location step. Then, in step 4 the algorithm iteratively sidars In this section we show how the client can verify the complete
each node inVodes. For each of these nodes tii&ans form() ness of the query answer by using the query template. The quer
function generates a different location step by applyiregahove- template ofd is generated by the Owner, by applying a simple
mentioned transformations. After the insertion of this Hesa- XSLT transformation [10] on the corresponding SE-ENC docu-
tion step into the XPath expression (step), the T'rans form() ment. This transformation prunes from the SE-ENC docuntent t
function recursively calls itself, to consider the nextdtion step encrypted data contents and authenticity informationgtvaie not

of exp. Let us see how the algorithm applies the needed trans- necessary for completeness verification. To prevent ditbesof
formations to each location step. At first, the algorithm p@tes the query template, the Owner signs it with a Merkle sigretur
the input XPath expression by inserting the missing locesi®ps \hich is stored into &i gn element. Once the client receives a
(stepst.a — d). To verify whether the path between the considered query template, it is able to verify the completeness of therigs
location step and the previous one in the input XPath exjmess sypmitted on XML documents conforming to the template. Com-

that the encryption key usedi§s instead ofi(; . When the Algorithm stops
set EXPs is equal to {Enc(tglK1)/Enc(tg2K2)/Enc(tg3K1)[/Sec-

I nfo Node-I nf o[@Name=Enc(AttK)]/Quer y-I nf o/i d[@Value=
‘PIIT)Tl; Enc(tgl, K1)/Enc(tg2K2)/Enc(tg3/K3)[/Sec-I nf o//Node-

I nf o[@Name= Enc(Att3))/Quer y-I nf o/i d[@Value="PI(IT)]].

must be completed, the algorithm first computes the absphite
connecting the node identified by the current location stefhé
root of the query template (stepa). Then, in stepl.c it deter-
mines the nodes that are missing in the input XPath expresgib
the absolute path. Note that, since the query template iosnea-
crypted nodes, the nodes are first encrypted with the carnetipg
key. The second transformation is performed by gtep and en-

pleteness verification can be done for all XPath queries @/hos-
ditions are based on, <, <=, >, >= operators or theontains()
function.

The node-set returned by evaluating a query on the query tem-

plate could be a superset of the nodes the user is entitlegeto s
according to the Owner access control policies. Thus, ierral
verify the completeness, the client must also consider titess

crypts the tagname of the current node. The encrypted name iscontrol policies specified on the document. For this reasom,

inserted as node test in an empty location step. Finallylabe
phase is the translation of the predicates in the locatiep. stn
general, a predicate of a location step specifies a noder{ode)
to which a comparison operatey is applied (e.g.<,<=,>,>=,
contains()), matching it with the contained valug.¢alue). Ob-
viously, the Publisher can not evaluatedirectly on thep.node

of the SE-ENC document, since it contains only encrypted.dat

guery template contains also policy information (i.e., Fo i cy
element andPC attributes).

ExamPLE 7.1. Consider the query template associated with the XML
document in Figure 2 and the access control policies preskeim Exam-
ple 3.1. Suppose that a Partnerl manager submits a querngdér all
the | nv elements associated with Partnerl. Suppose, moreoveratha

By contrast, the predicate has to be adapted to the SE-ENG doC ntrysted Publisher sends the manager only the first element. The

ment. This implies that the condition has to be evaluateectliy

on theVal ue attribute of thd d subelements, that is, the attribute

containing the partition id. More precisely, the new XPathres-
sion must be applied to tHed subelements of th€uer y-I nf o

element contained into thdode-I nf o element corresponding to
p.node in the SE-ENC document. Thus, the predicate that replaces ,,.,,;)))

p in the new location step is the following:Jéc- | nf o//Node-
I nf o[@Name=Fnc(ls.p.node, Key(PC(ls.p.node))//Query-

I nfo /i d[@Value®PI(ls.p.value)]], where PI() is the func-
tion returning the partition id corresponding to the inpaiue (step
4.h).

completeness verification process executed by the managewdrifies
the authenticity and integrity of the query template. Thiergonsiders
the query submitted to the Publisher, that is, the XPath esgions re-
turned by Algorithm 1. More precisely, the user XPath exgimes‘/Invest-
ments/Investment[Partner="'Partnerl’]/*" is transformdeinto: Enc(Invest-
ments, K ey(PC (Investiments)))/Enc(Investmenk ey (PC (Invest-

