
HEDGEHOG: Automatic Verification of Design

Patterns in Java

Alex Blewitt

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

School of Informatics

University of Edinburgh

2006

Abstract

Design patterns are widely used by designers and developers for building complex systems

in object-oriented programming languages such as Java. However, systems evolve over time,

increasing the chance that the pattern in its original form will be broken.

To verify that a design pattern has not been broken involves specifying the original intent of

the design pattern. Whilst informal descriptions of patterns exist, no formal specifications are

available due to differences in implementations between programming languages.

This thesis shows that many patterns (implemented in Java) can be verified automatically.

Patterns are defined in terms of variants, mini-patterns, and artefacts in a pattern description

language called SPINE. These specifications are then processed by HEDGEHOG, an automated

proof tool that attempts to prove that Java source code meets these specifications.

iii

Acknowledgements

I am indebted to Alan Bundy who has given me the freedom to work on this thesis whilst at

the same time guiding me towards the final production and presentation of these results. I not

would have been able to achieve this without Alan’s support through a sometimes difficult, but

always busy part of my life. This project, and especially the production of this thesis, would not

have been possible without the care and attention that Alan provided.

Ian Stark has provided invaluable feedback on all aspects of this thesis, from the low-level

technical intricacies of Java’s design patterns through to the high-level structure of the thesis as

a whole. Without doubt, he has caught many of the technical errors and inconsistencies of this

thesis; the fact that this work stands as it is can be attributed to his detailed attention to proof

reading. Any remaining errors are my own fault in transcribing his feedback of the work.

I would also like to thank my previous supervisors, Richard Boulton and Helen Lowe, who

helped me during the early stages of this research project before other commitments took them

aside. In addition, Andrew Ireland helped with some very early aspects, and in conjunction with

Alan Bundy allowed me to realise that my ideas were worth investigating, and convinced me to

start down the long path of a PhD. Jon Whittle gave me support and a path to follow as I started

out on this thesis.

I would not have been able to do this thesis without the support of Adrian Jackson and others

from International Object Solutions Limited, whose support allowed me to work in conjunction

with EPSRC to create HEDGEHOG.

My thanks are also due to the proof readers who gave me pages of feedback on this thesis,

in alphabetical order: Derek Blewitt, Robert Blewitt, Tony Brookes, Adrian Jackson and Gareth

Webber. I would also like to thank some of the particularly influential people for encouraging

me to achieve my full potential; Ian Nussey of IBM UK and ‘Doc’ Misell of Epsom College.

My thanks also go to Koos van Tubergen of IBM NL for supporting me through the early stages

of my PhD.

Lastly, I would especially like to thank my loving wife Amy, for putting up with me over

the past few years with all the late nights (and sometimes early mornings) in working on this

project.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Alex Blewitt)

v

This thesis is dedicated to the memory of our son Max,

who was born and died during the production of this thesis.

vi

Table of Contents

1 Introduction 1
1.1 Structure of the thesis . 2

1.2 Hypothesis and contributions . 3

2 Literature survey 5
2.1 Java . 7

2.1.1 Byte-code . 7

2.1.2 Java language semantics . 9

2.1.3 Java modelling and constraints . 13

2.2 Design patterns . 17

2.2.1 Specification . 17

2.2.2 Detection . 21

2.2.3 Refactoring . 23

2.3 Summary . 25

3 System architecture 27
3.1 HEDGEHOG . 27

3.2 Parsing Java source files . 29

3.3 Parsing and processing SPINE files . 31

3.4 Interacting with the user . 31

3.5 Summary . 32

4 Design patterns 33
4.1 The history of patterns . 33

4.1.1 Software design patterns . 34

4.2 Terminology . 36

4.2.1 Realises . 36

vii

4.2.2 Variant . 36

4.2.3 Artefact . 39

4.2.4 Super-pattern . 39

4.2.5 Mini-pattern . 41

4.3 Formally defining patterns . 42

4.3.1 Run-time semantic definition . 43

4.3.2 Metaprogramming definition . 45

4.3.3 Declarative constraint definition . 47

4.4 Elements of patterns . 49

4.4.1 Reviewing existing patterns . 49

4.4.2 Intent . 51

4.5 Summary . 52

5 The SPINE language 53
5.1 Overview . 53

5.2 Syntax . 55

5.3 Semantics . 56

5.3.1 Basic propositions . 56

5.3.2 Evaluable propositions . 57

5.3.3 Evaluable sets . 58

5.4 Rules . 59

5.5 Java constraints . 60

5.5.1 Structural constraints . 60

5.5.2 Semantic constraints . 61

5.5.3 Weak semantic constraints . 61

5.6 Patterns . 62

5.6.1 Immutable . 62

5.6.2 Singleton . 63

5.7 Summary . 65

6 The HEDGEHOG proof engine 67
6.1 Representing Java . 69

6.1.1 Java source files . 69

6.1.2 Java class files . 70

6.1.3 Inner classes . 74

viii

6.1.4 Native methods . 74

6.2 Proof engine . 75

6.2.1 Overview of proof process . 75

6.2.2 Proof tree . 76

6.2.3 Rules . 77

6.2.4 Backtracking . 80

6.2.5 Proof strategy . 80

6.2.6 Soundness . 81

6.2.7 Termination . 81

6.2.8 Complexity . 88

6.3 Built-in functions and predicates . 90

6.4 Summary . 92

7 Generating error messages 93
7.1 Tree filtering . 94

7.2 Converting trees to error messages . 94

7.2.1 Displaying a complete reason . 95

7.2.2 Compressing the message . 95

7.3 Interesting errors . 95

7.3.1 Chains with uninteresting beginnings or ends 96

7.3.2 Tree nodes with interesting children 97

7.4 Pattern annotation . 97

7.5 From nodes to explanations . 98

7.6 Example . 99

7.7 Summary . 102

8 Worked examples 103
8.1 Startup . 103

8.2 Simple proofs . 105

8.3 Proving a class realises a pattern . 108

8.3.1 Parsing the Java source . 110

8.3.2 Applying quantifiers . 111

8.4 Multi-class patterns . 114

8.5 Dealing with failure . 116

8.6 Summary . 117

ix

9 Results 119

9.1 Critique of patterns as constraints . 119

9.1.1 Unrepresentable patterns . 120

9.1.2 Abstract Factory . 121

9.1.3 Factory Method . 123

9.1.4 Singleton . 123

9.1.5 Adapter . 124

9.1.6 Bridge . 125

9.1.7 Composite . 125

9.1.8 Decorator . 126

9.1.9 Proxy . 126

9.1.10 Iterator . 127

9.1.11 Observer . 128

9.1.12 Template Method . 128

9.1.13 Visitor . 129

9.2 Testing procedure . 129

9.3 Selecting the examples . 130

9.4 Selecting non-examples . 131

9.5 Results . 131

9.6 Analysis . 135

9.6.1 No pattern definition . 135

9.6.2 True positives . 138

9.6.3 True negatives . 139

9.6.4 False positives . 140

9.6.5 False negatives . 140

9.7 Summary . 143

10 Related work 145

10.1 ESC/Java . 145

10.2 The fragment model . 147

10.3 Refactoring of design patterns . 152

10.4 LePUS . 155

10.4.1 Graphical representation . 156

10.4.2 Textual representation . 158

x

10.5 Detection of patterns . 161

10.6 Summary . 163

11 Further work and conclusions 165

11.1 Further analysis of design patterns . 165

11.2 Applicability to other languages . 166

11.3 Reformulation of patterns using ESC/Java . 167

11.4 Integration with IDEs . 167

11.5 Integration with automated building tools . 168

11.6 Automated searching . 168

11.7 Automated introduction of design patterns . 169

11.8 Conclusion . 169

11.9 Summary . 173

A Glossary 175

B List of design patterns 179

B.1 Creational patterns . 179

B.1.1 Abstract Factory . 179

B.1.2 Builder . 180

B.1.3 Factory Method . 181

B.1.4 Prototype . 182

B.1.5 Singleton . 182

B.2 Structural patterns . 182

B.2.1 Adapter . 182

B.2.2 Bridge . 182

B.2.3 Composite . 184

B.2.4 Decorator . 184

B.2.5 Façade . 186

B.2.6 Flyweight . 186

B.2.7 Proxy . 186

B.3 Behavioural patterns . 187

B.3.1 Unrepresentable patterns . 187

B.3.2 Immutable . 187

B.3.3 Iterator . 188

xi

B.3.4 Observer . 188

B.3.5 State . 189

B.3.6 Template Method . 189

B.3.7 Visitor . 189

B.4 Mini-patterns . 191

B.4.1 Static Constructor . 191

B.4.2 Non Instantiable . 191

B.4.3 Lazy instantiation . 191

C List of SPINE functions and predicates 193
C.1 Functions . 193

C.2 Predicates . 194

C.2.1 Built-in . 194

C.2.2 Derived . 195

Bibliography 197

xii

List of Figures

2.1 Related work to HEDGEHOG . 6

2.2 Program structure in Javas . 10

2.3 Expressions and variables in Javas . 10

2.4 Types in Javas . 11

2.5 Object Constraint Language example . 14

2.6 Example of JML . 17

3.1 Overview of HEDGEHOG . 28

3.2 Antlr parse tree . 29

3.3 HEDGEHOG AST . 30

3.4 Example SPINE file . 31

4.1 Command pattern description . 35

4.2 Singleton variants . 37

4.3 Utility pattern description . 40

4.4 Pattern variants and their super-patterns . 41

4.5 Example mini-pattern . 42

4.6 Semantic definition of a Singleton pattern . 43

4.7 Singleton pattern description . 44

4.8 Metaprogramming example of a Singleton pattern 46

4.9 Declarative example of a Singleton pattern 48

4.10 Example of processing a Java array . 50

6.1 Example Java code . 70

6.2 Example Java code AST . 71

6.3 Example evaluation of functions . 71

6.4 Example of Java byte-code . 72

xiii

6.5 Original Java implementation . 73

6.6 Decompiled Java implementation . 73

6.7 Before the rewriting is applied . 78

6.8 After the rewriting is applied . 78

7.1 PrivateSingleton SPINE definition . 100

8.1 SPINE initialisation file . 103

8.2 PublicSingleton SPINE definition . 104

8.3 HEDGEHOG during initialisation . 105

8.4 Setting up the initial proof goal . 106

8.5 Applying the ‘and’ rule . 106

8.6 Applying the ‘or’ rule, with backtracking . 107

8.7 Implementation of the Test class . 108

8.8 Example of proof tree after initial pattern mapping 109

8.9 Example of proof tree with pattern variant proof nodes 110

8.10 Showing expansion of ‘exists’ . 112

8.11 Failure in expansion of ‘forAll’ . 113

8.12 Example factory and product . 115

8.13 Factory example . 115

9.1 Non Abstract Factory pattern that matches the SPINE definition 121

9.2 An attempt at specifying the Command pattern 137

10.1 The Observer pattern from GoF . 148

10.2 The Observer pattern using the fragment model 148

10.3 Example of another fragment Observer definition 151

10.4 The Observer pattern in LePUS . 157

10.5 The Observer pattern in LePUS formulæ . 159

B.1 Definition of the Abstract Factory pattern . 180

B.2 Definition of the Factory Method and Static Constructor patterns 181

B.3 Definition of the Prototype pattern . 182

B.4 Definition of the Singleton pattern . 183

B.5 Definition of the Adapter pattern . 183

B.6 Definition of the Bridge pattern . 184

xiv

B.7 Definition of the Composite pattern . 185

B.8 Definition of the Decorator pattern . 185

B.9 Definition of the Flyweight pattern . 186

B.10 Definition of the Proxy pattern . 187

B.11 Definition of the Immutable pattern . 188

B.12 Definition of the Iterator pattern . 188

B.13 Definition of the Observer design pattern . 189

B.14 Definition of the State pattern . 190

B.15 Definition of the Template Method pattern 190

B.16 Definition of the Visitor pattern . 190

B.17 Definition of the Static Constructor mini-pattern 191

B.18 Definition of the Non Instantiable mini-pattern 192

B.19 Definition of the Lazy Instantiation mini-pattern 192

xv

List of Tables

9.1 Results . 133

9.2 Summary of results . 134

xvii

Chapter 1

Introduction

Design patterns, or simply patterns, are an integral part of designing object-oriented software.

A pattern is a well-known solution to a common problem, which allows a designer to capture a

set of requirements using a unique name.

Patterns have been described in pattern catalogues such as [GHJV95, Bus96, Vli98] and act

as a reference for designers and developers alike. These patterns are described in abstract terms

as, although they apply to object-oriented languages, there are different ways of solving the

same problem in different languages.

The abstract specification of patterns can lead to the introduction of programming errors,

from misinterpreting the pattern’s requirements through to incorrect implementations. Although

formal works have been applied to programming languages before [Mey99, WK03], they have

not tended to be applied to patterns because of their abstract specification.

This thesis presents a way of representing and verifying design patterns by focusing on the

language-specific implementation; specifically patterns implemented in the Java programming

language [GJS96]. By focusing on the implementation, rather than the abstract specification, it

is possible to recognise and verify a number of common design patterns.

A pattern representation language called SPINE is presented, along with an automated proof

engine called HEDGEHOG that can parse and process Java source files. This allows patterns to

be verified, and provides greater confidence that the design pattern will not become accidentally

broken later in the development process.

A number of standard patterns are defined in SPINE, using common patterns from catalogues

[GHJV95, Bus96]. These patterns are defined according to their implementation, and since it

is often possible to realise a pattern in a number of different ways, each pattern has a number

of variants. This allows the proof system to verify the existence of a pattern if it takes one of

1

2 Chapter 1. Introduction

the known variant forms. The proof results that HEDGEHOG generates are therefore relative

to these pattern definitions. It is possible that a pattern could be realised in a way unknown

to HEDGEHOG and therefore generate a negative answer. However, although there are many

patterns, there are often only a small number of different ways of solving the same problem,

and the pattern library provided in Appendix B attempts to cover the standard realisations of

these patterns.

In the case of proof failure (HEDGEHOG cannot prove that a pattern exists, or prove that a

pattern does not exist), HEDGEHOG flags to the user that the implementation requires further

investigation. It may be that the pattern is realised correctly, but in a way that HEDGEHOG

does not recognise, and therefore no further action is required. It is possible for the user to

extend HEDGEHOG’s capabilities and provide a new pattern variant so that the pattern will be

subsequently recognised. The primitives for building patterns are described in Chapter 5 and

Appendix C.

Although HEDGEHOG is based on an automated theorem prover, it does not assume that

the users know anything about automated proofs. It therefore hides the complexity of the

proof operations to ensure that the system can work in a fully automated mode and provide

a yes/no/unknown answer.

The system is designed to be used by an automated process (such as JUnit [GB], an auto-

mated unit testing framework) and provide results to give confidence that a pattern is realised

correctly. In the case of a pattern failing to be realised correctly, a suitable message is created

and given to the user, and the state of the proof tree is used to generate an English-language

reason for why the proof failed.

A way of generating suitable messages from the proof tree state (after automated proof has

terminated) is shown in Chapter 7 that gives the user a textual explanation of what the proof

system has achieved without having to reveal the existence of a proof tree internally.

1.1 Structure of the thesis

The thesis consists of 11 chapters as follows:

Chapter 1, Introduction provides an overview of the thesis, the structure, and contributions

made

Chapter 2, Literature survey lists the related works and references to other design pattern-

oriented projects

1.2. Hypothesis and contributions 3

Chapter 3, System architecture describes HEDGEHOG’s architecture and explains the design

choices used in implementing the system

Chapter 4, Design patterns gives an overview of design patterns and describes the important

properties that design patterns have

Chapter 5, The SPINE language defines the SPINE language and gives examples of patterns

defined in SPINE

Chapter 6, The HEDGEHOG proof engine describes the structure of the HEDGEHOG proof

system and how it processes SPINE pattern definitions to verify correctly realised design

patterns

Chapter 7, Generating error messages describes how error messages in the proof tree are

translated and displayed to the end user

Chapter 8, Worked examples gives an in-depth example of HEDGEHOG to prove common

design pattern realisations

Chapter 9, Results catalogues the results of the proof system, categorised by pattern type

Chapter 10, Related work discusses similar work to HEDGEHOG and highlights similarities

and differences between them

Chapter 11, Further work and Conclusion gives additional ideas outside the scope of this

thesis for future work with HEDGEHOG and provides a conclusion of the work presented

Appendix A, Glossary provides a glossary of related items

Appendix B, List of design patterns provides a number of standard design patterns that are

referred to throughout this thesis

Appendix C, List of SPINE functions and predicates is a reference of the built-in functions

and predicates

1.2 Hypothesis and contributions

This thesis aims to prove the hypothesis that it is possible to represent patterns as a set of

constraints on the implementation of one or more Java classes, such that it is possible to verify

whether they realise a pattern correctly.

4 Chapter 1. Introduction

A novel way of representing design patterns is presented, by defining the pattern relative

to its implementation rather than its behaviour. This demonstrates that it is possible to treat an

implementation of a design pattern as sufficient that it will behave according to catalogues of

known design patterns. A catalogue of pattern definitions, along with their variants, is provided

in the appendix.

Design patterns and their implementation are investigated in more detail, and are cross-

referenced against well-known implementations in existing open-source code [GJS96] and Java

design pattern [SM01] books. This approach is amenable not only to traditional design patterns,

but also to lower-level idioms that would not be big enough on their own to be considered a

design pattern, but still a remarkably common way of implementing a solution to a particular

problem.

The results shown in Chapter 9 that this approach works well for structural design patterns

and can be used with a number of behavioural and creational design patterns catalogued by

[GHJV95].

Chapter 2

Literature survey

This chapter provides a literature survey of works surrounding Java and research into design

patterns; Figure 2.1 shows graphically how they are related to each other. A survey of proof

systems, Java language semantics and design pattern representations are covered to show how

these works are related to each other and how they have developed. This chapter does not

aim to provide a detailed comparison with HEDGEHOG; instead comparisons are made where

appropriate in the body of the thesis, and a detailed comparison of how these works are related

to HEDGEHOG and SPINE is given in Chapter 10.

HEDGEHOG aims to prove that design patterns can be represented in such a way as to allow

an automated proof system to decide whether or not a class (or set of classes) realises a design

pattern in Java. In order to do this, we must be able to:

• Formally describe design patterns

• Analyse a method’s implementation

• Devise a proof system capable of showing the formalised design patterns meet the Java

implementation

The chapter is broken down as follows: Section 2.1 presents work related to Java byte-code

(Section 2.1.1), semantics (Section 2.1.2) and modelling (Section 2.1.3); Section 2.2 describes

work in design pattern specification (Section 2.2.1), detection (Section 2.2.2) and refactoring

(Section 2.2.3). The chapter is summarised in Section 2.3.

5

6 Chapter 2. Literature survey

Figure 2.1: Related work to HEDGEHOG

Isabelle/
HOL

[NPW02]

Bali
[Ohe01]

ESC/
Modula

[DNLS98]

ESC/Java
[LNS00]

Simplify
[Nel80]

Used in

Javalight

Javas

[NvO98]

Isabelle
[Pau94]

Patterns
Box

[AACGJ01]

Automatic
Verification
of Design
patterns
[BBS01]

DECLARE
[Sym97]

Declarative
Theorem
Proving
[Sym98]

Hedgehog
Object

Constraint
Language
[OCL97]

Unified
Modelling
Language
[UML97]

Refactoring
[Opd92]

Automated
Introduction
of Design
Patterns
[OCN99]

Patterns
Wizard
[Ede98]

A Pattern
Language
[AISJ77]

Tool
Support
[Mei96]

Pattern
Framework

[Gru97]

Automated
Application
of Design
Patterns
[OC00]

LePUS
[Ede00]

GoF
[GHJV94]

Applied
Java

Patterns
[SM01]

Evolving
OO Design
Refactoring

[Tok99]

Evolving
OO Design
Refactoring

[TB01]

Specification
of Design
Patterns
[LK98] Re

la
te

d

JML
[JP00]

ESC/Java 2
[Esc]

Java
program

verification
[JP03]

LOOP
[JvdBH+98]

Re
la

te
d

2.1. Java 7

2.1 Java

Java [GJS96] is a general purpose object-oriented programming language developed by Sun

Microsystems. The style of the language is mostly based on C [KR88] syntax, but owes much of

its object-oriented features to Smalltalk [GR83]. Notably, Java is compiled into an intermediate

byte-code which is then executed by the Java Virtual Machine or JVM. What makes it appealing

for research is that both the source code language and the byte-code language are well defined,

and research projects have focussed on Java at both levels.

Java is also used heavily in industry and is now considered to be the default programming

language of choice by enterprises after a relatively short gestation period. Of course, Java’s

arrival at the same time as the world wide web and subsequent dot-com boom helped to bring

the language to many people at the right time.

Java has become the focus for research into tools and techniques for improving the quality

of software. Formal methods have been applied to determine whether Java as a language has

been designed correctly, and have even been used to discover holes in the specification of the

Java language itself [Ohe01].

2.1.1 Byte-code

Java source files are compiled into byte-code, which is essentially an assembly language for

operating on objects. Unlike processor-specific assembly, the Java byte-code does not deal

with arbitrary jumps to locations in memory or change the value of memory locations directly;

instead, the byte-code is object-oriented and routines are called by invoking methods on object

instances. In deference to performance, the Java byte-code also allows the representation of

integer and floating point values as primitives, which allows the JVM to process them more

efficiently.

The JVM [LY96] is responsible for executing the byte-code generated from a compilation

stage. Contrary to common belief, the byte-code does not have to be interpreted but can be

executed in a manner of the JVM’s choosing. For example, on mobile phones [Rig03], the

JVM is most likely to interpret the byte-code and use platform-specific hints, whereas on an

AS/400 the byte-code can be transformed prior to execution time into a format suitable for

faster execution [MLMN99]. Most PC implementations use a mix of interpretation (for faster

startup time) and translation (known as Just In Time compilation or JIT).

Additionally, the byte-code processed by the JVM does not have to be compiled from Java

source; it could have been created from a different programming language (as an example,

8 Chapter 2. Literature survey

NetRexx [HHF+97]) or dynamically from a library that allows creation of byte-code directly

(such as the Apache Byte-Code Engineering Library or BCEL [ASF]).

As a result, there has been interest in proving whether the JVM does what it is supposed to at

the low-level. For example, the byte-code verifier (which validates whether or not the byte-code

has been produced in accordance with the rules of the JVM) has been shown to be sound with

a representation in Isabelle/HOL. The approach taken by Pusch [Pus99] was to formalise the

JVM in Isabelle/HOL [Pau94, NPW02] covering the main parts of object orientation and the

structure of classes stored within the JVM at execution. A specification for a byte-code verifier

(not necessarily the one that comes with a given JVM), is given in [Pus99].

In showing that the byte-code verifier was sound, Pusch et al. showed that it is possible

to represent the type information of a JVM and that considering stack-based and frame-based

execution is possible in Isabelle/HOL. However, it should be noted that their primary goal (and

indeed, others based on Isabelle/HOL described below) was to show that the typing system was

sound rather than considering the actual values of the JVM’s objects at run-time.

Other approaches have created JVMs specifically for the purpose of investigating byte-code

(and more specifically, with the aim of preventing rogue byte-code). Richard Cohen’s Defensive

Java Virtual Machine [Coh97] aims to manually verify at each stage that the type-safety of the

executing byte-code still holds, instead of relying on the standard JVM’s behaviour.

The dJVM is implemented in ACL2 [KMM00] to allow interpretation of byte-code and

maintaining the heap and stack space, whilst at the same time defensively executing instructions

in the JVM. For example, after execution of a routine that is declared as resulting in an int on

the stack, the dJVM will explicitly ensure that the return result is an int.

Similarly (but more recently), the Verificard [NvOP02] project aims to show that the JVM

built into JavaCard1 is sound. This is also implemented in Isabelle/HOL, which is to be expected

since the same group worked on the specification of Isabelle/HOL and the Java semantics (see

below).

However, since most Java design patterns are not visible at the byte-code level2 it is sensible

to consider the Java semantics above the byte-code level. Additionally, a design pattern is not

a concept that is normally concerned with properties of the executable code, but rather one of

source management and reuse. Therefore, if source is available it should not be necessary to use

the compiled code; and if source is not available, then there are no changes that can be made

1JavaCard allows Java programs to be installed on to smartcard processors.
2It may be possible to convert pattern specifications from recognising source-code patterns to recognising

compiled byte-code patterns; however, due to optimising compilers and different ways of compiling the same
source, it is likely that there will be many more variations in the compiled code from the same source pattern.

2.1. Java 9

should the design pattern be broken in some way. As a result, it does not make sense to work

with a high-level source concept such as design patterns at the byte-code level; instead, patterns

should be analysed at the source level.

2.1.2 Java language semantics

One of the main requirements of creating a Java language semantics is the need to analyse

and represent Java code in order to formally define or process design pattern realisations in

Java. Two key project groups have researched into the Java language execution: the “Sound

Languages Underpin Reliable Programming” group (or SLURP [SLU]) of Imperial College,

London in conjunction with the University of Nijmegen worked towards a Java semantics that

would prove type safety in the Java language. The other key project revolved around extended

static checking of Java programs, which was created by the Compaq/Digital systems research

center [LNS00].

Having a semantics for the Java language would be useful for the formal anaylsis of design

patterns, because a design pattern has both structural (inheritance, relationships) and semantic

(correct operation of methods) requirements. Clearly the former can be derived from the struc-

ture of the classes, but in order to ensure that methods perform the correct task requires some

kind of analysis of the method’s implementation. Although a full formal semantics would allow

the properties of the method to be completely determined, it is in fact possible to determine

some aspects of a method by static analysis. For example, a full semantics is not required if

it is necessary to show that one method delegates to another; the possible call-graph from one

method to another can be computed by static analysis alone. This is covered in more detail in

Section 5.5.

2.1.2.1 Javas and Javalight

The SLURP group initiated a project to show that Java was type-safe. They started with a subset

of Java, referred to as Javas, which modelled the type system of Java in Isabelle/HOL. Using

this subset, they managed to show that it was probably type-safe [DE97], although several as-

sumptions about the types meant that the proof was not sound at that time. For example, they did

not consider exceptions3 other than special cases like java.lang.OutOfMemoryError,

native methods, static initialisers and so forth. However, it was used as the starting point for

3These issues have been revisited in later reports [DV00, DVE00] to introduce exceptions to the Javas subset.

10 Chapter 2. Literature survey

defining Javalight used by Bali (below). The program structure of Javas is shown in Figure 2.2,

expressions in Figure 2.3 and types in Figure 2.4.

Figure 2.2: Program structure in Javas

prog = class1; . . . ;classn
class = C extends Csup implements I1; . . . ; In {

f ield1; . . . ; f ieldn
method1; . . . ;methodn

}
f ield = type f ieldName
method = exprType method(type x1; . . . ; type xn) {

stmt1; . . . ;stmtn
return expr?

}
stmt = if expr then expr else expr

| var := expr
| {stmt1; . . . ;stmtn;}
| expr

Figure 2.3: Expressions and variables in Javas

var = id (local variable)
| expr. f ieldName (object field)
| expr[expr] (array element)

var = prim (literal value)
| var (dereference)
| expr.method(expr+) (method call)
| new C (object creation)
| new type[expr]+ []∗ (array creation)

The language does not summarise all of Java by any means; e.g. the lack of exceptions has

been noted already. However, not all of the Java language is available for processing; and in

particular, there are a few notable omissions:

Assignment is an expression Although Javas treats assignment as a statement, it is actually

an expression in the Java language. It is commonly used in idioms such as looping over

an array, where the index is declared and initialised in the loop itself. It’s also possible to

nest assignments, as in a = b = expr.

2.1. Java 11

Figure 2.4: Types in Javas

primitiveType = bool | char | short | int | long
| float | double

simpleRe f Type = className|inter f aceName
componentType = simpleRe f Type|primitiveType
arrayType = componentType[]n

re f erenceType = simpleRe f Type|arrayType| nullType
type = primitiveType|re f erenceType
exprType = type| void
argType = list of type
methodType = argType→ exprType

Constructors are not represented Although it shows a class as containing methods and fields,

constructors are not the same as methods. Specifically, they are invoked when a new

operator is invoked, and arguments can be passed into constructors. As a corollary, the

only initialisation operator in Javas is the new keyword, which only takes a class type,

and no arguments. Given constructors play a part in some design patterns, the omission

of constructors is not possible in HEDGEHOG.

Visibility of members is not considered There is no concept of modifiers such as public,

protected or private which limits what patterns may be represented in Javas. As

an example, the Abstract Factory specifically requires an abstract modifier for both

method and class types.

The subset is shown to be well-formed, and the language rules enforce type checking (for

example, a method overridden in a subclass must have the same return type and same typed

arguments) as well as compilation rules (methods defined in an interface that is implemented

by a concrete class must be defined). These are rules that a Java compiler will enforce itself.

However, the important part of the work is that the run-time semantics is modelled as rewrite

rules. Each step of execution (only considering a single thread) is represented as a tuple of steps

remaining in a program and the current state. In essence, the execution engine is a state machine,

and the act of executing a statement is a state transition. State is represented (as in the VM itself)

as a heap of object instances and a stack, which contains variables defined in method calls.

The work on Javas is based on earlier work that used the C programming language, using a

proof engine called DECLARE [Sym98]. This allowed proofs to be specified declaratively, and

“results that are both machine checkable and human readable” [Sym97, page 33], although

12 Chapter 2. Literature survey

it was heavily influenced by other proof systems such as PVS [ORS92] and Isabelle/HOL

[NPW02]. The DECLARE proof engine was also used to prove Javas was sound, but as an

experiment into declarative proof engines rather than specifically focussing on the properties of

Javas itself.

The DECLARE proof engine was used to show that the rules formalising the language were

sound and type-safe. The proof was built by repeated refinement of a set of original goals, and

the interactive nature of DECLARE helped to discover lemmas that could be used in future parts

of the proof. By the end, the subset of Javas was shown to be type-safe at both compile-time

and run-time.

2.1.2.2 Bali

The Bali project is concerned with the formalisation of aspects of Java in the theorem prover

Isabelle/HOL. As such, it shares a very similar purpose to the work done by the SLURP group,

but with the distinction of using a different proof engine to do the work. The development of a

second formalisation of the Java language started off with Javas to create Javalight , and proved

that Javalight (very similar to Javas) was definitely type-safe [NvO98]. Bali used Isabelle/HOL

[NPW02, Pau94] to represent the Java language and to determine that the Javalight language

was type-safe.

The purpose Bali and SLURP was to prove the type safety of Java as a language, rather

than proving specific features about the programs written in the Java language. HEDGEHOG’s

architecture (discussed more in Chapter 3) also uses a built-in proof engine to reason about the

implementation of Java design patterns. However, the Isabelle/HOL and Bali semantics were

not suitable for representing patterns, since they only focussed on the run-time execution and

not the relationship between classes.

2.1.2.3 LOOP

The LOOP tool (for Logic of Object-Oriented Programming) is a tool for reasoning about

object-oriented programs. It uses an internal specification language called Coalgebraic Class

Specification Language or CCSL [HHJT98] to define the program in terms of a coalgebra,

which provides a hidden state space and a set of functions on that space. Whilst CCSL can be

generated “by hand”, it can be generated automatically from either C++ or Java programs. The

CCSL statements are then translated into a set of statements for the PVS theorem prover, which

allows it to reason about certain properties of the program. Unlike Bali, this not only allows

2.1. Java 13

it to reason about the type of Java programs, but also about the execution flow and state of the

class at a specific point.

The class is represented as a coalgebra, which is a set of functions that translate the state of

an instance from one value to another. The application of each method therefore returns a new

state, as well as a possible return value; the return value may either be a successful return code

or an exception. In the case of an exception being raised, it is treated as a secondary flow and

normal code flow is not resumed until it is caught by an appropriate handler.

The purpose of LOOP is to allow the user to prove certain statements about the Java program

itself. In order for it to operate, it needs to translate each class required into a set of PVS

theories, and questions about the program can be answered by presenting them as goals for the

proof system to solve. It can also be used to prove invariants about a class by showing that they

hold before and after a method’s execution.

2.1.3 Java modelling and constraints

As an object-oriented language, Java is amenable to modelling using standard OO tools and

techniques. The most common of these at present is the Unified Modelling Language or UML

[FS03]. This is a graphical language for representing relationships between classes and objects.

Other modelling languages exist, and are covered individually in this section.

Models in UML may be static (showing relationships between classes such as inheritance

or navigability) or dynamic (showing how the sequence of messages flows between classes in a

system). As a result, it is a useful way of graphically describing a concrete system, both from a

structural and semantic viewpoint.

2.1.3.1 UML and OCL

UML is the standard modelling language for object-oriented systems, having evolved over the

years from separate modelling techniques. UML itself is the distilled commonality between a

number of separate precursor modelling mechanisms such as Booch, Rumbaugh, and Jacobsen.

Design patterns are often described with UML in various pattern books [GHJV95, Vli98,

Cop95, Vli96]. However, since design patterns are implicitly abstract, and are supposed to be

a template for multiple concrete systems, patterns described in UML often take the form of a

concrete example, from which the reader is expected to interpret the key features. For example,

the Command pattern [GHJV95, page 236] is often represented with an abstract superclass

Command with an abstract execute method. However, this does not imply that all instances of

14 Chapter 2. Literature survey

the Command pattern should use these exact names; it is equally correct to use Action and

perform for these names. Since UML does not provide meta-names, it is not possible to use

UML to represent meta-descriptions of patterns, but only show concrete examples.

By itself, UML does not provide semantic information of how methods should behave. To

a certain extent, information can be shown with object interaction diagrams (such as sequence

or collaboration diagrams). However, this information is limited to showing the order in which

messages are sent, and does not really deal with conditional branching or constraints on the

object data.

To solve this problem, a constraint language called Object Constraint Language or OCL

[WK03] was created as part of the UML. Its purpose is to fill the semantic gaps left by UML’s

static and dynamic diagrams, so that semantic constraints on the object’s data can be expressed.

Expressions in OCL are often used to specify invariants for object state data, and are side-

effect free; they cannot change the state of an existing system. They are also used to specify

pre-conditions and post-conditions for method execution, and to describe conditions for guards

or other looping sequences. An example of OCL constraining an Account class is shown in

Figure 2.5.

Figure 2.5: Object Constraint Language example

context Account
inv: overdraft < 0 and balance - overdraft >= 0

context Account::withdraw(amount:Integer)
pre: amount > 0 and amount < balance - overdraft
post: balance = balance@pre - amount@pre

Although constraint-based programming is a very useful way of specifying a program’s

behaviour,4 it has not yet reached mainstream acceptance. In part, this is a lack of understanding

of how contracts are written or what purpose they serve. To some extent, their use (in Java)

has been negated by the addition of assertions to the Java language and the increased use of

test-driven development [Bec02] and automated unit testing [GB]. These processes both add

4Design by contract [Mey02] was popularised by languages like Eiffel [Mey99] and has subsequently been
made available in Java with implementations such as iContract [Kra98]

2.1. Java 15

test code to the system (internally in the case of assertions, externally in the case of test-driven

development) to exercise it in normal, abnormal or edge5 cases. There is also an interesting

trend towards Aspect Oriented Programming [CHWC05], in which code is inserted at the entry

and exit points of a method call. These are most commonly used to insert logging points, but

also potentially to check pre-conditions and post-conditions of a method as well.

Ironically, whilst OCL is a much more precise (and complete) way of specifying constraints

than testing code, the latter seems to have much more acceptance in developer communities.

The adoption of this testing crutch may mean that languages such as OCL do not get used in

mainstream Java developments, whilst code that can be formally verified may use more formal

languages such as Z or Eiffel.

2.1.3.2 ESC/Java

Rather than verify assertions at run-time, other approaches that verify the semantic execution

of code are possible. The HP SRC Classic6 researched into proving operational checking using

source code, with the Extended Static Checker (ESC) [Lei97, DLNS98] which discussed a

mechanism for extended static checking (validating constraints using only statically available

code), and originally focussed on Modula-3.

The idea of extended static checking is to verify properties about code based on the source

code and a semantics for the programming language. Although ESC will be able to prove less

stringent results than a fully formalised proof system, it can be used to prove properties about

code that would be useful to others. In this respect, it is similar to HEDGEHOG’s use of weak

semantics; they are not capable of proving everything about a language, but they are capable

of proving certain items of interest. For example, ESC is capable of proving whether there are

any array index errors, NIL-dereferences (null in Java) and so forth. Further, these are errors

which would not be picked up by a compiler but are only noticeable during run-time, and would

not be picked up by a purely static type check of the code.

ESC works by generating a set of verification constraints from the source code, which it

then feeds into a proof engine called Simplify [Nel80]. This is a refutation-based proof engine;

given a requirement P, it tries to derive a contradiction from the negation of P. It works by

automatically trying to prove a first order formula as input, and then determine whether it is

valid or not. If it is invalid, it prints out something which it believes to negate the requirement.
5An edge case is one that exercises values close to special ‘magic’ values of the system, such as testing arrays

with accessing elements number -1, 0 and 1 as well as n-1, n and n+1
6Formerly known as the Compaq Systems Research Center7

7Formerly known as the NEC/Digital Systems Research Center

16 Chapter 2. Literature survey

The proof engine is conservative; it never claims that an invalid requirement is valid, but can

sometimes fail to prove a formula that is valid.

A subsequent version, ESC/Java [LNS00, FLN+02], was created to get a larger user base by

parsing Java source code instead of Modula-3 source code. This would have been an ideal base

to use for HEDGEHOG, but unfortunately was not available until the end of this project. The

operation of ESC/Java works by translating Java source files into a set of axioms that can be fed

into the Simplify proof engine. It distils properties about the Java source (such as inheritance

relationships, type definitions, and so forth) and converts these into axioms. It also translates

methods into an intermediate form, so that program assertions are automatically added to the

code (for example, asserting that the index used in an array dereference is positive and less than

the size of the array itself). These expressions are then translated into verification conditions

such that the proof engine can attempt to provide a counterexample.

Since the requirements are translated from source into the intermediate assertions, then into

proof statements for Simplify, the authors acknowledge that this process is unsound. However,

the goal of ESC/Java is to show that certain types of errors are not present, as opposed to

determining that there are no errors present. By tackling (and successfully solving) a much

simpler problem, they argue that the use of ESC/Java will allow some otherwise hidden/run-

time problems to be uncovered, even if it cannot catch all of them.

Since the creation of ESC/Java, a new version has been forked called ESC/Java 2. Although

similar in concept, the second version has been created by groups unconnected to the original

development. It was created by the group responsible for LOOP [JvdBH+98] verification. In

particular, it has been amended so that instead of requiring the original ESC syntax for marking

up requirements, a new specification language called the Java Modelling Language or JML

[JP00] is used to annotate the source. In principle, JML is similar to OCL, except that it is

specifically aimed at Java instead of generic OO languages. It can therefore take advantage of

both Java syntax and common Java constructs, such as lists and sets. An example, similar to the

one given for OCL in Figure 2.5, is presented in Figure 2.6.

Additionally, since JML and its related tools are open-source, it encourages the ongoing

development of the project. It is thus slightly more likely to be used outside of a research

field than the previous version of ESC/Java. It should be noted that the ESC/Java 2 still uses

the Simplify proof engine for proving the constructs under the covers; essentially, it wraps a

different (and more extensive) grammar for writing the pre- and post-conditions, as well as

invariants, of methods in the code. Other tools are being developed to support JML assertions,

including plug-ins for IDEs such as Eclipse.

2.2. Design patterns 17

Figure 2.6: Example of JML

public class Account {
/*@ public normal_behaviour

@ requires amount >= 0;
@ assignable balance;
@ ensures balance.equals(\old(balance-amount))
@*/

public void withdraw(int amount) {
balance -= amount;

}
// ...

}

2.2 Design patterns

Design patterns have been used by the object-oriented community for many years; the seminal

catalogue is [GHJV95]. One of the key features of a design pattern is that it is an abstraction

from the underlying implementation, which means that a pattern is by definition an intangible

product. As a result, a specification of a design pattern needs to work at the abstract level rather

than the concrete.

There are several works that specify or reason about design patterns. Each has a different

way of representing patterns, depending on the nature of how the patterns are used. A brief

description of each is given below. This thesis presents a more detailed review of design patterns

in Chapter 4, and how they may be specified in SPINE in Chapter 5.

2.2.1 Specification

The specification of patterns has become an interesting question since the adoption of pattern

catalogues such as [GHJV95, Vli98, Cop95, Vli96] and so forth. As noted earlier, patterns

are often specified by example using UML as a notation for presenting a concrete example.

However, since the pattern itself is abstract, and the example concrete, the reader needs to infer

the important parts of the pattern in order to use it.

As a result, there has been work towards a specification for design patterns that allows the

pattern to be represented as an abstract concept, rather than exemplified. Some specifications

are also aimed at the automated processing or refactoring of design patterns.

18 Chapter 2. Literature survey

2.2.1.1 Tool support

Several pieces of work aimed at the specification of design patterns for use within tools have

been done at Utrecht University. The first describes tool support for object-oriented patterns

[Mei96, FMvW97] in which patterns are integrated into the development process. The fragment

tool provides templates from which design patterns can be instantiated in code; in essence, these

templates form the specification of the pattern itself. The goal is to allow patterns to be treated

as “first-class citizens in an integrated object-oriented development environment” [FMvW97,

page 2].

