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ABSTRACT
PageRank has been widely used as a major factor in search
engine ranking systems. However, global link graph infor-
mation is required when computing PageRank, which causes
prohibitive communication cost to achieve accurate results
in distributed solution. In this paper, we propose a dis-
tributed PageRank computation algorithm based on iter-
ative aggregation-disaggregation (IAD) method with Block
Jacobi smoothing. The basic idea is divide-and-conquer. We
treat each web site as a node to explore the block structure
of hyperlinks. Local PageRank is computed by each node
itself and then updated with a low communication cost with
a coordinator. We prove the global convergence of the Block
Jacobi method and then analyze the communication over-
head and major advantages of our algorithm. Experiments
on three real web graphs show that our method converges
5–7 times faster than the traditional Power method. We be-
lieve our work provides an efficient and practical distributed
solution for PageRank on large scale Web graphs.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Algorithms, Performance
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1. INTRODUCTION
The World Wide Web keeps growing. In April 2005,

Google1 announced to have indexed about 8 billion web
pages. Only several giants can afford the prohibitive cost
for maintaining and updating the index of billions of pages.
Moreover, a considerable part of the high-quality Deep Web,
which is estimated about 500 times larger than the static
Web [20], is exclusive from crawlers.

Motivated by above reasons, distributed and collaborative
search engines have been extensively studied. In a typical
distributed search system, each node maintains the index of
local-stored pages. Usually there are also some nodes serving
as coordinators to provide global information for the other
nodes.

A major challenge to distributed search engines is how
to rank the query results on different nodes. The ranking
factors in web search can be divided into two categories.
The first is content-based relevance from traditional infor-
mation retrieval, which can be easily handled by each node
itself. The second is link-based authority rising in recent
years. Among the most popular link analysis algorithms
are PageRank [26] and HITS [16], both of which have been
demonstrated to be successful in many web information re-
trieval applications, especially for large scale web search.

However, despite of their simple forms, both PageRank
and HITS require the knowledge of the whole link graph
for computation, which causes prohibitive communication
overhead to achieve accurate results for distributed compu-
tation on large graphs. For example, even after compres-
sion, a web graph consisting of 118M vertices and 1G edges
is 385M Bytes large [1]. Extensive studies have been con-
ducted to shape PageRank suitable for distributed compu-
tation [7, 31].

In this paper, we propose a distributed PageRank com-
putation (DPC) algorithm. The general idea is divide-and-
conquer. We treat each web site as a node to make use of
the underlying block structure of the Web [12]. Each node
computes a PageRank vector for its local pages by links
within sites and then updates its local PageRank through
low volume communication with a given coordinator.

In a mathematical perspective, we prove that the DPC
algorithm is equivalent to the classic iterative aggregation-
disaggregation (IAD) method with Block Jacobi smoothing.
We further present the proof for global convergence of the

1http://www.google.com



Block Jacobi method and make thorough analysis on the
communication overhead and major advantages of our algo-
rithm.

We use three real web graphs with several ten million
vertices in our experiments. L1 distance and Kendall’s τ -
distance are adopted for evaluation. The experimental re-
sults show that the DPC algorithm achieves better approx-
imation than a recent work in [31]. And it converges 5–7
times faster than the traditional Power method. We be-
lieve that our work provides an efficient and practical dis-
tributed solution for PageRank computation on large scale
Web graphs.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the PageRank algorithm. Section 3
proposes our DPC algorithm with theoretical analysis of its
convergence properties and communication overhead. The
experimental results on three real web graphs with several
ten million pages are presented in Section 4. We discuss re-
lated work in Section 5 and conclude the whole paper with
Section 6.

2. THE BASIC PAGERANK MODEL
PageRank has emerged as one of the dominant models for

exploring link structures, partly due to its query-
independence and immunity to spamming. We briefly re-
view PageRank algorithm in this section. A reader familiar
with PageRank may skip this section.

2.1 The Intuition
The basic idea of PageRank assumes that a link from page

A to page B indicates that the author of A recommends page
B. Thus a page linked by many other pages is important.
Furthermore, a page linked by an important page is also
important.