[[/ Sec-I nf o//Node-I nf o[@Name=Enc(Partnefs ey(PC(
Partner)))ll Query-I nf o/i d[{@Value = PI(Partner2)]]]. The eval-
uation of this query on the query template returns two eleésesith tag-
name Enc(Inv,Key(PC(Inv))). Moreover, for each of them three at-
tributes are returned, that is, ‘Enc(Daté ey(PC(Data)))’, ‘Enc(Amount,
Key(PC(Amount)))', and ‘Enc(TypeKey(PC(Type))). The client
must then prune from these nodes, those for which the usendasi-

EXAMPLE 6.2. Let us consider the user XPath expression presented in thorization. To do that, the client verifies the policy coufagion of each

Example 6.1: ‘/tgl/tg3[@Att="IT']. The algorithm start$o consider the
first location step, i.e., ‘/tgl’. According to Figure 4b, lgrthe root ele-
ment is referred by the node test of this location step. Thigies that the
for cycle is iterated only once. Moreover, the location ses no miss-
ing paths and no predicates. Thus, the only transformatieriopmed in
the cycle is the encryption, obtaining thesp,e.,='Enc(tgl, K1). By
contrast, the node test of the second location step, ig3[@At="IT",
indicates two different nodes, which are separately trarmméd by differ-
ent iteration of the for cycle. Let us consider the first itea, for the first
‘tg3’ node. At first the Transform() function computes thesinig path,
that is, Enc(tg2k2), which is added tezprew. Then, it encrypts the
node with the appropriate key, i.e., Enc(t§3,). Finally, it transforms the
‘[@At="IT"] predicate in '[/ Sec-I nf o//Node-I nf o[@Name=Enc(Att,

105

of these nodes by checking tRE attribute stored into the corresponding
Node-I nf o element. Thus, considering the value offteé i cy element,
the nodes for which the Partnerl manager has an authorinatie those
whose policy configuration has the 1-st bit set equal #8 Thus, all the
possible values are 0001, 0011, to which characters ‘a’ andorrespond.
Thus, the nodes that the Partnerl manager is authorized ¢eszcare all
the nodes returned by the client evaluation on the query tempThere-
fore, he/she verifies that in the answer received by the Bhualian element
is omitted.

Owe suppose that the ids of access control policies applieboament in
Figure 2 are 15 and 16, respectively.

8. FORMAL RESULTS

In this section, we state the correctness of the proposetico|
proofs can be found in [3]. In particular, we show how the josHd
framework is able to enforce the considered security pitaser
Before presenting the formal results, we introduce réy doc-

ument that is, the XML document generated by the Publisher and

containing the query answer plus additional informatioedesl for
authenticity verification.

DEFINITION 8.1. (Reply documentLetg = (V;, ¥y, Eq, dx,)
be the SE-ENC version of an XML documéniet v be a user, and
g be a query onl submitted by to a Publisher. LeView(q,u) =
(Va, Ug, Eq, ¢5,) be the XML document answer gpaccording to
the policy configuration ofi. Thereply document of query with
respect to us an XML document = (V;, ¥y, Er, ¢g,.) such that:

o Vie=Ve U VEpr U Sign, where:
-V4ipr contains a node, calledt tri but eEl enent, for each

attribute a € V. This node represents an element whose data

content is the value af. The name of is stored into an additional
attribute of At t ri but eEl enment, called At t r Namre. The node
is a direct child of the node i,¢ corresponding to the element in
View(u, q) to whicha belongs to;

- Sign is an element, direct child af, containing the content of
Signing;

e each node € V° contains an attribute, callethPat h, containing
the Merkle hash path betweerand its father.

The following theorem states the correct enforcement oficon

dentiality requirements.

THEOREM 8.1. LetO be an OwnerP be a publisher managing
a portion P.S of the Owner source. L& be the policy base @b
and letu be a user subscribed 10. Letd be a document belonging
to P, and letV;(u) be the portion ofd that v is allowed to see
according to the policies iPB. Letg be a query ond submitted

by u to P and letr be the corresponding reply document. Then,

1) P is not able to read information i#S. 2) there does not exist
a noden in d such thatn ¢ Vz(u) andu is able to access by
processing-.