LOOP focusses on the Smalltalk [GR83] programming language, and has an immediate

benefit in that the Smalltalk programming environment itself is written in Smalltalk. As such,

the program can be easily parsed and processed using tools inherent in the Smalltalk operating

environment. Additionally, the tool is built upon the Smalltalk Refactoring Browser [RBJ97]

which allows classes and methods to be refactored. A more detailed view of refactoring and

design patterns is given below.

Patterns are represented as declarative constraints on a set of classes. These declarative

constraints can be combined to form pattern specifications, which can then be applied to existing

classes in the system. This leads to two definitions:

Pattern fragment An object-oriented artefact that specifies part of a pattern (a method call,

required signature etc.)

Pattern constraint A requirement that a pattern must do a particular action, such as calling a

method or instantiating a class

The pattern specifications can also include meta-information about the pattern itself, such

as documentation or intent of the pattern. These are used within the tool to present information

to the user when selecting or instantiating a pattern.

As well as using the tool for instantiating patterns, it can be used to refactor and repair

patterns. Thus, names of the classes implementing the patterns may be refactored, but the

fragments defining the pattern will still be associated with the code; and hence will still be

documented as implementing the pattern. If the pattern is broken during the refactoring, then

the fragments can be used to repair the break; for example, if a singleton class is split, the

fragment can be detached and then re-attached to the correct class; and from there, the pattern

can be re-instantiated.

2.2. Design patterns 19

This was followed up with a framework for representing patterns [Gru97] which defined a

way of extending the definition of patterns so that they can be broken down into groupings. In

particular, it describes patterns not in terms of structural relations, but in terms of the participants

of those patterns. It also highlights a number of very useful observations:

• Some design patterns may share similarities with others, both in terms of their intent and

implementation. If this is the case, then the common features can be described as mini-

patterns, which may then provide building blocks as a way to integrate other patterns in

the future.

• Structure is not enough to describe the pattern. The problem is that the structure is only

part of the solution; how the classes are related in intent can be just as important as how

they are implemented (see the discussion of Command earlier).

• Participants are always present in a pattern. Patterns are only useful when they are used,

but it is not always easy to see how the patterns are connected. For example, they may be

directly connected via an instance variable reference, or they may be indirectly connected

by many list-like data structures.

• Designing an abstract pattern language for transformation into several languages makes

sense if there are more than three languages. However, the abstract pattern language

would have to encompass every feature from every language, and would have to have

emulated features for those languages which did not support it. Additionally, a number

of specific features in a language may require tailoring to a specific solution. The author

concludes: “All in all, it is practically impossible to provide readable translations between

two arbitrary object-oriented languages without loss of meaning” [Gru97, page 85].

2.2.1.2 Pattern specification

Amnon Eden has worked towards a representation for design patterns. He started with the

concept of the Patterns Wizard [EGY97] in which patterns are processed by a tool and in which

patterns are represented in the “Pattern Specification Language” or PSL. This described patterns

in terms of Smalltalk metaprograms, which when run, would generate an instance of a design

pattern. Interestingly, whilst the pattern specification language was implemented in Smalltalk,

the objects being modified were Eiffel.

The definitions of patterns in PSL are represented as tricks that the wizard can use to apply

a pattern to an existing class (or set of classes). When the trick is applied to a class, features of

20 Chapter 2. Literature survey

that pattern are instantiated. As such, the trick encodes the pattern in an imperative way, which

is primarily useful when adding an instance of a pattern to a class.

Although not declarative (and thus not easy for use in detecting patterns) PSL did provide

some key features that were used later on, and echoes similar observations made by others. For

example, it introduced the idea of micro-patterns, by observing that there are some common

features in design patterns such as [GHJV95], and that by representing these as individual units

it is possible to build up a more fine-grained level of pattern library.

This was followed by a graphical (and thus declarative) representation of design patterns

called the “LanguagE for Patterns’ Uniform Specification” or LePUS [Ede98]. A graphical

representation is worth a thousand words (as the saying goes) because of the clarity of the

information which can be conveyed in a few well-known symbols. UML is used for designing

object-oriented systems for exactly this reason, and LePUS aims to provide a language which

could be used to represent design patterns and their interrelations. An example of LePUS can

be seen in Figure 10.4 in Section 10.4.

Since graphical constructs are not easy to reason with directly, a textual syntax was created

for LePUS [Ede00] which identified ground-rule relations between participants (classes that

work together to form a pattern) and their collaborations which represent the interrelationships

between the participants. These are referred to as a pattern’s artefacts, and this term is used in

HEDGEHOG’s description to indicate both collaborations and participants.

Given that UML is a graphical modelling notation for object oriented systems, one may

ask what LePUS provides over and above UML. One key difference is that LePUS provides

the ability to reason about meta-classes or groups of classes as a single unit. For example,

it’s possible with LePUS to add a constraint to a family of methods that may be scattered

throughout many classes. It’s not so much that UML can’t represent this (you could have one

graphic for each of the classes, and stereotypes for each of the methods) but with LePUS it

can be compacted into a couple of figures. Also, UML is limited to a textual stereotype name

with a single graphic notation, whereas LePUS uses different graphical notations for specific

meanings, so the LePUS diagram is very much more condensed than a UML representation.

Unfortunately, this is also one of the weaknesses of LePUS – the diagrams can be so compact

that it can be difficult to interpret.

PatternsBox [AACGJ01] provides a way of instantiating design patterns. It uses a library of

design patterns and a set of requirements; for example, a composite pattern can be created by

instantiating a new Composite() and subsequent operations could be added to it dynamically.

The result of this processing is a set of Java source files that realised the design pattern. This is

2.2. Design patterns 21

a one-way process; if a new instantiation is required then the existing code is thrown away and

new code is generated.

A library of patterns defined in the Pattern Definition Language (PDL), was created for the

PatternsBox tool. PDL defined a number of classes used to represent the design pattern, so a

superclass Pattern represents a generic pattern, and specific sub-types such as Composite

provided mechanisms to be able to represent and create such patterns.

PDL is very similar7 in intent to Eden’s approach of a meta-language to instantiate design

patterns [Ede00]. The implementation allows patterns to be created from a library, but is not

suitable for verification or analysis.

HEDGEHOG initially used an object-oriented representation to define patterns, but switched

to an external text-based format in order to provide easily extensible functionality for users who

would not be familiar with HEDGEHOG’s internals.

The ideas for presenting a pattern as a set of constraints, described as a declarative set of

Prolog-like statements were presented in my paper [BBS01] and a set of patterns using this

syntax defined in a technical report [Ble00] earlier; both of these are further developed in this

thesis. The pattern definition language is described in more detail in Chapter 5, and a full list of

pattern definitions is available in Appendix B.

2.2.2 Detection

Kyle Brown investigated automated design pattern detection in Smalltalk [Bro96] with a tool

called KT. Its aim was to detect where patterns are used in existing Smalltalk code, with the

intention of being able to detect potential patterns and allow the user to make the patterns more

explicit.

Since patterns are often composed of inheritance, aggregation/association and messaging

information, these can be used as hints to find where a pattern may be present. (These hints

are also used in the refactoring of design patterns; [OC00] refers to this as a precursor.) Since

patterns will often have some key features that are identifiable, a scan of existing code looking

for these key features highlights potential uses of a particular pattern. Patterns that have multiple

key features may be easier to detect; or at least, the tool can give a higher confidence that a

pattern is present.

However, [Bro96] identifies that not all patterns are detectable:

7Indeed, it uses the term leitmotif which is attributed to [Ede00]

22 Chapter 2. Literature survey

Many design patterns, such as Interpreter, rely upon general design principles
that cannot be directly represented as design diagram fragments. In cases like this,
a general statement such as “Build a parse tree for a language” can be interpreted
and implemented in many ways. This reliance upon semantics results in so many
possible interpretations as to make the pattern impossible to detect.

It also highlights the issue with identifying a design pattern and being able to tell it distinctly

from others:

In general, a pattern is detectable if its template solution is both distinctive and
unambiguous. If a particular solution is distinctive, then it may be represented
by a unique diagram that is not likely to be generated in a design that does not
utilize that pattern. If a solution is unambiguous, then the particular solution must
be representable in only one way. ... The basic solution has the Adapter class
subclass the “target” class, and contain an instance of the “adaptee” class to which
it forwards messages. This solution is unambiguous; there are not many other ways
to do this. However, it is not distinctive; the structure of the diagram is not unique
enough to be positively identified as an instance of Adapter. If it were taken to
be so, then every class that descended from another class and contained instance
variables could be construed as being an Adapter!

The KT tool focussed on searching for Composite, Decorator, Template Method and

Chain of Responsibility. It noted that Strategy, State and Command would potentially be

detectable, but that they would be ambiguous; so much so, that it would potentially be easy to

obtain a false positive.

More recently, Plezbert and Cytron described [PC00] concepts behind pattern recognition

and verification. The paper and related work seems to be a work-in-progress at this time, with

no other papers published since.

The paper is primarily aimed at being able to detect patterns from existing systems, with a

view to also verifying the pattern’s existence. Conversely, HEDGEHOG’s approach is to focus

on the verification of the design pattern, but as noted in the further work in Chapter 11, one

possible use of a verification system is for detection. Using a verification system as a pattern

detection mechanism is quadratic since the brute-force method is to verify each class against

each pattern. This is noted by [PC00], and is just as applicable to HEDGEHOG.

Brute force attempts to scan for patterns have also been postulated by searching for a specific

feature (or combination of features) in an object-oriented class. For example, [Ban98] suggests

that design patterns can be identified in code by searching through code for a specific pattern.

This has been tried in the form of regular expressions as well as language-specific searches; in

essence, certain tell-tale markers (such as a static final variable) are used to identify where

2.2. Design patterns 23

a pattern may be present in a system. However, the article notes that such brute-force searches

are by necessity time consuming in large systems and, because structure alone does not capture

intent, may fire up many false positives.

2.2.3 Refactoring

Refactoring is the ability to change a computer system in such a way as to leave the behaviour

unchanged. Refactoring was introduced [Opd92] to formally explain how behaviour-preserving

transformations8 can be made on existing code. It was made into a tool in the Smalltalk Refac-

toring Browser [RBJ97], and now refactoring is a key component in Integrated Development

Environments (IDEs). More recently, the catalogue has been presented as a set of examples in

[Fow00].

Since refactoring changes the design of code, but does not change its functionality, it is

often used to improve the design of code in order to make it more flexible, more elegant or

more maintainable. It is therefore possible to use a sequence of refactorings to introduce a

design pattern into a system. Refactoring to instantiate patterns has been investigated in work

such as [TB01, Tok99] and introducing design patterns [OCN99, OC00].

Refactoring to introduce design patterns is a way of changing code in order to make a

pattern present. For example, in order to implement the Command pattern, it is necessary

to have an abstract class (representing a generic command) and then subclasses that provide the

required behaviour. It is possible to use low-level refactorings to introduce a Command pattern

manually; for example, one could be achieved as follows:

1. Create a new target class to act as the placeholder for the command

2. Select the source class containing the method that needs to be encapsulated as a command

3. Create an instance of the command in the source class

4. Move the method from the source class to the target class (and replace it with an instance

call)

5. Declare a concrete subclass of the command class

6. Push down the definition of the method into the subclass

7. Make the parent class abstract

8An example of a simple refactoring would be to replace all variables in a given scope called ‘x’ with a variable
called ‘y’.

24 Chapter 2. Literature survey

However, this requires two assumptions; that the user of the refactoring tool knows what

the Command pattern looks like, and that they can devise a list of steps to transform it from

the current source to the target. It may also be desirable to introduce other patterns, such as

Singleton or Flyweight which are not shown in this refactoring sequence.

Thus the evolution of design patterns through refactoring may help simplify these stages,

because the steps to instantiate a pattern can be well defined. Importantly, because refactoring

tools exist and have a rich set of built-in primitive refactorings, it is possible to create a tool to

evolve design patterns based on these primitive refactorings. Obviously, the actual refactorings

themselves will be specific to a given target language, but also to the refactoring tool used;

although the principle should map to other languages and refactoring tools.

The automated application of design patterns by refactoring was investigated in [OCN99,

OC00], which also introduced ways of representing design patterns via transformations.

Consideration is given to the ability to automate the application of design patterns; and in

order to ensure that the pattern transformation is valid, the pre-conditions and post-conditions

of each primitive refactoring are combined to ensure that the whole overall refactoring is valid.

This can be used to chain refactorings of any length, and not just ones aimed at pattern applica-

tion.

Patterns can be automatically applied by representing them as a sequence of refactorings that

instantiates the pattern. In order to do this, a number of refactoring transformations are created,

in which the steps are applied. When analysing patterns at this low-level, it becomes clear that

there may be shared functionality or structure between patterns; and hence mini-patterns can be

discovered along with the mini-transformations that are used to instantiate them.

It follows that the pattern itself is encoded in the transformations that generate it. It is also

the case that the pattern itself will always have the same structure, given that the transformations

that caused it to exist will have been the same each way. It should be possible to create different

variations of a pattern using this method, but they would have to be represented as different

top-level transformations. However, in any pattern where there are similarities, these may well

have been represented as mini-patterns anyway, and hence a different ‘flavour’ of design pattern

may be created.

Whilst the pattern’s pre-conditions allow the tool to determine whether the transformation

can be applied, the implicit post-conditions assure that the pattern is indeed present. However,

it is possible for the code to be further modified such that the post-conditions no longer hold,

which is where the benefit of a verification tool such as HEDGEHOG comes in.

2.3. Summary 25

2.3 Summary

As one of the higher profile object-oriented languages in use today, Java is attracting a number

of research projects. Most of the semantic projects relating to Java are focussed on the issues

surrounding the Java language, rather than the use of the Java language.

Although design patterns have been used in object-oriented systems for many years, there

is still relatively little work on reasoning about design patterns. Some works focus on generic

design patterns across all languages, whereas others focus on a specific object-oriented language

(notably Smalltalk or Java). Work in this area is still in its preliminary stages, and HEDGEHOG’s

approach of using a language-specific representation builds on the abstract representation and

extended static checking to provide a system which is not only useful for research, but also may

be applied to real systems.

Chapter 3

System architecture

This chapter presents an overview of HEDGEHOG and sets the context for later chapters.

3.1 HEDGEHOG

HEDGEHOG is a tool for automatically verifying the existence of design patterns in Java source

code. In order to operate on Java source files, they must first be parsed into a format that

HEDGEHOG can understand. Once parsed into a suitable representation, the classes can then be

processed with the internal proof engine.

The design patterns, which are discussed in more detail in Chapter 4, are represented in

a specification language called SPINE, which is discussed in Chapter 5. This allows a library

of patterns to be used for verification of the source code and provides a means of extending

HEDGEHOG’s capabilities at a later stage.

When starting up, HEDGEHOG reads in the pattern definitions from the library. When the

user requests verification that a class (or set of classes) realises a pattern, HEDGEHOG parses

each required Java source file into an Abstract Syntax Tree or AST , and caches them for future

use. The request is then passed to the proof engine, which uses the pattern definitions to show

that the Java class(es) realise the given pattern.

Requests are read in from the user either directly (through an interactive GUI) or indirectly

(through an automated process). The pattern verification process is intended to be automatic

(thereby hiding the complexities of proof systems from the end user) and the interactive GUI is

an interface for a read/prove/print loop.

Figure 3.1 shows the way in which each of these components are joined together.

27

28 Chapter 3. System architecture

Figure 3.1: Overview of HEDGEHOG

Hedgehog

Java AST
Parse

Get class representations

Spine
LibrarySpine

LibrarySpine
Library

Request

3.2. Parsing Java source files 29

3.2 Parsing Java source files

In order to process Java source files, they are parsed into an internal AST that the HEDGEHOG

system can deal with. The parser used is antlr [Par], which is a generic parser written in Java

and capable of building many language-specific parsers. [Antlr is a Java version of ‘lex’ and

‘yacc’ type systems commonly found on UNIX systems.]

Antlr also comes with a built-in definition of the Java language, so it is capable of parsing

the Java source file directly into an AST (Figure 3.2). From this, the HEDGEHOG AST is

created (Figure 3.3). [Antlr provides a generic tree-type architecture that is neither Java keyword

specific nor type specific. For ease of implementing some of the internal routines in the proof

system, another AST is wrapped around which is type-safe and provides methods for processing

that are not directly available for the underlying antlr AST.]

Figure 3.2: Antlr parse tree

AST

LeafBranch

Property * +

The proof engine uses these ASTs when processing Java source code to determine certain

properties. For example, the Constructor representation in the AST declares whether or not

the constructor is public, protected or private; this information is then used by the proof

engine in certain proofs.

30 Chapter 3. System architecture

Figure 3.3: HEDGEHOG AST

TypeDefMemberDef

ConstructorMethodField Static
Initialiser

*

Statement

Expression

If/Else

While

For

Block

Assignment MethodCall

*

VariableRef VariableDefFieldRef

Try/Catch

3.3. Parsing and processing SPINE files 31

3.3 Parsing and processing SPINE files

All of the patterns are defined in SPINE, a declarative language similar to Prolog, to represent

each pattern’s requirements. (Spine is covered in detail in Chapter 5.) These patterns are stored

in the patterns library, which is loaded at startup through the init.sp file. Through the use of

the meta-load command, pattern definitions may be spread over a number of SPINE files (see

Figure 3.4).

Figure 3.4: Example SPINE file

load(‘Creational.sp’). (* Load the creational
patterns *)

load(‘Structural.sp’). (* Load the structural
patterns *)

realises(‘Singleton’,[C]) :- (* Class C is a
singleton if *)

or([(* either *)
realises(‘LazySingleton’,[C]), (* C is a lazy

singleton, or *)
realises(‘PublicSingleton’,[C]) (* C is a public

singleton *)
realises(‘PrivateSingleton’,[C]) (* C is a private

singleton *)
]).

The SPINE statements are parsed into rules which are then stored in memory. Order of rules

is important; rules loaded earlier have precedence over rules loaded later. The rules are used by

the HEDGEHOG proof engine (described in Chapter 6) when it needs to prove whether or not a

class meets a particular design pattern.

3.4 Interacting with the user

The purpose of HEDGEHOG is to provide an automated system which therefore needs very little

input other than the initial request (to prove that a class or set of classes meets a particular design

pattern). Once this goal has been given to HEDGEHOG, the proof system is automatic until a

result can be given. The internal proof tree is not shown directly to the user; instead, the result

of the proof is shown as a yes/no/unknown answer. In the case of proof failure, the proof tree

32 Chapter 3. System architecture

can be translated to an error message to give more information about the problems that caused

it to fail, and the error messages are described in more detail in Chapter 7.

Although a primitive user interface has been developed for executing HEDGEHOG, it is

expected that a more integrated approach will be taken to integrate it with automated build tools

like Ant and XDoclet, and automated testing tools like JUnit. This, and other ideas to extend

HEDGEHOG, are discussed in Chapter 11.

3.5 Summary

HEDGEHOG uses a built-in Antlr-based parser to be able to create a representation of the Java

source file in memory. This representation is used by the proof engine to ascertain statements

about the Java classes during the proof process. Proofs are initiated by user request, which then

starts the automated proof process, using SPINE definitions of patterns to verify correctness.

Errors generated during the proof are translated into human-readable error messages and shown

to the user, thereby hiding the complexities of the proof.

Chapter 4

Design patterns

This chapter starts by introducing patterns, and relating their history and incorporation into

software products as design patterns. The basic content of a pattern is presented, along with

references to several catalogues of patterns in the software industry.

Some terminology used in this thesis in relation to patterns is presented in Section 4.2.

Section 4.3 then discusses how patterns can be represented. Several approaches are analysed

and the advantages and disadvantages of each investigated. The patterns themselves are then

analysed in Section 4.4 as a basis for what the key features in a pattern are.

4.1 The history of patterns

The term pattern was coined by an architect, Christopher Alexander [AISJ77]. He noted that

when a building was designed, several key features were reproduced similar to previous designs.

The advantage of reusing an architectural design is obvious; once a design has been shown

to solve a particular problem (such as the simple arch, introduced by the RomansfootnoteYes,

but apart from arches, what have the Romans ever done for us? [Joh99]), then it can be reused

in other buildings for a fraction of the effort taken to design the first instance.

Christopher Alexander noted that several elements were repeatedly reused, and termed these

‘patterns’. He catalogued a set of patterns that could be used to recreate building designs easily,

and for each pattern, gave it a name (so that it could be referenced easily), described the key

features of it (so that it could be reproduced in different situations), and described its advantages

and disadvantages (to allow architects to choose between different patterns). Importantly, these

patterns could be used in conjunction with each other to provide a complete solution, rather

than as separate components.

33

34 Chapter 4. Design patterns

His work on architectural designs was adopted by object-oriented pioneers to reformulate

design patterns to be used in software systems. Catalogues of design patterns appeared such

as “Pattern Oriented Software Architecture” [Bus96] and also “Patterns: Elements of reusable

software” [GHJV95], colloquially known as “Gang of Four” or “GoF” after the four authors

who wrote it.

4.1.1 Software design patterns

Design patterns in software applications follow the same goal as Alexander’s design patterns.

Each software pattern is named (e.g. Visitor, Singleton, Bridge) in order to provide a common

vocabulary between software engineers; key features are demonstrated (with code examples);

and a set of advantages and disadvantages are given when considering using the design pattern.

Additionally, patterns often have other embellishments; aliases (some patterns are known by

different names: for example, Listener and Observer are the same pattern), relationships with

other patterns (to allow choices between different solutions) and other comments indicating the

cost or performance benefits between the two. Figure 4.1 shows an example of a pattern.

In object-oriented systems, such as Java [GJS96], using a design pattern will result in the

creation (or modification) of one or more classes. However, software design patterns can still

be used in other types of languages; for example, list-based processing in Prolog is a kind of

pattern, and recursive function programming in ML is another type of pattern.

Catalogues (such as [GHJV95] define conditions for a successful pattern. They must:

1. have a name

2. have been used in several different situations

3. provide a common solution to a common problem

4. have consequences (benefits and drawbacks) of using the solution

The first requirement is obviously necessary; developers need to have a common way of

identifying (and talking about) a particular pattern. As patterns are used more often, developers

become much more familiar with the terms used discussing them, and thus communication

regarding the pattern can be achieved much more quickly.

The second requirement is necessary because design patterns are meant to be reused in

several different situations. It is not until a pattern has been used in several different situations

that common parts of the pattern can be identified, and highly specific parts of the pattern can

be factored out.

4.1. The history of patterns 35

Figure 4.1: Command pattern description

Name Command
Aliases Action

See also Interpreter

Description The Command pattern is used to decouple the source of the request from

the object that executes the command.

Overview An application’s operations (open file, find, next document) are often tightly

coupled with user interface. However, if these can be decoupled, then it

increases the maintainability (and flexibility) of the application.

In the Command pattern, every action is implemented as a subclass of

a designated Command class. Additional commands can be added simply

by creating a new subclass of Command. Additionally, the command is no

longer dependent on the class that requests it, which allows the GUI to run

the command not from a single place (e.g. a button) but from multiple places

in the same application (e.g. a menu item or hyperlink).

Notes • Maintainability due to separate request/invocation of the command

• Decouple the command requester from the command execution

• Support security or logging

• Support undo commands

• Sharing the command instance across the application

• Consequence: many discrete classes can result in a more fragmented

application, which is more difficult to test

Example public interface Command {

public void execute(Application app);

}

public class SaveCommand implements Command {

public void execute(Application app) {

app.save();

}

}

36 Chapter 4. Design patterns

The third requirement is necessary because if the problem is not a common one, then the

pattern will not be used frequently. If it is not frequently used, it will become forgotten and thus

not achieve its potential. Patterns are like genes; the fitter the pattern is (the more it is used; i.e.

the more generic problem it solves) the more likely it will be to be remembered and reused.1

The last requirement is necessary because in order to properly choose a pattern to solve

a particular problem, the developer must know what the advantages and disadvantages are of

using that pattern.

4.2 Terminology

When discussing, specifying and verifying the correct use of patterns in an existing software

codebase, as well as discussing how the patterns themselves may be structured, it is important

to define the terms that will be used. To avoid ambiguity with other object-oriented concepts,

terms such as instance and instantiate will apply solely to object instances and the creation of

new object instances.

Additionally, since Java uses the terms implements and extends to indicate a relationship

between classes and interfaces, these terms will only be used in the context of Java code.

4.2.1 Realises

If a class is a Singleton, then developers may use a number of different terms to indicate this.

For example, some may say that “class X implements the Singleton pattern” or “class X is an

instance of the Singleton pattern.”

Since the term instance in object-oriented systems is very commonly used when talking

about an instance of an object, we need a new term for discussing patterns that exist in code.

This thesis will use the term realises to indicate that a class (or set of classes) is a particular

pattern. The above example will thus be phrased “class X realises the Singleton pattern”, or

more briefly, “class X realises Singleton.”

4.2.2 Variant

A design pattern may be realised by several variants. For example, a Singleton may be realised

using lazy instantiation (see LazySingleton in Figure 4.2) or a constant static variable (see

1A solution to a single problem is not a pattern; only if it is reused in other situations can it be called a pattern.

4.2. Terminology 37

PublicSingleton and PrivateSingleton in Figure 4.2) . They both behave in a similar way, but

there are implementation differences (and therefore some minor variations in performance2).

Figure 4.2: Singleton variants

public class PublicSingleton {
public static final PublicSingleton instance =

new PublicSingleton();
private PublicSingleton() {
}

}
public class PrivateSingleton {

private static final PrivateSingleton instance =
new PrivateSingleton();

private PrivateSingleton() {
}
public static PrivateSingleton getInstance() {

return instance;
}

}
public class LazySingleton {

private static LazySingleton instance;
private LazySingleton() {
}
public static LazySingleton getInstance() {

if (instance == null) {
instance = new LazySingleton();

}
return instance;

}
}

In order to formally define a library of patterns, each pattern was analysed to define variants.

It should also be noted that the examples shown in Figure 4.2 above are all ways in which a

single type of Singleton may be realised. In [GHJV95], there are actually several variants of

Singleton listed, including the simple Singleton (shown above), a subclassable Singleton and

a registry of Singletons.

There is some debate [OC00, page 97] as to whether a SubclassableSingleton is desirable,

2Lazy instantiation works by delaying the construction of an object until it is first needed. Thus, for instances
that are rarely used, lazy instantiation works very well. However, instances which are often used are better suited
for creation during class initialisation, since they will always be instantiated.

38 Chapter 4. Design patterns

since control over creating instances is delegated to subclasses. Furthermore, given that one of

the benefits of the Singleton pattern is to ensure one globally unique instance (and that other

instances cannot be created), it’s not clear whether the SubclassableSingleton is consistent with

this requirement.

In actual fact, a SubclassableSingleton can be seen as a combination of two patterns; the

LazySingleton combined with a Factory Method (or Abstract Factory) that can be used to

(dynamically) determine which class to use. If only the simple Singleton variants are allowed,

and a developer was to merge the class hierarchies of the Abstract Factory and Singleton
classes, then HEDGEHOG would report this as a violation of the Singleton pattern since the

non-instantiability requirement would have been falsified. This thesis concentrates only on the

simple Singleton variants, but there is no reason it could not be extended to allow other variants,

including the SubclassableSingleton.

There is also a Registry Of Singletons in [GHJV95] that is very similar to the idea of

the Flyweight pattern, or even of a common dictionary-type data structure such as Java’s Map

classes. In this instance, the data structure is used to hold an instance of a class with a given

key, and since there can only be one instance associated with a key, we have the uniqueness

constraint. However, this does not prevent the same instance being inserted in multiple keys;

and in any case, developers may not consider a hashtable of instances to be a realisation of

the Singleton pattern.3 Although it may be possible to specify an extra variant to cover this

implementation, it has not been included since this Singleton variant is not normally seen in

code.

It is more common to see variations from the Singleton pattern, such as the Java Color

class, which defines a number of Singleton-esque instances. In fact, the Singleton can be

seen as a particular sub-pattern of a notional Multipleton or Enum pattern that has a size

of 1. Additionally, it is possible for some Multipleton realisations to be ‘open’ as well as

‘closed’; for example, the Java Color class is an ‘open’ Multipleton; it defines a number

of fixed instances (‘RED, GREEN, BLUE’ etc.) and allows new instances to be defined. Then

there could be other instances such as CardSuit which have a number of fixed instances

(‘SPADE,HEART,DIAMOND,CLUB’) but do not allow new instances to be created, and this could

be described as a ‘closed’ Multipleton. However, this thesis will not investigate this further

since the purpose is to investigate existing accepted patterns rather than suggest new patterns.

3There’s also the difficulty of determining in which cases a hashtable is being used as a Singleton, and which
is just a quick lookup table.

4.2. Terminology 39

4.2.3 Artefact

Each design pattern places a number of constraints on each class. These may be constraints on

the inheritance relationship, or on navigability with other classes, or on the implementation or

expected behaviour of certain methods.

The term artefact will be used to indicate a single constraint on a class. A design pattern can

therefore be defined as a set of artefacts that must be present in a class or a set of classes. This

is similar to the idea of a fragment in [Mei96] but is more encompassing; a fragment merely

relates the collaborators together in a design pattern. Similarly, [Ede00] defines relations that

associate participants in a design pattern, but also includes some aspects of behaviour such as

message forwarding. The term artefact is also used in [Bro96] as a way of detecting part of a

design pattern’s implementation.

Each artefact consists of one or more SPINE statements. These can then be grouped together

to form pattern variants, which in turn can be grouped to provide a pattern definition. An artefact

is a smaller requirement than a mini-pattern; the former is a constraint on the way one feature

must be implemented, but a mini-pattern is a common idiom that may be repeated over several

design patterns or other code implementations.

4.2.4 Super-pattern

Since there can be multiple variants for a single pattern, we need to be able to group them

appropriately to allow code to refer to the abstract name, rather than a concrete variant. Thus

the Singleton is actually a grouping of PublicSingleton, PrivateSingleton and LazySingleton.

However, although these are three different implementations of the same type of singleton, there

are also SubclassableSingleton as well as the proposed Multipleton patterns.

These can be grouped into a super-pattern. As with object-oriented inheritance, a super-

pattern defines a super-type, and realisations of the sub-pattern are implicitly realisations of the

super-pattern. Thus, in order to show that a class realises a Singleton pattern, it is sufficient

to show that it realises a PublicSingleton variant. As with abstract types in object-oriented

systems, the super-pattern need not have any implementation (or requirements) since these can

be delegated to the sub-types. In essence, the pattern variants represent the concrete pattern

realisations, and they are grouped into super-patterns which are abstract.

Using this definition, it has been possible to find other super-patterns. In fact, it has been

possible to create a super-pattern of the Singleton pattern called SingleAccess. This pattern

ensures that all methods can only be executed on a single instance, but as well as the Singleton

40 Chapter 4. Design patterns

Figure 4.3: Utility pattern description

Name Utility
Aliases Helper Class

See also Singleton

Description Used to provide a number of global functions

Overview The Utility class provides a number of global functions as static methods.

This allows any code to refer to those functions using the class methods and

does not require an instance to call them (such as the java.lang.Math

class).

Notes • Provides a set of global functions

• Requires no instantiation

Example public class Utility {

// prevent others from instantiation

private Utility() {

}

public static int negate(int arg) {

return -arg;

}

public static String cap(String s) {

return s.toUpperCase();

}

}

4.2. Terminology 41

pattern, the Utility pattern is also a sub-pattern of SingleAccess. The Utility pattern dictates

that all methods are static, and as there can only be one instance of a class in a namespace,

the methods all share the same access. These relationships are shown graphically in Figure 4.4.

Figure 4.4: Pattern variants and their super-patterns

SingleAccess

Singleton

PublicSingleton PrivateSingleton LazySingleton

Utility

4.2.5 Mini-pattern

In creating a list of design patterns and their definitions, it becomes clear that there are different

types of pattern. Some design patterns, like the ones presented in this chapter, are realised with

a single class; other patterns relate multiple classes together (such as Bridge and Visitor).

Additionally, a number of patterns have similar features. For example, all the variants of

Singleton have a requirement to prevent other objects instantiating the singleton class. In Java,

this is achieved with a private constructor. But this feature is so common (see also the Utility
class) that it is worth naming as a shared feature across these, and other, patterns.

In [OCN99], the authors define the term mini-pattern. This term is used to represent these

shared features across multiple design patterns and use these to define design patterns. A list

of mini-patterns is provided at the end of Appendix B; and an example of the ‘non instantiable’

mini-pattern is shown in Figure 4.5.

42 Chapter 4. Design patterns

Figure 4.5: Example mini-pattern

NonInstantiable
A type is non instantiable if:

• The type is abstract, or

• The type

– Has one (or more) constructors (to avoid default constructor be-
ing created), and

– All constructors are private

4.3 Formally defining patterns

In order to verify whether a pattern has been implemented correctly, it is necessary to be able

to define the design pattern in such a way as to allow a proof engine to compare the definition

against a suspected realisation of that pattern. Unfortunately, there are no immediately available

formal definitions of design patterns, as catalogues tend to describe patterns verbally (such as in

Figure 4.1). In some cases, the reader is expected to distill the key points of the design pattern

by interpretation of provided example code, as well as understand the basic intent of the design

pattern from the description.

Additionally, the choice of target language can dramatically affect the way in which a pattern

is realised. Although most object-oriented languages share a large core of similar features

(inheritance, overriding) there are a number of features that may be different (static or dynamic

typing, static or dynamic method dispatch, single or multiple inheritance). As such, patterns

tend to be adapted for the particular language that they are written in, to take advantage of the

language’s core features, with the result that some patterns are less useful in certain languages.

For example, Python has no need for an Iterator pattern since the ability to iterate over lists is

built into the core language, and this is used exclusively to provide iteration over sets of data.

However, we need to define patterns in order to be able to verify their implementation. There

are three approaches which may be used to define patterns; each of which are discussed below.

42This page dedicated to the memory of Douglas Adams

4.3. Formally defining patterns 43

4.3.1 Run-time semantic definition

The semantics of programming languages is a widely researched subject [Win93]. One way of

specifying a design pattern would be to create a constraint as to how a program would operate

if a particular pattern was present.

We can imagine a set of design pattern definitions as a set of Hoare triples [Hoa69], such

that given an initial state of the program, a resulting state is guaranteed by the correct existence

of a pattern. In order to do this, we need to determine for each pattern what the semantic

behaviour needs to be. We could then use tools such as iContract [Kra98] or ESC/Java [LNS00]

to determine whether or not the pattern correctly obeyed its specification.

Work such as Bali [NvO98] and LOOP [JvdBH+98] have investigated the semantics of the

Java programming language using operational semantics in order to reason about Java programs.

Although much of the work in investigating the semantics has been an investigation of the Java

language, they provide a foundation to build upon for reasoning about Java programs.

However, reasoning about programs is a hard problem; even for simple program execution

flows, proofs can become very complex. The problem is magnified for imperative programming

languages; unlike functional or declarative languages (where state is essentially immutable), the

combinations of possible state values combined with the possibility of state changing during the

program’s execution leads to complex proofs. For example, Bali required some 2400 lines of

Isabelle/HOL theories in order to prove that Javalight was typesafe. Other approaches, such as

[Sym97, Sym98] have also been used to prove operational semantics of the Java language.

Should a powerful proof system be available, then it may be feasible to verify whether a

design pattern is implemented correctly or not. For example, the Singleton pattern (shown

in Figure 4.7, taken from [SM01, page 37]), may be specified by encoding its constraints on

the run-time behaviour of the program; specifically, that only a single instance of the class is

created.4 A semantic definition of the Singleton pattern may look like Figure 4.6.

Figure 4.6: Semantic definition of a Singleton pattern

∀x,y.x ∈ Singleton∧ y ∈ Singleton→ x = y.

4In fact, a large number of realisations of Singleton may actually not exhibit this behaviour faithfully when
executed on multiprocessor platforms due to obscure unspecified behaviours in the way that the JVM operates.
Even if this behaviour could be specified, multithreading may make these type of statements unprovable. However,
many developers do not concern themselves with such quirks of multiprocessing systems and would still consider
Figure 4.7 a Singleton.

44 Chapter 4. Design patterns

Figure 4.7: Singleton pattern description

Name Singleton
Aliases None

See also Utility

Description To have only one instance of this class in the system, while allowing other

classes to get access to this instance.

Overview The Singleton pattern ensures a maximum of one instance is created by

the JVM. To ensure control over the instantiation, make the constructor

private.

Since it is impossible to create a new instance, a static accessor method is

provided , which creates the instance if it does not exist and returns it. [From

[SM01]]

Notes • The Singleton is the only class that can create an instance of itself.

You can’t create one without using the static method provided.

• You don’t need to pass this reference to all objects needing access to

this Singleton

• The Singleton can present threading problems, depending on the

JVM.

Example public class HistoryList {

private static HistoryList instance = new HistoryList();

private HistoryList() {

}

public static HistoryList getInstance() {

return instance;

}

}

4.3. Formally defining patterns 45

There is a further problem with using run-time semantics to specify a design pattern. Two

key parts of any design pattern are:

Intent The purpose of the pattern (what it is trying to achieve) may be difficult, or impossible,

to constrain in terms of run-time semantics alone.

Implementation Many implementations may provide the same behaviour, including some that

would not be recognised (by humans) as realisations of the design pattern. Since a pattern

is (by definition) a common solution to a common problem, it needs to be something that

is recognisable in order to declare that a pattern is present.

In fact, it is not only possible that there will be multiple implementations that achieve the

same goal as a pattern, but likely that these solutions will evolve independently. The goal of

refactoring [OJ90] is to transform the structure or implementation of a piece of code to one

with a better design, but the same behaviour. Additionally, several works have investigated

introducing design patterns through the process of refactoring existing code [OC00, TB01]. In

these instances, the goal is to introduce a design pattern into an existing system but without

changing the behaviour. This would cause difficulties in expressing a design pattern as run-time

semantic constraints only, since both original and the transformed code would have the same

semantics.

It would also be problematic to specify how patterns are implemented. For example, the

creational patterns from [GHJV95] discuss different strategies for instantiating objects, such

as Abstract Factory and Prototype. In these cases, the desired behaviour is to instantiate

an object, but using different mechanisms to obtain a new instance. A semantic constraint on

the run-time behaviour may not be able to determine which of these approaches was used (or

indeed, whether new was just called), since the run-time behaviour would just result in a new

instance being present.

In much the same way as structure alone not being enough to represent design patterns

[Gru98, page 30], it is not possible to define a pattern solely in terms of its externally observed

behaviour, i.e. its semantics.

4.3.2 Metaprogramming definition

Another approach for representing patterns is to create a fragment of code that is capable of

instantiating that pattern. This approach tends to be used when the purpose of the pattern def-

inition is to create a pattern, either directly (in tools such as the “Patterns Wizard” [EGY97]

46 Chapter 4. Design patterns

and Marco Meijers’ “Tool Support” [FMvW97]) or indirectly (in refactoring approaches such

as [OC00] and [TB01]).

In all these cases, a pattern is represented as a set of transformations or refactorings on

existing code, with the intent of introducing a pattern into the system. The decision of which

pattern to introduce (and where) has already been made by the user, so there is a clearly defined

area of where the pattern is desired. It is also expected that the pattern will not be there before,

since the purpose of invoking the refactoring in the first place will be to introduce the pattern

into the system.

Instantiating a pattern is also likely to be easier from a template, since requirements (such

as what to name newly created classes, interfaces, methods or fields) can be automatically

assumed, or requested from the user. However, existing patterns are unlikely to match this

template exactly, which could prove problematic for using them to recognise patterns directly.

Figure 4.8: Metaprogramming example of a Singleton pattern

applySingleton(Class concrete, String newAbstract) {
partialAbstraction(concrete, newAbstract);
addSingletonMethod(newAbstract, concrete);
ForAll e:ObjCreationExprn, classCreated(e)=concrete,
e /∈ newAbstract {
replaceObjCreationWithMethInvocation(e,

newAbstract.getInstance());
}
makeConstructorProtected(newAbstract);

}

As an example, consider a metaprogramming definition of a Singleton pattern, such as

Figure 4.8 (taken from [OC00, page 99]). This can be used to add a Singleton pattern to an

existing class. However, although the pattern is parameterised with the name of the class (and

any new abstracted name), it assumes a default name for the accessor method and any fields that

it may use.

As such, it makes it very difficult to compare an existing instance of the pattern with the

specification of how to create a new one, without perhaps instantiating an empty pattern and

performing a like-for-like check between the two. Although this is only a simple example, the

same holds true for other patterns defined in a metaprogramming way.

4.3. Formally defining patterns 47

It should be noted that it is the use of the pattern specification which drives the way in which

it is specified, rather than any approach being a right or wrong way to specify a solution. For

example, the previous definition of a Singleton (in Figure 4.6) may be suitable for formally

proving whether it is implemented correctly; however, it would be of little use if being used to

realise the pattern.

4.3.3 Declarative constraint definition

The final way of specifying patterns is to represent them as a set of constraints in the way the

pattern may be represented. These may be constraints on the structure (for example, expressing

the existence of a particular inheritance hierarchy), or constraints on method implementations

(this method should be side effect free). I presented an initial approach at solving this problem

in [Ble00] and [BBS01].