To formulate the original intuition with a mathematical
model, the Web is viewed as a directed graph G with web
pages as vertices, and hyperlinks as edges. Then PageRank
is the stationary distribution of a random walk on the graph.
In this random walk, a user visits web pages following hy-
perlinks or jumps to a random page with certain probability.
Such a random walk is essentially a homogeneous first-order
Markov chain.

Before we formulate the PageRank algorithm, we intro-
duce here some notations used in this paper. ‖v‖1 denotes
the 1-norm of vector v. ρ(M) denotes the spectral radius2

of matrix M . We say M > a if and only if Mij > a, ∀i, j.
Other binary relations (e.g. ≥, ≤, <, =) between a matrix
and a scalar are defined likewise. e = (1, . . . , 1)T is the uni-
form vector and I is the identity matrix. The size of e and
I changes according to the context.

Assume the transition probability matrix of a random
walk on directed graph G is P . Let N be the number of
states in the Markov chain. π denotes the stationary prob-
ability vector of P . So π satisfies

π = Pπ (2.1)

Thus, π is the principle eigenvector of P , corresponding to
eigenvalue one.

2.2 Technical Issues
2Spectral radius is the largest module of eigenvalues of M .

A homogeneous finite Markov Chains has a unique pos-
itive stationary probability distribution if and only if it is
irreducible and aperiodic. However, the existence of dan-
gling nodes3 makes the chain reducible. A simple remedy
is to modify the model that when random walkers reach a
dangling node, they pick a random page for the next state.
Suppose that random walkers follow links with a probability
d and jump to a random page with a probability 1− d. d is
called the damping factor, which is 0.85 in this paper. Then
the transition matrix satisfies

Pij =

8><>: d/Cj + (1− d)/N if j → i

(1− d)/N if j 9 i and Cj 6= 0

1/N if Cj = 0

(2.2)

where Cj denotes the out-degree of page j. j → i denotes
there is a link from j to i, and j 9 i denotes there is no
link from j to i. Finally we have P ≥ (1 − d)/N , and the
existence of π is guaranteed.

A fairly straightforward way to obtain π is through Power
methods [8], which employs iterative multiplication as fol-
lows:

πk+1 = Pπk (2.3)

The eigenvector problem in (2.1) can also be formulated
as a linear system:

(I − P )π = 0, eT π = 1 (2.4)

There are many alternative solutions for the linear sys-
tem, such as Jacobi method, Gauss-Seidel method, Succes-
sive Overrelaxation method (SOR), Symmetric Successive
Overrelaxation method (SSOR). There is a unified formu-
lation for these algorithms. Split the coefficient matrix as
I − P = M −N , where M is nonsingular and the splitting
is weak regular4. Let T = M−1N be the iteration matrix.
The general PageRank algorithm can be written as:

Algorithm 1 (PageRank(P, π0, ε)).

Step 1. Let the initial approximation be π0. Set k = 0.
Step 2. Compute

π̃k+1 = Tπk (2.5)

Step 3. Normalize

πk+1 = π̃k+1/‖π̃k+1‖1 (2.6)

If ‖πk+1 − πk‖ < ε, quit with xk+1. Otherwise, continue
with Step 2 with k increased by 1.

Note that when M = I and N = P , the iteration matrix
is identical to that of Power method. Refer to [18] for a
comprehensive review of PageRank.

3. DISTRIBUTED PAGERANK
COMPUTATION

In this section, we propose our distributed PageRank com-
putation (DPC) algorithm.

3A dangling node is a page with zero out-degree, i.e. an
absorbing state.
4If M−1 ≥ 0 and M−1N ≥ 0, the splitting is called weak
regular [21].



3.1 The Basic Idea
The basic idea of our algorithm is divide-and-conquer.

Each node in the distributed system computes PageRank
vector for local pages. Unlike parallel computation algo-
rithms performed by a cluster of machines connected with
gigabit Ethernet [7], distributed algorithms require simple
mechanism of interaction between nodes and low volume of
communication traffic. Taking these constrains, we propose
our Distributed PageRank Computation (DPC) algorithm
here.