As far as authentication is concerned, the correctnessexzn
the fact that the Merkle hash paths sent by the Publishendiie s
cient for the user to authenticate all the elements he/shioiwed

to see in the reply document. We need thus to first state themot

of authenticable element.

DEFINITION 8.2. (Authenticable elemeptLetd = (Vg, V4, Eq,
¢E,) be an XML document, let = (V,, 0y, Ey, o5,) be the SE-
ENC version ofl, andr = (V;, o, Er, ¢5,.) be the reply docu-
ment corresponding to a query submitted @ty a useru. Let
Vr be the set of terminal nodes of For eachv € V,°, visa
authenticable by,sff there exists; € Vr, withv € Path(vy),
such that it is possible, through a recursive bottom-up oatap
tion, to compute the Merkle hash valuergfusing only the values
in {w.MPat hjw € Path(v)}.

Note that authenticability is required only for the nodeghs
reply document that represent elements. Indeed, attrilndes in
the reply document (i.elyhPat h attributes) are inserted only to
store values needed to check the authenticity and completenf
the answer.

THEOREM 8.2. Let P be a Publisher, letl be a document, and
let d® be the SE-ENC version of managed byP. Letr be the
reply document corresponding to a query submitted dwy a user
u. Each element node belongingrtds authenticable by..

Finally, completeness enforcement is ensured by the foligw
theorem.

106

THEOREM 8.3. Let P be a PublisherD be an Owner anP 3
its policy base. Lef be a query submitted by a userto P on a
documentd. Letqt be the query template associated withLet
r be the reply document returned Byto u, and letV;(u) be the
portion of d that u is allowed to see according to the policies in
‘PB. By using the information igt andr, v can verify that he/she
receives all the portions df;(u) answering query;.

9. CONCLUSIONS

In this paper we have provided a comprehensive framewokk abl
to ensure security properties in the context of a thirdyparthitec-
ture. Our approach also includes a suite of strategies foinmii-
ing the overhead due to updates to the policy base or the dodum
source [3]. The strategies are based on incrementally aiaing
the document encryption and the related data structures, each
update operation, without rebuilding them from scratchhe@me
an update occurs. The work reported in this paper can bededen
along several directions. First, we would like to complemaur
framework with privacy enforcement. An implementation bét
proposed system is currently underway. Up to now we have com-
pleted the modules for authenticity and completeness watidin.
We plan to develop also the modules for confidentiality exder
ment to test the system performance and to assess the avehea
to update management.

10. REFERENCES

[1] E.Bertino, B.Carminati, E.Ferrari, B. Thuraisinghafn,
Gupta. Selective and Authentic Third-Party Distributidn o
XML Documents.IEEE Transactions on Knowledge and
Data Engineering (TKDE)16(10):1263-1278, 2004.

[2] E. Bertino and E. Ferrari. Secure and Selective
Dissemination of XML Document®ACM Transactions on
Information and System Security (TISSE&B):290-331,
2002.

[3] B. Carminati, E. Ferrari, E. Bertino. Securing XML Data i
Third-Party Distribution Systems. Technical Report,
University of Insubria at Como. Available at
http://scienze-como.uninsubria.it/carminati/SE-Epti.

[4] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,
and S.G. Stubblebine. Flexible Authentication of XML
documents. IProc. of the 8th ACM Conference on
Computer and Communications Secur®&CM Press, 2001.

[5] H. Hacigumus, B. lyer, C. Li, and S. Mehrotra. Executing
SQL over Encrypted Data in the Database Service Provider
Model. In Proceedings of the SIGMOD Conferen2€02.

[6] H. Hacigumus, B. lyer, and S. Mehrotra, “Providing datsaé
as a service, In Proceedings of ICDE Conferenc2002.

[7] R. Jammalamadaka and S. Mehrotra. Querying Encrypted
XML Documents . UCI Technical report TR-DB-04-03,
2003.

[8] R.C. Merkle A Certified Digital Signature. IAdvances in
Cryptology-Crypto '891989.

[9] G. Miklau and D. Suciu. Controlling Access to Published
Data Using Cryptography, In Proc. of t&8th VLDB
ConferenceBerlin, Germany, 2003.

[10] World Wide Web Consortium. Available at
http://ww. w3.org