These constraints can then be checked against the implementation to determine whether or

not a pattern is present. In some respect, this is a combination of both approaches; it mixes in

some semantic behaviour of the class (this method should invoke another method) as well as

structural relationships (this class should implement this interface). Furthermore, these can be

used to provide specific information when a proof has failed, because it is expecting a pattern

to have a certain appearance/behaviour. Marco Mijers proposed [Mei96] breaking down the

patterns into fragments as a means of defining them, and was used to build a framework for

representing patterns in [Gru98].

Fortunately, it is not necessary to develop a full Java semantics in order to verify individual

design patterns. Most design patterns only need basic structural and semantic requirements to

be met in order to realise a pattern correctly, such as the ability to instantiate a new class, or

to ensure that a method is forwarded from one class to another. As a result, a much weaker

semantics (than a full language semantics) is required; nevertheless, one which is both useful

and tractable.

As an example, consider the Singleton pattern once more; we can express it informally as

requiring:

1. Provide a private constructor

2. Provide a single instance via a static final variable

Although this will admit only a certain type of Singleton, it is a specification which is relatively

easy to specify, and discharge against an implementation. A more formal definition might look

like Figure 4.9:

48 Chapter 4. Design patterns

Figure 4.9: Declarative example of a Singleton pattern

realises(‘Singleton’,[C]) :-
exists(constructorsOf(C),true),
forAll(constructorsOf(C),Cn.hasModifier(Cn,private)),
exists(fieldsOf(C),F.and([

hasModifier(F,static),
hasModifier(F,public),
hasModifier(F,final),
typeOf(F,C),
nonNull(F)

])).

In this example, most of the pattern’s constraints are structural. The only non-structural

constraint is ‘nonNull’, which ensures that the field ‘F’ is initialised with a non-null value.

This is validated by ensuring that ‘F’ has an explicit initialiser, or alternatively is assigned a

value in the constructor of the class.

Of course, there are two limitations to using the structural constraints as outlined above:

1. It is language specific. In this case, the pattern described would be suitable for a Java

implementation of the design pattern, but may not be suitable for a C++ or Smalltalk

implementation. For example, in Smalltalk, it may be more practical to throw an error

during construction than have it hidden with a private modifier.

2. It only captures a single variant of the Singleton pattern. There may be other types of

singleton (e.g. one using lazy instantiation, or a registry of singletons) that are realisations

of the same pattern but do not fit this restrictive specification.

In fact, this makes the pattern detection easier than if a language-independent choice was

made, since language features often play a part in the way in which a pattern is realised. As an

example, Objective C provides a mechanism that allows dynamic ‘faulting’ – when a method is

received that it does not understand, it calls a default ‘fault’ (or error) method. This makes the

realisation of the Proxy pattern incredibly easy by use of this feature; however, other languages

(such as Java) do not have this faulting feature, and must realise the pattern in a completely

different way.

The approach chosen for this work should be applicable to other programming languages

as well; a different parser could be used to process the source code but the techniques will

4.4. Elements of patterns 49

be similar. Chapter 11 discusses the possibility of expanding this work to other programming

languages.

4.4 Elements of patterns

In order to represent a pattern as a set of constraints, we need to identify what the key aspects of

each design pattern are. This will also affect the requirements of the pattern language (covered

in Chapter 5) and the proof engine (covered in Chapter 6).

Although the pattern catalogues such as [GHJV95] present a list of design patterns, the

descriptions of design patterns are very abstract. Given that the book’s intent is to provide a

template or overview of how a pattern can be implemented, this is not unreasonable. Also,

since the examples are expected to be exemplary rather than prescriptive, they may be shown in

different languages (such as Smalltalk, C++ or Java). Furthermore, although a template may be

shown for a design pattern, it is quite likely that realisations of the pattern in real-life code may

be (subtly) different. As a trivial example, the Command pattern (shown in Figure 4.1) shows

an abstract class named Command. However, it is not the name of the class that is important

(or even that it be an abstract class; it could be an abstract interface). So even with a simple

pattern, there may be many variations that exist in real software.

4.4.1 Reviewing existing patterns

A review of the patterns in [GHJV95] highlights some areas of commonality and different types

of pattern. Although the book is partitioned into ‘Structural’, ‘Creational’ and ‘Behavioural’,

there are other ways of partitioning the patterns. One trivial partitioning is whether there is a

single class (e.g. Singleton) or multiple classes (e.g. Bridge). Another is whether the pattern is

an implementation trick (e.g. Template Method) or a way of controlling execution flow (e.g.

Interpreter or Strategy).

Idiomatic Both the Template Method and Factory Method are idiomatic patterns, in that

they utilise an abstract method in order to delegate an implementation to a subclass. This

is a widely used technique in object-oriented programming, and is a key feature in other

patterns (such as Command and State). One of the problems with idiomatic patterns

is that it is very easy to treat all abstract methods as being realisations of the Template
Method pattern. (In fact, both Template Method and Factory Method are very similar;

the latter is used to create new instances, whereas the former can be used for any purpose.)

50 Chapter 4. Design patterns

Other works [Ede98, OC00] refer to mini-patterns (defined above in Section 4.2.5). These

are pattern fragments which occur repeatedly in code bases, but which are probably too

small to be considered a pattern by the community. A well-known example of this is the

way in which a C or Java program processes an array of data (shown in Figure 4.10):

Figure 4.10: Example of processing a Java array

Object data[];
for(int i=0;i<array.length;i++) {

Object element = data[i];
}

Whilst it is unlikely that looping through an array of objects would ever be called an

object-oriented design pattern (since it does not directly do any processing that requires

objects), it is this kind of repeated idiom that is likely to occur frequently in code systems.

On the other hand, the use of an abstract method to delegate implementation to a subclass

(the Template Method) is also frequently used, but does get a mention in GoF.

Additionally, patterns such as Iterator have become so well known in languages like Java

that it may seldom be regarded as a separate pattern itself. This may have more to do with

standard interfaces (such as Enumerator and Iterator) being built into the core data

types; in effect, a validation of how popular the pattern has become.

It is expected that patterns falling into the idiomatic category will occur very frequently

throughout a project, and may not lend themselves to automatic verification. What is

more, the design may not have specifically documented the use of a pattern such as the

Template Method to achieve its goal, and may not even be required for automatic verifi-

cation.

Single-class Patterns such as Singleton and Decorator are normally implemented in a single

class. Some patterns, such as Decorator and Proxy, need to be able to communicate with

other classes at run-time. Despite this, the classes that they are talking to need not know

of their existence as they are wrappers around functionality; and thus can be viewed as

single-class patterns.

Invariably, patterns such as these have little structural component that can be used as a

specification. Instead, they often rely on one (or more) methods being implemented in a

particular way.

4.4. Elements of patterns 51

Multi-class Some patterns, particularly those that are implemented with abstract super-classes,

must be implemented in terms of a family of related classes. Examples include Bridge,

Command and Abstract Factory. These patterns are often realised with a single central

class, and a number of other ancillary classes that either use subclasses or are directly

navigable.

Multi-class patterns will have some level of structure that can be used to identify them.

In most cases, this will be part of an object hierarchy (such as the abstract super-types

of Command and Visitor), but may also have relationships between components (e.g.

Bridge).

However, it will not be enough to rely on structure alone to locate or verify a design

pattern. Apart from anything else, the pattern is also expected to have some form of

behaviour; for example, whether a method instantiates a new object or forwards a message

on from one to another. It is fairly obvious that a multi-class pattern will have a richer set

of these requirements in order to be correctly validated.

4.4.2 Intent

A key reason for using a pattern is that it helps describe the system, as well as implement it.

Thus, when a pattern is used (and documented) in a codebase, it aids other developers looking

to extend the system. Many patterns have a high level of intent in the way in which they are

applied; patterns such as Command, for example, have a very light structure but the intent of

the pattern is clearly visible.

Similarly, patterns such as Visitor have a great deal of intent; and it is this intent that sets

it aside from a class hierarchy with a number of methods. From both an implementation and

structural point of view, the Command pattern and the Strategy patterns can look very similar.

However, their intent is very different; the former is used to provide a very large number of

potentially simple commands in an extensible application, whereas the latter is used to provide

a small number of potentially complex algorithms in a system. There is no clear cut distinction

between a simple command and an algorithm; for example, what is the difference between a

‘sort’ command and a ‘sort’ algorithm? It depends on where (and how) they are used.

It would therefore be difficult to create a pattern definition that captured a Strategy that

did not capture a Command, and vice versa. It would also be difficult to construct the pattern

definition in a way that would not also admit many false positives, which would devalue the

benefit of such a pattern definition.

52 Chapter 4. Design patterns

Fortunately, with patterns such as Command and Strategy, it is difficult to get the pattern

wrong because of the limited structure that the pattern mandates.5

Verifying (or specifying) the intent of a pattern is something that is outside of the control of

this thesis. It may be the case that with the addition of languages such as iContract the intent of

the individual commands could be defined and verified, but this is tangential to the correct use

of the pattern.

4.5 Summary

This chapter gave a history of design patterns along with terminology that will be used in the

remainder of the thesis. Three approaches for defining patterns were proposed and compared:

1. Run-time semantic definition, in which pre- and post-conditions are defined for a pattern

2. Metaprogramming definition, in which executable code generates templates or extends

existing code to realise a pattern

3. Declarative constraint definition, in which constraints on both the structure and semantic

behaviour of methods define the pattern

As discussed, type 1 and 2 are not suitable for defining patterns for the purpose of pattern

verification. The approach taken by the HEDGEHOG proof engine is to use type 3 of pattern

definition, since this can be broken down by a proof engine and then discharged against existing

source code. Furthermore, it gives extra flexibility when dealing with names of types, methods

or fields that may not have been created by the same tool.

Finally, patterns themselves were investigated to determine which types of constraints are

likely to be required, in order to sufficiently define a pattern that matches a number of pattern

variants.

The next chapter deals with the SPINE language and shows how pattern variants can be

defined; and Chapter 6 shows how these definitions can be used to verify pattern realisations.

5Of course, it’s much easier to get the actual algorithm wrong – but whether the command is bug-free is a
different problem than whether the Command pattern is implemented properly.

Chapter 5

The SPINE language

Patterns are defined in HEDGEHOG in a language called SPINE. This chapter describes the

SPINE language and gives examples of its use.

SPINE is a declarative language that is used to define statements about Java classes. The

propositions may be basic logical connectives (such as and() and or()) or evaluable proposi-

tions (such as isAbstract()) that can be evaluated with reference to Java source code. Lastly,

the language can also have evaluable sets (such as methodsOf()) that can be expanded in the

context of Java source code, for use by quantifiers such as exists() and forAll(). Design

patterns are represented as a set of rules which allow a pattern to be defined in terms of its

implementation constraints. Proving SPINE statements is discussed in more detail in Chapter 6.

In this chapter, A1 and An are variables ranging over formulæ. MemberName and Class-
Name represent names (which are either constant string literals, or variables bound to constant

string literals), and propositions() and evaluableSets() are represented in fixed-width

font. S is used to denote an evaluable set, and s is used to denote a set of constants that is the

result of evaluating S . x is used to denote a variable, and c to denote a constant. FV is a set of

free variables.

5.1 Overview

The syntax of SPINE is based loosely on Prolog. However, unlike pure Prolog, evaluable sets

and propositions can be used in rule definitions which are evaluated during the proof process.

These include a number of built-in predicates that are provided specifically for interrogating

Java code, such as ‘constructorsOf’ and ‘subclassesOf’ and are listed in Appendix C.

53

54 Chapter 5. The SPINE language

SPINE was based on Prolog because:

• Prolog rules are a natural way of defining rule-based proof systems

• The syntax of Prolog is very simple (and therefore easy to parse, understand and extend)

• The language allows other patterns to be easily defined

SPINE was not developed directly in Prolog, but a separate language was created because:

• Java has a number of APIs that are well suited to parsing and processing Java source files

• Prolog does not have an easy mechanism for evaluating expressions in the same way that

functional programming languages (like ML) do

• Java execution environments are more widely available than Prolog or ML engines

Initial experiments to integrate an internal Prolog engine with a Java-based front end did not

prove successful. Primarily this was because the entire Java source tree needed to be encoded

in a set of Prolog statements and uploaded into the Prolog engine before any processing could

be done; and as the size of the Java source base being considered grew, the conversion into

the Prolog engine became prohibitively expensive. Since the front end also spent a lot of time

starting up the Prolog engine and returning back into it again, and since the front-end was used

to make a lot of interactive calls to find out the state of the proof tree, it was necessary to

represent the source tree in Java using off-the-shelf Java parsers. After the proof engine runs,

the proof tree can then be interpreted and shown graphically, which was another limitation of

the initial Prolog approach. Instead, an interpreting engine was implemented in Java to provide

the ease-of-specification whilst allowing the power of Java’s APIs to interact with Java code.

The same observation has been made about LOOP [JvdBH+98], since this requires Java

method implementations to be translated into PVS [ORS92] statements for proving. The fact

that all methods must be encoded into proof statements in order to pass them into the proof

engine was highlighted as an issue which may degrade the LOOP tool’s performance (to the

extent where it could crash):

“The LOOP tool produces a single, big, proof obligation in PVS for every method,
and then relies on PVS to reduce this proof obligation into even smaller ones which
we can ultimately prove. . . . A drawback of the LOOP approach is that the capabil-
ities of the theorem prover become a bottleneck sooner than in other approaches.
After all, there is a limit to the size of proofs that PVS– or any other theorem prover
for that matter – can handle before becoming painfully slow or simply crashing.”
[JP03, page 15]

5.2. Syntax 55

The alternative approach taken by HEDGEHOG is that the patterns are encoded in SPINE and

loaded at startup; when a proof is required, the source code for the Java is loaded and parsed

dynamically when needed, instead of having to be translated into predicates and bulk loaded

into the proof engine first of all. The parsed data is cached for quick access should the same

class be required later in the same proof.

5.2 Syntax

The syntax of SPINE can be defined recursively. By constructing the syntax over a set of free

variables, it can be guaranteed that a well-formed realises() rule will have no free variables

(other than those captured by the realises() rule itself) by construction, which ensures that

all variables are instantiated before evaluation. The pattern specification library is a sequence

of SPINE rules. Only variable-free formulæ may be used as proof goals.

• true and false are formulas over {}

• If A is an evaluable proposition (listed in Section 5.3.2) over FV

then A is a formula over FV .

• If Name is a constant string literal

then Name is a name over {}

• If Name is a variable

then Name is a name over {Name}

• If MemberName is a name over FV

then argsOf(MemberName) is an evaluable set over FV

• If ClassName is a name over FV

then constructorsOf(ClassName) is an evaluable set over FV

• If ClassName is a name over FV

then fieldsOf(ClassName) is an evaluable set over FV

• If ClassName is a name over FV

then methodsOf(ClassName) is an evaluable set over FV

• If ClassName is a name over FV

then subclassesOf(ClassName) is an evaluable set over FV

56 Chapter 5. The SPINE language

• If A is a formula over FV

then not(A) is a formula over FV

• If Ai is a formula over FVAi for 1≤ i≤ n

then and([A1, . . . ,An]) is a formula over FVA1 ∪ . . .∪FVAn

• If Ai is a formula over FVAi for 1≤ i≤ n

then or([A1, . . . ,An]) is a formula over FVA1 ∪ . . .∪FVAn

• If S is an evaluable set over FVs and A is a formula over FVa

then forAll(S ,x.A) is a formula over FVs∪FVa\{x}

• If S is an evaluable set over FVs and A is a formula over FVa

then exists(S ,x.A) is a formula over FVs∪FVa\{x}

• If P,C1, . . . ,Cm are names over FV

then realises(P, [C1, . . . ,Cm]) is a formula over FV

• If P is a constant name, C1 . . .Cm are variable names

and Ai is a formula over {C1, . . . ,Cm} for 1≤ i≤ n

then realises(P, [C1, . . . ,Cm]) :- A1,. . . ,An is a SPINE rule

5.3 Semantics

The semantics of SPINE consists of basic propositions, evaluable propositions and evaluable

sets. The basic propositions define logical relationships such as and() and or(). The evaluable

propositions and evaluable sets are evaluated in the context of a specific set of Java clauses.

Thus, the semantics of SPINE is defined with respect to a given set of Java classes, and in

addition, only defined for variable-free formulæ.

5.3.1 Basic propositions

• true is true

• false is false

• and([A1, . . . ,An]) is true iff every Ai is true for 1≤ i≤ n

• or([A1, . . . ,An]) is true iff at least one Ai is true for 1≤ i≤ n

• not(A) is true iff A is false

• forAll(S ,x.A(x)) is true iff S evaluates to s, and for every c ∈ s.A(c) is true

5.3. Semantics 57

• exists(S ,x.A(x)) is true iff S evaluates to s, and at least one c ∈ s.A(c) is true

• realises(P, [C1, . . . ,Cm]) is true iff it is an instance of a SPINE rule

realises(P, [C1, . . . ,Cm]) :- A1,. . . ,An and every Ai is true for 1≤ i≤ n

5.3.2 Evaluable propositions

The following are evaluable propositions which may be calculated directly from Java source;

either EP or not(EP) holds (where EP is a variable-free evaluable proposition). Evaluation of

evaluable propositions is only defined for those with no free variables. These are the axioms of

the logical system and are described in Appendix C.

• adds(MemberName,ClassName,FieldName) is true iff the method MemberName
adds an instance of ClassName to the collection referenced by FieldName

• extends(ClassName1,ClassName2) is true iff ClassName1 is a subclass of Class-
Name2

• hasModifier(MemberName,modi f ier) is true iff MemberName has a Java modifier

modifier (e.g. public, protected)

• implements(ClassName1,ClassName2) is true iff ClassName1 implements the

interface ClassName2

• instantiates(MemberName,ClassName) is true iff MemberName instantiates

ClassName

• invokes(MemberName1,MemberName2) is true iff MemberName1 invokes Member-
Name2

• invokes(MemberName1,MemberName2,FieldName) is true iff MemberName1

invokes MemberName2 on FieldName

• isAbstract(MemberName) is true iff MemberName has the Java modifier abstract

• isClass(ClassName) is true iff ClassName is a class

• isFinal(MemberName) is true iff MemberName has the Java modifier final

• isFriendly(MemberName) is true iff MemberName does not have one of the Java

modifiers public, protected, or private

• isPrivate(MemberName) is true iff MemberName has the Java modifier private

• isProtected(MemberName) is true iff MemberName has the Java modifier protected

58 Chapter 5. The SPINE language

• isPublic(MemberName) is true iff MemberName has the Java modifier public

• isSideEffectFree(MemberName) is true iff the execution of MemberName is side

effect free

• isStatic(MemberName) is true iff MemberName has the Java modifier static

• isInterface(ClassName) is true iff ClassName is an interface

• lazyInstantiates(MemberName,FieldName) is true iff MemberName lazily

instantiates FieldName

• modifies(MemberName,FieldName) is true iff MemberName modifies FieldName

• navigable(ClassName1,ClassName2) is true iff ClassName1 and ClassName2 are

navigable

• named(MemberName,name) is true iff MemberName is called name

• nonNull(FieldName) is true iff FieldName is assigned a non-null value

• prefix(MemberName,name) is true iff MemberName has a prefix name

• related(ClassName1,ClassName2) is true iff ClassName1 and ClassName2 are

related

• removes(MemberName,ClassName,FieldName) is true iff the method Member-
Name removes an instance of ClassName from the collection referenced by FieldName

• returns(MemberName,FieldName) is true iff the method MemberName returns

FieldName

• sameSignature(MemberName1,MemberName2) is true iff the methods MemberName1

and MemberName2 have the same signature

• sameSupertype(ClassName1,ClassName2) is true iff ClassName1 has the same

supertype as ClassName2

• subtypeOf(ClassName1,ClassName2) is true iff ClassName1 is a subtype of Class-
Name2

• typeOf(MemberName,ClassName) is true iff MemberName is of type ClassName

5.3.3 Evaluable sets

The following are evaluable finite sets (from Appendix C) which may be calculated directly

from the Java source code. The sets may be empty, singletons, or have many values but they are

5.4. Rules 59

guaranteed to be finite because the source code is finite. They are only used within the direct

context of a forAll or exists proposition. If the set is empty, forAll is deemed to be true

and exists is deemed to be false. Evaluation of evaluable sets is only defined for evaluable

sets with no free variables. Note that the sets only consist of constants.

• argsOf(MemberName) evaluates to the set of argument names for the given member

(method or constructor) name

• constructorsOf(ClassName) evaluates to the set of constructor names for the given

class name

• fieldsOf(ClassName) evaluates to the set of field names for the given class name

• methodsOf(ClassName) evaluates to the set of method names for the given class name

• subclassesOf(ClassName) evaluates to the set of class names that are subclasses of

the given class name

5.4 Rules

SPINE rules are defined in terms of realises(). Each realises() rule has two arguments;

a pattern name, and a non-empty set of class names which are provided as constants at the

top level. Thus, all SPINE rules are of the form realises(P, [C1, . . . ,Cm]) :- A1,. . . ,An, where

A1,. . . ,An may contain nested realises(), P is a constant and C1, . . . ,Cm are variables.

Given that SPINE rules can be defined in terms of others (for example, capturing the variants

of a pattern or allowing mini-patterns to be defined), it would be possible to define a set of rules

that are mutually recursive:

realises(P1, [C1, . . . ,Cm]) :− realises(P2, [C1, . . . ,Cm])

realises(P2, [C1, . . . ,Cm]) :− realises(P1, [C1, . . . ,Cm])

Such mutually recursive rules would result in realises() being ill-defined. To avoid this

problem, a partial ordering on the realises() SPINE rules can be defined:

Definition 5.4.1. A set of SPINE rules is consistent if it has a well-founded partial ordering

such that if for every SPINE rule:

realises(P1, [C1, . . . ,Cm]) :− . . .realises(P2, [C1, . . . ,Cm]) . . .

then P1
de f
� P2, and that there exists exactly one rule for each Pi.

60 Chapter 5. The SPINE language

If there is more than one rule for a given P, then it would not be possible to define an ordering

based on the first argument alone:

realises(P, [C1, . . . ,Cm]) :− A .

realises(P, [C1, . . . ,Cm]) :− B.

Note however that this is identical to the following:

realises(P, [C1, . . . ,Cm]) :− or([A ,B]).

Thus it is possible to merge multiple rules with the same first argument into a single rule.

5.5 Java constraints

In order to define patterns in SPINE, a number of Java-specific rules need to be defined. Patterns

are defined in terms of structural constraints (such as relations with superclasses, interfaces and

methods), as well as constraints on the implementation of the individual methods themselves.

The constraints on Java patterns can be split into:

Structural Constraints on how the Java classes are related to each other, such as inheritance

relationships or association relationships

Semantic Constraints on how the Java methods are implemented or behave

Clearly, the former set of constraints are trivially provable (by direct appeal to the Java class

hierarchy or interface definitions). The latter set are more difficult to prove.

5.5.1 Structural constraints

Structural constraints are those relating to inheritance hierarchies, existence of specific named

methods, associations between classes and so on. They also include modifiers (such as public

and private).

These definitions appeal directly to the implementation of the classes, either through the

inheritance (superclasses) or by evaluating a set of methods (or fields) from a given class. The

fieldsOf is evaluated to give a list of fields defined in the given class, and the typeOf evaluates

to true if the type of the defined field is a type of the given class.

5.5. Java constraints 61

5.5.2 Semantic constraints

It is a lot more difficult to prove that semantically, a method does what it is required to. This

difficulty stems from two quite different causes:

• It is a lot more difficult to accurately specify a semantic constraint

• It is a lot more difficult to prove a semantic constraint as it requires a full Java semantics

For example, one commonly used pattern is the Command pattern. This encourages an

application to be built as a command-processing system, where each operation in the application

is abstracted as a command. When an operation is requested, a command instance is obtained,

and then executed by a command processor. Not only does this abstract the way that commands

are processed (for example, it is easy to extend this system by adding security checking and

multithreading), it also allows other features, such as an undo operation, to be added at a later

stage. [Command is often implemented in conjunction with the Flyweight pattern; and for

undo operations, the Memento pattern.]

However, specifying a Command would necessarily be complex; each different command

would require a different specification in terms of what the command does, and how it changes

the underlying data model. This is an example of the high-level semantic constraints which fall

foul of both the difficulties mentioned above.

5.5.3 Weak semantic constraints

Instead of requiring a full Java semantics and a full semantic specification of a pattern, it would

be possible to represent a pattern in terms of weak semantics, by defining patterns in terms of

their structural definition and not directly depending on their behaviour. Some of these require

specific analysis of the code (for example, whether a method changes or assigns a particular

field) but this can be determined based on static analysis of the method’s structure. This is a

conservative approach but more tractable.

As an example, the Immutable pattern requires knowledge of whether a method might

modify an instance variable or not. It is not necessary to know whether the execution of a

method always modifies an instance variable; however, it is desirable to know whether a method

can modify an instance variable.

Informally, this can be expressed as follows: for a given method ‘M’ and instance variable

name ‘V’, ‘M’ can only modify ‘V’ directly if, in the body of M, there is an assignment statement

of the form ‘V = expression’.

62 Chapter 5. The SPINE language

This can be statically determined by iteration over the structure of the method body. The set

of assignments in the method can be calculated, and for each assignment, it can be compared

with the instance variable name.

We can define other semantic structural (weak semantic) constraints:

isSideEffectFree if execution does not change the state at all

isConstant if execution results in the same value

nonNull the field F is assigned a non null value

These can be defined in terms of the structure of the statements and expressions, without

needing to appeal to a full Java semantics to prove the general case. A full list of these are

defined in Appendix C.

5.6 Patterns

Design patterns are encoded as rules that can be applied to Java classes. Each design pattern

may only have a single rule, or if there are many variants (see Section 4.2.2) many rules. The

proof engine (discussed in Chapter 6) then uses these rule definitions to prove the conjecture that

‘realises(Pattern,[Class])’, where ‘[Class]’ is a list of classes that realise ‘Pattern’.

5.6.1 Immutable

A class is said to be immutable if an instance, once created, cannot be modified. One advantage

of an immutable class is that an instance of it can be safely passed as an argument to other

functions, since they cannot modify the contents of the immutable instance.

In Java, immutable classes are developed by assigning all the instance variables during

construction, and only providing read-only methods (ones that do not change the content of

the instance fields). [Note that ‘constant’ fields (those defined with final) do not need to be

considered, since these by definition cannot be changed.] The variables must be defined as

private since it is not otherwise possible to prevent other classes changing the contents.

The Immutable pattern can be defined by the following SPINE rule:

5.6. Patterns 63

realises(‘Immutable’,[C]) :-
forAll(fieldsOf(C),F.

or([
hasModifier(F,static),
hasModifier(F,final),
and([

hasModifier(F,private),
forAll(methodsOf(C),M.not(modifies(M,F)))

])
])

).

In general, most patterns use a similar set of logical constraints, which are built-in to the

system, such as hasModifier and fieldsOf. However, each pattern may require a specific

constraint to be defined, such as the modifies in the case of the Immutable design pattern.

As the pattern library grows, it is expected that fewer specific constraints will be needed

in the system to define future patterns. This would follow since each pattern would likely be

based on using existing SPINE rules, only infrequently needing a specific extension of a built-in

SPINE rule.

5.6.2 Singleton

The Singleton pattern requires that at most one instance of a class be instantiated/accessed at

one time. The usual implementation to achieve this is to store a single instance in a static

final variable of the class itself; because it is static, there is only one copy of the variable,

and because it is final, it cannot be changed once assigned (typically during class loading).

In order to prevent other classes instantiating the Singleton pattern, it is necessary to ensure

that none of the constructors are publicly accessible. Because Java creates a default (public)

zero argument constructor if no others are provided, we must disable this behaviour by creating

at least one constructor in the class.

Because this requirement for non-instantiability is a fairly common requirement in other

design patterns, it has been extracted to form a Non Instantiable mini-pattern. (Mini-patterns

were discussed in Chapter 4.) The definition of the Non Instantiable mini-pattern is as follows:

64 Chapter 5. The SPINE language

realises(‘NonInstantiable’,[C]) :-
or([

isAbstract(C),
and([

exists(constructorsOf(C),Cn.true),
forAll(constructorsOf(C),Cn.hasModifier(Cn,private)).

])
]).

The definition of the (public) Singleton pattern therefore is as follows:

realises(‘PublicSingleton’,[C]) :-
realises(‘NonInstantiable’,[C]),
forAll(constructorsOf(C),Cn.hasModifier(Cn,private)),
exists(fieldsOf(C),F.

and([
hasModifier(F,static),
hasModifier(F,public),
hasModifier(F,final),
typeOf(F,C),
nonNull(F)

])
).

As with the previous example, it is necessary to appeal to a new term, nonNull, in order to

prove the Singleton pattern. This ensures that the value of the field F is assigned a value, and

since Java’s typing system only allows F to hold a value of type C, it will hold an instance of

class C.

As discussed in Chapter 4, the Singleton pattern has several variants. These variants are

accounted for with different rules that match the same term. A super-pattern rule can be created

to tie these patterns into the same meaning:

5.7. Summary 65

realises(‘Singleton’,[C]) :- or([
realises(‘PublicSingleton’,[C]).
realises(‘PrivateSingleton’,[C]).
realises(‘LazySingleton’,[C])

]).

realises(‘PrivateSingleton’,[C]) :-
realises(‘NonInstantiable’,[C]),
exists(fieldsOf(C),F.

and([
hasModifier(F,static),
hasModifier(F,private),
typeOf(F,C),
nonNull(F)

])
).

realises(‘LazySingleton’,[C]) :- ...
realises(‘PublicSingleton’,[C]) :- ...

5.7 Summary

This chapter presented the SPINE language as a way of defining logical statements about design

patterns. The syntax is loosely based on Prolog, and rules are defined with SPINE terms to allow

the proof engine HEDGEHOG (discussed in Chapter 6) to perform goal-oriented proofs.

The syntax was presented in Section 5.2; the semantics of terms in Section 5.3. Rules

were presented and a consistent rule set defined in Section 5.4. The distinction between weak

and strong semantics discussed in Section 5.5. Lastly, example design patterns were shown in

Section 5.6 to show how the patterns are defined in terms of the SPINE language.

The Singleton pattern was used to demonstrate how SPINE patterns can be defined in terms

of mini-patterns, and how different variants can be defined by specifying multiple rules for each

pattern.

When a pattern is added to the SPINE library, it may require specific predicates to be added

such as ‘nonNull’. As the pattern library grows, it is expected that the number of additional

predicates required for each new pattern will tend to zero. It is possible to add extra patterns

into the system at a later stage, providing that they do not need new predicates to be defined;

alternatively, new predicates can be added in although this will require more work to do so.

Chapter 6

The HEDGEHOG proof engine

At the heart of HEDGEHOG lies the proof engine that verifies design patterns based on their

SPINE definitions. It proves whether or not a Java class, or set of classes, realises a design

pattern.

Since the HEDGEHOG proof engine is designed to be both fully automated and hidden from

the end-user, it is necessary to use a proof system that can:

1. Be embedded within the verification tool

2. Provide mechanisms to automatically search for proofs without user input

3. Provide enough state about the proof tree afterwards so that it can be translated into a

suitable error message in the case of proof failure

An initial investigation used the Oyster proof system [Hor88] (formerly known as Nuprl

[CAB+86], part of the Oyster-Clam proof system [BvHSH90]). The approach taken was similar

to that of [JvdBH+98], where the Java program was translated into a large set of constraints and

then fed to the proof system remotely. However, this solution did not scale well with large

programs, because the source code needed to be translated and sent to the proof system in its

entirety before proof could start. The same observation is noted in [JP03, page 15] with its

translation into PVS [ORS92]. A similar problem would exist if Isabelle/HOL [NPW02] was

used for proving properties of program code.

Additionally, the strength needed for automated proof in the tightly constrained uses for pat-

tern verification is not as high as with mathematical logic; no recursive behaviours are required

nor higher order logic (except for the special cases of the forAll() and exists() quantifiers,

which are discussed specifically). As a result, a proof engine was specifically created to support

verification of patterns, to meet the above requirements:

67

68 Chapter 6. The HEDGEHOG proof engine

Embedded Because the proof system is developed in Java, it can be embedded within the tool

directly.

Automated The proof nodes are maintained as Java objects, and if a Java source file needs to be

processed, it can be parsed and loaded into the same memory space as the proof engine.

This obviates the need for all source files to be translated into logic statements prior to

the execution of the proof; they can be dynamically calculated during the execution of the

proof process.

Informative The proof node can be translated into an error message in the case of proof failure.

As a result a basic automated proof tool was created, based on experience with Oyster.

Patterns are defined as rules in SPINE, which allows patterns to be defined externally and loaded

into HEDGEHOG at a later stage. The rules are made up from built-in and derived predicates and

functions that allow HEDGEHOG to reason about the structure and implementation of the Java

classes. Java class definitions are loaded from the Java source files into memory as an abstract

data structure.

The system is given a conjecture, such as:

realises(‘Singleton’,[‘java.lang.System’])

HEDGEHOG then tries to automatically prove this statement using the rules and definitions

encoded in the SPINE pattern library. At the end of this automated proof attempt, HEDGEHOG

returns with one of three results:

Complete The class does realise the pattern

Failed The class does not realise the pattern

Unknown The proof system is unable to tell whether or not the class meets the pattern

As the proof system is intended to be used as an automated tool, it is not desirable to show

proof trees or allow the user to interact with a failed (or partial) proof. However, the proof

system does try to generate sensible messages in the event of a proof failure, and this is discussed

in more detail in Chapter 7.

The representation of patterns in SPINE has been covered in Chapter 5; the processing of

Java files is covered in Section 6.1 and the proof engine is covered in Section 6.2. More detailed

information about the built-ins and the way they work is covered in Section 6.3.

6.1. Representing Java 69

6.1 Representing Java

This section discusses the way Java code is represented in memory to support the predicates

used in the SPINE pattern definitions.

In order to process Java classes, HEDGEHOG represents Java class definitions as abstract

data structures in memory. These class definitions are parsed from either:

Source files HEDGEHOG’s built-in Java parsing engine reads the Java source file and creates a

class definition. This is discussed further in Section 6.1.1.

Class files Java provides a way of interrogating Java classes at run-time using a process called

reflection. This uses the compiled output — the .class file — to determine the signature

of the class. However, reflection only provides information about the structure of the

class (what methods exist, what their argument types are etc.) — and not implementation

details of individual methods. This is discussed further in Section 6.1.2.

The definitions are represented in memory as an abstract data type structure. The elements

of the AST are shown in Figure 3.3. Built-in SPINE functions and predicates, such as the

constructorsOf() function, return information based on the contents of these data structures.

Every class has its own definition, which contains a set of member definitions (methods,

constructors and fields). The method and constructor bodies consist of a set of statements, and

since a statement block is considered a statement, statements can be nested. An expression is

also considered a statement, and expressions are also built recursively.

6.1.1 Java source files

Java source files are parsed using a built-in Java parser, based on the freely available ANTLR

[Par] parser for Java. This parser loads a Java definition into a tree-like data structure, which is

then converted into a HEDGEHOG style data structure as shown in Figure 3.3.

Note that HEDGEHOG does not use Java language reflection. Although this provides a

mechanism to detect the signature of a Java class (what methods exist, what modifiers methods

have etc.), it does not provide any information about the implementation of those methods. It

is therefore not suitable for parsing Java classes for HEDGEHOG’s use, as most patterns require

some kind of constraint on the implementation of methods and not just their signatures.

Amongst other things, the parser also cleans up references to fields and methods. In Java,

it is possible to refer to a field just by using ‘name’, instead of ‘this.name’. Similarly,

70 Chapter 6. The HEDGEHOG proof engine

references to methods that do not have an argument are prefixed with ‘this.’ to distinguish

which methods are being referred to. This ensures that when variables are referred to by name

in the methods, it is clear when a variable reference is for a local variable or an instance field.

Figure 6.1: Example Java code

public class Person { // Class definition
private String name; // Field definition
public Person(String name) { // Constructor definition

this.name = name; // Body of constructor
}
public String toString() { // Method definition

return this.name;
}

}

Figure 6.1 shows an example of Java code, and Figure 6.2 shows its abstract syntax tree.

Figure 6.3 shows examples of built-in functions using the code in Figure 6.1. The data structure

is accessed via built-in functions such as constructorsOf(). Note that the values displayed in

‘{’ and ‘}’ are results that cannot be entered directly into HEDGEHOG; they represent internal

values that have been demonstrated here to show the evaluation of a function.

6.1.2 Java class files

HEDGEHOG does not currently support using class files as a source of Java code; this section

explains what the problems are with this approach and why it does not matter that they are not

supported.

Compiled Java class files consist of class, method, and field signatures (what the name is,

what the type is, what the arguments are etc.). Method bodies consist of byte-code, which

is an object-oriented stack-based processor language. An example of byte-code is shown in

Figure 6.4.

Patterns that rely solely on the class and method signatures can use class files as the class

definition, since this is all the information that is available via Java reflection. If implementation-

specific details are required, then it would involve a different way of implementing the built-in

predicates (which currently just work on source files).

6.1. Representing Java 71

Figure 6.2: Example Java code AST

ClassDef: Person

Extends: java.lang.Object Members

Fields

FieldDef: name

Type: java.lang.String

Constructors

ConstructorDef: Person

Arguments

name

Type: java.lang.String

Body

Assignment

this.name name

Methods

MethodDef: toString

Type: java.lang.String Body

Return

this.name

Figure 6.3: Example evaluation of functions

constructorsOf(‘Person’) =
{Person(java.lang.String)}.

body({Person(java.lang.String)}) =
{assignment(fieldRef(this,name), name)}.

isPublic({Person(java.lang.String)}) =
true.

isFinal({Person(java.lang.String)}) =
false.

72 Chapter 6. The HEDGEHOG proof engine

Figure 6.4: Example of Java byte-code

Method java.lang.String toString()
0 new java.lang.StringBuffer
3 dup
4 invokespecial java.lang.StringBuffer()
7 aload 0
8 invokevirtual java.lang.Class getClass()
11 invokevirtual java.lang.String getName()
14 invokevirtual java.lang.StringBuffer

append(java.lang.String)
17 ldc String "@"
19 invokevirtual java.lang.StringBuffer

append(java.lang.String)
22 aload 0
23 invokevirtual int hashCode()
26 invokestatic java.lang.String toHexString(int)
29 invokevirtual java.lang.StringBuffer

append(java.lang.String)
32 invokevirtual java.lang.String toString()
35 areturn

6.1. Representing Java 73

It is not possible to uniquely convert the set of byte-codes for a method’s implementation

into its original Java representation — a process which is known as decompilation. Although

Java decompilers do exist, the generated output source will often not be the same as the original

source. As such, patterns which are defined correctly in the source may be translated into a form

which is unrecognisable by HEDGEHOG after decompilation. The original Java implementation

of Figure 6.4 is shown in Figure 6.5, whilst the decompiled output might look like Figure 6.6.

Figure 6.5: Original Java implementation

public String toString() {
return getClass().getName()

+ "@"
+ String.toHexString(hashCode());

}

Figure 6.6: Decompiled Java implementation

public String toString() {
StringBuffer buffer = new StringBuffer();
buffer.append(this.getClass().getName());
buffer.append("@");
int code = this.hashCode();
buffer.append(String.toHexString(code));
return buffer.toString();

}

Because several design patterns are dependent on the implementation of a method, it is not

directly possible to just use the compiled .class files. Built-in functions which process Java

statements or expressions (for example, searching through to verify whether or not a statement

contains an assignment expression) will not be directly applicable to byte-code operations.

Since the patterns are defined in terms of these built-in functions, it may be possible to write

separate implementations of built-in functions in order to deal with the class code instead of the

abstract representations of statements and classes.

Implementing each built-in function for the two representations would be a significant

amount of work. Additionally, it would provide little benefit; it is assumed the purpose of

HEDGEHOG is to verify whether a class (or set of classes) realises a design pattern correctly at

74 Chapter 6. The HEDGEHOG proof engine

the development stage, and thus if they do not realise it, they can then be changed. This implies

the source code needs to be available for changing, so HEDGEHOG can be executed on that

instead of any compiled output.

6.1.3 Inner classes

Since Java 1.1 it has been possible to define inner classes, which are classes defined within the

scope of another class. There are several different types of inner classes, but essentially they are

no different from classes that are defined normally.

The Java compiler translates the inner classes into separate classes at compile time; there

is no concept of an inner class at the Virtual Machine level. If a class HashMap defines an

inner class Entry , then the resulting classes are called HashMap.class and HashMap$Entry.

class. (There is another style of inner class called an anonymous inner class. These do not

have a name, but are simply numbered, so an anonymous inner class results in HashMap$1.

class, and so on.) These are treated as two separate classes by the run-time system, so in

principle, there is no difference between an inner class and a normal ‘outer’ class.

HEDGEHOG does not currently support inner classes. Although they are theoretically the

same as outer classes, it complicates the parsing and processing engine that is used to parse

source files and create class definitions. However, this does not affect the power of HEDGEHOG.