The web link graph has a natural block structure: the
majority of hyperlinks are intra-host ones [12]. Therefore,
the random walk on the web can be viewed as a nearly com-
pletely decomposable (NCD) Markov chain [24]. This prop-
erty opens the door for the iterative aggregation-
disaggregation (IAD) methods [29]. Before presenting the
DPC algorithm, we introduce the classic IAD methods here.
The notations and terminologies adopted in this section fol-
low those used in [22].

3.2 IAD Methods
Let G be a set of integers {1, . . . , N}. Let G1, . . . , Gn, n ≤

N be the aggregated groups of elements in G. The sets
Gi, i = 1, . . . , n, are mutually disjoint and ∪n

i=1Gi = G. Let
Ni be the order of set Gi, i.e. the number of elements in Gi.

Let R be the n×N aggregation matrix, which satisfies

Rij =

(
1 j ∈ Gi

0 otherwise
(3.1)

We partition the positive vector π as (πT
1 , πT

2 , . . . , πT
n )T

according to {Gi}. πi is a subvector with dimension Ni.
Then we define the N × n disaggregation matrix S(π) as

follows:

S(π) =

0BBBB@
S(π)1 0 . . . 0

0 S(π)2 . . . 0
...

...
. . .

...

0 0 . . . S(π)n

1CCCCA (3.2)

where S(π)i = (πi/‖(πi‖1) is a column vector denoting the
censored stationary distribution of pages in node Gi. Note
that RS(π) = I.

Let T = M−1N be a matrix arising from some splitting
of I−P = M −N . To solve the linear system (I−P )π = 0,
we can adopt the following algorithm:

Algorithm 2 (IAD method).
Step 1. Select a positive initial approximation π0, ‖π0‖ = 1.
Set k = 0.
Step 2. Construct the aggregated matrix RPS(πk) and solve
the linear system

RPS(πk)zk = zk (3.3)

where ‖z‖ = 1.
Step 3. Compute

π̃k+1 = TS(πk)zk (3.4)

Step 4. Normalize

πk+1 = π̃k+1/‖π̃k+1‖1 (3.5)

If ‖πk+1−πk‖ < ε, quit with πk+1. Otherwise, the algorithm
continues with Step 2 with k increased by 1.

3.3 DPC Algorithm
First, we define some notations for following discussion.

The transition matrix P is partitioned into blocks according
to {Gi}:

P =

0BBBB@
P11 P12 . . . P1n

P21 P22 . . . P2n

...
...

. . .
...

Pn1 Pn2 . . . Pnn

1CCCCA (3.6)

We denote the ith block row with

Pi∗ , (Pi1, . . . , Pin) (3.7)

and denote the ith block column with

P∗i ,

0BB@ P1i

...

Pni

1CCA (3.8)

Each diagonal block Pii is square and stands for the intra-
node link matrix of node Gi, while the off-diagonal blocks
stand for the inter-node link structure. Moreover, the n×n
aggregated matrix A = RPS(π) is the transition matrix
between nodes. It is straightforward that A satisfies irre-
ducibility and aperiodicity when P does.

We now present our new algorithm:

Algorithm 3 (DPC algorithm).
Step 1. Each node Gi constructs its local transition matrix
Qi, which contains only the pages in Gi. Let the initial
approximation be

π0
i = PageRank (Qi, e/Ni, ε) (3.9)

Set k = 0.
Step 2. Construct the aggregated matrix Ak = RPS(πk).

Solve the associated linear system.

zk = PageRank (Ak, e/n, ε) (3.10)

This step can be called the solution on the coarse level.
Step 3. Each node Gi constructs an (Ni + 1) × (Ni + 1)

extended local transition matrix

Bk
i =

 
Pii (Pi∗S(πk)zk − Piiπ

k
i zi)/(1− zk

i )

eT (I − Pii) αk

!
(3.11)

where the scalar αk ensures the column sum of Bk
i is one.

Compute the extended local PageRank vector 
ωk+1

i

βk+1
i

!
= PageRank (Bk

i , e/(Ni + 1), ε) (3.12)

where βk+1
i is a scalar. This step can be called the smoothing

on the fine granularity.
Before being sent to the center, the local vector is multi-

plied by a factor.

π̃k+1
i =

1− zk
i

βk+1
i

ωk+1
i (3.13)

Step 4. Normalize

πk+1 = π̃k+1/‖π̃k+1‖1 (3.14)

If ‖πk+1−πk‖ < ε, the algorithm quit with πk+1. Otherwise,
continue with Step 2 with k increased by 1.



Remark 1. The DPC algorithm is essentially equivalent
to an IAD method with T being a Block Jacobi iteration
matrix. Proof in exact arithmetic is given in Appendix A.

3.4 Convergence Analysis
The IAD method was first proposed by Takahashi in

1975 [29]. It has been widely used to accelerate convergence
of iterative methods for solving linear systems and mini-
mization problems. After thirty years, the global conver-
gence of IAD method is still an open problem. The difficulty
partly comes from that the disaggregation step S(π)z is non-
linear [4]. Some convergence properties of IAD method are
analyzed in [22, 23, 27]. In order to justify the DPC algo-
rithm to some extent, we prove the convergence of the Block
Jacobi method in PageRank scenario.

First we present a lemma from [5]:

Lemma 1. The iteration scheme

πk+1 = Tπk/‖Tπk‖1 (3.15)

converges when the following conditions are satisfied:
(C1) ρ(T ) = 1
(C2) T is irreducible
(C3) T is acyclic

Neumann and Plemmons [25] proves that the iteration ma-
trix derived from any weak regular splitting of the matrix
I − P satisfies condition (C1) and (C2) if the matrix P is
stochastic and irreducible.

Let D be the block diagonal of I − P . Let L be the
block strictly lower triangular part of P , and U be the block
strictly upper triangular part of P . Arising from the split-
ting I − P = D − (L + U), the iteration matrix of Block
Jacobi methods is

T = D−1(L + U) (3.16)

Since (I − Pii)
−1 ≥ 0 [24] and (L + U) ≥ 0, the split-

ting above is weak regular. Because P is stochastic and
irreducible, T satisfies (C1) and (C2).

However, the acyclicity of P is not sufficient to guaran-
tee the acyclicity of T [14]. Fortunately, in the PageRank
scenario we have the following lemma:

Lemma 2. If P > 0 is the transition matrix of a Markov
chain and is partitioned according to (3.6). Let T be the iter-
ation matrix defined in (3.16), i.e. the Block Jacobi matrix.
T is acyclic if and only if n > 2.

Proof. See Appendix B.

Now (C1), (C2) and (C3) in Lemma 1 are all satisfied
when n > 2. Consequently, we have:

Theorem 1. If P > 0 is the transition matrix of a Markov
chain and is partitioned according to (3.6). Let T be the iter-
ation matrix defined in (3.16), i.e. the Block Jacobi matrix.
If n > 2, The iterative scheme (3.15) always converges to
the fix point x̂ of P x̂ = x̂

Courtois [5] proves that when T is cyclic, the iteration
scheme (3.15) ultimately converges to a vector composed of
subvectors which are parallel to the corresponding subvec-
tors of x̂. Therefore x̂ can be achieved by an additional
single iteration of IAD methods.

3.5 Communication Overhead
In this section, we analyze the communication overhead of

our algorithm. All messages are in the form of a vector, no
matrix is transferred. Because the vector v is usually sparse,
it is transferred as a stream of (index i, value vi > 0) pairs.
In practice, the index is a combination of the node ID and a
hash value of the URL string. Let Pos(·) denote the number
of positive elements in a vector or a matrix. So the size of
message is proportional to Pos(v). In practice, we use sparse
matrix P̄ instead of P . Let L̄ and Ū be the block strictly
lower and upper triangular part of P̄ separately.

P̄ij =

(
d/Cj if j → i

0 otherwise
(3.17)

Step 1 of DPC algorithm needs trivial communication.
In Step 2, node Gi sends the coordinator a vector P̄∗iπi,

which is equal to the ith column of P̄S(π). Note that the ith
subvector of P̄∗iπi is sent as a scalar eT P̄iiπi. The amount of
communication traffic is proportional to Pos((L̄ + Ū)S(π)),
which is much smaller than Pos(L̄ + Ū). Table 1 shows the
comparison in real web graphs.