If a design pattern was implemented using inner classes, then HEDGEHOG would not be able

to verify it directly using the source. However, if an external translation tool converted the Java

source files from using inner classes to using non-inner classes (using the same technique as the

Java compiler uses) then it would be possible to run the verification on these expanded classes.

Note that if patterns could be verified using compiled output alone, it would be possible to

run HEDGEHOG on the compiled output. Since there is no concept of an inner class at the VM

level, HEDGEHOG would be able to treat these as separate outer classes.

6.1.4 Native methods

For similar reasons to those discussed in Section 6.1.3, HEDGEHOG does not support the use of

native methods to implement patterns. There is no specific problem with using native methods

in a class that realises a pattern, providing that it does not rely on the execution of the native

method to realise the pattern correctly.

6.2. Proof engine 75

6.2 Proof engine

HEDGEHOG provides a simple user interface to the underlying proof engine. The user interface

provides a read-prove-print loop that allows individual patterns to be tested against specific class

files.

Because of the way in which the patterns are defined, the proof system will not be complete;

that is, there will be implementations of patterns that HEDGEHOG is not able to prove. For

example, a pattern may be implemented in a variant that is not known to HEDGEHOG, or for

which no suitable definition in SPINE exists. Alternatively, the pattern may be implemented

with a minor deviation of the SPINE definition (for example, using an interface instead of an

abstract class). However, the system will be correct; that is, if the HEDGEHOG system proves

that a given class (or set of classes) realises a pattern, then it will be the case.1

As HEDGEHOG is expected to be used as an automatic verification tool in conjunction with

a developer, false negatives or unknown verdicts are not a disaster. When a negative verdict

is raised, it simply means that further expert (human) verification is required, either because

HEDGEHOG is unable to solve the problem, or because it does not meet HEDGEHOG’s definition

of a pattern.

6.2.1 Overview of proof process

The root proof node is used to represent the conjecture, which is usually of the form ‘realises(

‘Pattern’,[Class])’. This is rewritten using the SPINE rule that matches the given ‘Pattern’

to produce a new set of goals. This process recurses until there are no more ‘realises()’ left

in the conjecture. (The proof tree is annotated with rewritings that occur in order to generate

suitable error messages, as discussed in Chapter 7.)

Once the rewriting phase has finished, the proof process uses the built-in implicational rules

(which are listed in Section 6.2.3.1) to advance the state of the proof.

A list of rules are then selected which are applicable to the current node. The first one is

then used to generate a number of sub-goals for the current proof node. As the evolution of

the proof is dynamic, the proof nodes are dynamic objects and may have children proof nodes

generated and replaced during backtracking.

After these sub-goals have been generated, the state of the proof tree is updated, and the

proof process recurses through the unproven proof goals, usually using a depth-first procedure.

1Obviously with respect to the SPINE definition; errors in the pattern definition excepted.

76 Chapter 6. The HEDGEHOG proof engine

If a proof node is failed, then backtracking is used to archive the proof node’s children,

by applying the next applicable rule. This continues until either the proof node is complete or

failed and there are no more applicable rules.

6.2.2 Proof tree

The proof tree is made up from proof nodes. As a tree data structure, a single proof node may

have zero or more children; a proof node with no children is a leaf. Each proof node has:

Goal The goal to be proven. This is a SPINE conjecture, such as a realises() predicate, to

determine whether or not a class (or set of classes) realises a pattern. Once a proof node

has been created with a given goal, the goal does not change.

State The proof state (described below), of the current node. As the proof progresses, the state

of individual proof nodes change, and these changes propagate up the proof tree.

Children Each proof node can have zero or more children. If a proof node has a set of children,

then the state of the parent proof node is a combination of the child proof states.

Rule The rule used to generate the children proof nodes. If no rule has yet been applied, this

will be null. When the proof is finished, the proof nodes can be interrogated to determine

what rule each node was satisfied by.

Alternate rules The rules that may be used in the case of backtracking being required. This

may be an empty set.

The proof node is in one of four states:

None The proof node has not been attempted.

Partial Some child proof nodes have been (successfully) proven, but some still remain.

Complete The proof node (and its children) have been proven.

Failed The proof node has failed.

Of these, complete and failed are terminal states, whereas none and partial are non-

terminal states. At the end of an automated proof attempt, if the root proof state is in a non-

terminal state then the proof system outputs unknown.

6.2. Proof engine 77

Since each proof node has a single unchanging goal, it may be easy to confuse the two.

However, the proof node is a mutable object, and refers to the current goal and the state of

the proof at that part of the proof tree, whereas the goal is an immutable statement of what is

required.

Each time a proof node’s state changes (for example, from none to partial, or from none
to failed) the parent node’s state is recalculated. Thus changes in a proof tree are driven by

changes in a child node’s proof state, and the changes propagate upwards. By default, proof

nodes merge their states such that when a child’s state changes to failed, the parent node’s state

changes to failed. If the child’s proof state changes to partial, the parent’s node is upgraded

from none to partial. Lastly, if the child’s state changes to complete then the parent node is

updated; if all children are marked as complete then the parent node is marked as complete;

otherwise, it stays at partial.
Some built-in rules in HEDGEHOG combine the child proof states in a different way. For

example, the exists quantifier combines the child’s proof node state in such a way that only one

child’s success is required to cause the proof node to be marked as complete. The remaining

child nodes are left as they are, and play no further part in the proof process.

6.2.3 Rules

HEDGEHOG has two types of rules that it can use. The first are the built-in rules that allow the

implicational rules to evaluate the proof tree. These are listed in Section 6.2.3.1, and cannot

be changed by the user. The second type of rules are the pattern definition rules that can be

loaded in from external files when HEDGEHOG starts. The set of files to load are defined in

HEDGEHOG’s main configuration file, and the files make up HEDGEHOG’s known library for

design patterns. Additional patterns and other rules may be added into HEDGEHOG by editing

these text files and restarting HEDGEHOG.

The proof advances by the application of rules to proof nodes. The application of a rule

either:

• Changes the state of the proof node directly, such as complete or failed.

• Creates a number of sub-goals that need to be proven.

Each sub-goal that is created is packaged in a proof node, and inserted into the proof tree as

a child of the current proof node. When a new proof node is created, the state is set to none to

indicate that the proof node has not yet been attempted.

78 Chapter 6. The HEDGEHOG proof engine

Not all rules are applicable to all proof nodes/goals. The proof engine uses one-way uni-

fication to determine whether or not the rule is applicable for a specific goal. This allows

HEDGEHOG to have potentially many rules defined, but only be able to select a few rules for

each proof node/goal.

The simplest type of rule matching operates on the term name; for example, there are

a set of ‘realises’ rules; one for each pattern. When proving a ‘realises’ goal such as

‘realises(‘Singleton’,List)’, it is rewritten using the definition in the SPINE library to

‘or([realises(‘LazySingleton’,List),realises(‘PublicSingleton’,List)])’. (A

subsequent step will then rewrite the other ‘realises’ terms.)

Figure 6.7 shows the goal ‘realises(‘Singleton’,[‘java.lang.Runtime’])’ before

the body is rewritten, and Figure 6.8 shows the expanded proof tree with sub-goals after it is

rewritten.

Figure 6.7: Before the rewriting is applied

realises('singleton',['java.lang.Runtime'])

Figure 6.8: After the rewriting is applied

realises('singleton',['java.lang.Runtime'])

or

realises('staticSingleton',['java.lang.Runtime'])

realises('lazySingleton',['java.lang.Runtime'])

The choice of which rule to apply is decided by selecting the first applicable rule for the

current node. If there is more than one applicable rule, the remaining applicable rules are

6.2. Proof engine 79

tacked onto the current proof node. During backtracking (see below), these rules are applied to

generate fresh sub-goals.

6.2.3.1 Implicational rules

The axioms of the system are derived from the evaluable propositions (from Section 5.3.2):

Either
EP

or
not(EP)

for every variable-free evaluable proposition EP (6.1)

The following are built-in implication rules in HEDGEHOG and cannot be changed by the user:

A1 . . . An

and([A1, . . . ,An])
(6.2)

Ai

or([A1, . . . ,An])
for 1≤ i≤ n (6.3)

A(c1) . . . A(cn)
forAll(S ,x.A(x))

where S is an evaluable set that evaluates to {c1, . . . ,cn} (6.4)

A(ci)
exists(S ,x.A(x))

for 1≤ i≤ n where S is an evaulable set that evaluates to {c1, . . . ,cn}
(6.5)

A
not(not(A))

(6.6)

or([not(A1), . . . ,not(An)])
not(and([A1, . . . ,An]))

(6.7)

and([not(A1), . . . ,not(An)])
not(or([A1, . . . ,An]))

(6.8)

forAll(S ,x.not(A(x)))
not(exists(S ,x.A(x)))

(6.9)

exists(S ,x.not(A(x)))
not(forAll(S ,x.A(x)))

(6.10)

80 Chapter 6. The HEDGEHOG proof engine

6.2.4 Backtracking

Sometimes, the proof engine is unable to prove a goal one way or another; for example, the

pattern is realised differently from the SPINE specifications. In these instances, the goal is left

as unproven and the proof state remains none or partial.
If the current proof node cannot be further processed with the current rule, then proof may

continue by backtracking. This is achieved by archiving the current proof tree, and applying an

alternate rule to generate a different set of sub-goals. The process repeats until no more rules are

applicable. When no more rules are applicable to the current proof node, and the proof cannot

be moved forward any more, then proof stops. The failed proof nodes are archived (and so do

not play any further part in the proof) but are kept in order to generate the error messages as

discussed in Chapter 7.

6.2.5 Proof strategy

Once the ‘realises’ predicates have been re-written, the proof strategy follows a depth-first

proof, driven by rules (from Section 6.2.7). The strategy involves the following steps:

1. Start with a proof node N that has goal G.

2. If N is complete or failed, terminate.

3. Find all rules Rs that can apply to G.

4. Annotate N with this set of applicable rules Rs.

5. For each rule R in the set Rs, do until N is complete:

(a) Archive any existing sub-nodes SNs for the current node N.
(b) Apply rule R to G to generate a set of sub-goals SGs. Generate sub-nodes

SNs for each goal in SGs

(c) For each sub-node SN in SNs, recurse.
(d) Update the state of node N for each sub-node that is proven or disproven.

6. If the set Rs is empty or has been completely traversed, and the goal has not
been proven, return an ‘unknown’ verdict.

This process ensures that if the proof system cannot prove a goal with a particular rule, then

it is possible to continue processing using another rule.

The state of sub-nodes are combined to update the parent node. The parent node is updated

as each sub-node changes. If any child is failed, then the parent node is marked as failed; if

all children are complete, then the parent node is marked as complete; if all children are none
then the parent is none, otherwise the parent is marked as partial.

6.2. Proof engine 81

6.2.6 Soundness

The proof process is sound; if the proof completes from some initial goal, then that goal is true

by the semantics in Chapter 5. This follows from the fact that each of the rules (Equation 6.11

– Equation 6.10) are sound with respect to the semantics already given, and by induction on the

structure of the proof that the proof is also sound.

Each rule can be individually demonstrated to be sound; e.g., Equation 6.1 follows from

the definition of the evaluable proposition itself. The only one that requires further analysis is

Equation 6.11, which uses substitution of expression (and thus complicates the argument). In

order to argue the soundness of this rule, we must consider the substitution of arbitrary formulæ

into an arbitrary environment, and show that if the formulæ themselves are sound then so are

the replacements into that environment. To do this, we need to define the following:

Lemma 6.2.1. Assume given formulæ A and B , and an enviroment E[] (with potentially free

variables in each, and binding operators binding free variables in the environment’s hole). If

for all substitutions σ, binding all free variables in A and B to constants, we have that σ(A) is

true iff σ(B) is true, then for all substitutions τ binding all free variables in E[A] and E[B]

to constants, we have that τ(E[A]) is true iff τ(E[B]) is true.

Proof. By induction on the structure of E.

6.2.7 Termination

In order to show that the proof engine terminates on a consistent set of SPINE rules, the proof

is processed in two distinct phases:

1. Recursive rewriting of all occurrences of realises() with their respective rule bodies.

2. Application of the implicational rules that allow the logic to be evaluated.

6.2.7.1 Rewriting of SPINE rules in the proposition

The first phase successively increases the depth of the proposition, since a realises() SPINE

rule body is often a compound proposition. This increase continues until there are no realises()

SPINE rules left to replace. All occurrences of a realises() formula are recursively rewritten

using the following equality rule:

82 Chapter 6. The HEDGEHOG proof engine

E[and([A1, . . . ,An])] ≡ E[realises(P, [C1, . . . ,Cm])]

where realises(P, [C1, . . . ,Cm]):- A1, . . . ,An

is a variable-free instance of a SPINE rule and E[A]

is any expression with a subexpression A (6.11)

It is necessary to allow re-writing at any depth of the expression, since it is unlikely that the

realises() goal will only exist at the top level. It is also necessary to perform the re-writing

steps first so that the second phase strictly reduces the depth of the proposition.

The E[A] notation is used to denote rewriting at any level of the expression. For example,

or([realises(‘NonInstantiable’, ‘TheClass’), isAbstract(‘TheClass’)])matches

the rewrite rule above, and can be rewritten into or([. . . ,isAbstract(‘TheClass’)]) (where

. . . represents the body of the corresponding SPINE rule). Prior to this re-writing step, the rule’s

variables are renamed on both sides of the rule definition in order to avoid capturing occurrences

of the same variable name in the containing expression.

This phase will terminate since there is a partial ordering on the realises() SPINE rules.

If the set of rules is consistent, then there are no mutually recursively defined rules. Thus, each

replacement of the realises() rules will replace it with either a proposition that contains no

further realises() rules, or will contain a realises() rule that is strictly less than the one it

is replacing. As the set of rules is finite, eventually this phase of the rule processing will finish.

Since the rule set is consistent and the size of the rule bodies themselves are finite, then this

must result in a finite sized proposition.

Lemma 6.2.2. The first phase of the proof process (rewriting rule bodies of realises() rules)

will terminate with a finite proposition.

Proof.

• If a proposition has no realises(), then the first phase terminates.

• If a proposition contains realises(), then the rewriting will replace it with a finite body

that contains zero or more realises(). Each of the realises() will be smaller under

� (from Definition 5.4.1). The realises() will keep getting smaller under � until they

are rewritten with a finite body with no further realises(), and then the first phase will

terminate.

6.2. Proof engine 83

6.2.7.2 Application of the remaining implicational rules

The second phase of the proof applies the implicational rules. Given that there are no more

realises() rules to be applied, the proof will terminate if a measure of the proposition can be

shown to be strictly decreasing.

The size of the proof space is dependent on the number of branches that the proof has. If

the proof had infinite branches, it may require an infinite amount of time to finish. On the other

hand, if the proof has finite branches and finite depth, then there is a finite amount of work to

do and thus the proof will terminate. If we can show that the branching is finite, we can use a

measure based on the depth of the proposition to prove that the proof process will terminate.

Lemma 6.2.3. The branching of the proof tree is finite.

Proof. The proof branching occurs as a result of:

• and() and or() propositions in the SPINE rules themselves

• forAll() and exists() introducing branching

• Backtracking with substitution of other rules

Each SPINE rule is finite, and therefore each of the coded and() and or() propositions in

SPINE rules must also themselves be finite.

The forAll() and exists() propositions expand with one branch per set member of the

(evaluated) evaluable set. However, this evaluable set must be finite in size, since the size of the

Java code base is finite, and as a result of which the forAll() and exists() propositions must

therefore generate a finite set of work.

The substitution of rules during backtracking must be finite, since there are a finite number

of SPINE rules.

Therefore, the branching of the proof tree is finite.

The rules Equation 6.1 — Equation 6.6 have a smaller depth of each of the premises than

the conclusion. Thus, if these rules are applied, the proposition becomes strictly smaller.

The remaining rules Equation 6.7 — Equation 6.10 have the same depth of proposition for the

premise as the conclusion. In each case, the depth of the proposition captured by the not() rule

decreases. The premise of each of the following rules are not of the form not(A); therefore,

these rules cannot be applied more than once to the formula as a whole. The only rules that

match the premise are those that decrease the depth of the proposition further.

84 Chapter 6. The HEDGEHOG proof engine

Combining these sets of rules will give (for example):

not(A1) ... not(An)
and([not(A1), . . . ,not(An)])

not(or([A1, . . . ,An]))
To show that these rules terminate, a measure must be defined that is strictly decreasing for

each of these rules. Multisets are used to show that either the depth of the proposition as a

whole decreases, or that the depth of not() propositions strictly decreases.

A multiset [DM79] is a set that allows duplicate elements (also known as a bag), denoted by

{}. Multisets are used to show that a measure of the rule’s premise and conclusion decreases,

in order to prove that the rules terminate. s1∪ s2 is the multiset union of s1 and s2.

It is possible to define a well-founded ordering (denoted by �) of multisets such that they

can be compared:

X
de f
�= Y iff ∀y ∈ Y.∃x ∈ X .x >= y.

then X
de f
� Y iff X �= Y and ∃y ∈ Y,x ∈ X .x > y

In the depth measures, specific SPINE formulæ are represented as α. (The reason for avoid-

ing A is that the A variable can apply to any formula in the rules, and it is not possible to

calculate the depth of any formula. However, by choosing an arbitrary specific formula α, we

can calculate the depth of that specific term and use that to show that the measure holds.)

Definition 6.2.4. The depth of a proposition α is denoted by |α|d under the normal definition of

depth.

Definition 6.2.5. The negation depth of a proposition α is denoted by |α|n.

For f 6= not, | f (t1, . . . , tn)|n
de f
= |t1|n ∪ . . .∪ |tn|n. |not(α)|n

de f
= {|not(α)|d }, where {} is a

multiset of the depths ||d . For constant or variable α, |α|n
de f
= {|α|d }.

Definition 6.2.6. The overall measure |α| of proposition α is a lexicographic combination of the

normal depth as well as the negation depth: |α|B |β| iff |α|d > |β|d∨(|α|d = |β|d∧|α|n � |β|n)

To prove that the measure of the conclusion is greater than the measure of the premise, each

rule needs to be shown to do so in turn. The proofs use the rules with each variable instantiated

with a specific SPINE formula, and are represented as α1 and αn.

Using the conclusion and premise of the and() rule (Equation 6.2), it can be seen that the

conclusion has a greater measure than the premise, by working backwards from the goal as

follows:

6.2. Proof engine 85

Lemma 6.2.7. The measure of the conclusion is greater than the measure of each of the

premises for the and() rule (Equation 6.2).

Proof. To show that the measure of the and() rule’s conclusion is greater than its premises:
|and([α1, . . . ,αn])| B |αi| for 1≤ i≤ n

it is sufficient to show that the depth is larger:

|and([α1, . . . ,αn])|d > |αi|d for 1≤ i≤ n
which is true by definition of ||d .

Lemma 6.2.8. The measure of the conclusion is greater than the measure of the premise for

each of the or() rules (Equation 6.3).

Proof. To show that the measure of each of the or() rule’s conclusion is greater than its

premises:
|or([α1, . . . ,αn])| B |αi| for 1≤ i≤ n

it is sufficient to show that the depth is larger:

|or([α1, . . . ,αn])|d > |αi|d for 1≤ i≤ n
which is true by definition of ||d .

Lemma 6.2.9. The measure of the conclusion is greater than the measure of each of the

premises for the forAll() rule (Equation 6.4).

Proof. To show that the measure of the forAll() rule’s conclusion is greater than its premises:
|forAll(S ,x.α(x))| B |α(ci)| for 1≤ i≤ n and S {c1, . . . ,cn}2

it is sufficient to show that the depth is larger:

|forAll(S ,x.α(x))|d > |α(ci)|d for 1≤ i≤ n and S {c1, . . . ,cn}
which is true by definition of ||d , given that |x|= |xi| for 1≤ i≤ n (as a variable and a constant

have the same depth).

Lemma 6.2.10. The measure of the conclusion is greater than the measure of each of the

premises for the exists() rule (Equation 6.5).

Proof. To show that the measure of the exists() rule’s conclusion is greater than its premises:
|exists(S ,x.α(x))| B |α(ci)| for 1≤ i≤ n and S {c1, . . . ,cn}

it is sufficient to show that the depth is larger:

|exists(S ,x.α(x))|d > |α(ci)|d for 1≤ i≤ n and S {c1, . . . ,cn}
which is true by definition of ||d , given that |x|= |xi| for 1≤ i≤ n (as a variable and a constant

have the same depth).
2The sets only ever evaluate to () constants, from Section 5.3.3

86 Chapter 6. The HEDGEHOG proof engine

Lemma 6.2.11. The measure of the conclusion is greater than the measure of each of the

premises for the double negation rule (Equation 6.6).

Proof. To show that the measure of the not(not()) rule’s conclusion is greater than its premise:
|not(not(α))| B |α|

it is sufficient to show that the depth is larger:

|not(not(α))|d > |α|d
which is true by definition of ||d .

The rules involving pushing negation in (Equation 6.7 — Equation 6.10) have the same

depth as defined by ||d , but have a reducing negation depth as defined by ||n:

Lemma 6.2.12. The measure of the conclusion is greater than the measure of each of the

premises for the negated and() rule (Equation 6.7).

Proof. To show that the measure of the negated and() rule’s conclusion is greater than its

premise:
|not(and([α1, . . . ,αn]))| B |or([not(α1), . . . ,not(αn)])|

Since the depths of each are equal:

|not(and([α1, . . . ,αn]))|d = |or([not(α1), . . . ,not(αn)])|d
it must be shown that the negation depth is greater:

|not(and([α1, . . . ,αn]))|n � |or([not(α1), . . . ,not(αn)])|n
The negation depth of or() is defined as

a multiset of the negation depths of its subterms:

|not(and([α1, . . . ,αn]))|n � |not(α1)|n∪ . . .∪|not(αn)|n
The negation depth of a negated term is defined as

the depth of the negated term:

{|not(and([α1, . . . ,αn]))|d } � {|not(α1)|d . . . |not(αn)|d }
which is true by definition of ||d .

Lemma 6.2.13. The measure of the conclusion is greater than the measure of each of the

premises for the negated or() rule (Equation 6.8).

Proof. To show that the measure of the negated or() rule’s conclusion is greater than its

premise:

6.2. Proof engine 87

|not(or([α1, . . . ,αn]))| B |and([not(α1), . . . ,not(αn)])|
Since the depths of each are equal:

|not(or([α1, . . . ,αn]))|d = |and([not(α1), . . . ,not(αn)])|d
it must be shown that the negation depth is greater:

|not(or([α1, . . . ,αn]))|n � |and([not(α1), . . . ,not(αn)])|n
The negation depth of and() is defined as

a multiset of the negation depths of its subterms:

|not(or([α1, . . . ,αn]))|n � |not(α1)|n∪ . . .∪|not(αn)|n
The negation depth of a negated term is defined as

the depth of the negated term:

{|not(or([α1, . . . ,αn]))|d } � {|not(α1)|d . . . |not(αn)|d }
which is true by definition of ||d .

Lemma 6.2.14. The measure of the conclusion is greater than the measure of each of the

premises for the negated forAll() rule (Equation 6.9).

Proof. To show that the measure of the negated forAll() rule’s conclusion is greater than its

premise:
|not(forAll(S ,x.α(x)))| B |exists(S ,x.not(α(x)))|

Since the depths of each are equal:

|not(forAll(S ,x.α(x)))|d = |exists(S ,x.not(α(x)))|d
it must be shown that the negation depth is greater:

|not(forAll(S ,x.α(x)))|n � |exists(S ,x.not(α(x)))|n
The negation depth of exists() is defined as

a multiset of the negation depths of its subterms:

|not(forAll(S ,x.α(x)))|n � |not(α(c1))|n∪ . . .∪|not(α(cn))|n
The negation depth of a negated term is defined as

the depth of the negated term:

{|not(forAll(S ,x.α(x)))|d } � {|not(α(c1))|d . . . |not(α(cn))|d }
which is true by definition of ||d , given that |x|= |xi| for 1≤ i≤ n (as a variable and a constant

have the same depth) and S {c1, . . . ,cn}.

Lemma 6.2.15. The measure of the conclusion is greater than the measure of each of the

premises for the negated exists() rule (Equation 6.10).

Proof. To show that the measure of the negated exists() rule’s conclusion is greater than its

premise:

88 Chapter 6. The HEDGEHOG proof engine

|not(exists(S ,x.α(x)))| B |forAll(S ,x.not(α(x)))|
Since the depths of each are equal:

|not(exists(S ,x.α(x)))|d = |forAll(S ,x.not(α(x)))|d
it must be shown that the negation depth is greater:

|not(exists(S ,x.α(x)))|n � |forAll(S ,x.not(α(x)))|n
The negation depth of forAll() is defined as

a multiset of the negation depths of its subterms:

|not(exists(S ,x.α(x)))|n � |not(α(c1))|n∪ . . .∪|not(α(cn))|d
The negation depth of a negated term is defined as

the depth of the negated term:

{|not(exists(S ,x.α(x)))|d } � {|not(α(c1))|d . . . |not(α(cn))|d }
which is true by definition of ||d , given that |x|= |xi| for 1≤ i≤ n (as a variable and a constant

have the same depth) and S {c1, . . . ,cn}.

These lemmas allow us to state:

Theorem 6.2.16. The proof process will terminate.

Proof.

• From Lemma 6.2.2, the first phase will terminate.

• From Lemma 6.2.3, the branching of the proof tree will be finite.

• From Lemma 6.2.7 — Lemma 6.2.15, the second phase will terminate.

Therefore, the proof process has a finite amount of work to do and will terminate.

6.2.8 Complexity

The proof engine works by performing a depth-first search through the proof goal space. As

such, the order of rules defined in the patterns (and the order in which the patterns are loaded in

through ‘init.sp’) is important. Furthermore, if the pattern is verified, then the proof process

will terminate without scanning all the possible rules through backtracking; however, if the

pattern cannot be verified then all rules will be exhausted prior to reporting failure.

At any one time, the proof process is only looking to determine if a set of classes meets a

specified pattern. Thus the number of different patterns in the library has no direct effect on the

size of the proof tree for verification purposes. However, the number of variants that a pattern

6.2. Proof engine 89

has will affect the proof process; the more variants a pattern has, the more possibilities must be

tried by the proof engine to demonstrate a pattern.

These pattern variants are often combined into a super-pattern (e.g. the pattern variants

LazySingleton and PublicSingleton are combined into Singleton). The variants are normally

independent of each other in terms of their proofs; and in any case, there is a partial ordering

on the patterns and their variants to prevent cyclic definition of patterns. As a result, the proof

space is proportional to the number of variants that a pattern has.

The proof space is related to the number of branches that are encountered during the proof

process. The branches may be a result of explicit and() and or() nodes from the SPINE rules,

from implicit branches caused by backtracking, and finally the branches created as a result of

the forAll() and exists() expansions. The explicit and() and or() nodes are relatively easy

to determine from the SPINE rules themselves; the number of nested and() and or() nodes will

be a measure of how complex the proof is from a static view.

Note that SPINE rules are defined as an implicit and() of propositions, and that backtracking

will result in an implicit or() of the rules.

The number of branches that may occur due to explicit/implicit and() and or() can be

statically determined from the SPINE rules. As noted above, the proof process only attempts to

prove a set of classes meets a single pattern, and thus only a subset of the rules (those involving

that pattern, its variants, and any nested realises() rules) will need to be considered.

As noted in Lemma 6.2.2, the rewriting of the proof goal by expansion of the realises()

rules will result in a finite proposition. Moreover, at this point, the branching due to explicit

and() and or() will have already been taken into account. Thus the complexity of any given

proof goal can be calculated since it is proportional to its depth and branching content.

What is more interesting is the branching caused by the forAll() and exists() operators.

These generate one branch per set member from the evaluation of evaluable sets such as such

as constructorsOf() and subclassesOf(). Although these are finite (because the Java code

base must be finite), there may be many tens or hundereds of members returned (particularly in

an expression such as ‘subclassesOf(‘java.lang.Object’)’). Given that several of these

may be nested, there may be a potentially worse branching explosion because of these than

explicit or implicit branches introduced with and() and or(), which causes the proof space to

be polynomial in size of the Java source code being processed.

The worst two cases for quantifier set nesting occurs with the definition of the Abstract-
Factory and Bridge patterns, which have the following respective set nestings:

subclassesOf() x subclassesOf() x methodsOf() x methodsOf()

90 Chapter 6. The HEDGEHOG proof engine

subclassesOf() x subclassesOf() x methodsOf() x methodsOf() x fieldsOf()

Thus, the proof space in relation to the size of the Java code analysed (and therefore the time

taken to search it) will be related to the following polynomial:

v× c2×m2× f (6.12)

where v is the number of variants, c is the number of classes, m is the number of methods and f

is the number of fields.

Fortunately, the search space often works out much better than this. For example, there

is only one variant for each of the Bridge and AbstractFactory patterns, and the number of

subclasses are restricted to a specific parent class (in other words, not java.lang.Object).

Additionally, classes in Java tend not to have many methods or fields; 100 fields and methods

would certainly be a complex class indeed, and an AbstractFactory that produced product

classes with that many fields and methods would be equally unmanageable for a human to

process as a proof engine. Most of the patterns have 3 or less nested set operations, and some

of these are ranged over by exists() rather than forAll(), so if a suitable element is found

the proof does not need to continue.

The proof’s memory requirements are that it should be sufficient enough to hold the state of

the proof in as much detail as necessary to complete the proof. Given that the proof process is

a depth-first search, the minimum amount of memory required is proportional to the maximum

state of the proof tree during evaluation. However, the proof system also needs to retain infor-

mation about successful and failed sub-proofs in order to generate error messages, so since each

of the nodes visited is stored in memory until the proof is complete, the memory complexity is

the same as the time complexity.

6.3 Built-in functions and predicates

A number of SPINE built-in functions and predicates exist which deal with the data structures

representing the Java classes. These are evaluated by direct appeal to the data structure. For

example, the function ‘methodsOf(‘java.lang.Object’)’ results in a list of methods defined

in the ‘java.lang.Object’ class. Each of these definitions contains the list of statements that

are defined in the body of the method itself, which in turn contains a number of expressions.

One such built-in allows HEDGEHOG to determine if a specified field of a class can be

modified, which is used to ensure that a class is immutable. This works by appeal to the method

6.3. Built-in functions and predicates 91

implementations in a class; provided that the field is private (so that it can’t be accessed from

outside that class), the only way it is modified is if methods can access the variable. The built-

in then walks through the method implementations searching for an assignment operator that

refers to the given field on its left hand side, and if no such assignments exist, concludes that the

field may not be changed. Constructors are not checked; invariably, the constructor is used to

initialise the instance variables of an immutable object, and once constructed, the values cannot

be changed.

A full list of the built-ins are described in Appendix C.

92 Chapter 6. The HEDGEHOG proof engine

6.4 Summary

The HEDGEHOG proof engine provides a mechanism for manipulating proof trees. Each proof

node in the tree has an associated goal, and the state of the proof node is one of none, partial,
complete and failed. The first two are the nonterminal states of the proof node, and the last two

are the terminal states of the proof node.

The root proof node is used to prove the top-level goal. A set of applicable rules, from a

library of rulesets, are attached to the node. The application of a rule to a proof node results in

either a change of proof state, or generation of a set of sub-goals (or both). For each sub-goal,

a new sub-node is created as a child of the original proof node.

This process then iterates over the remaining proof structure, using a depth-first procedure

to prove the remaining nodes. Only sub-nodes of nonterminal proof nodes are considered, since

these are the the ones that make a difference. However, if a node is marked as failed, and there

are other applicable rules, then these may be tried instead to generate a different set of sub-goals.

The success (or failure) of the entire proof tree is then the success of the top-level node after

this iterative process is complete. Furthermore, each complete (successfully proved) node will

have the associated rule which can be displayed as part of the proof output.

The result of the proof tree is then announced to the user. If HEDGEHOG is unable to prove

the conjecture, or falsifies the conjecture, then error messages can be generated to indicate the

problem and give directed help towards the solution. The generation of messages is covered in

Chapter 7.

Chapter 7

Generating error messages

The main purpose of any automated proof system is to generate a result: whether the proof

succeeded or not. However, although the message ‘success’ is sufficiently detailed for most

purposes, a result of ‘failure’ does not give enough information to the user about what the cause

of the problem is.

Users familiar with proof systems may be used to seeing proof trees and interpreting their

failures. However, since HEDGEHOG is designed for Java developers, it is unlikely that they will

be able to understand a failed proof tree. Instead, the failure must be converted into a succinct

textual message that the developer can understand.

The failure of a proof is not necessarily the end of usefulness for an automated theorem

prover. If the proof has failed because it is not able to connect two proof graphs, or only a small

problem stops the proof mechanism from continuing, it may be possible to use that information

to fix the problem, or to make the requirements stricter such that automated proof can continue.

These techniques are used in current automated proof systems to try and improve the quality

of the proof. For example, rippling [BSvH+93] is a technique for controlling the key parts of

proof by induction, used to suggest possible approaches in failed proofs [IB96].

However, not every problem can be automatically fixed. In most cases, the end-user will

have to be involved to guide the automated proof system to allow it to successfully finish the

proof. This is an active research area [LCSV96, LD97, BMZ00], based on increasing the quality

of information given to the end-user [Moo93]. This is also used in other automated program

analysis using proof systems [EI04] to increase the ways in which proof systems may be further

automated in the case of proof failure.

HEDGEHOG’s proof tree consists of simple connectives (such as ‘and’ and ‘or’), existential

quantifiers (‘forAll’ and ‘exists’) and Java-related predicates (‘extends’ and ‘implements’).

93

94 Chapter 7. Generating error messages

HEDGEHOG unpacks the logical connectives and discharges the Java-specific predicates using

the abstract representation of the source code.

Generation of the error message consists of the following steps:

1. Filtering the tree to leave only failed nodes

2. Converting the contents of the tree into a suitable error message

7.1 Tree filtering

At the end of an automated proof, the tree will consist of a combination of success and failure

nodes. In order to generate a message about the causes of the error(s), information about the

errors needs to be considered. However, given that the proof tree contains both success and

failure information, it can be condensed to just provide information about the problems that

caused an error.

A node is successful if the proof node succeeded. A branch of the proof tree is said to

be successful if the node is successful. Note that a successful node may contain unsuccessful

children; for example the node and([true,false]) will have one successful child node and

one unsuccessful child node.

If the proof has failed, then the root node of the proof tree will be marked as failed. Clearly,

this node will have at least one failed child (or cause) and possibly some success nodes as well.

The successful nodes are filtered from the top level so that only the unsuccessful nodes

remain. Note that the nodes are not deleted from the proof tree; they are merely marked as

hidden and play no further part in the generation of error messages.

This process then recurses down the proof tree. At the end of this process, the proof tree is

reduced to a subtree of failed nodes.

7.2 Converting trees to error messages

Once the tree has been reduced to only those nodes representing failures, it is then possible to

convert the resultant proof fragment into an error message. However, the trick lies in generating

an error message that it is understandable, and does not have too much noise; that is, the message

displays information that is directly relevant to the failure and not too much information from

successful nodes.

7.3. Interesting errors 95

7.2.1 Displaying a complete reason

A failed proof tree can be converted into an error message simply by recursing over the proof

tree, and translating the logical connectives into suitable English. For example, consider the

proof statement:

and([true,or([false,false]))

This could be translated literally as “ ‘and()’ failed because ‘or()’ failed because both ‘false’

and ‘false’ failed.”

Though accurate, this would not necessarily provide the end user with a clear idea of why

the proof failed. It would be more useful if the direct connections were eliminated; in this case,

removing the ‘and()’ and ‘or()’ nodes from the resultant message. A clearer message would

then be “proof failed because both ‘false’ and ‘false’ failed.”

7.2.2 Compressing the message

Each node in the resulting proof tree is evaluated to show how interesting that node is. The more

interesting a node, the greater its chance of being displayed in the error message. Nodes that

are not interesting (i.e. they have an interest value lower than a defined interest threshold) may

not be displayed in the body of the error message. The threshold is defined so that the majority

of successful proof nodes are filtered out, whilst those with clear failures are displayed.

For example, consider a failure proof tree that has five nodes; A — E. In this example, A has

as its only (failed) child B, which has as its only failed child C and so on.

Now consider an example situation where a post-process of this tree decides that nodes ‘A’

and ’D’ are interesting, but that ‘B’, ‘C’ and ‘E’ are not. Instead of generating the message “ ‘A’

failed because ‘B’ failed because ‘C’ failed because ‘D’ failed because ‘E’ failed”, it can generate

the shorter “ ‘A’ failed because ‘D’ failed.”

7.3 Interesting errors

In order to compress the verbose error message, it is necessary to decide on those nodes which

are interesting, and those which are not.

Nodes involving simple logical connectives (such as ‘and’ and ‘or’) can be pruned from the

search tree. Clearly, if a requirement was required for both ‘and([A,B])’ and ‘B’ failed, then

there is little point in introducing the ‘and’ clause into the error message. In general, for any

96 Chapter 7. Generating error messages

logical connective, a node is only interesting if two (or more) sub-nodes failed. Thus if both ‘A’

and ‘B’ failed, it would be worth pointing out both of these failures. Similarly, in the case of an

‘or’ failing (because none of the child nodes succeed) then it would be worth displaying that

message as well.

At each stage of the message, it is necessary to determine whether the goal that was trying

to be proved is true or false. In the case of negation, if the statement ‘not(A)’ has failed, it is

because ‘A’ has been proven when it should not have done. This will be necessary information

to convey to the user when the message is displayed.

In the case of the quantifiers ‘forAll’ and ‘exists’, a failure may be because one of the

child nodes failed (or did not succeed). In general, these nodes are marked as interesting because

it is usually the case that only one (or a small number) of child nodes failed, and these failures

can be important to note.

The last case of errors are associated with the Java-specific primitives, such as the existence

(or lack of) of a particular signature, or method implementation. These will always be reported

as interesting errors, since these are usually the causes that developers want to know.

7.3.1 Chains with uninteresting beginnings or ends

When condensing a set of proof nodes, there may be chains which have uninteresting nodes at

the beginning of the chain, or uninteresting nodes at the end of the chain. In these cases, is it

desirable to prune the start or ending nodes, or merely the uninteresting nodes in the middle of

a chain?

In some cases, it may be desirable to display the start of the chain so that the user can place

the resulting failure in context. There is an argument, therefore, that the start of the chain should

be displayed whether or not it is marked as ‘interesting’ by the decision procedure (see below).

One way of enforcing this is to modify the condensing procedure so that it does not prune

‘uninteresting’ nodes at the beginning or end of chains. However, this may not be desirable; for

example, a proof failure may have a significantly large chain of ‘uninteresting’ nodes initially,

followed by a single ‘interesting’ node towards the end of the chain.

A better way of modifying the condensation routine is to modify how the nodes are cal-

culated as ‘interesting’ in the first place. A (two-pass) run of the chain can find the nodes of

greatest importance, and then (for example) mark all nodes from the start of the chain to the

first ‘interesting’ node as pseudo-‘interesting’. This would then allow the condensation routine

to be simpler, but with the same level of flexibility.

7.4. Pattern annotation 97

Hence, uninteresting nodes at the start and end of the chain can be treated in exactly the

same way (and pruned) as uninteresting nodes in the middle of the chain.

7.3.2 Tree nodes with interesting children

Another problem occurs when branching nodes (or tree nodes) are marked as uninteresting, but

directly or indirectly have interesting children.

There are two possibilities for processing these nodes:

• Leave the branch node in the resulting process, by marking it as ‘interesting’

• Create a new node that contains the ‘interesting’ children

Of the two approaches, the latter is likely to result in smaller trees than the former. The

reason for this is that an uninteresting branch node may have uninteresting branches beneath

it, and that these nodes may be merged without affecting the cause-and-effect display of the

output.

7.4 Pattern annotation

As well as providing error information from the proof tree, other explanations of why a feature

is disallowed (or required) can be provided.

For example, in the case of the Singleton pattern, it is necessary that all constructors are

private, and that there is at least one constructor. The first requirement ensures that the class

cannot be instantiated outside of the class definition, whilst the second requirement ensures

that there is a provided constructor. The second is necessary, because if there are no provided

constructors (in the source file) the compiler will automatically generate a default (no argument)

constructor which is public.

If an error message in the compiler suggested that there was no provided constructor, it may

not be immediately obvious why a constructor is necessary. Furthermore, if the developer were

to create an additional constructor, it would probably be created public (as most constructors

are). Then, when the test was rerun, a second error indicating that the constructor should have

been private would be generated.

It is therefore desirable to give the user some kind of indication of why the error has been

raised in the first place, and what the solution to the problem is.

98 Chapter 7. Generating error messages

To do this, suitable descriptions are encoded within the pattern specification using ordinary

comments. This allows the proof system to present a message to the developer, which can then

be used to help the developer fix the problem specifically for the pattern. For example:

realises(‘PrivateSingleton’,[C]) :-
(* Must have at least one constructor *)
exists(constructorsOf(C),Cn.true),
(* All constructors must be private *)
forAll(constructorsOf(C),Cn.hasModifier(Cn,private)),
(* Must be a public static final variable *)

...