In Step 3, the coordinator sends the ith subvector of
P̄S(π)z to node Gi. So the communication cost is Pos((L̄+
Ū)S(π)z), which is much smaller than N .

In Step 4, local nodes send the vector π̃k+1
i to the coordi-

nator, who performs the normalization. The communication
cost is O

�
N
�
.

To sum up, the entire communication overhead is of the
magnitude O

�
Pos((L̄ + Ū)S(π))

�
+ O

�
N
�
, which is roughly

equivalent to that of the LPR-Ref-2 algorithm in [31].

Table 1: Comparison of number of positive elements

Pos(L̄ + Ū) Pos(Pos((L̄ + Ū)S(π)))

ST01 40M 8M(20.0%)

ST03 484M 165M(34.1%)

CN04 150M 35M(23.3%)

3.6 Advantages of DPC
The DPC algorithm has three major advantages over stan-

dard PageRank algorithm.

1. As most of the computation in DPC is solving PageR-
ank vectors, many acceleration methods are ready to
be used, such as the extrapolation method in [13].

2. The aggregated matrix A and the local transition ma-
trices Bi are small enough to fit into main memory.
Thus, the iterations require less disk I/O, which greatly
accelerates the computation.

3. In DPC algorithm, the local PageRank vectors for
many nodes converge quickly. In standard PageR-
ank algorithm, the convergence rate is mainly deter-
mined by slow-converge nodes and much computation
is wasted in recomputing the PageRank on the already-
converged nodes [11]. Figure 1 shows the distribution
of number of iterations for local PageRank computa-
tion using Power method in our experiments.
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Figure 1: Histogram of distribution over number
of iterations for local PageRank computation. The
x-axis gives the number of iterations, and the y-
axis shows the fraction of nodes completing their
local PageRank computation within x iterations (ε =
1e−5).

4. EXPERIMENTAL RESULTS
We use three real web graphs to evaluate the proposed

algorithm. We also implement the classic Power method
and the LPR-Ref-2 algorithm in [31] for comparison.

4.1 Experimental Setup
The CN04 graph is from our two-week crawling in Aug.

2004, starting from thousands of well-known web sites in
China. In order to obtain pages of high-quality, the crawl
was performed in breath-first fashion.

The other two graphs, ST015 and ST036, come from Stan-
ford WebBase project. Table 2 summarizes these three data
sets. The three graphs vary in density of links and degree
of inter-sites coupling. Figure 2 shows the distribution of
the size of web sites, and Figure 3 shows the distribution
of pages hosted by nodes of different size. Both figures are
based on the data set ST01, the other two data sets have
similar distributions.

Table 2: Characteristics of data sets
ST01 ST03 CN04

number of URLs 65M 49M 88M

number of links 607M 1185M 485M

number of sites 542K 25K 697K

average out-degree 9.28 24.05 5.53

inter-node link 6.53% 40.85% 30.99%

The simulation is carried out on one machine. First, all
URLs are sorted lexicographically. Anchors in the tail of
URLs are ignored. For example, “http://a.edu/b.htm#c”
and “http://a.edu/b.htm#d” are considered to be identical.
Then we partition web pages into groups according to sites.

4.2 Evaluation Metrics
L1 distance and Kendall’s τ -distance [15] are adopted to

5ftp://db.stanford.edu/pub/webbase/Links2001.tar.gz
6ftp://db.stanford.edu/pub/webbase/Crawl-2003-04.tar.gz
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Figure 2: Histogram of distribution over size of sites.
The x-axis gives the magnitude of the number of
pages hosted by a site, and the y-axis shows the
fraction of sites of the size.
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Figure 3: Histogram of distribution over number of
pages hosted by sites of different size. The x-axis
gives the magnitude of the number of pages hosted
by a site, and the y-axis shows the fraction of pages
hosted by all sites of that size.

evaluate our algorithm. Both measure certain kind of simi-
larity between π and π̂.