These comments can then not only be indications to the developer who is reading the pattern

definition, but can also be applied to the proof tree. If a problem occurs whilst trying to prove

the last ‘exists’ statement, then the comment above can be displayed to guide the user in terms

of correcting the statement.

Note that these messages are in addition to, rather than replacement of, the messages that are

generated from the proof tree. For example, if there was a field which had the correct type, was

instantiated and had both ‘static’ and ‘public’ modifiers, then the generated error message

would indicate that the the ‘final’ method was missing.

7.5 From nodes to explanations

Once the proof tree has been sufficiently filtered, it is then desirable to convert it into some kind

of textual explanation as to why the proof failed.

There are two ways in which nodes are converted into textual answers: by translating the

proof node type into text, and to associate specific error messages with each node. Both are

useful in translating error messages to end users.

Furthermore, for errors associated with particular methods, fields, or code in the class, it

may be possible to provide more specific file and line numbering information.

Some node types – such as ‘and’, ‘or’, ‘forAll’, and ‘exists’ – are translated directly into

English equivalents. For example, if part of the proof tree has a constraint that all constructors

are private, and one part of the proof tree fails, then it is possible to generate an error message

like “All methods should be private; however, constructor X is not”. Others, to do with the

syntax of the Java language (for example, expecting a relationship between two classes to exist)

are also relatively easy to translate into a textual output.

7.6. Example 99

There are some other node types which may prove more difficult to translate directly. For

example, if there is a complex requirement that uses a set of constraints, then it may be counter-

productive to list individual failures instead of a single reason.

Whilst printing out a simple text string for a single reason works quite well, when multiple

problems occur the combination of text messages and branches becomes more of a problem.

For example, when attempting to prove that a class is a Singleton, it is required that it realises

one of three variants. If one of these variants fails because of a minor difference, and the other

variants fail because of major differences, then clearly the desired message is to highlight the

‘close’ implementation and ignore the others. However, it is not easy to merge the result of

failed branches.

It is also difficult to represent a tree in a single text explanation, without using bracketing or

nested lists. As the complexity and depth of the tree increases, such bracketing and nested list

schemes can obscure the key points of the proof.

7.6 Example

To see how this process works in practice, let us consider the Singleton pattern (specifically,

the PrivateSingleton variant), shown in Figure 7.1. In this pattern, only a single instance of an

object is allowed at one time. This can be achieved by observing the following constraints:

• All of the constructors must be private

• There must be at least one constructor

• There must be a field F

– Which is static final and of type C

– Which is assigned a new C during construction

• There must be a public method that returns type C

– Which returns the value of F

In the SPINE definition, comments may be inserted to describe the purpose of the specifi-

cation, including using expressions to display the names of bound variables at that point in the

proof tree. For example, if the constraint nonNull(F) fails, then the proof system can output

the result “Field F must be instantiated during class construction”.

100 Chapter 7. Generating error messages

Figure 7.1: PrivateSingleton SPINE definition

realises(‘PrivateSingleton’,[C]) :-
and([

(* All constructors must be private *)
forAll(constructorsOf(C),Cn.

hasModifier(Cn,private)),
(* There must be at least one constructor *)
exists(constructorsOf(C),Cn.true),
exists(fieldsOf(C),F.

and([
typeOf(F,C),
hasModifier(F,private),
hasModifier(F,static),
(* Field $F must be instantiated *)
nonNull(F),
exists(methodsOf(C),M.

and([
hasModifier(M,public),
hasModifier(M,static),
typeOf(M,C),
returns(M,F)

])
)

])
)

])

7.6. Example 101

In the specification, hasModifier and typeOf are examples of static constraints, whilst

instantiates and returns are examples of semantic constraints.

Consider the following class:

public class Example {
private Example field;
public Example getInstance() {

return null;
}

}

This does not meet our singleton specification in a number of different ways. Consider what

happens when we try to verify the class, using the PrivateSingleton variant:

realises(‘Singleton’,[‘Example’]) :-
realises(‘PrivateSingleton’,[‘Example’]) :-

and:
forAll(constructorsOf(‘Example’),Cn.true)

-> forAll([],Cn.true)
-> true
exists(constructorsOf(‘Example’),Cn.true)
-> exists([],Cn.true)
-> false

The proof tree for this failure is very simple, and can be condensed into:

realises(‘Singleton’,[‘Example’])
→ realises(‘PrivateSingleton’,[‘Example’])
→ and
→ exists(Cn,constructorsOf(‘Example’),true).

In this particular case, most of the nodes are uninteresting. (The first and last nodes are the

only ones of real interest in the sequence.) The proof tree can be filtered into a shorter failure:

realises(‘Singleton’,[‘Example’])
→ exists(Cn,constructorsOf(‘Example’),true).

This can be used to generate an error message “The class ‘Example’ does not realise the

pattern ‘Singleton’ because: there must be at least one constructor”. These messages can be

generated directly from the rules that are used to specify the pattern.

102 Chapter 7. Generating error messages

7.7 Summary

In the case of proof failure, HEDGEHOG’s ability to explain the reason for the failure is an

important part of HEDGEHOG’s use. Without a mechanism for displaying the result to the end

user, a message of proof failure would not give the end users an indication of why it has failed

without an analysis of the code.

Additionally, the proof tree is processed to filter out both successful and uninteresting nodes.

This means that the result displayed provides information that a Java developer could work with

in order to locate and fix the problems.

Chapter 8

Worked examples

This chapter shows how HEDGEHOG attempts to prove that a set of classes realises a particular

design pattern.

8.1 Startup

When HEDGEHOG starts up, it loads the built-in SPINE definitions from the pattern library. The

rules are parsed and cached in memory, from which they can be referenced in the proofs.

The SPINE initialisation file, init.sp (shown in Figure 8.1), defines which other SPINE

files to load. Each of these files contains rule definitions, which in turn, can load further rules.

Figure 8.1: SPINE initialisation file

(* init.sp *)
load(‘Singleton.sp’).
load(‘Bridge.sp’).
load(‘Factory.sp’).
... (* other pattern definitions loaded *)

The initialisation file above uses the special evaluable proposition ‘load’ which causes a

further SPINE file to be loaded. In this case, definitions for the ‘singleton’, ‘bridge’ and

‘factory’ patterns are loaded in turn. The order of rules is significant: when a rule is matched

against a term, the rules are tried in order until the rule is matched. During backtracking,

subsequent rules are tried until there are no more possibilities, in which case the proof fails.

Each of the individual SPINE files contains one (or more) rule definitions. Patterns are defined

103

104 Chapter 8. Worked examples

using the ‘realises’ term; for patterns with multiple variants, there may be multiple rules that

realise the same pattern. (If so, the rules are combined at parse time to form one rule with a

disjunction of all of the rule bodies.) The Singleton pattern, for example, can be realised in

several ways; either using a static final variable, or using a lazy instantiation accessor. The

definition of the Singleton pattern is given in Figure 8.2.

Figure 8.2: PublicSingleton SPINE definition

(* Singleton.sp *)
realises(‘Singleton’,[C]) :- or([

realises(‘PublicSingleton’,[C]),
realises(‘PrivateSingleton’,[C]),
realises(‘LazySingleton’,[C])

]).

(* Public variant Singleton *)
realises(‘PublicSingleton’,[C]) :-

(* There must be at least one (private) constructor *)
exists(constructorsOf(C),Cn.true),
(* All constructors must be private *)
forAll(constructorsOf(C),Cn.hasModifier(Cn,‘private’)),
exists(fieldsOf(C),F.

typeOf(F,C),
hasModifier(F,‘static’),
hasModifier(F,‘public’),
hasModifier(F,‘final’),
nonNull(F)

).

(* Private variant Singleton *)
realises(‘PrivateSingleon’,[C])
...

(* Lazy variant Singleton *)
realises(‘LazySingleton’,[C])
...

The rules are kept in memory, and are called upon during inference. Figure 8.3 shows

HEDGEHOG during the startup procedure and how the rules are inserted into the rule library.

8.2. Simple proofs 105

Figure 8.3: HEDGEHOG during initialisation

Hedgehog Rule
Library

Spine
parser

init.sp

1
2,3,4,5

singleton.
sp bridge.sp

2 3 4

and

or

realises

A,B

A

B

factory.sp

5

singleton
final

singleton

static
singleton

factory

bridge

8.2 Simple proofs

Once HEDGEHOG has finished loading, it is ready to accept requests for proofs. It is envisaged

that the proof process will be integrated within an IDE or automated editor/testing environment;

however, at present an interactive text interface allows a user to work with the HEDGEHOG

engine.

The user enters a request into the system, whereupon it tries to automatically prove the result

and output the conclusion. The SPINE parser is used to read the term in and construct a goal for

that term.

The proof system then does the following:

• Generates a set of applicable rules for the term

• Applies the first rule to generate sub-goals

• Recurses through the proof tree until all sub-goals are proven

106 Chapter 8. Worked examples

Figure 8.4: Setting up the initial proof goal

and(or(false,true),true)

Spine
parser

Goal
and

trueor

false true

Proof node

and

trueor

false true

Figure 8.5: Applying the ‘and’ rule

Proof node

and

trueor

false true

Hedgehog Rule
library

Proof node

or

false true

Proof node

true

and
rule

8.2. Simple proofs 107

Figure 8.6: Applying the ‘or’ rule, with backtracking

Hedgehog Rule
library

Proof node

or

false true

or
rule

Proof node

false

or
rule

Proof node

trueFAILS

108 Chapter 8. Worked examples

For example, if the user asks HEDGEHOG to prove ‘and([or([false,true]),true])’

then the system would first generate a goal and wrap it in a proof node (Figure 8.4). It would

then generate a list of the rules available for that proof node (which would only match the one

‘and’ rule) and generate a pair of sub-goals (Figure 8.5).

The proof process then recurses down the tree; in the case of the ‘true’ sub-goal, the (sub-)

proof succeeds immediately. In the case of the ‘or’ sub-goal, two rules are applicable. It first

tries the ‘false’ sub-goal, which fails; this causes a backtrack, and the second ‘or’ rule is

applied (Figure 8.6). Note that if the order of the ‘or’ term had been reversed, then the proof

would have succeeded without backtracking.

8.3 Proving a class realises a pattern

In the previous section, a simple proof was shown for a logical goal. This section presents an

example of a simple pattern, Singleton, to demonstrate how HEDGEHOG works in conjunction

with design patterns.

Each pattern has one or more ‘realises’ rule associated; patterns with many variants can

have a ‘realises’ rule for each.

The ‘realises’ rule takes a pattern name and a list of Java classes that may realise that

pattern. In this first example, the pattern is associated with only one class; however, a later

example will show multi-class patterns.

The goal ‘realises(‘Singleton’,[‘Test’])’ can be given to HEDGEHOG, which asks

it to show that the class ‘Test’ (shown in Figure 8.7) realises the Singleton pattern.

Figure 8.7: Implementation of the Test class

public class Test {
public Test() {
}
private Test(int x) {
}
private static final instance = new Test();

}

When the HEDGEHOG system is given the goal ‘realises(‘Singleton’,[‘Test’])’ it

rewrites the goal using the definition of ‘realises’ from Figure 8.2 to produce the sub-goals:

8.3. Proving a class realises a pattern 109

or([
realises(‘PublicSingleton’,[‘Test’]),
realises(‘LazySingleton’,[‘Test’]),

])

The automated proof procedure tries to prove these goals in order, so it starts by trying to prove:

realises(‘PublicSingleton’,[‘Test’])

The proof tree now looks like the one in Figure 8.8. The ‘or’ node is then broken down into

two child proof nodes that contain each of the ‘or’ goals).

Figure 8.8: Example of proof tree after initial pattern mapping

realises('PublicSingleton',['Test'])

or

realises('PublicSingleton',['Test']) realises('LazySingleton',['Test'])

realises('Singleton',['Test'])

Application of 'realises('Singleton')

realises('LazySingleton',['Test'])

Application of 'or' Application of 'or' during backtracking

This, in turn, causes the following goals to be generated (as shown below and in Figure 8.9):

110 Chapter 8. Worked examples

Figure 8.9: Example of proof tree with pattern variant proof nodes

realises('PublicSingleton',['Test'])

forAll(constructorsOf(`Test'),Cn.
hasModifier(`private'))

exists(fieldsOf(`Test'),F.and([
 typeOf(F) = C,
 hasModifier(F,`static'),
 hasModifier(F,`public'),
 hasModifier(F,`final'),
 nonNull(F)])
)

exists(constructorsOf(`Test'),Cn.true)

exists(constructorsOf(‘Test’),Cn.true),
(* All constructors must be private *)
forAll(constructorsOf(‘Test’),Cn.
hasModifier(Cn,‘private’)),
exists(fieldsOf(‘Test’),F.and([
typeOf(F,C),
hasModifier(F,‘static’),
hasModifier(F,‘public’),
hasModifier(F,‘final’),
nonNull(F)

])).

8.3.1 Parsing the Java source

Java source files are kept in an in-memory cache and are dynamically loaded when requested.

As such, the first expression to access the class (in this case, the ‘constructorsOf(‘Test’)’)

causes the source file to be parsed and kept in memory as an AST. All references between

classes are kept as textual references so they are not loaded until they are required.

Evaluation of the expression ‘constructorsOf(‘Test’)’ within the ‘exists’ (a built-in

HEDGEHOG operator) results in an access to the class-cache to find ‘Test’. If it is not already

loaded, it is automatically loaded and parsed.

References to other classes inside ‘Test’ are kept by fully qualified class name (for example,

‘java.lang.String’). That way, if a class is referenced but plays no part in the proof process,

then the source is not loaded and processed.

8.3. Proving a class realises a pattern 111

The ‘constructorsOf(...)’ expression generates a list of Java constructors. All Java

member types (constructors, methods, fields) are represented using the fully qualified class

name, followed by the ‘#’ symbol, and then the method name, and lastly the argument types.

For example, the method ‘valueOf(int)’ in the ‘java.lang.String’ class has a unique name

in the cache of ‘java.lang.String#valueOf(int)’. Constructors are represented using the

class name for the method, and fields are represented as field name alone. The resultant goal

then looks like:

exists([‘Test#Test()’,‘Test#Test(int)’],Cn.true)

8.3.2 Applying quantifiers

Since the ‘exists’ quantifier is used to find whether there is a constructor that meets a particular

condition, the goal that is generated is an ‘or’ block that instantiates ‘Cn’ to each of the members

of the resultant list. In other words, the statement that is generated looks like:

or([true,true])

The sub-expression ‘true’ has been modified such that all occurrences of ‘Cn’ have been

replaced with ‘Test#Test()’ or ‘Test#Test(int)’ as appropriate. Since ‘true’ does not

have any occurrences of ‘Cn’, it is unchanged by this substitution. This is graphically shown in

Figure 8.10:

The ‘forAll’ quantifier is the next goal on the list to be processed. The built-in function

‘constructorsOf(...)’ is evaluated to produce a list:

forAll([‘Test#Test()’,‘Test#Test(int)’],Cn.
hasModifier(Cn,‘private’))

The generated goal for the ‘forAll’ now uses an ‘and’ instead of an ‘or’ to generate the

results:

and([hasModifier(‘Test#Test()’,‘private’),
hasModifier(‘Test#Test(int)’,‘private’])

In this case, the sub-expression ‘hasModifier(‘Test#Test()’,‘private’)’ fails (as

shown in Figure 8.11) because the constructor ‘Test’ is marked as ‘public’ in the source

code.

112 Chapter 8. Worked examples

Figure 8.10: Showing expansion of ‘exists’

exists(constructorsOf(`Test'),Cn.true)

exists([`Test#Test()',`Test#Test(int)'],Cn.true))

constructorsOf is evaluated to a list

or

Replaced with 'or' of subgoals

unify(Cn,`Test#Test()',true) unify(Cn,`Test#Test(int)',
true)

true true

8.3. Proving a class realises a pattern 113

Figure 8.11: Failure in expansion of ‘forAll’

forAll(constructorsOf(`Test'),Cn.
hasModifier(Cn,`private'))

forAll([`Test#Test()',`Test#Test(int)'],Cn.
hasModifier(Cn,`private'))

constructorsOf is evaluated to a list

and

Replaced with 'and' of subgoals

unify(Cn,`Test#Test()',
hasModifier(Cn,`private'))

unify(Cn,`Test#Test(int)',
hasModifier(Cn,`private'))

hasModifier(`Test#Test()',
`private')

hasModifier(`Test#Test()',
`private')

FAILS because
Test#Test() is public

Never gets processed due
to earlier failure

114 Chapter 8. Worked examples

8.4 Multi-class patterns

Although some patterns are realised by only one class, some are realised by a set of classes

together. For example, the Abstract Factory pattern consists of a ‘factory’ class and many

‘product’ classes. It is the relationship between these classes that defines the Abstract Factory
pattern as well as the implementation of certain key features.

HEDGEHOG is capable of proving that a set of classes together realise the Abstract Factory
pattern. In this case, instead of a single class being included in the ‘realises’ goal, several

classes are passed as a list; the definition of the factory pattern is shown in Figure B.1.

realises(‘AbstractFactory’,[‘Factory’,‘Product’]).

Not all the classes in a pattern need to be provided individually in the ‘realises’ modifier;

for example, subclasses of the ‘Product’ are not required (since HEDGEHOG can find a list of

all the subclasses automatically).

The order of the classes and their roles depends on the pattern definition. In this case, the

first class listed is the abstract factory class, and the second is the product class. In the case

where a factory has multiple products that all share a common superclass, it is only necessary

to provide that superclass.

The Abstract Factory pattern is defined in terms of relationships between classes. This

works using several built-in SPINE functions and predicates (the full list of which is given in

Appendix C) to determine whether or not these classes are part of the Abstract Factory pattern.

methodsOf is a list of methods defined in the given type

subclassesOf is a list of all subclasses of the given type

instantiates is true if the given method instantiates and returns the given type

Figure 8.13 shows the final search tree of the factory example after the application of various

rules in the process. In this case, the ‘AbstractFactory’ is attempted first, but this fails due to

the fact that Factory is not an abstract type. The proof process then tries to use the pattern

definition for the ‘ConcreteFactory’, which succeeds.

This demonstrates how HEDGEHOG is able to handle different variants of a pattern. By

having multiple rules for defining a pattern (in this case, a concrete factory pattern as well as an

abstract factory pattern) the backtracking will check out other variants of the same pattern.

8.4. Multi-class patterns 115

Figure 8.12: Example factory and product

public class Factory {
public Product createProduct() {

return new Product();
}

}
public class Product {

// Implementation
}

Figure 8.13: Factory example

realises('Factory',['Factory','Product'])

realises('AbstractFactory',['Factory','Product']) realises('ConcreteFactory',['Factory','Product'])

or

hasModifer('abstract','Factory')

Fail

forAll(Product,['Product'],...)

or

createsProduct('Factory','Product') forAll(P,subclassesOf('Product'),...)

exists(M,methodsOf('Factory'),...)

exists(M,'Factory#createProduct()',...)

and

typeOf('Factory#createProduct()' = 'Product' instantiates('Factory#cre..duct','Product')

Not called since first goal succeds

Succeeds Succeeds

116 Chapter 8. Worked examples

The success is due to the built-in SPINE predicate ‘instantiates’, which determines

whether the method is implemented in such a way as to both instantiate and return an instance

of the given type. This process is not shown in Figure 8.13, but works by running through

the implementation of the method in question (in this case, the createProduct() method). It

expands all of the possible call-paths (i.e. for each if statement, it creates two possible paths

through the method) and then ensures that for each path, the type Product is instantiated, and

then that value is returned.

This checking process does not work in the case of looping statements (for, while etc.)

since it is not trivial to ensure that the loop executes a certain number of times. In these cases,

the looping constructs are removed from the loop and are assumed to execute zero times, which

is a conservative estimate of what may actually happen. In most cases, factory methods are not

implemented using such loops (they do not occur within the Java libraries, for example) and so

this restriction is not significant.

8.5 Dealing with failure

If a proof fails, the proof engine backtracks to the last available point. In Figure 8.13, the first

attempt to show the factory was an ‘AbstractFactory’ failed and backtracking occurred by

trying to show that it was a ‘ConcreteFactory’ instead. Similarly, during the proof process

of the Singleton, the ‘realises(‘PublicSingleton’,[‘Test’])’ fails, and so backtracking

ensures that ‘realises(‘LazySingleton’,[‘Test’])’ is attempted.

However, this will fail in a similar way due to the fact that the LazySingleton pattern also

requires private constructors (as do other variants of the Singleton pattern). As the proof

cannot be fulfilled, and the back-tracking process has run out of other ideas, the failure message

is displayed.

The error message that is generated is condensed from the failure nodes of the proof tree.

In this case, the error message compares the first level of the proof tree and concludes that the

‘Test’ class does not meet any variant of the ‘Singleton’ pattern. It would then detail the

reason for this, which is that the constructor ‘Test#Test()’ should be ‘private’. It would

also print out the comment associated with the failed reason; in this case “All constructors must

be private,” which is extracted from the definition of the pattern itself. Error messages are

discussed in more detail in Chapter 7.

8.6. Summary 117

8.6 Summary

This chapter presented a series of examples demonstrating how the HEDGEHOG system is used

to verify that a class (or classes) realises a given design pattern. Although at present the user

types in these requests manually, the further work section suggests that this tool be integrated

with an automated testing environment or integrated developer environment to facilitate this

procedure.

Chapter 9

Results

This chapter discusses the testing methodology used in determining the success of HEDGEHOG,

and presents the results and analysis of the patterns and situations in which HEDGEHOG can be

used.

The hypothesis, from Chapter 1, states:

This thesis aims to prove the hypothesis that it is possible to represent patterns as
as set of constraints on the implementation of one or more Java classes, such that it
is possible to verify whether they realise a pattern correctly.

9.1 Critique of patterns as constraints

The first question that needs to be answered is: is it possible to represent a design pattern as a

set of constraints on its implementation? In other words, do the pattern definitions match what

would be expected in a design pattern, and do they avoid false matches?

A full list of the SPINE pattern definitions is given in Appendix B, mirroring those in

[GHJV95]. One thing that is immediately noticeable is that not all patterns have a definition.

Thus, it is the case that not every pattern can be represented as a series of constraints on their

implementation. Whilst the hypothesis did not aim to show that every pattern can be formally

defined, it is interesting to consider which patterns did not, and decide accordingly whether this

is an important issue or not.

Firstly, unrepresentable patterns are discussed, explaining why they could not be represented

in SPINE. Afterwards, the patterns that are defined in SPINE are covered individually, with a

commentary on how close these pattern definitions are to the original pattern examples.

119

120 Chapter 9. Results

9.1.1 Unrepresentable patterns

There are two main types of pattern that are unrepresentable in SPINE:

• Those that are defined mostly by their intent

• Those which have a generic solution that admits too many false positives

Patterns that are mostly defined in terms of their intent are difficult to formally define, as

the key feature is not how the pattern is implemented, but rather how it is used. This makes the

pattern much more difficult to verify based on implementation1 alone.

The Interpreter pattern is an example of such an intent-based pattern. In the Interpreter
pattern, an abstract class hierarchy maps onto the grammar of a language. The Interpreter
typically also uses aspects of the Command and Visitor patterns in order to provide a dual

behaviour between language representation and language execution.

However, the key feature of this pattern is in its intent. The pattern is usually realised with

one class per terminal in the language grammar; and choice operations are represented using an

abstract class to group the choices together. The point at which the Interpreter pattern evolves

from a grammatical structure of the the language is not well defined.

In essence, this is a similar problem to that of the Command pattern, which has an abstract

super-type with an abstract method for execution (sometimes with a context). Given that it is

difficult to express what ‘execution’ means, it is difficult to define whether an abstract class with

an abstract method is really a Command, or whether it is just a Template Method for some

other operation. As noted above, an Interpreter is an extension of the Command in which the

execution of each terminal language literal is its own command.

It may be possible to define a specification that allows a proof engine to suspect an instance

of the Interpreter pattern, by recognizing the combination of abstract and non-abstract types.

However, such a loose definition could also match the Command pattern, along with abstract

hierarchies (e.g. the java.awt.Component). But the key features of the Interpreter are its

intent, and how it is used.

Fortunately, it is difficult to break the implementation of the Interpreter pattern; and, as a

result, it tends not to decay over time. Partially, this is because an interpreter tends to be a fairly

core component of the program that it is being used in, and as such functional tests often pick

1Although this thesis has concentrated mostly on whether patterns can be defined as constraints on their im-
plementation, it may be possible to observe the existence of a pattern externally by identifying how other classes
interact with it. This is commented on further in Chapter 11.

9.1. Critique of patterns as constraints 121

up any faults; but also, an interpreter is mostly defined by its intent, rather than any specific

implementation. Perhaps this suggests that it is not necessary for a tool such as HEDGEHOG to

be used to verify the correct implementation of a generic Interpreter pattern.

However, it is still possible to use the pattern specification language SPINE to good effect.

Although there is no generic specification of an Interpreter pattern, it may be possible to

translate a BNF specification of a language into a set of SPINE constraints. For example, if a

simple mathematical language defined integer literals and various binary operators (e.g. plus,

minus, multiply, divide), it would be possible to define a sequence of SPINE constraints that

require the Interpreter has specific subclasses for each of the operators and for representing

literals. If this process was automated, and a new operator was added to the language (e.g.

modulus), then the new SPINE constraints would not match the implementation and an error

condition could be raised.

9.1.2 Abstract Factory

The Abstract Factory pattern (defined in Figure B.1) describes abstract super-types for both

the product and factory, with subclasses providing the implementation to select which product

to instantiate.

The SPINE definition captures the requirement that each abstract factory and product pair

has a pair of subclasses, such that the concrete factory class has a method which instantiates the

concrete product. This matches the definitions given in [GHJV95].

Figure 9.1: Non Abstract Factory pattern that matches the SPINE definition

public abstract class Stack {
public List abstract getList();

}
public class FIFO extends Stack {

private List data;
public List getList() {

return new ArrayList(data);
}

}

122 Chapter 9. Results

It is worth noting that this definition may match other classes which are not expected to be

realisations of the Abstract Factory pattern. For example, a single abstract/concrete factory

with a single abstract/concrete product could be matched with this pattern definition, but which

would not be considered realisations of the Abstract Factory pattern. A contrived example

is shown in Figure 9.1 that uses the Java collections data classes (in this case, the abstract

product being List and the concrete product being ArrayList), where owing to a particular

implementation, the concrete method in the subclass happens to create a new instance. This

would match the SPINE definition of the pattern.

Although this can admit false positives, it is a type of false positive that is unlikely to arise in

HEDGEHOG’s use of verifying patterns in existing code. In order to determine whether a pattern

is present, the system must be asked whether a pattern exists; and additionally, to provide the

classes that are expected to be collaborators in the pattern. Thus, the system would only be

asked to prove suspected cases of the pattern, or at least ones in which the user decided that a

pattern should be present: in this case, they would probably not choose to apply HEDGEHOG

to this particular non-example. If they did, they may be expecting that it did implement the

Abstract Factory pattern, albeit in a fairly obtuse way.

Normally, the Abstract Factory pattern is implemented in such a way that the product

names and factories share some kind of name, such that the concrete factory and its concrete

products can be grouped together. For example, [GHJV95] uses ‘ConcreteFactory1’ and

‘ConcreteFactory2’ as the factories, and similarly ‘ProductA1’, ‘ProductA2’, ‘ProductB1’

and ‘ProductB2’ as the products. A good implementation of this pattern will use names that

make it clear which products belong to which factory, and normally obey the fact that a concrete

product is not shared between two or more concrete factories (although this is not an absolute

requirement). Unfortunately, it is not possible to identify any naming conventions using SPINE

and so this aspect of the pattern cannot be verified.

There are other implementations of this pattern that are not captured by the SPINE definition.

For example, [GHJV95, page 91] discusses the possibility of an ‘extensible’ factory that uses

parameterised methods to decide which product to instantiate. In this variant, it is not necessary

to add a new method to the abstract factory for each product type; rather, one method can be used

to create all product classes. Had this approach been taken with the java.awt.Toolkit

class, some of the early problems with Java’s AWT lack of extensibility may have been avoided.

9.1. Critique of patterns as constraints 123

9.1.3 Factory Method

The Factory Method pattern provides a way of instantiating classes using a method instead of

a constructor. Since this is a very common idiom/mini-pattern in the object-oriented world, it

may well not be explicitly declared in a design. The SPINE definition (shown in Figure B.2) uses

the built-in operator ‘instantiates’, which determines whether or not a method instantiates a

given class. If a method instantiates the class, then it meets the pattern definition.

[GHJV95] shows as its example the Factory Method combined with an Abstract Factory
pattern, and as such, it is quite difficult to determine which aspects are part of the Factory
Method pattern and which are part of the Abstract Factory pattern. Given that the latter deals

with the relationships between abstract and concrete factories (as well as abstract and concrete

products), it is reasonable to assume that the Factory Method is solely responsible for the

instantiation of the new object, as a method-based constructor. This allows a Factory Method
to be used outside of an Abstract Factory, which might be useful for some realisations of this

pattern.

This also introduces the possibility of a number of other false positives matching this pattern,

given that object construction in methods is commonplace. As has been noted elsewhere, such

small patterns tend to crop up frequently and are often not labelled as such owing to the extra

noise that can occur in documentation and/or verification.

Although this pattern can be represented in SPINE, its usefulness due to the small pattern

size and simplicity is questionable. Furthermore, some of the mini-patterns highlighted already

are actually larger than this pattern.

9.1.4 Singleton

The Singleton pattern defined in [GHJV95] has a number of variants, including subclassing,

lazy instantiation, and a registry of singletons. Several variants of the Singleton pattern are

given in Figure B.4, but not including the subclassed or registry approaches. The rationale for

not including these is that subclassing explicitly gives up control of creating the single instance

(which is supposed to be a benefit of using the Singleton pattern in the first place); and the

registry of Singletons is equivalent to using a Java data structure such as a Map. In the latter

case, it would be very difficult to correctly capture which uses of a Map were intended to be a

Singleton pattern, and which were just being used for cacheing or searching.

For the pattern’s variants that are defined in SPINE, they can be compared with the pattern

definitions in [GHJV95, SM01] to see whether the pattern definition accurately represents it.

124 Chapter 9. Results

The SPINE specification requires that the Singleton be non-instantiable (Figure B.18). This

requires the class to be either abstract or have one (or more) private constructors. Although

this may seem to indicate that this allows abstract realisations of the Singleton pattern, the

requirement for creating the instance of the Singleton class (either through a static initialiser

or through a lazy instantiation) requires that the method instantiate a static field with a new

instance of the same class. Given that it is not legal (in Java) to create a direct instance of

an abstract class, it would not be possible to have a syntax error free class that allowed an

abstract Singleton.

Although [GHJV95] provides examples in Smalltalk and C++ for the Singleton pattern,

the approaches follow the SPINE definition. It is difficult to compare languages like-for-like,

since the different languages approach construction slightly differently. As an example, since

Smalltalk has no notion of private, the Smalltalk Singleton enforces non-instantiability by

throwing an error during construction.

As noted earlier, the SPINE implementation does not attempt to formally define the registry

of singletons by allowing the singleton to be subclassed; and therefore realisations using this

variant will not be correctly verified.

9.1.5 Adapter

The Adapter pattern allows two systems to talk to each other despite having different external

interfaces. This is often implemented as a wrapper class with one interface type delegating to an

instance of a different type. Java examples include java.io.InputStreamReader and

java.io.OutputStreamWriter types that convert between data streams of 8-bit bytes

and 16-bit characters.

Given the level of indirection between the input and output types, it is not possible to capture

all variations of the Adapter pattern. This is due to the fact that the Adapter pattern does not

explicitly state what the relationship between the adapter and the adaptee is. [GHJV95, page

139] states “Adapter lets classes work together that couldn’t otherwise.”

The SPINE definition of Adapter (Figure B.5) simply defines a relationship between the

adapater and the adaptee classes; specifically, that the adapter has a (single) reference to the

adaptee, and that at least one method in the adapter class calls at least one method in the adaptee.

Of course, it may be the case that a particular realisation of the Adapter pattern should delegate

all methods to the adaptee, or it may be the case that the adapter does not hold an instance to

the adaptee but instead looks it up dynamically.

9.1. Critique of patterns as constraints 125

Given the ambiguity of “work together”, a generic implementation is defined in HEDGEHOG

that covers most standard variants of the Adapter pattern. This is likely to result in both some

false positives (for example, the LayoutManager may be mis-interpreted as an adapter, since it

forwards messages to a Container) and some false negatives (for example, where the adapter

does not hold an explicit reference to its adaptee).

9.1.6 Bridge

The Bridge pattern (Figure B.6) defines a family of adapter classes such that a source type has

one (or more) target types that they adapt to. The SPINE definition is shown in Figure B.6.

As with the Adapter pattern, the nature of the bridging classes and how they are related are

not well defined. In this case, the SPINE definition looks for a pair of types such that for each

subclass of the source class, there is a related subclass in the target subclass such that the source

forwards at least one method to the target class. Thus the kinds of problems associated with the

Adapter pattern are the same as for the Bridge pattern.

9.1.7 Composite

The Composite pattern provides a way of grouping items together in a recursive manner. It

may be implemented either with a generic component super-type and a composite sub-type, or

with a composite super-type that allows all types to contain other components.

The SPINE definition (shown in Figure B.7) of the Composite pattern defines a relationship

between the composite (grouping) class and the generic type of data to be added. It also adds

the requirement that it must be possible to navigate from the composite to its child components;

and that there must be a way of adding (and removing) components from the composite.

In line with standard Java practice, the methods for adding and removing items from the

component should be prefixed ‘add’ and ‘remove’ respectively, to fit in with the JavaBeans

naming conventions. Of course, this introduces a possible source for false negatives, since

other implementations may choose to avoid this standard naming convention.

It also may be the case that the JavaBeans listener mechanism appears to be a minor type

of container, since each JavaBean is a container for the component listeners that are interested

in observing events. This may not be something that many developers would classify as a

realisation of the Composite pattern, although in principle it is a specialised type of Composite.

126 Chapter 9. Results

9.1.8 Decorator

The Decorator pattern is similar to the Adapter pattern, in that the definition of the decoration

is ambiguous. [GHJV95, page 175] says “Decorators attach additional responsibilities to an

object dynamically” and thus has the same set of problems as the Adapter pattern.

The main difference between the Decorator and the Adapter patterns is that the former

is supposed to keep the same interface, but the latter is normally expected to deal with two

different interfaces. In this case, the SPINE definition (Figure B.8) requires the Decorator to

have some parent class that it both sub-types and delegates one (or more) methods to.

As with the Adapter pattern, this introduces a possible source of false negatives, since

it’s not necessarily the case that the Decorator always forwards messages on to its enclosing

instance, or that it may not store the reference in an instance field but look it up dynamically. It

also opens up the possibility for many false positives, where non-realisations could be verified

as a correct realisation of the Decorator pattern.

It is also potentially the case that a Proxy could be mistaken for a Decorator, or vice-versa.

Of course, the fact that the purpose of a Proxy is to forward its messages to another target means

that it could be described as a decorator; the only significant difference is in their intent. In the

case of a Proxy, the intent is to be able to forward messages (potentially remotely, or across

an encrypted bridge) to another object. The Decorator usually changes the behaviour of the

enclosed object, whilst still (generally) forwarding messages to the enclosed object.

9.1.9 Proxy

The Proxy pattern is very similar to the Decorator pattern, in that the proxy class is expected

to forward requests to an enclosing instance. In the SPINE definition in Figure B.10, the proxy

and subject share a common super-type, and there is a field in the proxy that is used to invoke a

method of the proxy class. This is very similar to the Decorator pattern, and it’s possible that a

class that meets the Decorator pattern will also meet the Proxy pattern as well.

As highlighted above, the difference between the Proxy and Decorator is that the intent of

the two are different, rather than necessarily the implementation. It may be difficult to tell the

two apart from a static analysis alone.

Also, there may be other classes that would not be considered a Decorator or Proxy but

which match the implementation. For example, the Stack class is implemented using an

internal Vector, and forwards messages such as ‘size()’ to the enclosed Vector. This

meets the definition of the Proxy pattern (since both share a super-type) but is unlikely to be

thought of as a Proxy in terms of a pattern realisation.

9.1. Critique of patterns as constraints 127

This is explicitly raised in [GHJV95, pages 219—220] which discusses the comparison of

similar patterns. It compares Adapter and Bridge, and highlights the fact “the key difference

between these patterns lies in their intents. Adapter focuses on resolving incompatibilities

between two existing interfaces. Bridge bridges an abstraction and its (potentially numerous)

implementations.”

The discussion also focuses on Composite, Decorator and Proxy. Although it considers the

possibility that Decorator may be a degenerate case of Composite, it says “the similarity ends

at recursive composition, again because of their differing intents.” It also compares Decorator
with Proxy, saying “both patterns describe how to provide a level of indirection to an object, and

the implementations of both keep a reference to another object to which they forward requests.

Once again, however, they are intended for different purposes.”

It finishes the discussion with:

“These differences are significant because they capture solutions to specific recur-
ring problems in object-oriented design. But that doesn’t mean these patterns can’t
be combined. You might envision a Proxy-Decorator that adds functionality to a
proxy, or embellishes a remote object. Although such hybrids might be useful, they
are divisible into patterns that are useful.”

9.1.10 Iterator

The Iterator pattern allows an external client to iteratively step through the contents of a data

structure, without knowing how that data structure is organised.

Given that it is difficult to know how a data structure is implemented, or can be traversed,

it is difficult to know whether the Iterator pattern is correctly implemented by analysis of the

code. However, given that Java has standard interfaces for defining the Iterator pattern, we can

identify when this pattern is used by reference to its interface hierarchy.

Of course, this will not capture all realisations of the Iterator pattern, since a hand-rolled

implementation of Iterator may use different method names and interface names. Furthermore,

this definition is only particularly useful for Java implementations, since other languages will

not necessarily have a specific interface for representing this pattern. Some languages may

be able to use a similar technique; for example, a Python class can define that it supports the

‘ iter ’ method that returns an Iterator.

It is unlikely that this will capture false negatives, simply because the interfaces in Java are

so well-known that they explicitly imply this pattern.

128 Chapter 9. Results

9.1.11 Observer

The Observer pattern, defined in Figure B.13, captures the JavaBeans [Jav97] style of listener,

in which the observable keeps a track of all registered observers. It uses the naming/coding

convention that expects there to be methods to add and remove listeners to the observable, and

that the observable invokes at least one method of the listener interface.

This definition is slightly different from the one used in [GHJV95], if only because that uses

the terms ‘attach’ and ‘detach’ for registering and de-registering the observers. It also enforces

the observer to get state manually after a notification; however, in the JavaBeans specification,

the event data is propagated at the same time as the event notification. So whilst it may be the

case that the observer invokes methods on the observable subject, it should not be taken as a

prescriptive part of the pattern. Indeed, there is a discussion [GHJV95, page 298] that compares

differences between “the push model, in which the subject sends observers detailed information

about the change; the pull model, in which the subject sends nothing but a notification” in the

notes regarding implementation specifics.

It may be the case that this pattern produces false positives; for example, determining

whether an item in a List will invoke the equals() method on its contents; and since the

List class also has add() and remove() methods, it might be mistaken for the structure of an

Observer.

9.1.12 Template Method

The Template Method pattern defines an abstract method that is overridden by subclasses to

provide behaviour specific to that subclass. The SPINE definition in Figure B.15 looks for a

concrete method and an abstract method in an abstract class, such that the concrete method

calls the abstract method.

Given the Template Method’s simplicity, it is likely that there will be no false negatives.

However, it’s such a small pattern that it is likely to crop up in many places in an existing code-

base. Because it is so common, it’s quite likely that HEDGEHOG could deduce its existence in

classes where it was not explicitly expected; but having found it, it’s quite likely that it would

be a Template Method that has evolved from code reorganisations.

9.2. Testing procedure 129

9.1.13 Visitor

The Visitor pattern allows behaviour to be externally applied to an existing object hierarchy

without having to modify the existing objects. The SPINE definition in Figure B.16 ensures

that for each object in the external hierarchy, a method exists on the visitor’s interface that can

accept that kind of data object.

This allows the basic aspect of the Visitor pattern to be elegantly captured; and furthermore,

if additional subclasses of the data object are created, will ensure that appropriate methods are

applied to the visitor class.

There are other variations of the Visitor pattern; for example, some Java implementations

only have a single public method that takes the data super-type, and use dynamic introspection

to delegate to an appropriate internal method. This has both advantages and disadvantages; it

means that the caller of the Visitor pattern need not do introspection of the different types in

order to decide which method to call. However, an abstract visitor super-class can be defined

which uses Template Methods to process each of the different data type classes.

It’s unlikely that this pattern will match false positives; since the object hierarchy of the data

object and the methods of the visitor are tightly related. It may be the case that for some data

types with single sub-types it is matched accidentally; or ones where the data object is final

and thus has no sub-type.

9.2 Testing procedure

It is necessary to use real-world examples of design patterns in order to test HEDGEHOG’s

ability to represent and validate patterns. To this end, it is necessary to obtain:

• Java classes that correctly realise patterns from existing external source code

• Java classes that do not correctly realise patterns from existing external source code

• Java classes that do not realise any pattern

The most obvious source of design patterns would be to choose some of the ‘standard texts’ of

patterns, such as [GHJV95, Bus96]. However, most of these books were written using Smalltalk

and C++ as their examples, and do not show any Java examples as they were written prior to

the development of Java. However, subsequent books have been written specifically for the

Java platform, and [SM01] was developed by Sun Microsystems specifically to provide Java

examples of design patterns. As a result, this provided one of the key sets of examples for

testing HEDGEHOG.

130 Chapter 9. Results

It is also important that HEDGEHOG be capable of using patterns from real-world examples,

and be extensible to allow new patterns to be defined in the future. There are many open-source

or source-available projects that are written in Java and could be used, but perhaps the most

obvious choice is to run tests against the Java language itself. This has evolved since 1995

and has had a new version released every two years (approximately), often with changes to the

underlying code – although backward compatibility has always been paramount.2

Java 1.0 was seen by most as a toy language; it was not until Java 1.1 was released that

it was accepted as a real language for development work. Significant changes were made to

Java 1.2 (including the introduction of a new trademarked term ‘Java 2’), and since then, there

have been relatively few changes to the core API; instead, subsequent releases have provided

additional capabilities such as sound sampling and 3D rendering.

As a result, changes between Java 1.1 and Java 1.2 are likely to be the most interesting,

and thus examples of patterns from these versions were used. In particular, code that realised a

pattern correctly in Java 1.1 were found not to realise a pattern in 1.2.

Testing was performed on the following sources of patterns:

AJP Applied Java Patterns [SM01], a book containing Java design pattern examples

PatternBox Eclipse Plugin The PatternBox Eclipse Plugin [Ehm] creates realisations of pat-

terns based on internal hard-coded pattern definitions

Java Source The source code for Java 1.1 and 1.2 provided many examples of patterns that

were (mostly) correctly realised

9.3 Selecting the examples

In order to verify that patterns were realised correctly, it was necessary to search the sources for

pattern realisations that were either explicitly or implicitly documented, or were considered by

other developers to be a clear example of a pattern.

The AJP book [SM01] provided a list of examples of Java patterns along with a description

of the pattern itself, which therefore immediately provided a source of positive examples that

could be used to test HEDGEHOG.

2Some APIs are marked as deprecated, meaning that they should not be used in the future. However, to date,
the APIs marked deprecated in the original release of Java have not yet been removed from the current production
versions of Java.

9.4. Selecting non-examples 131

In order to find a set of patterns from the Java language libraries, a manual search of the

source code/JavaDoc was required. Some patterns (such as Singleton and Abstract Factory)

were obviously realised in classes such as java.lang.Runtime and java.awt.Toolkit3; the

JavaDoc comments and class names gave sufficient clues to be able to deduce this. However,

for source files without such obviously identifying marks, it was necessary to make a judgement

about whether individual classes realised a pattern or not. This resulted in eliminating clearly

negative examples of patterns from the available examples.

The examples generated by the PatternBox Eclipse Tool were generated from a menu which

allowed an example to be generated of a specific pattern, and thus was a source of positive

examples. However, it was possible to generate some negative examples of the patterns by

removing or changing signatures in the generated code.

9.4 Selecting non-examples

In order to ensure that HEDGEHOG was not reporting patterns where none existed, it was also

run against a selection of other classes. For example, as well as showing that the String

class realises Immutable, it was possible to show that it did not realise Iterator. (String also

realises other patterns; for example Prototype is realised by String in addition to Immutable.)

It was also possible to get selections of code that did not implement any pattern, from other

classes from [SM01]. These were run against a set of patterns to determine if any of them

matched the definitions of patterns, with incorrect results.

Lastly, non-examples were created by ‘breaking’ implementations of patterns in [SM01], by

removing methods or fields that played a part in the pattern.

9.5 Results

When attempting to verify that a class (or set of classes) realises a pattern, there are four possible

outcomes:

True positive (
√

+) A pattern that is correctly realised, and recognised by HEDGEHOG as such.

False positive (×+) A pattern that is recognised by HEDGEHOG, but where no pattern exists

(or is incorrectly realised).

3Abstract Factory is also known as Toolkit

132 Chapter 9. Results

True negative (
√

-) HEDGEHOG recognises that the pattern is not correctly realised.

False negative (×-) HEDGEHOG claims that no pattern exists, but where a pattern should have

been recognised.

However, there are also two other possibilities that prevent a pattern being tested (and hence

unable to produce a result):

Unfound (/0) No pattern instance could be found in a specific test source (by the tester). This

does not preclude the possibility of pattern instances being found in other test sources.

Unrepresentable (—) It is not possible to create a pattern definition in SPINE of the pattern,

and as such no instances can be verified from any test source.

Of these six outcomes, true positive (
√

+) and true negative (
√

-) results are the successes

for HEDGEHOG to report. These are generated when HEDGEHOG has given the correct answer.

A false negative (×-) result is not a success, but may not be harmful; the intended purpose

of HEDGEHOG is to draw attention to where it suspects there may be a problem, and if the

human user finds no flaw then they can ignore the result (or improve HEDGEHOG by adding a

new SPINE definition of that pattern). However, some uses of HEDGEHOG (such as automated

discovery of patterns in existing source code, as discussed in Chapter 11) may be more sensitive

to false negatives.

A false positive (×+), recognising an incorrect realisation as a correct pattern, is a failure

for HEDGEHOG. This would cause a human user to think that a pattern was correctly realised

whereas it would in fact contain one or more errors. Furthermore, since HEDGEHOG works by

erring on the side of caution, a positive result is less likely to be investigated by a human user

than a negative result, and thus this class of errors may be more hidden from the end user.

It is possible (even likely) that a test source will not contain many instances of each pattern,

or even that a given test source will contain a single instance of every pattern defined. These

are termed unfound (/0), and are shown in the results table to indicate that there was no example

to test against the individual source. However, other sources may have instances of the pattern

that can be tested.

An unrepresentable (—) pattern is a limitation of HEDGEHOG, rather than a failure of the

system at run-time. As discussed in Section 5.5, there are some statements that SPINE is unable

to represent without detailed knowledge of the pattern’s intended use, which is a hard problem

to solve.

9.5. Results 133

The results shown in Table 9.1 are based on the categories defined in [GHJV95], broken

down into the pattern name and testing component. Analysis of the results follows in Sec-

tion 9.6.

Table 9.1: Results

Pattern AJP PB Java Java
[SM01] Eclipse 1.1 1.2 Implementation

Creational

Abstract Factory
√

+
√

+
√

+
√

+ java.awt.Toolkit

Builder —

Factory Method
√

+
√

+
√

+
√

+ java.awt.Toolkit,

java.net.URL

Prototype ×- ×- /0 /0 java.lang.Cloneable

Singleton
√

+
√

+
√

+
√

+ java.awt.Toolkit,

java.lang.Runtime

Structural

Adapter
√

+
√

+
√

+
√

+ java.io.InputStreamReader,

java.io.OutputStream-

Writer

Bridge
√

+ /0
√

+
√

- java.awt.Component,

java.awt.ComponentPeer

Composite
√

+
√

+
√

+
√

+ java.awt.Component

Decorator
√

+ /0 ×- ×- java.io.Buffered-

InputStream,

javax.swing.JScrollPane

Façade —

Flyweight
√

+
√

+
√

+
√

+ java.awt.Color

Proxy
√

+ /0 /0 ×- java.util.Collection$

UnmodifiableCollection

Behavioural

Chain of Responsibility —

continued on next page

134 Chapter 9. Results

continued from previous page

Pattern AJP PB Java Java
[SM01] Eclipse 1.1 1.2 Implementation

Command —

Immutable
√

+
√

+
√

+
√

+ java.lang.String

Interpreter —

Iterator
√

+ ×-
√

+
√

+ java.util.Enumeration,

java.util.Iterator

Mediator —

Memento —

Observer
√

+
√

+
√

+
√

+ java.util.Observer

State ×-
√

+ /0 /0

Strategy
√

+ ×- /0 /0

Template Method
√

+
√

+
√

+
√

+ java.net.InetAddress

Visitor
√

+ /0 /0 /0

The results are summarised in Table 9.2: of the 24 pattern types, 7 could not be defined in

SPINE. That leaves 17 patterns, of which there were 4 examples each (less 13 which could not

be found) which gives a total of 55 pattern instances to be verified. Of these, 47 were correctly

recognised (46 true positives and 1 true negative), whilst 8 were incorrectly classified as not

realising the design pattern (false negative). There were no false positives.

Table 9.2: Summary of results

True (
√

) False (×) Other

Positive (+) 46 0 Unfound (/0) 13

Negative (-) 1 8 Unrepresentable (—) 7

Total 47 8 20

9.6. Analysis 135

9.6 Analysis

The results show that some patterns are easily verified by HEDGEHOG, whereas others are

difficult or impossible to verify. There is also a lack of some realisations of the [GHJV95]

patterns in some systems; indeed, the reason why [SM01] covers them all is due to the fact

that it is a superset of those defined by [GHJV95]. Thus not all patterns in [GHJV95] turn up

in certain large systems; rather, some (like Immutable) occur frequently, whereas others (like

Visitor) occur infrequently.

To some extent this discrepancy can be related to the size of the pattern. Smaller single-

class patterns (such as Template Method, Immutable and Singleton) are relatively common,

as opposed to larger multi-class patterns (such as Visitor and Bridge) which tend to be used

for specific cases where it is necessary to link together many classes, and occur less frequently.

Also, multi-class patterns are usually more specialised (the Visitor pattern is used for traversing

ASTs inside compilers, for example) and so are likely to be used in fewer situations.

Patterns from [Ehm] were found to realise most of the patterns, but since it is an ongoing

development it does not have all the patterns listed in [GHJV95] at present. However, the tool

is geared towards producing the patterns from [GHJV95] and therefore in the future it may be

possible to use more examples generated from this tool.

More examples were found in [SM01] since it was a book specifically aimed at educating the

user towards using design patterns in Java. Its pattern realisations were successfully verified in

HEDGEHOG, bar two; Prototype (because HEDGEHOG has a fairly limited notion of prototypes;

see Section 9.6.5.1) and State (because the example found was defined with inner classes; a

known limitation of HEDGEHOG is that it cannot process source code with inner classes, as

described earlier in this thesis).

9.6.1 No pattern definition

Several patterns from [GHJV95] could not be represented in a way amenable to HEDGEHOG

and SPINE. The common feature of all of these patterns is related to semantic understanding

of the problem and how the pattern is used, as opposed to anything specific in their realisation.

Thus the problem moves out of SPINE’s weak semantic constraints (as discussed in Section 5.5)

into the stronger semantic constraints or intent, and out of HEDGEHOG’s current grasp.

Perhaps unsurprisingly, most of the patterns that could not be defined fall into [GHJV95]’s

‘behavioural’ category. However, over half of the patterns defined in that category can be

proven, so the category itself is difficult rather than impossible. (5 out of the 12 patterns in

the ‘behavioural’ category were not able to be represented in SPINE.)

136 Chapter 9. Results

9.6.1.1 Façade

A Façade is designed to encapsulate a set of functionality (such as a subsystem) to hide the

internal details from the users of the subsystem. However, it is very difficult to encapsulate

this requirement in a form that is compatible with HEDGEHOG and SPINE; for example, simple

approaches (such as “There is one class which interacts with many other classes but does not

allow them to be accessed directly”) are vague and may preclude some realisations (for example,

accessing data through a Façade may require that a type from within the subsystem be returned).

Part of the reason for this problem is that it is difficult to define what the contents of a sub-

system is. Java uses packages to group together related types, and in some cases this packaging

structure may be used to define subsystems (such as the java.awt.peer package). But not all

packages are subsystems, and so it would not be sensible to assume this mapping.

It is often the case that a Façade is realised in terms of a type which encapsulates access to

the subsystem. However, merely recognising an abstract type would be incredibly difficult for

HEDGEHOG without the potential for many false positives.

There may be a solution for certain types of Façade pattern, but not that would solve the

example in [SM01, page 468].

9.6.1.2 Command, Interpreter and Chain of Responsibility

The Command, Interpreter and Chain of Responsibility patterns do not have a recognisable

structure or form which could be used to represent the pattern. These are semantic patterns,

in which the implementation of the methods is the key part of the pattern as opposed to the

object-oriented structure.

As such, the approach for recognising (and verifying) either of these patterns requires the

ability to reason in detail with the full Java execution semantics, and thus whether or not

the methods are implemented correctly. Because these patterns cannot be defined in SPINE,

HEDGEHOG cannot recognise these kinds of patterns.

Even though these patterns cannot be completely specified, they may be able to be partially

defined. For example, the Command pattern could be defined as in Figure 9.2. However,

the fact that the prefix of the execution method is defined as ‘execute’ means that it will not

recognise a number of different but correct realisations of the Command pattern.

Removing the constraint that the execution method need be called ‘execute’ does not

resolve the problem. If we do this, the pattern specification becomes very vague, and will

match many implementations that are not realisations of the Command pattern. It will match

9.6. Analysis 137

Figure 9.2: An attempt at specifying the Command pattern

realises(‘Command’,[C]) :-
isAbstract(C),
exists(methodsOf(C),M.

and([
prefix(‘execute’,M)
isAbstract(M),
forAll(subclassesOf(C),CC.

exists(methodsOf(CC),M2.
and([

not(isAbstract(CC)),
not(isAbstract(M2)),
sameSignature(M1,M2)

])
)

)
])

).

any abstract class that has one or more abstract methods; and there are many of those (e.g.

java.awt.Toolkit) that could not possibly be considered realisations of the Command
pattern.

It also does not capture patterns that may be implemented using interfaces; for example,

the java.awt.event.ActionListener is often used as a Command pattern for connecting

GUI elements such as buttons to a specific command (or a javax.swing.Action). Although

this requirement could be captured by replacing the specification for the parent to be an ab-

stract type (rather than an abstract class), this raises even more possibilities of false pattern

identification. For example, the java.lang.Runnable interface could match the definition for

the command-as-interface pattern (and in some cases, the java.lang.Runnable is used to im-

plement commands, particularly when posting to the Swing event queue). However, not all

java.lang.Runnable implementors are Commands.

This reinforces the observation that whilst the Command and Template Method patterns

are very similar in terms of implementation, their intent is very different. As noted in [Bro96],

“it is naı̈ve to assume that a program can comprehend the intent of a pattern ... what may

be detectable, however, are the artefacts of implementation the solution of the design pattern.”

And since other idioms use the same implementation technique, telling the difference between

138 Chapter 9. Results

a Command and set of java.lang.Runnable implementors is the key problem. This cannot

be differentiated by either structure or on constraints on the implementation of the Command
pattern. As such, the Command cannot be represented with enough accuracy to make it either

useful or not capture many false positives.

9.6.1.3 Builder, Mediator and Memento

The remaining patterns that cannot be defined are due to a lack of knowledge in how they will be

used. For example, a Memento is merely a data object that can be used to store data between

invocations/page displays; in essence, it is a data object only. However, it is how it is used

and applied to the system that turns it into a Memento, which will therefore provide greater

problems in proving that it is a design pattern. Equally, you could argue that any definition

that admitted Memento would capture a whole class of ‘Plain Old Java Objects’ (or POJOs)

incorrectly as Memento. A pattern definition that generated far too many false positives would

be of little use.

A similar argument also holds for Builder and Mediator, except that these patterns are

more dependent on how they are used than how the class itself is implemented. As a result, it is

very difficult to create a pattern representation for these items that is likely to match more than

one specific implementation. Of course, if a small set of ‘standard’ implementations could be

found, then it may be possible to extract the common features, but there is far more choice in

implementing one of these three patterns than in the other patterns. This makes it impossible to

create any definitions for these patterns that HEDGEHOG can use.

9.6.2 True positives

The true positives are the success of HEDGEHOG working and giving the correct answer (that

is, the pattern is correctly realised). The majority of the patterns (that could be defined) could

be correctly verified by HEDGEHOG. Out of the 55 pattern examples that were representable in

HEDGEHOG (covering 16 different patterns), 46 of them were true positives, giving HEDGEHOG

a success rate of 83%. (Including the true negative shown in Section 9.6.3 below, the success

rate goes up to 85%).

9.6. Analysis 139

9.6.3 True negatives

The true negative found by HEDGEHOG is an example of showing how it can be used to find

where patterns become broken over time. The Bridge pattern was realised correctly in Java

1.1’s AWT, but during the transition to Java 1.2 and replacing the AWT with Swing broke the

pattern.

The fact that HEDGEHOG could pick this up shows that it is useful in determining issues

that change over time, and that a pattern that may have been correctly realised in a prior version

may not hold in a later version.

9.6.3.1 Bridge

Although the Bridge pattern was verified in [SM01] and the Java 1.1 release, the pattern was

not verified in Java 1.2. In fact, this is a success since the example of Bridge used is the

java.awt.Component hierarchy which changed during the transition between 1.1 and 1.2

releases.

In Java 1.1, the java.awt.Component hierarchy was mapped onto the java.awt.

peer.ComponentPeer hierarchy. Each subclass of java.awt.Component had a cor-

responding java.awt.peer.ComponentPeer class, so that (for example) java.awt.

Button had a corresponding java.awt.peer.ButtonPeer. In essence, this is the pur-

pose of the Bridge pattern.

However, in Java 1.2, the old ‘heavyweight’ AWT classes were superseded by the newer

‘lightweight’ Swing classes. The key difference between the two was that a java.awt.

peer.Component no longer needed a java.awt.peer.ComponentPeer; instead, the

rendering was done by Java’s graphics libraries directly. A whole host of Java components

were created such as javax.swing.JButton, javax.swing.JComponent etc. (the

“Swing” components) which are subclasses of java.awt.Container. Although java.

awt.Container has a peer (java.awt.peer.ContainerPeer), the corresponding

subclasses do not have peers, which breaks the Bridge pattern.

In this instance, the designers actively chose to depart from the Bridge pattern for both

performance and functional reasons, so HEDGEHOG is correct to declare that the 1.2 release of

the java.awt.Component hierarchy no longer realises the Bridge pattern.

140 Chapter 9. Results

9.6.4 False positives

No false positives were reported by HEDGEHOG against the samples given. However, searching

for false positives is a non-trivial task since it is easy to verify the existence of a false positive,

but not to prove that they do not exist.

In order to test for false positives, correct realisations of patterns were modified until they

no longer passed the verification. By the time the pattern was broken such that HEDGEHOG no

longer recognised it as a pattern, it could not be called a correct realisation of a design pattern

in any case (and hence was reported as a true negative).

In part, the reason for the lack of false positives generated can be attributed to not having

pattern definitions for vaguely specified patterns. For example, a pattern definition of Memento
would likely be very vague, and hence generate a selection of both true and false positives. By

avoiding such vague pattern definitions, no false positives were seen.

This is desirable since a number of false positives would have given users of HEDGEHOG

difficulty in determining which were true or false positives, and possibly therefore also losing

faith in what HEDGEHOG is capable of doing. By avoiding vague patterns, the chances for false

positives are decreased and so the end user’s feeling of confidence in a true positive is increased.

9.6.5 False negatives

False negatives were reported by HEDGEHOG when patterns could not be correctly verified,

even though they were valid realisations of a design pattern. Out of the 55 design pattern

examples given to HEDGEHOG, 8 of these were reported as false negatives, or 14%.

As noted before, the fact that a pattern is raised as a false negative is not a complete failure.

The goal of HEDGEHOG is to be automatically run against a set of classes and given design

patterns, such that any irregularities (such as a design pattern becoming broken, as with the

Bridge discussed in Section 9.6.3.1) are reported and further human action can be taken. In this

case, some patterns cannot be correctly realised for one reason or another and the human user

can investigate further to find out why the pattern is reported as not being correctly realised.

Messages generated by HEDGEHOG (see Chapter 7) would help track down the problem and

determine whether or not the problem is a serious one.

One of the reasons for HEDGEHOG’s false negatives is that it does not support inner classes,

and several of the patterns were defined in terms of inner classes. If the examples were rewritten

to avoid the use of inner classes, it may have been possible to further reduce the number of false

negatives reported by the system.

9.6. Analysis 141

The other main reason for a false negative was a realisation of a design pattern which was

subtly different from the pattern definition in HEDGEHOG itself. As such, patterns like Iterator
and Prototype were defined in terms of standard Java interfaces, and those patterns that did

not use those interfaces were not recognised. A discussion for each of these false negatives are

presented below.

9.6.5.1 Prototype

The first failure is the realisation of Prototype in [SM01]. Part of the reason for this failure

is the difficulty in creating a Prototype definition; indeed, in [GHJV95, page 121] the authors

discuss Prototype’s advantages in a static language like C++ but note its lack of advantages

when using a more dynamic language like Smalltalk (and also Java):

Prototype is particularly useful with static languages like C++, where classes are
not objects and little or no type information is available at run-time. It’s less im-
portant in languages like Smalltalk or Objective C that provide what amounts to a
prototype (i.e., a class object) for creating instances of each class.

There is a standard way of providing copies in Java using the java.lang.Cloneable

interface. A class that implements java.lang.Cloneable has a method clone() which

can be used to return a copy4 of the current instance.

If one were to make use of the Prototype pattern in Java, it would therefore be sensible to

base it on the java.lang.Cloneable interface. As a result, the SPINE definition for the

Prototype pattern uses this fact, and [SM01, page 357] does not make use of this interface in

its implementation; hence the proof fails for this pattern instance.

It may be possible to modify the pattern definition (or create a variant) to deal with this

specific case, but it would not be of great use unless other systems used this variant as well.

Indeed, the failure of this example (linked with the documentation of what the Prototype
pattern hopes to achieve and how it works) may have resulted in the developers of the [SM01,

page 357] example using a more standardised5 way of realising the pattern.

However, that is not to say that other pattern realisations could not be achieved in Java; for

example, dynamic access of the java.lang.Class instance and newInstance() invocation

could be another way of cloning a prototype.

4The Java semantics do not say whether a shallow copy or deep copy is required, just that a clone is returned.
By default, a shallow copy is returned but the developer can program a deep copy if that is desired.

5Of course, the authors may have been showing a specific standalone example of all the interfaces working
together rather than relying specifically on a Java class library, but this is of marginal value to a student learning
the pattern.

142 Chapter 9. Results

Java’s run-time nature, including its ability to load classes dynamically, has resulted in

the Prototype pattern not being widely used. As an example, database connections require

per-database specific drivers, which would (in other languages) be an ideal candidate for the

Prototype pattern. In Java, drivers are configured by using their class name (such as com.

ibm.db2.jdbc.net.DB2Driver) and using the java.lang.Class newInstance()

factory method. Dynamic loading of classes complicates the ability to reason about the pattern’s

realisation and thus such esoteric variants of Prototype have not been modelled in HEDGEHOG.

9.6.5.2 Proxy

The Proxy pattern in Java is realised by few classes directly. Most of the proxies used in Java are

in automatically generated classes (such as distributed technologies such as those used in RMI).

The standard class libraries have few examples; the only pattern instance that could be found is

that of the java.util.Collections class that uses internal wrappers for providing read-

only or synchronized access to an underlying data structure. Unfortunately, the implementation

of the java.util.Collections class uses named inner classes in order to define the

UnmodifiableCollection class, and one of HEDGEHOG’s limitations is that it cannot

process inner classes directly. If the classes are extracted into their own separate compilation

units, however, then it is possible to verify that the SynchronizedCollection do realise

the Proxy design pattern; however, the read-only equivalents do not – since (understandably)

they only forward the method calls that result in no change to the underlying structure. As a

result, because they do not delegate methods such as remove(), they do not fully realise the

Proxy pattern.

9.6.5.3 Decorator

The Decorator pattern bears a similarity to the Adapter pattern, both in terms of structure and

intent. The key difference between the two is that the Decorator is not expected to change the

component’s interface, whereas the Adapter pattern is.

It is therefore expected that the Decorator supports the same interface as the component

that it is decorating. As far as SPINE is concerned, it is not possible to determine whether

the component supports the intent of the interface; only whether (structurally) it matches the

specification.

Since the purpose of a Decorator is to modify the capabilities of the item it is decorating,

but not fundamentally change it, the SPINE definition (in Figure B.8) requires that methods

9.7. Summary 143

in the Decorator are delegated to the component that it is decorating. This would allow an

instance of the decorator to be used in place of the item it is decorating without affecting clients

that use it.

This behaviour is seen in the java.io.BufferedInputStream class, which buffers

data from an underlying java.io.InputStream. Whilst this is a good example of the

Decorator pattern in use, it does not match the SPINE definition, since not all methods are

directly invoked on the decorated component. For example, the ‘read()’ method is not called

on the underlying java.io.InputStream at all; rather, all methods for reading data are

channeled through the more efficient ‘read(byte[])’ method. So the requirement that all

parent methods are called by the decorator class is falsified, and thus HEDGEHOG reports this

as a failure.

A similar behaviour is seen in the javax.swing.JScrollPane class. Logically, this

puts scroll bars on an existing component, and it is used as an example in [GHJV95] for when

a Decorator may be applicable. However, the Java implementation puts an extra indirection

through a javax.swing.JViewport, between the scroller and the original component. So

whilst the JScrollPane acts as a decorator on top of its JViewport, the JViewport

itself is decorating the underlying Component. Furthermore, both the JScrollPane and

JViewport do not forward all the messages known by the parent class (JComponent) to

the decorated container; they only deal with the graphical painting methods.

As a result, the examples found in the Java class libraries show that the Decorator SPINE

specification does not match some more involved uses of the Decorator pattern. It would be

possible to reduce the constraint that all methods are forwarded to the decorated item (for ex-

ample, there must be at least one method that is forwarded) but this may not be desirable.

Alternatively, variants of the Decorator pattern could be created (e.g. FullDecorator or Par-
tialDecorator), and the user could decide which of these applied on a case-by-case basis.

9.7 Summary

HEDGEHOG is capable of recognising a number of design patterns realised not only in small

code examples, but also real Java systems. There are some features of design pattern that

HEDGEHOG can easily recognise:

• Smaller design patterns consisting of one or a small number of classes (as the problem

becomes more difficult as the number of classes increases)

144 Chapter 9. Results

• Patterns that are defined by their structure or relationships

It cannot recognise patterns for which it has no SPINE definition, such as those which:

• Are defined in terms of how they are used by others (e.g. Façade)

• Have specific semantic requirements for how methods should behave (e.g. Command)

• Are defined by the intent of how it is used rather than implementation (e.g. Memento)

Of the categories defined in [GHJV95], the ‘creational’ and ‘structural’ patterns (12 in total)

are relatively easy to verify with HEDGEHOG, with only a few cases (3) where the pattern

cannot be defined. For the ‘behavioural’ category, of the 12 patterns there are 5 that cannot

be defined. Interestingly, though the ‘behavioural’ category specifically groups patterns with a

specific intent, it is still possible to capture the behaviour of half of the patterns in that category.

The remainder of the patterns show that the method of defining patterns in terms of their

structure and weak semantic constraints works well; the majority can be recognised correctly.

Limitations in HEDGEHOG’s ability to correctly process inner classes accounts for several of

the remaining failures; some implementations of patterns in the test data set used inner classes,

and thus could not prove a pattern was present.

Lastly, the fact that HEDGEHOG is capable of showing when a pattern realisation is broken

(the realisation of Bridge in Java 1.1 to 1.2) validates the fact that HEDGEHOG can be used to

verify patterns and notify developers when such pattern realisations are broken over time.

These results show that the hypothesis from Chapter 1 (which was restated at the beginning

of this chapter) has been met; it is possible to represent patterns based on implementation (listed

in Appendix B), and that this specification is sufficient to be able to verify their realisations in

existing code. Although not all patterns from [GHJV95] could be represented, those that could

were very amenable to representation in this form.

Chapter 10

Related work

This chapter discusses related work, covered as an overview in Chapter 2, and presents a more

detailed comparison of these with HEDGEHOG and SPINE.

10.1 ESC/Java

The Extended Static Checker for Java (ESC/Java) uses a similar process to HEDGEHOG’s proof

process; it uses an internal proof engine (called Simplify [Nel80]) and parses the source files to

create an internal representation of the source code. It then uses static analysis of the files to

detect potential errors which may not have been explicitly defended against by the user (such

as whether a reference is assigned a non-null value).

ESC/Java also allows programs to be annotated with invariants [LS97], which declare valid

ranges of values and other properties which are constant throughout an instance’s lifetime. Such

invariants may say that a ‘direction’ may only be one of ‘up’, ‘down’, ‘left’ or ‘right’, and take

no other values. It then uses these annotations to verify that calls to these annotated methods do

so with correct values.

HEDGEHOG does a similar task in trying to prove static semantic analysis of the code. This

is very similar in purpose to that of ESC/Java; rather than trying to reason with a fully dynamic

representation of the Java language (such as those dealing with Javas and Javalight), it deals with

a much stricter set of constructs (such as determining whether a non-null value is assigned to

a field) which is easier to work with than a fully dynamic analysis of the code.

Additionally, the authors of [FLN+02] make some very good points about dealing with this

type of extended analysis of source code, which are also applicable to HEDGEHOG:

145

146 Chapter 10. Related work

• Although general proof of whether an expression evaluates to null or not is undecidable

in general, “the kinds of programs that occur in undecidability proofs rarely occur in

practice.”

• Modular analysis of Java source code allows the process to be scalable. “Both ESC/Java

and ESC/Modula-3 perform modular checking; that is, they operate on one piece of a

program at a time.” Although patterns may consist of several Java classes (rather than

just one), it is only a part of a much larger system. Furthermore, each occurrence of a

pattern can be processed independently of others in a large system. “Consequently [the

authors of [FLN+02]] consider modular checking to be an essential requirement [of a

scalable automatic checker].”

• Although it is desirable for an ideal automated system to be both sound and complete,

the authors of [FLN+02] do not take both of these to be an absolute requirement. “The

competing technologies (manual code reviews and testing) are neither sound nor com-

plete ... if the checker finds enough errors to repay the cost of running and studying its

output, then the checker will be cost-effective, and a success.” In other words, the cost of

reviewing an incorrectly detected error is outweighed by other errors being successfully

isolated, and the cost of an error slipping through this net is comparable with not having

the tool in the first place.

What is interesting about their approach is that they have chosen a more formal representa-

tion of Java, but still are only concerned with a subset of possible Java programs. It is clear that

the authors believe that although formally1 it is a subset, in practice this covers the majority of

‘normal’ Java programs.

HEDGEHOG uses a similar level of analysis in its implementation. As with ESC/Java, it is

clear that a less powerful formalisation is still capable of dealing with a number of common

situations that may occur in real programs. Importantly, patterns are defined in terms of their

implementation, and not by their executable semantics (similar to ESC/Java) so that it does not

concern itself with traditional ‘hard’ problems such as recursion or termination.

However, whilst HEDGEHOG is concerned with the verification of patterns, ESC/Java is

concerned with the correct implementation of individual methods. As a result, ESC/Java does

not consider the object typing hierarchy as part of its method-based constraints, which is often a

key part in how design patterns are represented. Furthermore, the fact that they are all method-

based constraints means that it is very difficult to ensure that a pattern is present, because it is
1They note that it is neither sound nor complete

10.2. The fragment model 147

not possible to represent a pattern based on its execution semantics alone as previously noted in

Section 4.3. Even if instance invariants are considered (constraints which are valid across any

method), it is still not possible to enforce typing or inheritance constraints.

Lastly, patterns often span multiple classes and require the relationships between those

classes to be maintained, rather than just implementations of specific methods to be constrained.

It may be difficult to express the typing relationship in an ESC/Java constraint that relates all

the classes of a Visitor pattern, for example.

Chapter 11 notes that a hybrid of HEDGEHOG and ESC/Java may prove a useful symbiosis,

since patterns can be represented in SPINE, and the implementation of some of the built-in

predicates that use the weak semantics could take advantage of ESC/Java’s proof engine to

show that the built-in holds. The two can complement each other since they focus on different

levels of verification.

10.2 The fragment model

Marco Meijers [Mei96] proposed a mechanism for representing patterns as a set of fragments in

what he termed “The Fragment Model.” This breaks down the pattern in terms of what it must

provide: relationships with other classes (including inheritance), methods that must be present,

and how they are connected with one another. Each one of these requirements is a fragment, and

a collection of fragments together under one ‘root’ fragment defines a pattern. As a comparison,

the Observer pattern from [GHJV95] is shown in Figure 10.1, and the fragment representation

in Figure 10.2 (taken from [Mei96, page 58]). The corresponding SPINE definition is presented

in Figure B.13 for comparison.

The aim of the fragment model is to provide a definition of design patterns that can be used in

a practical tool to allow the developer to instantiate patterns from scratch or from existing code.

To that extent, the fragment model is useful for instantiating new patterns, but not necessarily

for verification of existing patterns.

Each fragment represents a key feature of the pattern that must be present. In some cases,

the purpose of a fragment is to link other fragments together; for example, in Figure 10.2 the

‘ObserverHierarchy’ fragment exists solely to tie the ‘Observer’ and ‘ObserverA’ frag-

ments together (and similarly ‘Observer’ and ‘ObserverB’). Each fragment has associated

conditions and information which affect how the pattern is realised.

Unlike HEDGEHOG, the fragment model exists to allow an interactive tool to add fragments

to an existing code-base. This allows patterns to be instantiated by attaching the fragment to the

148 Chapter 10. Related work

Figure 10.1: The Observer pattern from GoF

Subject
attach(Observer)
detach(Observer)
notify()

ConcreteSubject
getState()
subjectState

Observer
update()

ObserverA
update()
observerState

ObserverA
update()
observerState

observers

Figure 10.2: The Observer pattern using the fragment model

MyObserver

Update

Observer

ObserverHierarchy

ObserverA

Update

ObserverB

ConcreteSubject

Update

UseObserver

Subject

10.2. The fragment model 149

code representation within the tool. Additionally, triggers can be associated with fragments so

that (for example) when a subclass is added to an existing class, its attached fragments are run to

determine if any further changes need to be applied. This is cited as useful in the Visitor pattern

when a new subclass may require the creation of a new method in the visitor implementation.

It is not clear whether triggers were implemented in the fragment browser, however.

What is different between the fragment model and HEDGEHOG’s use of constraints is that

the former implicitly defines the pattern by the association of fragments. The fragment model

defines the relationships (and what type of relationships there are) by interactively building up

and associating fragments with a particular class in the run-time tool. This allows the tool to

modify the fragments afterwards, or even introduce new ones by applying a new pattern to it.

In order to verify the fragments are still valid, a post-processing validation mechanism can

run that is encoded into each individual fragment. This can ensure that (for example) a fragment

has the correct number of actors; in the case of the Hierarchy fragment, there must be one parent

and at least one child role fulfilled.

HEDGEHOG’s approach to verification of patterns is to define them all as constraints that are

applicable to any pattern, rather than having to associate fragments prior to use. The fragment

tool includes a bottom-up mechanism that must be used on existing code first, before fragment

operations can begin; and it requires the user’s help to identify which fragments should be

added.

The fragment tool does discuss the possibility of including a more formal constraint against

the code that can be run after validation of the fragments themselves. In essence, HEDGEHOG’s

approach to representing the whole pattern as a constraint is similar to the combined approach

of the fragment model and invariant construct. However, in multi-class patterns, each class will

have its own fragments associated with it, whereas with SPINE, there is only the one pattern

definition. This is more flexible when using external code systems that do not have fragments

built up in the interactive tool; the pattern definition uses the appropriate predicates (such as

using ‘forAll’ and ‘subclassesOf’) to dynamically generate a set of constraints spanning a

number of classes.

It’s not clear why the fragment tool uses two different mechanisms for representing the

pattern’s structure. On the one hand, the “invariant” constraint exists to ensure that the invariant

for the pattern is valid before and after changes; but on the other, it also needs the fragments

on an instance-by-instance basis in order to validate the pattern. HEDGEHOG’s approach is

to use the same unified mechanism for dealing with roles and behaviour by expressing the

constraints for the entire pattern as a SPINE constraint. Additionally, since this is boolean logic,

150 Chapter 10. Related work

it is possible to trivially combine the requirements for two separate patterns using a SPINE

conjunction, and no further changes need to be made. This is not the same for the fragment

model, which actually requires the fragment instances to be merged with the class instances if

two fragments are combined.

The implementation of constraint checking is also not presented in [Mei96], which instead

concentrates on the individual fragments and their relations. It appears that the constraints are

based on the fragment implementations, and that these fragment implementations answer the

predicates such as ‘aClass provides: aMethod’ themselves. Thus the fragments are a

necessary part of the tool’s operation, since they also provide the invariant processing.

This also highlights another difference between HEDGEHOG’s approach and the fragment

model; the former needs nothing other than a goal and access to the source code, whilst the

latter needs to have fragments adorned on to existing code before it can be checked. This has a

couple of important ramifications:

• The variant of the pattern is explicitly encoded in the fragments attached to the source

code. It isn’t possible to change the source code outside of the tool to another variant and

still have it recognised by the fragment tool.

• The checks that the fragment tool performs are actually checking whether the fragments

have been initialised correctly, rather than whether the code exhibits the pattern. This is

especially true in the case of the invariant checking, which requires the fragments to be

created before they can be used.

Dennis Gruijs [Gru98] provided another example of the Observer pattern in the fragment

language, shown in Figure 10.3. This describes the Observer pattern, which needs a number of

collaborators in order to be instantiated. Some of these collaborators are other classes that can

be interacted with (e.g. ‘Subject’ and ‘Observer’) whilst others are methods and data (e.g.

‘notify’ and ‘subState’).

In this representation, each pattern is defined as a Smalltalk instance that contains the

fragments. To associate a pattern with a particular object instance, the pattern is cloned (an

example of the Prototype pattern in use), and populated with appropriate values. In this

case, the cloning of the ‘Hierarchy’ fragment defines an inheritance relationship between

the ‘Observer’ and ‘ConcreteObserver’ types. (In SPINE, this would be represented as

‘extends(ConcreteObserver,Observer)’.)

10.2. The fragment model 151

Figure 10.3: Example of another fragment Observer definition

Observer
{ | Subject notify observers attach detach ConcreteSubject
subState StateObserver update ConcreteObserver obState |
Hierarchy clone
{ superclass = Subject;

subclass = ConcreteSubject;
}
Hierarchy clone
{ superclass = Observer;

subclass = ConcreteObserver;
}
pluralType clone
{ plural = observers;

singular = Observer;
}
Subject.methods += attach;
Subject.methods += detach;
Subject.methods += notify;
Subject.notificationMechanism += notify;
Subject.attributes += observers;
ConcreteSubject.attributes += subState;
ConcreteSubject.stateChangingMethods = ;
Observer.methods += update;
Observer.attributes += obState;

}

152 Chapter 10. Related work

When this fragment is associated with an existing class, it sets up the relationships between

the classes and the methods that they have together. One advantage of this approach is that any

modifications to the classes can validate the changes against the fragments automatically. For

example, it is possible to define ‘handlers’ that are kicked off when a change occurs, such as

adding a new method on one of the classes. The handler ‘on new subclass@Subject’ will be

invoked when a new subclass of ‘Subject’ is created, to decide whether or not the new subclass

should participate in the event notification part of the Observer pattern.

The approach of building up meta-information that is stored externally to the class is useful

if development is only done in this tool. However, the meta-information is not portable outside

of the fragment tool, and existing code-bases need to be migrated to instantiate the fragment

models for each class that plays a part in the design pattern itself. Whilst one hopes that this

meta-information could be persisted between invocations of the tool, it doesn’t seem likely that

this is the case. However, using HEDGEHOG as a verification tool does not require the use

of any existing meta-information; the only external input that is required is the challenge that

a class (or set of classes) realises a pattern, which HEDGEHOG then attempts to prove. This

requirement could be added as a simple JavaDoc comment (or, in Java 1.5, an annotation).

10.3 Refactoring of design patterns

Unlike other approaches described in this chapter, [OC00] describes design patterns in the Java

language. The work is tightly focussed on Java (as HEDGEHOG is) and also notes that there

may be some advantages/disadvantages with the language-specific approach.

It also describes ([LK98]) a number of ways in which design patterns can be represented:

role model The most abstract representation of a pattern, defined in terms of the actors involved and

their essential collaborations. These definitions are abstract and imply constraints that

any refinement must respect.

type model A refinement of the role model where roles are replaced by domain-specific types that

define the concrete syntax for operations and add to the abstract semantics of the role

model.

class model A refinement of the type model that is the actual deployment of the pattern in terms of

concrete classes.

10.3. Refactoring of design patterns 153

The role model is akin to UML diagrams in which actors show parts of a use case. Thus,

a pattern may be defined by the set of interactions that it has with its other collaborators, often

represented as a use case diagram.

The type model may be drawn in the form of a UML interaction diagram. This shows some

of the types of the actors, but abstracts away the implementation. LePUS can be considered to

be operating between the role model and type model definitions.

The class model can be represented in the form of UML class diagrams, showing not only

collaboration with other actors but also introducing methods and fields in order to achieve these

goals.

HEDGEHOG operates at the level of the class model, taking into account the relationship of

the classes’ implementation. [OC00] uses a similar model for representing patterns, although

possibly at a slightly higher level than HEDGEHOG.

It is interesting to note from [OC00, page 27] that:

Pattern structure is insufficient in exact design pattern recognition as the pattern
structure may be present, but not dynamic relationships or intent. Also, several pat-
terns have the same pattern structure, and it is only the non-structural characteristics
that differentiate between them.