The first metric is the L1 distance ‖π − π̂‖1. We have
0 < ‖π − π̂‖1 < 2.

Then we introduce the Kendall’s τ metric. Let K(π, π̂)
be an N ×N matrix, whose elements are

Kij(π, π̂) =

8><>: 1 πi ≥ πj and π̂i < π̂j

1 πi < πj and π̂i ≥ π̂j

0 otherwise

(4.1)

That is to say, Kij(π, π̂) = 1 if page i and j are in different
order in π and π̂.

Kendall’s τ -distance is defined as follows:

KDist(π, π̂) =

P
1≤i<j≤N Kij(π, π̂)

N(N − 1)/2
(4.2)

where 0 ≤ KDist(π, π̂) ≤ 1.

4.3 Accuracy of a Single Iteration
The distributed computation heavily relies on the commu-

nication between nodes. When the network is under heavy



load, it is possible for the iteration to be executed only once
and wait for a long time to reconnect the coordinator. Then
the accuracy of π1 is virtually important. In fact, the LPR-
Ref-2 algorithm proposed in [31] can be performed only once.
Table 3 shows the L1 distance between π1 and π̂.

Table 3: Accuracy after One Iteration (‖π1 − π̂‖1)
Power Method LPR-Ref-2 DPC

ST01 0.539 0.207 0.023

ST03 0.523 0.477 0.124

CN04 0.140 0.146 0.014

It is costly to compute Kendall’s τ -distance when N is
large, because the computational complexity is O(N2). On
a box with Intel Pentium 4 2.4GHz processor, it takes about
4 minutes to compute the Kendall’s τ -distance between two
vectors when N = 105. Since the N in our experiments are
of the order of magnitude of 108, we have to adopt Monte
Carlo method to estimate the true Kendall’s τ -distance.
KDist(π, π̂) can be viewed as the probability of two ran-
domly picked pages with different order in π and π̂. So we
can estimate the probability by random sampling. In prac-
tice, we pick 1010 random pairs as a sample. Repeated run-
ning of the Monte Carlo method empirically demonstrates
that the variance of approximations is small. Thus, the sam-
pling method is reliable. Table 4 presents the KDist(π1, π̂)
of different methods.

Table 4: Accuracy of One Iteration (KDist(π1, π̂))

Power Method LPR-Ref-2 DPC

ST01 0.190 0.142 0.071

ST03 0.155 0.070 0.010

CN04 0.093 0.087 0.013

4.4 Convergence Rate
When the network condition is acceptable for communica-

tion, iterations of the DPC Algorithm are carried out until
convergence is reached. Because the LPR-Ref-2 algorithm
in [31] can be run only once, its convergence rate cannot be
evaluated. Table 5 shows the number of iterations needed
to achieve convergence. The DPC algorithm converges 5–
7 times faster than Power Method. Figure 4 compares the
convergence rate of Power method and that of DPC algo-
rithm on graph ST01. The results on the other two graphs
are similar.

Table 5: Number of Iterations for Convergence (ε =
10−5)

Power Method DPC

ST01 54 11

ST03 42 7

CN04 34 5
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Figure 4: Convergence rate for Power method vs.
DPC algorithm. The x-axis is the number of itera-
tions, and the y-axis is the magnitude of L1 residual
(‖πk+1 − πk‖1).

5. RELATED WORK
Much work has been done on PageRank acceleration. Kam-

var et al. [12] uses Step 1 and 2 of IAD to obtain an initial
vector for subsequent iterations. Lee et al. [19] presents a
fast PageRank algorithm which lumps dangling nodes into
a single state. Broder et al. [2] proposes graph aggregation
as an efficient PageRank approximation method. Eiron et
al. [6] exploits the hierarchical structure on different levels
of granularity to rank the web pages seen while not crawled,
which they named as web frontier. Gleich et al. [7] imple-
ments a class of iterative algorithms for PageRank compu-
tation on a parallel computer. Langville and Meyer [17]
employs a modified two-block IAD to accelerate the updat-
ing of PageRank vector. Ipsen and Kirkland [9] analyzes the
asymptotic convergence rate of the method proposed in [17].
Wang and DeWitt [31] proposes a framework for distributed
search system and a distributed algorithm for PageRank ap-
proximation.

The most relevant work to our algorithm is probably the
one proposed by Vantilborgh [30]. Cao and Stewart [3] es-
tablishes conditions for local convergence of IAD with Block
Jacobi smoothing. Stewart et al. [27] proposes an IAD
method with Block Gauss-Seidel smoothing and establishes
some regularity conditions to guarantee the convergence.
Kafeety et al. [10] outlines a general framework for IAD.
Recent work by Marek et al. [23] analyzes some local and
global convergence properties of IAD.

6. CONCLUSION AND FUTURE WORK
This paper proposes a distributed PageRank computa-

tion algorithm based on iterative aggregation-disaggregation
(IAD) methods with Block Jacobi smoothing. The basic idea
is divide-and-conquer. We group web pages by sites to make
use of the block structure of link graphs. To reduce the com-
munication cost, nodes are organized in star topology. Each
node computes its PageRank vector of local-stored pages
and communicates with a coordinator for global updating
information. We prove the global convergence of the Block
Jacobi method and then analyze communication overhead of
our algorithm. Three primary advantages of our algorithm
are presented. Experiments on three real web graphs demon-
strate that our method achieves better approximation than



LPR-Ref-2 in [31] and accelerates convergence by a factor
of 5–7. We believe our work provides an efficient and prac-
tical distributed solution for PageRank on large scale Web
graphs.

Several questions remain to be investigated in our future
work:

1. How to update PageRank vectors efficiently within our
framework?

2. Since ρ(T ) = 1, is it possible to compute PageRank
with asynchronous iterations [28]?
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APPENDIX
A. PROOF OF REMARK 1

Here we show that DPC Algorithm is essentially identi-
cal to an IAD method with Step 3 being a Block Jacobi
smoothing.

Comparing Algorithm 3 with Algorithm 2, Step 1,2 and 4
are identical. Now we prove that the Step 3 of Algorithm 3
is equivalent to that of Algorithm 2 with T = D−1(L + U).

In Step 3 of Algorithm 2, from π̃k+1 = D−1(L+U)S(πk)zk,
we have

π̃k+1
i = (I − Pii)

−1
X

1≤j≤n,j 6=i

PijSjzj

= (I − Pii)
−1(

X
1≤j≤n

PijSjzj − PiiSizi)

= (I − Pii)
−1(Pi∗S(πk)zk − Piiπ

k
i zi) (A.1)

where π̃i is the ith subvector of π̃.
In Step 3 of Algorithm 3, from (3.12), we have:

ωk+1
i =

βk+1
i

1− zk
i

(I − Pii)
−1(Pi∗S(πk)zk − Piiπ

k
i zi) (A.2)

From (3.13), we have:

π̃k+1
i =

1− zk
i

βk+1
i

ωk+1
i

= (I − Pii)
−1(Pi∗S(πk)zk − Piiπ

k
i zi) (A.3)

Comparing (A.3) with (A.1), we conclude that Algorithm 3
is theoretically an IAD method with Block Jacobi smooth-
ing.

B. PROOF OF LEMMA 2
Partition T into blocks according to Gi. The diagonal

blocks Tii = 0 and the off-diagonal blocks Tij > 0, i 6= j.
Consider T 2 as the square of T , which is also partitioned
accordingly. When n > 2, ∀i, j, ∃k̂ that satisfies k̂ 6= i and
k̂ 6= j. Consequently, we have

T 2
ij =

X
1≤k≤n

TikTkj ≥ Tik̂Tk̂j > 0 (B.1)

It can be easily verified that T m > 0 when m ≥ 2. Thus T
is acyclic.

When n = 2,

T m =

 
0 ((I − P11)

−1P12)
m

((I − P22)
−1P21)

m 0

!
(B.2)

when m is odd. And

T m =

 
((I − P11)

−1P12)
m 0

0 ((I − P22)
−1P21)

m

!
(B.3)

when m is even. Thus, T is cyclic.