This is largely true, and as such, HEDGEHOG cannot deal with highly abstract patterns such

as the Command pattern (see earlier discussions in Section 9.6.1.2). In this case, most of the

pattern implementation is tightly integrated with the intent of the application; as such, it is very

difficult to separate the generic pattern from the application’s use of the pattern.

This problem occurs more often with the “Behavioural2 patterns” in [GHJV95], since these

are implicitly associated with intent as opposed to structure. Some analysis of the “Behavioural”

patterns using the semantic SPINE operators can be achieved, which are discussed more in

Chapter 9.

[OC00]’s work provides transformations into such patterns, but hard-codes the names of

the methods involved (in Command’s case, execute()). Whilst this approach is sufficient

for transformations, it cannot be used for pattern detection since it is fairly likely that other

method names could be used instead (e.g. run(), process() etc.), or extra arguments could be

provided. This approach is very similar to [Tok99], which refers to them as refactorings.

Whereas HEDGEHOG uses a lower-level implementation of a pattern, [OC00] uses a slightly

higher level to represent interactions and relationships between classes. HEDGEHOG’s main

focus is of the verification of patterns, whereas [OC00] presents transformations of ways in
2The others are “Structural” and “Creational” patterns

154 Chapter 10. Related work

which patterns can be transformed and instantiated. This focus affects how the patterns can

be specified; transforming into a pattern can be specified by a tight pattern definition, whereas

verification of existing patterns may be looser in their implementation and thus harder to verify.

HEDGEHOG and [OC00] refer to the term mini-pattern, but use it in slightly different ways.

Both identify repetition within the patterns and the way that they are used, such that the patterns

are more modular. However, since the intent of HEDGEHOG and [OC00] are different, the two

treat repetition slightly differently.

HEDGEHOG breaks down mini-patterns into identifiable elements that can be recognised

and verified separately from others. This allows patterns to be defined based on a shared mini-

pattern library. However, since [OC00] focuses on the transformation of code via mini-patterns,

it uses parts of the design pattern that are amenable for transformations, and terms them mini-

transformations. For example, the Factory Method [OC00, page 71] is broken down into the

following four mini-patterns:

1. Abstraction: the Product class must have an interface that reflects how the Creator class

uses the instances of Product that it creates.

2. EncapsulateConstruction: In the Creator class, the construction of Product objects must

be encapsulated inside dedicated, overrideable methods, which we term construction

methods.

3. AbstractAccess: Apart from within the construction methods described in (2) the Creator

class must have no knowledge of the Product class except via the interface described in

(1)

4. PartialAbstraction: The Creator class must inherit from an abstract class where the con-

struction methods are declared abstractly.

Each of these is implemented as its own mini-transformation which are then combined to

make the Factory Method.

This level of detail is lower than the mini-patterns are defined in SPINE; possibly to the

extent that the definitions would actually be one or two SPINE predicates. However, there is no

reason why the SPINE library could not be extended with a reusable set of predicates if desired.

It is most likely that the transformation of existing code into a design pattern needs to perform

more work than verifying one that already exists; and as such, mini-transformations need to be

more detailed.

10.4. LePUS 155

As an example, a simple requirement like ‘Abstraction’ requires the mini-transformation

to perform the creation of an interface, and the extension of an existing class to support that

interface, along with any methods that the class may provide. It should be noted that this is

a fairly common refactoring also known as ‘Extract Interface’ [Fow00, pages 341–343],

and since it is a good coding practice to code to an interface rather than an implementation

[Blo01, page 84–90] it is perhaps unsurprising that this mini-transformation is used frequently.

In any case, this example would be represented as a single SPINE predicate ‘isAbstract’ or

‘isInterface’ and may not be eligible as a component for reuse.

10.4 LePUS

[Ede00] presents two ways of representing design patterns, based on evolution from earlier

works [EGY97, Ede98].

The first approach was based on a metaprogramming representation of a design pattern,

in which the pattern was encoded in the sequence of actions required to add a pattern to an

existing system. The Patterns Wizard used tricks3 to introduce artefacts into an object-oriented

implementation.

HEDGEHOG initially took a similar approach to representing patterns, by encoding them in

Java classes representing logical requirements. However, this suffered from exactly the same

problem as the Patterns Wizard in that the pattern definitions could not be easily changed or

investigated by the end user. Unlike the Patterns Wizard, the HEDGEHOG pattern definitions

were always constraints on the implementation; externalising it as SPINE did not change the

fundamental way that the pattern was defined.

The metaprogramming approach works well for the application of patterns, and is used by

other approaches that modify existing patterns, whether by creating/editing [Mei96] or through

refactoring [OC00, TB01]. However, this approach does not lend itself to working with a proof

engine.

The second method uses a declarative approach [Ede00, page 47] for specification of design

patterns. It started out as a graphical language called “The LanguagE for Patterns Uniform

Specification” or LePUS that showed how the classes are related to one another in a similar

vein to UML. It was subsequently retrofitted to a formalisation in higher order monadic logic or

HOML [Bar76]. In this approach, artefacts are represented as members of a set, and these sets

3The name was chosen, somewhat unwisely in retrospect, because wizards are famous for performing tricks
and magic

156 Chapter 10. Related work

can be part of higher-order sets that represent classes, which in turn are part of higher-order sets

that describe patterns between classes.

The declarative approach shares much more ground with SPINE (since both are constraint-

based ways of defining design patterns) and so is worthy of closer comparison.

10.4.1 Graphical representation

The LePUS graphical notation of the Observer pattern is shown in Figure 10.4. One of the

main benefits that LePUS claims to give is a precise but concise definition of a design pattern,

and as the adage has it, a picture is worth a thousand words. As with any graphical notation

such as LePUS and UML, it is only useful if the graphical symbols have defined/understandable

meanings that enable the viewer to interpret what the diagram means; the definition for LePUS

is covered in [Ede98, Ede00].

The square boxes with ‘Subject’ and ‘ConcreteSubject’ represent two classes in the

system; the arrow between the two indicates that the former is the superclass of the latter.

The ovals represent methods within the classes, whilst the shadowed oval represents a set of

methods. (In the Observer pattern, there may be many methods that update the state; for

example, an Account class may have methods ‘withdraw’ and ‘deposit’ that both affect the

‘balance’ state of the Account.) The triangle with ‘Observers’ represents a set of classes; in

this case, there can be multiple classes that are observers of the subject.

The black-headed arrows show the flow of methods between the classes. For example,

when a ‘setState’ method is called on the ‘ConcreteSubject’, it must invoke ‘notify’ on

the ‘Subject’. This in turn must invoke ‘update’ on the ‘Observers’; because it is a set, it

must invoke it on all members of that set. In turn, each ‘Observer’ then calls ‘getState’.

The connector between the ‘Observers’ and the ‘Subject’ is a one-to-many relationship,

and the connector between this relationship and the ‘attach’ method indicates assignment; in

other words, the ‘attach’ method assigns the observer to the relationship.

This graphical representation therefore shows a combination of static relationships (one-to-

many relationship between subject and observers, inheritance) as well as dynamic invocations

(this method calls that method). It can be seen as a combination of UML class diagrams and

UML collaboration diagrams, and may be useful for showing not only design patterns but also

compact representations of an object-oriented system at run-time.

10.4. LePUS 157

Figure 10.4: The Observer pattern in LePUS

Observers

update
subject

Subject

detach
observers

attach
observers

notify

ConcreteSubject

getState

setState

158 Chapter 10. Related work

Unlike UML, this notation permits sets to be presented. For example, the observer pattern

allows many different observer classes to be used in its implementation. However, in an object-

oriented environment, this could be equally well captured through the use of an abstract type

such as an interface, and enforce a particular implementation4 for implementors. It is also worth

noting that UML has a notation for showing method broadcasts to multiple instances through

the use of comments like ‘[for all observers]’.

10.4.2 Textual representation

As well as the graphical representation, LePUS has a more formalised textual representation in

higher order monadic logic (HOML). Essentially, each of the icons in a LePUS diagram has an

associated formula. The connecting arrows correspond to relations between the participants.

Patterns can then be defined in terms of a set of formulæ. The textual representation of the

Observer pattern shown in Figure 10.5 is the equivalent of the one in Figure 10.4.

In this example, the Observer pattern is defined as a conjunction of predicates as a formula.

This is similar to a ‘realises’ predicate defined in SPINE; however, the format of the formulæ

in LePUS always consists of a conjunction of predicates. SPINE, on the other hand, is extensible

and predicates can use combinations of conjunctions and disjunctions, as well as definitions of

other predicates. This extensible definition is a necessary part of defining different variants of

patterns, as well as reusable mini-patterns.

The relations (→ and → H) are ones that operate on a method-to-method, method-to-class,

class-to-class, or sets of the same. As an example, ‘Invocation →(setState,notify)’ is

a constraint that the ‘setState’ method must call the ‘notify’ method. This is a one-to-one

mapping; every ‘setState’ method must call one ‘notify’ method. The alternative relation

→ H is a constraint against a hierarchy of classes; so ‘Invocation →H(notify,update)’

means that for all subclasses that have a ‘notify’ method, they must call an ‘update’ method

on all subclasses. A similar approach can be encoded in SPINE:

exists(methodsOf(ConcreteSubject),M.and([
named(M,‘setState’),
exists(methodsOf(Subject),N.and([

named(N,‘notify’),
invokes(M,N)

])
])

4This would be a good use of design-by-contract constraints; but can equally be done with JavaDoc comments

10.4. LePUS 159

Figure 10.5: The Observer pattern in LePUS formulæ

∃ attach,detach,notify,getState ∈ F;
setState, update ∈ 2F;
Subject,ConcreteSubject ∈ C;
Observers ∈ H:

clan(update,Observers) ∧
clan(attach,Subject) ∧
clan(detach,Subject) ∧
clan(notify,Subject) ∧
clan(getState,ConcreteSubject) ∧
tribe(setState,ConcreteSubject) ∧
Invocation→H(Observers,attach) ∧
Invocation→H(Observers,detach) ∧
Invocation→(setState,notify) ∧
Invocation→H(notify,update) ∧
Invocation→(update,getState) ∧
ReferenceToSingle→H(Observers,ConcreteSubject) ∧
ReferenceToMany→H(Subject,Observers) ∧
Aargument-1→H(attach,Observers) ∧
Aargument-1→H(detach,Observers) ∧
Aargument-1→H(update,Subject) ∧
Inheritance(ConcreteSubject,Subject) ∧
Assignment(attach,Subject,Observers)

160 Chapter 10. Related work

The advantage of the SPINE representation is that other constraints can be placed on the

methods ‘setState’ and ‘notify’. For example, we could constrain the ‘notify’ method to be

implemented as a protected member, which would prevent external objects performing direct

notification. Additionally, we have finer control over the set of classes that can be processed;

whereas →H deals with all subclasses, we can use SPINE’s ‘forAll’ and ‘subclassesOf’ to

deal with subsets of classes rather than an all-or-nothing hierarchy.

The clans and tribes defined in LePUS are higher-order sets (sets of sets). A clan is a

group of related items: in this case, the ‘setState’ methods, as there can be many methods

that change the state. (An example might be a bank account class, which has a state variable

‘balance’ but multiple methods for changing it such as ‘withdraw’ and ‘deposit’.) A clan

of clans is called a tribe; so because the ‘ConcreteSubject’ is itself a clan, the ‘setState’

methods are termed a tribe.

Clans and tribes are not relevant in SPINE, because they can be handled by nested ‘forAll’

and ‘exists’ predicates. In fact, although it is not commonly seen, there is no reason for the

‘forAll’ to be arbitrarily nested to any level, whilst LePUS stops at tribes.

Although LePUS and SPINE allow a pattern to be described as a set of constraints, SPINE

allows more flexibility by splitting down a requirement into arbitrary nesting of conjunctions,

disjunctions, and use of existential quantifiers over subclasses, methods and so forth. Whilst

LePUS defines the terms clan and tribe to describe higher order sets-of-sets, these can be more

clearly presented as nested ‘forAll’ quantifiers in a SPINE predicate.

The set of LePUS relations5 and SPINE predicates is very similar:

SPINE LePUS

predicate relation

invokes invocation, forwarding

instantiates, lazyInstantiates, nonNull creation

returns production

implements, extends, subType inheritance

adds, removes assignment

signature argument, return-type

5Assignment is only used in LePUS in defining relationships for the Observer pattern; similarly, ‘adds’ is only
used in the Composite pattern for maintaining a one-to-many relationship

10.5. Detection of patterns 161

One key aspect of [Ede00] is that the design pattern specification in LePUS is programming-

language agnostic (other than assuming a common set of object-oriented features). Thus a

pattern may be described precisely as its interrelationships between classes, but not have enough

information to process a pattern in a specific programming language (such as Java). The author

of [Ede00] notes:

Naturally, different [programming languages] incorporate different constructs, and
the specification of design patterns at the appropriate level of abstraction required
more than the lowest common denominator. Furthermore, a relation can have more
than one syntactical form. As a more elaborate example take the term Inheritance
in Java, where it is being assigned with two separate linguistic constructs that bear
distinct notions. Thus, if we decided to incorporate in LePUS relations that are not
necessarily primitives of all OOPLs there is the question of limits: What proper-
ties may be designated as ground relation? Why do we choose this set of ground
relations and not any other?

To answer this question we relate back to the purpose of our specification language:
LePUS was conceived for the specification of lattices of design patterns. As such,
the building blocks employed in its expressions, most notably the ground relations,
should be descriptions made by the authors of these patterns.

In other words, the specification of the design pattern has necessarily been chosen in LePUS

as a step above the actual programming language details.

Conversely, HEDGEHOG works at the programming language level – Java – so that it can

verify that the language-specific implementation is correct, and not just the signature of the

pattern. It therefore bridges some of the work that LePUS has achieved and the work that

ESC/Java has done in analysis of the Java code directly.

10.5 Detection of patterns

Although detection and verification are not the same, they share a number of common features

and points. Detection tends to look for pointers or hints as to where patterns may be present;

and ideally, be fast to compute. Once a suspected location is found, more complex processing

can be performed to determine whether or not a pattern really is present or not.

It is perhaps unsurprising that a verification tool will use much the same identifiers as a

detection tool in specifying patterns. However, it is not necessarily the case that detection will

always be a subset of verification; there may be trade-offs and a certain amount of false positives

or noise that is desirable with a detection tool; as opposed to a verification tool in which false

positives would potentially break the purpose of the tool.

162 Chapter 10. Related work

What is clear is detection of a pattern from source can only be based on implementation,

which also holds true of verification. The main problem is, as noted in Section 9.6.1, that in a

number of cases (Command, Interpreter and Memento), the key part of the pattern lies not

in its implementation, but in its intent. [Bro96] chooses to use a subset of patterns (Composite,

Decorator, Strategy and Chain of Responsibility) since those can be identified based on their

implementation, whilst acknowledging that patterns such as Command and Interpreter hold

generic implementation but specific intent. [Bro96] suggests that although some patterns may

be detectable, they may be ambiguous – in other words, there may be identifying hints that

could indicate the presence of a pattern, but not be able to determine which one. Alternatively,

they may be so common (such as Template Method) that they are identified almost everywhere

throughout an application.

The other key difference between a verification tool and a detection tool is that the former

is expected to be called into action against known (or suspected) instances already. A detection

tool would have to do a pattern-mining approach across all instances before it could suspect

whether a pattern is present or not. For some patterns, such as Chain of Responsibility, this

is just a case of following navigable links; but for others, such as Composite, it may involve

complicated walks over the object instance tree to discover cycles that may indicate recursive

composition.

[PC00]’s approach represents objects and methods using a finite alphabet, then looking

for sequences of method calls. For example, their definition of an Iterator is represented

by the sequence CcHh(NnHh)∗. Since an Iterator is a Java object which has two methods

(hasMoreElements() and nextElement()) that are alternately invoked, an object that repeat-

edly calls M1 followed by M2 may be seen to be an Iterator. The syntax used in the sequence

string is a call H and a return h of the hasMoreElements() method, and then a call to N and

a return n of the nextElement() method. The call C and return c refers to the creation of an

Iterator.

This approach aims to recognise patterns by their use, rather than by a specific pattern

definition. It follows that if a pattern is not being used in a system (e.g. there is a class java.

lang.Runtime that is a Singleton, but is not directly referenced by sample code) then it

cannot be detected by this approach.

It is also not clear that a pattern can be represented cleanly using a regular expression to

determine its use. For example, if an Iterator pattern called another method between the calls

to nextElement() and hasMoreElements(), this would not still be recognised by the regular

expression above.

10.6. Summary 163

Lastly, the approach does not verify that a class adheres to a pattern, but declares that the

use of the class is similar to another pattern. For example, displaying elements in an array and

calling a method to print out two properties of each element (for example, a[i].getName(),

a[i].getTitle()) may be inappropriately recognised as an Iterator because of interleaving

method calls.

10.6 Summary

This chapter discussed in more detail some of the work introduced in Chapter 2, and compared

it to HEDGEHOG’s approach of defining and processing patterns.

[LNS00] was presented as a Java-language aware constraint checker against existing code,

and noted that although it is primarily aimed at finding (by preventing) bugs, the constraint

mechanism may be suitable for implementing future SPINE predicates. However, since the tool

does not express inheritance, typing, and relationships via the constraints on code, and that these

are key features in many design patterns, it may not be capable of defining design patterns in

ESC/Java directly. The point that ESC/Java is neither sound nor complete, but can still be a

useful tool (and better than the alternative manual checking approach) is just as applicable to

HEDGEHOG.

Different mechanisms for representing design patterns were also presented. The fragment

tool [Mei96, Gru98] used a way of representing patterns by instantiating and relating fragments.

Verification is performed against these fragments after they have been created; fragments are a

necessary part of this tool and it is not possible to use it for verification purposes without setting

them up first. Although there is a notion of invariants associated with this tool, it uses invariants

to specify run-time behaviour and fragments to specify typing and relationships. This differs

from HEDGEHOG’s single use of SPINE to represent both in the same constraint.

The refactoring works [OC00, Tok99] tended to specify patterns as transformations which

would refactor/instantiate a pattern from existing source code. A refactoring tool has a different

set of requirements from a validation tool; in particular, it has more free choice in names of key

methods (such as ‘execute’ in the Command pattern) if they don’t already exist; whereas they

would be expected to exist with arbitrary names in a verification tool (if they were implemented

correctly).

164 Chapter 10. Related work

LePUS was covered since it provided two separate ways of representing design patterns:

a metaprogramming method that allowed patterns to be instantiated by executing code called

tricks, similar to the refactoring works; and a declarative method (similar to SPINE) that repre-

sented patterns as a graphical higher-order model. Unlike SPINE, the graphical language (and

its textual translation) used a set-based logic to represent patterns. This set-based logic may be

less customisable, since the translation can only be represented as a conjunction (there being no

ordering in the graphical diagram). SPINE allows predicate logic, along with existential quanti-

fiers such as ‘forAll’ and ‘exists’ which can be used to arbitrarily nest logical constraints.

Finally, a note about detection of design patterns and their relationships with a verification

tool were presented; something that is discussed in further detail in Chapter 11.

Chapter 11

Further work and conclusions

This chapter presents some of the possibilities that may follow on from this work, and concludes

with a summary of the work presented in this thesis.

11.1 Further analysis of design patterns

This work has presented a way of representing design patterns in terms of their implementation

in Java classes (referred to as the class model in [LK98]). The results show that it is possible to

represent some (but not all) design patterns using this method.

Part of the result of representing patterns in terms of their implementation shows that many

patterns are actually implemented using common mini-patterns. For example, the Factory
Method described in [GHJV95] could be described as a mini-pattern, from which other (larger)

patterns such as Abstract Factory are implemented.

Specific investigation into patterns and their implementation in Java has led to some obvious

candidates for mini-patterns:

Abstract definition: a method is to be defined abstract in a superclass, such that (concrete)

subclasses are forced to provide an implementation

Accessor: a pair of methods (usually named getXxx and setXxx) that allow a field’s value to

be retrieved or a dynamic value calculated

Enum: an extension of singletons where multiple (shared) instances can be created instead of

a single instance.

165

166 Chapter 11. Further work and conclusions

NonInstantiable: a class is non-instantiable if it has one or more constructors, and all are

private; or if it is abstract

Further investigation of these mini-patterns may provide insights into how to discover new

design patterns, or simplify the specification of existing design patterns. This may be even

more useful for work that involves instantiating design patterns; it may be the case that such

mini-patterns are used more frequently than their larger pattern counterparts.

Additionally, by considering the implementation of design patterns, several variants have

been shown for some common design patterns (see Section 4.2.2). It may be that many design

pattern implementations have further variants that have not been considered, and abstracting the

common features of a variant may result in other super-patterns being discovered.

11.2 Applicability to other languages

It would be interesting to find out whether or not the approaches of using the class model are

applicable to other languages. Since this work has focussed entirely on Java, it may be the

case that there are aspects of HEDGEHOG that have been made possible because of using the

Java language. There may also be additional ways of representing patterns that have not been

considered in HEDGEHOG because of limitations or difficulties in defining the patterns in the

Java language.

It is highly likely that those languages will be object-oriented (the [GHJV95] patterns are

described only in terms of objects, for example) but it may be possible that mini-patterns exist

in other non-object-oriented languages and that therefore the approach chosen by HEDGEHOG

could be equally applicable to those languages. (It is not possible to claim that non-object-

oriented languages can have patterns, because the design pattern community is by evolution

a highly object-orientation affiliated community; however, structured programming techniques

can approximate object-orientation and thus it may be possible to approximate design patterns

in such a structured language.)

Clearly this would involve a major rework of HEDGEHOG’s implementation, since all of the

SPINE predicates are tightly focussed on the Java implementation. However, the concepts and

directions chosen by HEDGEHOG could be used to start afresh in another language.

11.3. Reformulation of patterns using ESC/Java 167

11.3 Reformulation of patterns using ESC/Java

Although the proof engine within HEDGEHOG allows patterns to be verified based on their

SPINE definitions, it may be desirable to specify patterns in a more formal manner. One such

possibility would be to use ESC/Java, which provides static checking against Java code.

Such checking would be ripe for use within HEDGEHOG, since it would be possible to prove

or define a number of the SPINE predicates that are used in the representation of Java patterns.

Indeed, it would have been a good starting point for HEDGEHOG had ESC/Java been publicly

available at the start of this project; however, it was not released until nearly the end of the

project. The two could complement each other; patterns could still be defined in SPINE, whilst

ESC/Java could be used to implement some of the built-in predicates such as ‘notNull’.

It would be interesting to know whether or not a more powerful proof engine could affect

the pattern verification rate for some of the difficult patterns such as Command and Iterator
that HEDGEHOG is unable (or finds it difficult) to prove. Alternatively, it may be the case that

these patterns are, in general, difficult to represent for the purposes of verification.

Should this approach work, it may be possible to build the same process with ESC/Modula

to use a different language for implementing patterns.

11.4 Integration with IDEs

Clearly, the goal of HEDGEHOG is to be used by developers, preferably without any knowledge

or experience of proof systems. Ideally, therefore, HEDGEHOG should be embedded in one of

the common and popular IDE systems, so that it can be launched using the IDE’s graphical user

interface. Although an early release of HEDGEHOG supported launching from within the Visual

Age for Java IDE, the product has been dropped by IBM in preference to its new WebSphere

Studio toolset (which is based upon the open Eclipse IDE).

A more automated front end could be built, for example by scanning Java source files for

specified identifiers. A developer could use a JavaDoc tag @pattern singleton to document

that the given class realises the Singleton pattern, and this could then be fed into a back end

process that validated that pattern.

Whilst integration with such an IDE would be of obvious benefit to users of HEDGEHOG,

it is not within the scope of this project to make such an integration happen and so is left as a

future exercise.

168 Chapter 11. Further work and conclusions

11.5 Integration with automated building tools

Current software best practices place high importance on running tests frequently, as advocated

in Extreme Programming (aka XP) [Bec99]. The idea of automated testing is not new, but the

frequency of these automated tests has been brought forwards to many times a day, or at least,

once per day.

The reasoning behind this is that the later an error is detected in a system, the more costly it

is to fix. Thus, if the error can be caught as soon as it is made (or as soon after as makes sense)

then the cost in fixing this error will be dramatically lower.

Software projects using XP often have an automated set of tests that are run by the build

machine on a nightly basis, with failures being mailed to the responsible people on the team. It

would be most advantageous to integrate HEDGEHOG with this process, for its ability to detect

both patterns, and also (and potentially more usefully) mini-patterns in the code. Thus, any

errors introduced by mistake could be picked up at the end of each day, and an opportunity

given to fix the mistake the next morning.

One of the most commonly used frameworks for automated testing is JUnit [GB]; but as

with the integration with IDEs described above, it would be of great use to a developer working

with HEDGEHOG, but is not an important part of this project as a whole.

11.6 Automated searching

One possible use of an automated verification system is that of searching for patterns in existing

code. Several systems [Ban98, PC00] have tried to automate searching by looking for tell-tale

markers in the classes to determine if a particular pattern is present or not.

HEDGEHOG could be used to perform a similar task, simply by attempting to prove pairs

of class/pattern combinations. However, with N classes and M patterns, this becomes a total of

N×M goals, which will take polynomial time to search. [Although most patterns will probably

be discharged very quickly, it will still be polynomial in terms of the search space to cover, both

from the number of classes to search and the number of patterns defined within HEDGEHOG.]

It is debatable how much use automated detection of design patterns actually is; in most

cases, a system should have a design document1 which will explain key design decisions and

patterns used in the system. However, older (legacy) systems may not have design documents

available that document the use of patterns.

1How well this is kept up to date is a different matter.

11.7. Automated introduction of design patterns 169

It is also possible that a design pattern will manifest itself in the most popular parts of an

application, so it may be possible to intelligently sort the classes based on popularity (some kind

of measure of the number of times a class is referred to from another class; in network theory

this could be a highly connected node). It may then be possible to set a popularity threshold

below which classes are not searched for pattern implementations.

11.7 Automated introduction of design patterns

One of the potential benefits of this verification approach is when a pattern is mostly (but not

fully) implemented, the proof tree failure will have a record of what is still required (as discussed

in Chapter 7). This may be used, not only to inform the end user of such a failure, but also to

introduce the possibility of fixing the design pattern. [Eclipse already has this kind of quick

code-assist feature for compilation errors; this could be extended to apply to design patterns as

well.]

It is then a simple step from a pattern that is mostly implemented by a class, to a pattern

that is not implemented by a class, but can have that pattern added using the error messages and

introduction of missing parts.

Other works have focussed on introducing design patterns into existing applications [OC00,

AACGJ01, Tok99] and there may well be crossover between HEDGEHOG’s approach and some

of the other existing approaches for introduction of design patterns.

11.8 Conclusion

The hypothesis, from Chapter 1, stated:

This thesis aims to prove the hypothesis that it is possible to represent patterns as a
set of constraints on the implementation of one or more Java classes, such that it is
possible to verify whether they realise a pattern correctly.

In order to investigate this hypothesis, it was necessary to investigate design patterns to

try and ascertain what makes a design pattern have the Quality without a Name [Ale79], or to

identify the key features of design patterns in order to verify their correct implementation.

Although catalogues such as [GHJV95, Bus96, Vli98] present a set of design patterns, there

is relatively little in the way of design pattern analysis. For example, [GHJV95] splits patterns

into three separate sub-groups; behavioural, structural and creational. However, there is some

170 Chapter 11. Further work and conclusions

overlap between the three groups, and there are other ways of categorising patterns (e.g. whether

there is single or multiple participants, or whether the pattern is defined by its intent or its

collaborators). Additionally, it is clear from an analysis of design patterns (e.g. Singleton and

Utility) that there are common features of both that can be thought of as a mini-pattern in its

own right (see Section 4.2.4 and Section 4.2.5). Indeed, the approach outlined here would work

for other common idioms (e.g. lazy initialisation) and could be used to help verify smaller

building blocks than design patterns have traditionally been associated with. This backs up the

findings of other works that have investigated the decomposability of patterns [OC00, Gru98].

Using a declarative language for specifying design patterns allows a proof system to be

able to reason about design patterns. Other ways of representing design patterns (graphical

representation or programmatic introduction/transformation) have been investigated by other

works [Ede98, OCN99, OC00, Mei96, Gru98], and a comparison was given in Section 4.3. Each

type of representation has its advantages (and disadvantages) and each are suited to the type of

work that it is being used for. However, only a declarative language potentially allows a number

of different uses, from verification (investigated in this thesis) to generation and transformation

(highlighted in this chapter). It may even be possible to use a declarative language to generate

transformational scripts to introduce patterns into new code.

The declarative specification language SPINE was presented in Chapter 5, along with the

evaluable propositions that can be used to interrogate the Java implementation. Most of these

propositions are generic, and deal with object-oriented concepts such as inheritance, method

delegation and relationships; but some patterns (such as Observer and LazySingleton) require

particular evaluable propositions that work at the method implementation level rather than the

class signature level. Only a limited number of these propositions are needed in order to be able

to define a number of different patterns.

Given that the pattern is specified as a set of constraints on its implementation, it’s necessary

to realise that patterns can be implemented in different ways. Thus, even for common patterns

such as Singleton, there may be several ways of solving the problem. The ability to group

several variations of a pattern together is an important part of any work that deals with patterns,

since there is no one standard way of defining a specific pattern. One of the key strengths

of this approach is that the SPINE definition is configured in a set of external rules that can

be amended or added to at a later stage, so that if new variants are found, they can be added

in by the user without having to change the internals of the HEDGEHOG proof system. On a

related note, patterns are often implemented very differently in different languages (largely to

take advantage of specific language features) so the definition of a specific pattern variant will

obviously be specific to the language that it is implemented in.

11.8. Conclusion 171

The HEDGEHOG proof engine (discussed in Chapter 6) looked at the way in which the proof

goals were discharged using the rules and predicates of the SPINE semantics. By implementing

a proof engine in Java, it is possible to embed the proof engine into the Java-based IDE that

HEDGEHOG was integrated with. Not only did that provide a better interface between the IDE

and the proof system, it also allowed for certain optimisations, such as the ability for the IDE

to query the state of the proof tree efficiently at the end of a proof, or for the proof process to

interrogate the Java source on-demand. Unlike other systems where provers have been used,

HEDGEHOG does not need to have the entire Java source tree translated into proof obligations

that are uploaded before any work can be done; instead, the propositions are evaluated when

they are needed and are discharged against the Java source as it stands. This lazy evaluation

of evaluable propositions (as opposed to a pre-computed set of propositions) allows the proof

system to scale and deal with thousands of classes and yet still be responsive to the end user.

The same approach could be used with any other proof system that needs to access a potentially

small subset of a large amount of data in order to only evaluate what is needed; however, this

requires a proof system that is capable of such interaction hooks.

Because the specification is declarative, if one of the requirements is missing, it is possible

to translate that failed requirement into a suitable error message that can be displayed to a user

who is unaware as to how the proof system is being used. Generating error messages from proof

trees was presented in Chapter 7. Since the proof system runs in the same Java process, it is

easier for the result of the proof tree (including failed nodes) to be dynamically queried. This

avoids the need to translate the proof tree to some intermediate format (text, xml etc.) which,

for large proof trees, may take up a large amount of memory.

Given the nature of the proof constraints, it is perhaps unsurprising that the largest group

of patterns recognised belonged to the ‘Structural’ and ‘Creational’ categories of [GHJV95].

These are (by definition) patterns that are defined by the structure of the code, or by the way

in which methods are used to instantiate new objects (which is a fairly recognisable operation

in Java). These type of patterns, and others in these categories, will generally be well suited to

pattern processing of any kind, because they have a well defined set of requirements from an

implementational standpoint, and so will be easy to define either for verification purposes or for

transformational purposes.

The ‘Behavioural’ category was much less suited to pattern processing. This is due to the

fact that patterns are defined in terms of their intent, rather than their implementation – in

other words, what makes it a design pattern is not intrinsic to the pattern itself, but in terms

of how that code is used by others. As an example, the Command pattern doesn’t have any

172 Chapter 11. Further work and conclusions

strict requirements in terms of what a command is; but the intent of the pattern when it is used

is clear. Additionally, the number of variations that can be used with the pattern (having an

abstract super-class, or an interface, or whether the method takes arguments or a state reference,

or whether undo functionality is included etc.) means that an implementation of the Command
could look almost like any code whatsoever. The only thing that would identify the pattern as

a command to another developer would be the names (e.g. Action or Command) or the name

of the method (e.g. execute() or run()). That is not to say that an analysis of these patterns

is not possible; for example, an analysis of how a set of classes interacts with a pattern may

provide a signature that could be used for identification purposes: however, the approach of

specifying a pattern as constraints on its implementation is unlikely to work without resulting

in many false positives.

Not all patterns can be represented in a way which is sufficiently unique to allow distinctions

to be made between related patterns, or to avoid generating a number of false positives. For

example, the Adapter and Decorator patterns are very similar in terms of their implementation;

it is only the intent that is different between the two. As a result, a number of the patterns could

not be defined in a way that is amenable to verification, and this is discussed in the analysis,

Section 9.6.

It is now possible to answer the original hypothesis; it is possible to represent patterns as

a set of constraints on the implementation of one or more Java classes, such that it is possible

to verify whether they realise a pattern correctly. It is not possible to do this for every pattern;

the more intent-based and less structure-based it is, the less likely that this approach will work.

However, the analysis of the different types of patterns suggests that smaller idiomatic fragments

of code or mini-patterns would be equally well suited for this kind of representation, and that

it is possible to build design patterns from these smaller pattern types. This has been shown

by building a pattern language (SPINE), and a proof tool (HEDGEHOG) that can be integrated

within an IDE, and a set of results from known design patterns in order to test the hypothesis.

Although this work focussed on Java (both as the implementation language and also as the

pattern language) there is nothing Java-specific about the processing that is done, so the same

techniques should be applicable to other pattern-hosting languages.

11.9. Summary 173

11.9 Summary

This chapter discussed some of the ways in which further work could be performed with

HEDGEHOG.

• Further analysis of design patterns: more could be investigated into the different types

of pattern (and mini-pattern) and whether variants are an interesting way of grouping

patterns

• Applicability other languages: to see if the approaches used in HEDGEHOG are Java-

specific, or whether they may be used in other languages (even if the implementation

cannot be)

• Integration with ESC/Java: to provide strong statements about implementation of Java

• Integration with IDEs and build tools: to allow developers to work with HEDGEHOG

more easily

• Automated searching or introduction of design patterns: to see if the approaches used

to model patterns in HEDGEHOG are applicable to searching detection or instantiation of

patterns in existing code bases

The conclusions that can be drawn from this work can be summarised as follows:

• Declarative specification: is well suited for verification, but could also be used for other

uses e.g. pattern creation or introduction

• Error messages: can be generated from failed proof trees by compacting the proof tree

to leave just the ‘interesting’ nodes, and messages that have been attached to the proof

tree can be displayed to the user

• Pattern categorisation: is often based on the categories from [GHJV95], but there are

more ways of categorising patterns than this

• Pattern variants: are neccesary, since there is more than one way to implement most

patterns. Any pattern specification or processing definition needs to take this into account,

and if possible, allow the end user to define their own variants or style of pattern

174 Chapter 11. Further work and conclusions

• Patterns as constraints: works for a number of different types of pattern, as long as there

is some structure and not too much intent that defines the pattern; this split is similar for

other types of pattern processing tools

• Lazy evaluation: is essential for proof systems that have a large environment where not

all of that environment is necessary for the correct operation of the proof itself, to cut

down on the amount of traffic between the proof engine and the system that is using it

• Mini-patterns: are smaller building blocks that can be used to assemble larger patterns,

or simply stand on their own (also called idioms or mini-transformations)

• Intent-based patterns: are difficult to define because they are often defined in terms of

how they are used rather than how they are implemented – and as such, do not work well

with the constraints on implementation

Appendix A

Glossary

artefact Part of a design pattern (method call, class signature, relationship) that is specified in

SPINE.

AST Abbreviation for Abstract Syntax Tree.

behavioural pattern A category in [GHJV95] that describes patterns that have a strong basis

in how methods execute, or how patterns are used to achieve a particular run-time effect.

compile-time error Problem raised during the compilation of a program.

conjunction A combination of boolean results ‘or’ed together. The result will be true iff there

is at least one true boolean result. See also disjunction.

connective A term which combines (normally two) boolean values into a single boolean value.

creational pattern A category in [GHJV95] that describes patterns that have a strong basis in

how classes are built or instantiated.

disjunction A combination of boolean results ‘and’ed together. The result will be true iff each

of the boolean results is true. See also conjunction.

false negative A pattern is recognised by HEDGEHOG, but where no pattern exists.

false positive A pattern is not recognised by HEDGEHOG, but where a pattern does exist.

first order logic A logic in which terms may be represented as variables, but where names of

terms themselves cannot be represented by a variable.

FOL Abbreviation for first order logic.

175

176 Appendix A. Glossary

function A term which can be evaluated to produce a result, such as a number, term or list.

goal A desired statement to be proven.

GoF Abbreviation for Gang of Four, the authors of [GHJV95].

HEDGEHOG The proof system that allows Java classes to be automatically verified against

patterns defined in SPINE.

higher order logic A logic in which both terms and functions of terms may be represented as

variables.

HOL Abbreviation for higher order logic.

iff Abbreviation for ‘if and only if.’

instance An individual entity of a specific class.

instantiate A class is instantiated to create a new instance, which in Java uses the new keyword

JVM Java Virtual Machine.

mini-pattern A small idiom that is not listed in [GHJV95] as a pattern, nor would be big

enough to be considered a full pattern. May be just the implementation of one or a couple

of methods.

pattern A common solution to a common object-oriented program.

predicate A logical term which is either true or false.

realises A class (or set of classes) realises a design pattern if the implementation of the class(es)

is a recognisable instance of the design pattern. This may also be known as implements,

but since this would conflict with Java’s interface implementation, a different term was

chosen.

rule A statement which defines a goal in terms of other (sub-)goals.

run-time error Problem raised during the execution of a program.

SPINE A logical language used to define patterns for use in HEDGEHOG.

structural pattern A category in [GHJV95] that describes patterns that have a strong basis in

relationships between classes.

177

sub-goal One of potentially many (sub-)goals, which when combined with a disjunction or

conjunction proves the parent goal.

term A statement in the SPINE language.

true negative HEDGEHOG correctly claims that no pattern exists.

true positive HEDGEHOG correctly claims that the pattern exists.

type-safe A program (or language) is type-safe if all uses of a particular expression are con-

sistent with the type of variable or argument. Typed languages, such as Java and C, are

type-safe languages.

unfound A specific pattern could not be found in a specific test set for testing.

unrepresentable A pattern could not be defined in SPINE, so could not be tested against any

pattern examples.

Appendix B

List of design patterns

This appendix contains a list of design patterns recognised by HEDGEHOG and the SPINE def-

inition associated with it. Where pattern realisations are found in the Java language, the names

of the classes are provided as reference.

The reader is assumed to be familiar with [GHJV95] and the description/purpose of each

pattern, so these are not shown. The section titles are based on the design pattern categories.

Some of the design patterns could not be represented in SPINE; the reasons for the individual

patterns are discussed below.

B.1 Creational patterns

Creational patterns are defined in [GHJV95] as patterns that result in the creation of new in-

stances, or manage the process for obtaining instances of classes.

B.1.1 Abstract Factory

The Abstract Factory (also known as Toolkit or simply Abstract Factory) allows a different

creational unit (factory) to be replaced with one that generates a family of related classes. In

Java, it is realised in the java.awt.Toolkit class.

There are four classes of participants in the Abstract Factory:

Abstract Factory The abstract super-type of the factory itself

Concrete Factory One (or more) concrete implementations of the factory

Abstract Product The generic product(s) that are created by the factory

179

180 Appendix B. List of design patterns

Concrete Product The specific product(s) that are created by the factory

Note that there may be variations; for example, the factory may just be the concrete factory

class, or the factory super-type does not need to be abstract. The SPINE definition is shown in

Figure B.1.

Figure B.1: Definition of the Abstract Factory pattern

realises(‘AbstractFactory’,[AF,AP]) :-
forAll(subclassesOf(AF),

CF.exists(subclassesOf(AP),
CP.realises(‘AbstractFactory2’,[AF,CF,AP,CP])

)
)

(* CF is a sub-type of AF and CP is a sub-type of AP,
such that CF generates CP *)

realises(‘AbstractFactory2’,[AF,CF,AP,CP]) :-
subtypeOf(CF,AF),
subtypeOf(CP,AP),
exists(methodsOf(AF),

M1.and([
typeOf(M1,AP),
isAbstract(M1)
exists(methodsOf(CF),

M2.and([
sameSignature(M1,M2),
typeOf(M2,AP),
instantiates(M2,CP),

]))
])).

B.1.2 Builder

The Builder cannot be represented in SPINE. The design pattern allows objects to be created by

using an external class and then configuring its attributes based on a defined set of methods/data.

This means that the pattern must do two things:

1. Create an instance of a class (possibly dynamically, or a specific sub-type based on con-

figured data)

B.1. Creational patterns 181

2. Configure the instance by setting up its instance variables appropriately

An example of a Builder in use may be creating an Appointment based on an external

vCal text file. The purpose of the Builder would be to parse the entries in the vCal file and

construct new Appointment instances, such that there needs to be no dependency between the

vCal format and the Appointment class.

Although SPINE predicates could be used to determine when an instance of Appointment

is created, it could not determine when the attributes were configured based on external data,

because the scope of such a builder would remain very high. Furthermore, a simplistic definition

of the pattern just detecting instantiation would result in a large number of false positives for

the pattern; in effect, all it would be searching for would be instantiations of a named class.

This is unlikely to provide useful for a developer, and combined with SPINE’s inability to detect

the ‘correct’ configuration of the instance, the net effect is that the Builder pattern cannot be

represented in SPINE.

B.1.3 Factory Method

The Factory Method is one that is used to instantiate an instance by calling a method. It is im-

plicitly used by the Abstract Factory, and represented in SPINE as a predicate instantiates.

For completeness with other patterns, a realises predicate allows classes to implement a fac-

tory method.

When the factory method is static, and creates an instance of itself, it is called a Static Con-
structor, and whilst it is not a pattern defined in [GHJV95] it is provided here as a shorthand to

be able to verify it. Similarly, the mini-pattern Non Instantiable is not listed in [GHJV95] but

crops up so often it is worth noting independently.

Both implementations are shown in Figure B.2.

Figure B.2: Definition of the Factory Method and Static Constructor patterns

realises(‘FactoryMethod’,[F,P]) :-
instantiates(F,P).

182 Appendix B. List of design patterns

B.1.4 Prototype

The Prototype allows objects to be copied (or cloned) from a default value. Section 9.6.5.1

discusses in more detail the problems in representing a Prototype as defined in Figure B.3.

Figure B.3: Definition of the Prototype pattern

realises(‘Prototype’,[C]) :-
implements(C,‘java.lang.Cloneable’).

B.1.5 Singleton

The Singleton pattern allows a single instance of a class to exist at one time. There are however,

different variants that allow a singleton to be defined as shown in Figure B.4.

B.2 Structural patterns

Structural patterns define how classes are related to one-another in terms of inheritance, associ-

ations, or in the way that they are managed.

B.2.1 Adapter

The Adapter pattern allows classes of two different types to communicate with one another.

In essence, the Adapter is a set of one (or more) methods delegated from one type to another,

often with some conversion of the methods built-in. In this case, the ‘Adapter’ needs a class to

communicate with (called an ‘Adaptee’) and then delegates some method calls from ‘Adapter’

through. However, not all methods will be delegated; the specific calls that are or are not

delegated are up to the individual developer coding the adapter class. As such, the SPINE

statement has a relatively weak requirement that at least one method must be delegated, as

shown in Figure B.5.

B.2.2 Bridge

The Bridge can be defined as a set of adapter classes on an object hierarchy, such that there are

mappings between the two inheritance trees. The bridge class and peer class must be related

B.2. Structural patterns 183

Figure B.4: Definition of the Singleton pattern

realises(‘Singleton’,[C]) :- or([
realises(‘PublicSingleton’,[C]),
realises(‘PrivateSingleton’,[C]),
realises(‘LazySingleton’,[C])

]).
realises(‘PublicSingleton’,[C]) :-

realises(‘NonInstantiable’,[C]),
forAll(constructorsOf(C),Cn.isPrivate(Cn)),
exists(fieldsOf(C),

F.and([isStatic(F),isPublic(F),isFinal(F),
typeOf(F,C),nonNull(F)])

).
realises(‘PrivateSingleton’,[C]) :-

realises(‘NonInstantiable’,[C]),
exists(fieldsOf(C),

F.and([isStatic(F),isPrivate(F),
typeOf(F,C),nonNull(F)])

).
realises(‘LazySingleton’,[C]) :-

realises(‘NonInstantiable’,[C]),
exists(fieldsOf(C),

F.and([isStatic(F),isPrivate(F),
typeOf(F,C),exists(methodsOf(C),

M.lazyInstantiates(M,F))
])

).

Figure B.5: Definition of the Adapter pattern

realises(‘Adapter’,[A,AE]) :-
exists(fieldsOf(A),F.typeOf(F,AE),

exists(methodsOf(A),
M.exists(methodsOf(AE),

D.invokes(M,D,F)))).

184 Appendix B. List of design patterns

in some way that may be defined on a per-class basis, or may be due to casting to a particular

type. For example the Button is related to ButtonPeer, but not to LabelPeer. The SPINE

definition is shown in Figure B.6.

Figure B.6: Definition of the Bridge pattern

realises(‘Bridge’,[C,Peer]) :-
forAll(subclassesOf(C),

X.exists(subclassesOf(Peer),
P.and([related(X,P),

realises(‘Adapter’,[X,P])]))
).

B.2.3 Composite

The Composite pattern suggests there is a component class, and a container class, and that the

latter has the ability to store many instances of the former. Often, the container is also a sub-type

of a component which allows nesting, but this is not strictly necessary for the pattern, as shown

in Figure B.7. In Java, the most obvious types are the Container and Component classes from

the ‘java.awt’ package, but additionally any of the data types (such as ArrayList) are also

representations of the Composite pattern; though in this case, the component is Object.

B.2.4 Decorator

Like the Adapter pattern (Section B.2.1), the Decorator pattern can be defined in terms of its

relationship to a parent super-type and methods delegated. In this case, the ‘Decorator’ is a

sub-type of ‘Parent’ (which it is expected to decorate). For each method defined in the parent

type, the decorator is expected to delegate to the original implementation at some point.

In most cases, this will give a reasonable match for the Decorator pattern. For example, the

java.util.Collections class provides an implementation for synchronised access to a

java.util.List that decorates the list implementation with a single-threaded synchronisa-

tion point. However, the java.util.Collections class also provide a method to wrap a

list with an unmodifiable decorator, that explicitly does not delegate the add or remove meth-

ods. This is still a valid use of the Decorator pattern but one which this definition would not

match.

B.2. Structural patterns 185

Figure B.7: Definition of the Composite pattern

realises(‘Composite’,[Component,Container]) :-
or(

typeOf(Component,Container),
typeOf(Container,Component)

),
navigable(Container,Component),
exists(methodsOf(Container),M.and([

prefix(M,‘add’),
exists(argsOf(M),A.and([
adds(M,A,Container),
typeOf(A,Component)]))])),

exists(M,methodsOf(Container),M.and([
prefix(M,‘remove’),
exists(argsOf(M),A.and([
removes(M,A,Container),
typeOf(A,Component)]))])),

exists(M,methodsOf(Container),M.and([
prefix(M,‘get’),
typeOf(M,Component)]).

Figure B.8: Definition of the Decorator pattern

realises(‘Decorator’,[Parent,Decorator]) :-
subtypeOf(Decorator,Parent),
exists(fieldsOf(Decorator),P.and([

typeOf(P,Parent),
forAll(methodsOf(Parent),

PM.exists(methodsOf(Decorator),
DM.invokes(PM,DM,P)))

])
).

186 Appendix B. List of design patterns

B.2.5 Façade

As discussed in Section 9.6.1.3, the Façade is a design pattern that does not have an easy-to-

capture representation amenable to SPINE. This is due to the fact that the Façade is largely

defined by the way that the classes are used, as opposed to defined; this means that SPINE’s

weak semantic analysis is not powerful enough to define a Façade.

B.2.6 Flyweight

The Flyweight pattern provides a set of predefined instances that can be used (shared) across

multiple classes, to save creating new instances. In Java, these are seen by the String and

Color classes. The pattern definition is shown in Figure B.9.

Figure B.9: Definition of the Flyweight pattern

realises(‘Flyweight’,[Element]) :-
realises(‘Flyweight2’,[Element,Element]).

realises(‘Flyweight2’,[Pool,Element]) :-
or([

realises(‘StaticFinalFlyweight’,[Pool,Element]),
realises(‘ImmutableFlyweight’,[Pool,Element]),

]).
realises(‘StaticFinalFlyweight’,[Pool,Element]) :-

exists(fieldsOf(Pool),
F.and([

isStatic(F),
isFinal(F),
nonNull(F),
typeOf(F,Element)

]))
realises(‘ImmutableFlyweight’,[Pool,Element]) :-

realises(‘Immutable’,Element),
realises(‘Container’,Pool).

B.2.7 Proxy

The Proxy pattern allows one object to proxy messages to another object, possibly involving

doing something in the process (logging, security etc.) In Java, the UnmodifiableCollection

B.3. Behavioural patterns 187

provides a mechanism to proxy methods from one type to another, but does not proxy the

writeable methods; hence it allows the underlying collection to remain read-only.

Unlike Adapter, the Proxy often shares a common super-type between the subject and the

proxy itself. The representation is shown in Figure B.10

Figure B.10: Definition of the Proxy pattern

realises(‘Proxy’,[Subject,Proxy]) :-
sameSupertype(Subject,Proxy),
exists(fieldsOf(Proxy),F.and([

typeOf(F,Subject),
exists(methodsOf(Proxy),

M.exists(methodsOf(Subject),
D.invokes(M,D,F)))])).

B.3 Behavioural patterns

Behavioural design patterns put constraints on how an instance may behave at run-time. Al-

though HEDGEHOG can only work with a limited set of weak semantic constraints, it is still

possible to verify most of the key patterns.

B.3.1 Unrepresentable patterns

There are several behavioural patterns that cannot be represented in SPINE because the meaning

of the pattern is very dependent on how (and where) it is used, or has dependencies on the

semantic interpretation of methods. These patterns are Command, Chain of Responsibility,

Interpreter, Mediator and Memento. Since SPINE only works at a weak semantic level, it

cannot reason about patterns that rely on specific behaviours outside of its built-in predicate set.

A more complete discussion is presented in Section 9.6.1.

B.3.2 Immutable

The Immutable pattern allows a developer to force a read-only view of an object by preventing

the instance fields from being modified after they have been initialised. An example of an

Immutable object in Java is the String class. The definition is shown in Figure B.11.

188 Appendix B. List of design patterns

Figure B.11: Definition of the Immutable pattern

realises(‘Immutable’,[C]) :-
forAll(fieldsOf(C),

F.or([isStatic(F),isFinal(F),
and([hasModifier(F,private),

forAll(methodsOf(C),M.not(modifies(M,F)))
])

])
).

B.3.3 Iterator

The Iterator in Java is provided by the Java types Iterator and Enumeration. SPINE is

capable of defining types in terms of these elements, but not of verifying the semantic correct-

ness of what iteration means. As with Prototype, it is possible to determine at a very loose level

whether something is an Iterator by determining if it implements the standard Java interfaces.

However, this will therefore have the possibility of admitting false negatives; for example, it is

possible to realise the Iterator design pattern without using the standard built-in types, but

HEDGEHOG will not be able to recognise it (as discussed in Section 9.6.5).

Figure B.12: Definition of the Iterator pattern

realises(‘Iterator’,[C]) :- or([
implements(C,‘java.util.Enumeration’),
implements(C,‘java.util.Iterator’)

]).

B.3.4 Observer

The Observer is used to allow a number of instances to synchronise with each other. This is

achieved by having a set of observers maintained by the event source, such that when something

occurs, the observers are subsequently notified.

In Java, this is seen in the Observer and Listener interfaces. The SPINE definition is

shown in Figure B.13.

B.3. Behavioural patterns 189

Figure B.13: Definition of the Observer design pattern

realises(‘Observer’,[Observable,Listener]) :-
navigable(Observable,Listener),
exists(methodsOf(Observable),M.and([

prefix(M,‘add’),
exists(argsOf(M),A.and([
adds(M,A,Observable),
typeOf(A,Listener)]))])),

exists(methodsOf(Observable),M.and([
prefix(M,‘remove’),
exists(argsOf(M),A.and([
removes(M,A,Observable),
typeOf(A,Listener)]))])),

exists(methodsOf(Observable),
M.exists(methodsOf(Listener),

D.invokes(M,D))).

B.3.5 State

The State pattern allows an object to change its behaviour based on an internal state object.

Methods are delegated to the state object, and when the state needs to change, the instance

field is replaced with a new value. This does not directly occur in Java, but can be defined in

Figure B.14.

B.3.6 Template Method

The Template Method pattern allows a placeholder method to be provided in a super-type

that is then defined in the sub-type. The super-type invokes the template method which is thus

defined in the subclass. The definition in Figure B.15 shows how this can be recognised.

B.3.7 Visitor

The Visitor pattern is used to add behaviour to a class hierarchy without having access to the

hierarchy’s source code. Each element in the hierarchy corresponds to a unique visit method in

the visitor interface, and many different visitors can then process the same hierarchy.

190 Appendix B. List of design patterns

Figure B.14: Definition of the State pattern

realises(‘State’,[C,State]) :-
isAbstract(State),
exists(fieldsOf(C),

F.and([
typeOf(F,State),
nonNull(F),
forAll(methodsOf(State),

Ms.exists(methodsOf(C),
Mc.invokes(Mc,Ms)

)
)

])
).

Figure B.15: Definition of the Template Method pattern

realises(‘TemplateMethod’,[C]) :-
isAbstract(C),
exists(methodsOf(C),

AM.exists(methodsOf(C),CM.and([
isAbstract(AM),
not(isAbstract(CM),
invokes(CM,AM)

)]))).

Figure B.16: Definition of the Visitor pattern

realises(‘Visitor’,[Visitor,AST]) :-
isAbstract(Visitor),
forAll(subclassesOf(AST),

C.exists(methodsOf(Visitor),
M.exists(argsOf(M),A.

typeOf(A,C)))).

B.4. Mini-patterns 191

B.4 Mini-patterns

These mini-patterns are not defined in [GHJV95] but are commonly repeated by many of the

pattern definitions. In some cases, they are used by developers as patterns in their own right

(they are repeated to solve a common problem); however, some may see these patterns as ‘too

small’ to be called patterns in their own right. Hence the term ‘mini-pattern’ is used to describe

these patterns.

It could be argued that Factory Method is an example of a mini-pattern, rather than a fully

fledged pattern. However, it is listed in [GHJV95] as a pattern, and because of this has become

accepted as a first-class citizen in the pattern community.

B.4.1 Static Constructor

The Static Constructor mini-pattern uses a static method to obtain an instance, as opposed to

using a constructor. It is an adaptation of the basic Factory Method since it also prevents the

constructor being used. The definition is shown in Figure B.17.

Figure B.17: Definition of the Static Constructor mini-pattern

realises(‘StaticConstructor’,[C]) :-
realises(‘NonInstantiable’,[C]),
exists(methodsOf(C),M.and(

isStatic(M),
realises(‘FactoryMethod’,[M,C])

).

B.4.2 Non Instantiable

The Non Instantiable mini-pattern is used to prevent a type being instantiated. It’s a com-

mon requirement in patterns such as Singleton and Factory Method, and as such is shown in

Figure B.18.

B.4.3 Lazy instantiation

Lazy instantiation is a technique common to Java programmers, and is a low-level programming

idiom that can be used to instantiate an instance field on the first invocation, and thereafter return

192 Appendix B. List of design patterns

Figure B.18: Definition of the Non Instantiable mini-pattern

realises(‘NonInstantiable’,[C]) :- or([
and([exists(constructorsOf(C),true),

forAll(constructorsOf(C),Cn.isPrivate(Cn))]),
isAbstract(C)]).

it.

Because of its high dependency of Java implementation, this is presented as a built-in pred-

icate in SPINE. However, it may be desirable for a developer to ask HEDGEHOG to verify that

the lazy instantiation works as expected, so a mini-pattern is provided to allow a developer to

access the SPINE built-in predicate, and is shown in Figure B.19.

Figure B.19: Definition of the Lazy Instantiation mini-pattern

realises(‘LazyInstantiation’,[M,F]) :-
lazyInstantiation(M,F).

Appendix C

List of SPINE functions and predicates

This chapter presents a list of the functions and predicates used in the definitions of patterns

throughout this thesis and in Appendix B.

C.1 Functions

SPINE functions are used to directly interact with the Java source stored in HEDGEHOG’s

Java AST cache. The functions are built-in directly into HEDGEHOG, and cannot be extended

through SPINE; however, they may be developed in Java and installed as part of HEDGEHOG’s

core abilities. It is expected that for most pattern definitions, the built-in functions and predi-

cates will be enough to extend HEDGEHOG by simply writing derived predicates.

argsOf(M) is a set of arguments of method M

constructorsOf(T) is a set of constructors that are defined in T

fieldsOf(T) is a set of fields that are defined in T

load(File) loads the SPINE definition file into memory – note that this causes further rules to

be added to the rule library and does not have a specific value

methodsOf(T) is a set of methods that are defined in T

subclassesOf(C) is a set of subclasses of C

193

194 Appendix C. List of SPINE functions and predicates

C.2 Predicates

SPINE predicates are used to determine if a certain property or feature holds. Unlike functions,

the predicates may be built-in or derived. A built-in predicate is implemented, like a built-in

function, using Java classes and internally defining it within HEDGEHOG. However, unlike

functions, predicates may be added externally to the core of HEDGEHOG by writing SPINE

rules, which then define the derived predicates.

All of the pattern definitions in HEDGEHOG are derived predicates called ‘realises’, al-

though in the derivation of those predicates, other derived and built-in predicates, and built-in

functions are used.

C.2.1 Built-in

adds(M,Type,Collection) the method M adds an instance of Type to Collection

exists(Set,X .P(X)) at least one X in Set, then P(X) holds

extends(C,P) class C extends (is a subclass of) P

forAll(Set,X .P(X)) for every X in Set, then P(X) holds

hasModifier(X ,M) X has modifier M

implements(C,I) class C implements interface I

instantiates(M,T) method M creates an instance of T and returns it, although the method may

have a declared return type of T or one of its super-types

invokes(Method,Delegate) code in Method invokes the method called Delegate

invokes(Method,Delegate,Field) code in Method invokes Delegate on Field

isClass(T) T is a class

isConstant(E) E does not change value

isSideEffectFree(E) E does not change the object’s state

isInterface(T) T is an interface

isLiteral(E) E is a literal Java expression

C.2. Predicates 195

lazyInstantiates(M,F) M lazily instantiates F and returns it

modifies(M,F) method M modifies the value of field F

navigable(C1,C2) it is possible to navigate between C1 and C2

named(M,name) method/field M is called name

nonNull(F) the field F is non-null (i.e. it has been assigned an instance, either in the default

field initialisation or in the constructor)

prefix(M,name) method/field M begins with the prefix name

related(C1,C2) the classes are related to each other, for example, by referencing the type in the

source file

removes(M,Type,Collection) method M removes an instance of Type from Collection

returns(M,F) method M returns the value of field F

sameSignature(M1,M2) method M1 has the same signature as method M2

sameSupertype(C1,C2) class C1 has the same supertype as class C2

subtypeOf(X ,T) X is a subtype of T (or equal to T)

typeOf(F ,T) F is a field of type T

typeOf(M,T) M is a method that has a declared return type of T

C.2.2 Derived

and([A,B,C,...)] the conjunction of A,B,C...

implies(A,B) the logical equivalent of or(not(A),B)

isAbstract(X) X is a field, method, or type that is abstract – uses hasModifier

isFinal(X) X is final – uses hasModifier

isFriendly(X) X is friendly – uses hasModifier

isPrivate(X) X is private – uses hasModifier

196 Appendix C. List of SPINE functions and predicates

isProtected(X) X is protected – uses hasModifier

isPublic(X) X is public – uses hasModifier

isStatic(X) X is static – uses hasModifier

not(A) the negation of A

or([A,B,C,...)] the disjunction of A,B,C...

realises(P,Set) the participants in Set realise the design pattern P predicate

Bibliography

[AACGJ01] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Narendra Jussien.
Instantiating and detecting design patterns: Putting bits and pieces together. In
16th IEEE conference on Automated Software Engineering (ASE’01), pages 166–
173. IEEE Computer Society Press, 11 2001.

[AISJ77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, and Max Jacobson. A
pattern language. Oxford University Press, 1977.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University Press,
1979.

[ASF] Apache Software Foundation ASF. Apache Byte-Code Engineering Library.
http://jakarta.apache.org/bcel/.

[Ban98] Jagdish Bansiya. Automating design-pattern identification. Dr Dobb’s Journal,
June 1998. http://www.ddj.com/articles/1998/9806/9806a/9806a.htm?
topic=patterns.

[Bar76] J. Barwise. Handbook of Mathematical Logic. Elsevier Science Pub Co, 1976.
ISBN 0444863885.

[BBS01] Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of Java design
patterns. In ASE 2001: Proceedings of the 16th IEEE International Conference on
Automated Software Engineering, pages 324–327. IEEE Computer Society Press,
November 2001. http://www.ed.ac.uk/∼stark/autvjd.html.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change (XP Series).
Addison-Wesley, 1999.

[Bec02] Kent Beck. Test Driven Development. Addison-Wesley Professional, 2002.

[Ble00] Alex Blewitt. A formal catalogue of design patterns. Technical Report Blue book
note 1373, Division of Informatics, Edinburgh University, 7 2000.

[Blo01] Joshua Bloch. Effective Java. Java Series. Addison Wesley, 2001.

[BMZ00] Alan Bundy, Johanna D. Moore, and Claus Zinn. An intelligent tutoring system
for induction proofs. In E. Melis, D. Scott, et al., editors, CADE-17 Workshop on
Automated Deduction in Education, pages 4–13, Pittsburgh, USA, June 2000.

197

http://jakarta.apache.org/bcel/
http://www.ddj.com/articles/1998/9806/9806a/9806a.htm?topic=patterns
http://www.ddj.com/articles/1998/9806/9806a/9806a.htm?topic=patterns
http://www.ed.ac.uk/~stark/autvjd.html

198 Bibliography

[Bro96] K. Brown. Design reverse-engineering and automated design pattern detection
in Smalltalk. Technical Report TR-96-07, Unviersity of Illinois at Urbana-
Champaign, 1996.

[BSvH+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and Alan
Smaill. Rippling: a heuristic for guiding inductive proofs. In Journal of Artificial
Intelligence, volume 62, pages 185–253, 1993.

[Bus96] Frank Buschmann. Pattern-oriented Software Architecture: A System of Patterns.
Wiley, April 1996.

[BvHSH90] Alan Bundy, Frank van Harmelen, Alan Smaill, and Christian Horn. The oyster-
clam system. In M.E. Stickel, editor, Proceedings of the 10th International
Conference on Automated Design, pages 647–648. Springer-Verlag, 1990.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathematics
with the Nuprl Development System. Prentice-Hall, NJ, 1986.

[CHWC05] Andy Clement, George Harley, Matthew Webster, and Adrian Colyer. Eclipse
AspectJ: Aspect-Oriented Programming. Addison Wesley, 2005.

[Coh97] R. Cohen. The Defensive Java Virtual Machine, 1997. http://www.cli.com/
software/djvm/.

[Cop95] Jim Coplien. Pattern Languages of Program Design 1. Pattern Languages of
Program Design. Addison Wesley, June 1995.

[DE97] Sophia Drossopoulou and Susan Eisenbach. Java is type safe — probably. Lecture
Notes in Computer Science, 1241:389, 1997. http://citeseer.nj.nec.com/
drossopoulou96java.html.

[DLNS98] David Detlefs, K. Rustan Leino, Greg Nelson, and James Saxe. Extended static
checking. Technical Report 159, Systems Research Center, Digital Equipment
Corporation, December 1998.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. In Communications of the ACM, volume 22, pages 465–476, August
1979.

[DV00] Sophia Drossopoulou and Tanya Valkevych. Java exceptions throw no
surprises. Technical report, Department of Computing, Imperial College of
Science, Technology and Medicine, 3 2000. http://www-dse.doc.ic.ac.uk/
projects/slurp/pubs.html.

[DVE00] Sophia Drossopoulou, Tanya Valkevych, and Susan Eisenbach. Java type
soundness revisited. Technical report, Department of Computing, Imperial
College of Science, Technology and Medicine, 11 2000. http://www-dse.doc.
ic.ac.uk/projects/slurp/pubs.html.

http://www.cli.com/software/djvm/
http://www.cli.com/software/djvm/
http://citeseer.nj.nec.com/drossopoulou96java.html
http://citeseer.nj.nec.com/drossopoulou96java.html
http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html
http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html
http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html
http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html

Bibliography 199

[Ede98] Amnon Eden. LePUS - a declarative pattern specification language. Technical
report, Tel Aviv University, 1998. http://www.cs.concordia.ca/∼faculty/
eden/lepus/.

[Ede00] Amnon Eden. Precise Specification of Design Patterns and Tool Support in Their
Application. PhD thesis, Department of Computer Science, Tel Aviv University,
2000. http://www.eden-study.org.

[EGY97] Amnon Eden, Joseph Gil, and Amiram Yehudai. Precise specification and
automatic application of design patterns. In 12th Annual Conference of Automated
Software Engineering, 1997.

[Ehm] Dirk Ehms. Patternbox eclipse tool. http://www.patternbox.com.

[EI04] Bill J. Ellis and Andrew Ireland. An integration of program analysis and
automated theorem proving. In E.A. Boiten, J. Derrick, and G. Smith, editors,
Proceedings of the 4th International Conference on Integrated Formal Methods
(IFM-04), number 2999 in Lecture Notes in Computer Science. Springer Verlag,
2004.

[FLN+02] Cormac Flanagan, K. Rustan M. Leino, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI), June 2002. http://www.hpl.hp.com/personal/
Mark Lillibridge/ESCOverview/revised-p25-leino.pdf.

[FMvW97] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-
oriented patterns. In Proceedings of ECOOP 97, pages 472–498, 1997.

[Fow00] Martin Fowler. Refactoring: Improving the design of existing code. Object
Technology Series. Addison-Wesley, 2000.

[FS03] Martin Fowler and Kendall Scott. UML Distilled. Addison-Wesley Professional,
September 2003.

[GB] Erich Gamma and Kent Beck. JUnit cookbook. http://www.junit.org.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of reusable object-oriented software. Professional Computing
Series. Addison Wesley, 1995. ISBN 0-201-63361-2.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996. http://java.sun.com/docs/books/jls/html/index.html.

[GR83] Adele J. Goldberg and David Robson. SmallTalk-80: The Language and its
Implementation. Addison Wesley, Reading, MA, 1983.

[Gru97] Dennis Gruijs. A framework of concepts for representing object-oriented design
patterns. Technical Report INF-SCR-97-28, Utrecht University, November 1997.

http://www.cs.concordia.ca/~faculty/eden/lepus/
http://www.cs.concordia.ca/~faculty/eden/lepus/
http://www.eden-study.org
http://www.patternbox.com
http://www.hpl.hp.com/personal/Mark_Lillibridge/ESCOverview/revised-p25-leino.pdf
http://www.hpl.hp.com/personal/Mark_Lillibridge/ESCOverview/revised-p25-leino.pdf
http://www.junit.org
http://java.sun.com/docs/books/jls/html/index.html

200 Bibliography

[Gru98] Dennis Gruijs. A Framework of Concepts for Representing Object-Oriented
Design and Design Patterns. PhD thesis, Department of Computer Science,
Utrecht University, August 1998.

[HHF+97] Peter Heuchert, Frederik Hæsbrouck, Norio Furukawa, Ueli Wahli, Christian
Michel, and Mike Cowlishaw. Creating Java Applications using NetRexx.
Number SG24-2216-00 in IBM Redbooks. IBM, September 1997. http://www.
redbooks.ibm.com/redbooks/SG242216.html.

[HHJT98] Ulrich Hensel, Marieke Huisman, Bart Jacobs, and Hendrik Tews. Reasoning
about classes in object-oriented languages: Logical models and tools. Lecture
Notes in Computer Science, 1381:105–121, 1998.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. In
Communications of the ACM, volume 12(10), pages 576–580,583, October 1969.

[Hor88] Christian Horn. The Oyster proof development system, 1988.

[IB96] Andrew Ireland and Alan Bundy. Productive use of failure in inductive proof. In
Journal of Automated Reasoning, volume 16, pages 79–111. Kluwer Academic,
1996.

[Jav97] Java Beans specification. Internet, July 1997. http://www.javasoft.com/
beans/docs/spec.html.

[Joh99] Kim Howard Johnson. The First 28 Years of Monty Python. St. Martin’s Press,
11 1999.

[JP00] Bart P. F. Jacobs and Erik Poll. A logic for the Java Modeling Language
JML. Technical Report CSI-R0018, Computing Science Institute, University
of Nijmegen, December 2000. http://www.cs.kun.nl/csi/reports/info/
CSI-R0018.html.

[JP03] Bart Jacobs and Erik Poll. Java Program Verification at Nijmegen:
Developments and Perspective. Technical Report NIII-R0318, University of
Nijmegen, Netherlands, 2003. http://www.cs.ru.nl/research/reports/
info/NIII-R0318.html.

[JvdBH+98] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Ulrich Hensel, and
Hendrik Tews. Reasoning about Java Classes. In Object-Oriented Programming
Systems, Languages and Applications, pages 329–340. ACM Press, 1998.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moor, editors. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, 1988. ISBN: 0-13-110362-8.

http://www.redbooks.ibm.com/redbooks/SG242216.html
http://www.redbooks.ibm.com/redbooks/SG242216.html
http://www.javasoft.com/beans/docs/spec.html
http://www.javasoft.com/beans/docs/spec.html
http://www.cs.kun.nl/csi/reports/info/CSI-R0018.html
http://www.cs.kun.nl/csi/reports/info/CSI-R0018.html
http://www.cs.ru.nl/research/reports/info/NIII-R0318.html
http://www.cs.ru.nl/research/reports/info/NIII-R0318.html

Bibliography 201

[Kra98] R. Kramer. iContract - The Java Design by Contract Tool. In Proceedings of the
Technology of Object Oriented Languages and Systems. IEEE Computer Society,
1998.

[LCSV96] Helen Lowe, Andrew Cumming, Michæl Smyth, and Alison Varey. Lessons from
experience: Making theorem provers more co-operative. In Second International
Workshop on User Interfaces for Theorem Provers, pages 67–74, July 1996.
http://citeseer.ist.psu.edu/123678.html.

[LD97] Helen Lowe and David Duncan. XBarnacle: Making theorem provers more
accessible. In Conference on Automated Deduction, pages 404–407, 1997.
http://citeseer.ist.psu.edu/lowe97xbarnacle.html.

[Lei97] K. Rustan Leino. Ecstatic: An object-oriented programming language with
axiomatic semantics. In 4th International Workshop on Foundations of Object
Oriented Languages, January 1997.

[LK98] Anthony Lauder and Stuart Kent. Precise visual specification of design patterns.
In Proceedings of the European Conference on Object-Oriented Programming.
LNCS, July 1998.

[LNS00] K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user’s
manual. Technical Report 2000-002, Compaq Systems Research Center, October
2000. http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/
abstracts/src-tn-2000-002.html.

[LS97] K. Rustan M. Leino and Raymie Stata. Checking object invariants.
Technical Report 1997-007, DEC Systems Research Center, January
1997. http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/
abstracts/src-tn-1997-007.html.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1996. http://java.sun.com/docs/books/vmspec/html/index.
html.

[Mei96] Marco Meijers. Tool support for object-oriented design patterns. Master’s thesis,
Utrecht University, 1996. INF-SCR-96-28.

[Mey99] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1999.

[Mey02] Bertrand Meyer. Design by Contract. Prentice Hall, 2002.

[MLMN99] Bob Maatta, Leonardo Llames, Jennifer Maynard, and Mohammad Omar
Nishtar. Building AS/400 Applications with Java. Number SG24-2163-02
in IBM Redbooks. IBM, 1999. http://www.redbooks.ibm.com/redbooks/
SG242163.html.

[Moo93] Johanna D. Moore. What makes human explanations effective? In Proceedings
of the Fifteenth Annual Meeting of the Cognitive Science Society, Hillsdale, NJ,
1993. Lawrence Erlbaum Associates.

http://citeseer.ist.psu.edu/123678.html
http://citeseer.ist.psu.edu/lowe97xbarnacle.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-2000-002.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-2000-002.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-007.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-007.html
http://java.sun.com/docs/books/vmspec/html/index.html
http://java.sun.com/docs/books/vmspec/html/index.html
http://www.redbooks.ibm.com/redbooks/SG242163.html
http://www.redbooks.ibm.com/redbooks/SG242163.html

202 Bibliography

[Nel80] Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford
University, 1980.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is type-safe —
definitely. In Proceedings of the 25th ACM Symposium on Principles of
Programming Languages, pages 161–170. ACM Press, New York, 1998.
http://isabelle.in.tum.de/Bali/papers/POPL98.html.

[NvOP02] Tobias Nipkow, David von Oheimb, and Cornelia Puscha. microJava: Embedding
a programming language in a theorem prover. In Foundations of Secure
Computation. IOS Press, January 2002. http://isabelle.in.tum.de/
verificard/.

[OC00] Mel Ó Cinnéide. Automated Application of Design Patterns: A Refactoring
Approach. PhD thesis, University of Dublin, Trinity College, October 2000.

[OCN99] Mel Ó Cinnéide and Paddy Nixon. A methodoloy for the automated introduction
of design patterns. In Proceedings of the International Conference on Software
Maintenance, Oxford, September 1999.

[Ohe01] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety
and Hoare Logic. PhD thesis, Technische Universität München, 2001. http:
//www4.in.tum.de/∼oheimb/diss/.

[OJ90] William Opdyke and Ralph Johnson. Refactoring: an aid in designing
application frameworks and evolving object-oriented systems. In Proceedings
of Symposium on Object-Oriented Programming Emphasizing Practical
Applications (SOOPPA), September 1990.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, 1992. ftp://st.cs.uiuc.edu/pub/papers/
refactoring/opdyke-thesis.ps.Z.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[Par] Terrence Parr. Antlr specification. Web. http://www.antlr.org.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

[PC00] Michæl P. Plezbert and Ron K. Cytron. Recognition and verification of
design patterns. Technical Report 00-01, Department of Computer Science,
Washington University in St. Louis, January 2000. http://www.cs.wustl.edu/
cs/techreports/2000/wucs-00-01.ps.Z.

http://isabelle.in.tum.de/verificard/
http://isabelle.in.tum.de/verificard/
http://www4.in.tum.de/~oheimb/diss/
http://www4.in.tum.de/~oheimb/diss/
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
http://www.antlr.org
http://www.cs.wustl.edu/cs/techreports/2000/wucs-00-01.ps.Z
http://www.cs.wustl.edu/cs/techreports/2000/wucs-00-01.ps.Z

Bibliography 203

[Pus99] Cornelia Pusch. Proving the soundness of a Java bytecode verifier specification
in Isabelle/HOL. Lecture Notes in Computer Science, 1579:89–103, 1999. http:
//citeseer.nj.nec.com/pusch99proving.html.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk. In
Theory and Practice of Object Systems, volume 3, 1997.

[Rig03] Roger Riggs, editor. Programming Wireless Devices with the Java2 Platform
Micro Edition. Addison-Wesley, June 2003. ISBN: 0321197984.

[SLU] SLURP. Sound languages underpin reliable programming. http://www-dse.
doc.ic.ac.uk/projects/slurp/index.html.

[SM01] Stephen Stelting and Olav Maassen. Applied Java patterns. Java series. Prentice
Hall, December 2001.

[Sym97] Donald Syme. Proving Java type soundness. Technical Report 427, University of
Cambridge, Computer Laboratory, June 1997.

[Sym98] Donald Syme. Declarative Theorem Proving for Operational Semantics. PhD
thesis, University of Cambridge, Computer Laboratory, 1998.

[TB01] Lance Tokuda and Don Batory. Evolving object-oriented designs with
refactorings. In Automated Software Engineering, pages 89–120, 2001.

[Tok99] Lance Tokuda. Evolving Object-Oriented Designs with Refactorings. PhD thesis,
The University of Texas at Austin, December 1999.

[Vli96] John Vlissides. Pattern Languages of Program Design 2. Pattern Languages of
Program Design. Addison Wesley, June 1996.

[Vli98] John Vlissides. Pattern Hatching: Design Patterns Applied. Software Pattern
Series. Addison Wesley, July 1998.

[Win93] Glynn Winskel. The formal semantics of programming languages. MIT Press,
February 1993.

[WK03] Jos Warmer and Anneke Kleppe. Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Professional, August 2003.

http://citeseer.nj.nec.com/pusch99proving.html
http://citeseer.nj.nec.com/pusch99proving.html
http://www-dse.doc.ic.ac.uk/projects/slurp/index.html
http://www-dse.doc.ic.ac.uk/projects/slurp/index.html

Index

Abstract Factory, see Factory
Adrian Jackson, iv
Alan Bundy, iv
ambiguous, 162
Amy Blewitt, iv
Andrew Ireland, iv
annotation, 152
anonymous inner class, 74
antlr, 29, 32
applicable, 78, 78
Appointment type, 181
ArrayList type, 184
artefact, 18, 20, 39, 39, 155, 175
AS/400, 7
Aspect Oriented Programming, 15
AST, 27, 175, 193

bag, 84
Bali, 10, 12, 43
behavioural, 175
boom, 7
built-in, 68, 194
Button type, 184
ButtonPeer type, 184
byte-code, 7, 70, 70

C, 7, 11, 50
C++, 12, 48, 49, 124, 129, 141
CCSL, 12, 12
circular reference, see reference, circular
class model, 152, 153, 165, 166
coalgebra, 12, 13
collaboration, 20
Color type, 186
Compaq Systems Research Center, see HP SRC

Classic
compile-time error, 175
complete, 76

complexity, 88–90
Component type, 184
conjunction, 150, 158, 160, 164, 175, 195
connective, 175
consistent, 59
constraints, 60–62

semantic, 61–62
weak, 61–62

structural, 60
Container type, 184
creational, 175

declarative, 164
DECLARE, 11, 12
decompilation, 73
depth, 84
Derek Blewitt, iv
derived, 68, 194
design by contract, 14
design pattern, 34
design patterns, see patterns
detectable, 162
disjunction, 158, 160, 175, 196
Doc Misell, iv
dot-com, 7
Douglas Adams, 42

Eclipse, 16, 130, 131, 167, 169
Eiffel, 14, 15, 19
Enumeration type, 188
Enumerator type, 50
Epsom College, iv
EPSRC, iv
error

compile-time, 175
run-time, 176

ESC, 15, 145
ESC/Java, 16, 145–147, 161, 163, 167, 173

204

INDEX 205

ESC/Modula-3, 146
extends, 36

Factory type, 114
failed, 76, 92
false negative, 132, 132, 175
false positive, 131, 132, 175
faulting, 48
first order logic, 175
FOL, 175
function, 176, 193

argsOf, 193
built-in, 193
constructorsOf, 193
fieldsOf, 193
load, 193
methodsOf, 193
subclassesOf, 193

Gareth Webber, iv
goal, 77, 92, 176
GoF, 176

heap, 11
HEDGEHOG, 67–92, 176
Helen Lowe, iv
higher order logic, 176
HOL, 176
HOML, 155, 158
HP SRC Classic, 15

Ian Nussey, iv
Ian Stark, iv
IBM, iv
iContract, 14, 43, 52
IDE, 16, 23, 105, 167, 168, 173
iff, 176
immutable, 62, 90, 91
implements, 36
inner classes, 74
instance, 36, 36, 176
instantiate, 36, 176
interest threshold, 95
interesting, 95
International Object Solutions, iv
invariants, 145

IOS, see International Object Solutions
Isabelle/HOL, 8, 9, 12, 43, 67
iSeries, 7
Iterator type, 50, 188

Java, 36, 49
class

ArrayList, 122
CardSuit, 38
Color, 38
com.ibm.db2.jdbc.net.DB2Driver, 142
Command, 49
Component, 143
Composite, 21
Entry, 74
HashMap, 74
java.awt.Color, 133
java.awt.Component, 120, 133
java.awt.ComponentPeer, 133
java.awt.Toolkit, 122, 133, 137
java.io.BufferedInputStream, 133
java.io.BufferedInputStream, 143
java.io.InputStream, 143
java.io.InputStreamReader, 124, 133
java.io.OutputStreamWriter, 133
java.io.OutputStreamWriter, 124
java.lang.Cloneable, 133
java.lang.Math, 40
java.lang.Object, 90
java.lang.OutOfMemoryError, 9
java.lang.Runtime, 133
java.lang.String, 134
java.net.InetAddress, 134
java.net.URL, 133
java.util.Collection$UnmodifiableCollection,

133
java.util.Collections, 184
java.util.List, 184
java.awt.Button, 139
java.awt.Component, 139
java.awt.Container, 139
java.awt.peer.ButtonPeer, 139
java.awt.peer.Component, 139
java.awt.peer.ComponentPeer, 139
java.awt.peer.ContainerPeer, 139

206 INDEX

java.lang.Class, 141, 142
java.lang.Cloneable, 141
java.lang.Runtime, 162
java.util.Collections, 142
javax.swing.JScrollPane, 133, 143
javax.swing.JViewport, 143
javax.swing.JButton, 139
javax.swing.JComponent, 139
JComponent, 143
JScrollPane, 143
JViewport, 143
List, 122, 128
Pattern, 21
Stack, 126
SynchronizedCollection, 142
UnmodifiableCollection, 142
Vector, 126

interface
java.util.Enumeration, 134
java.util.Iterator, 134
java.util.Observer, 134

java.awt.event.ActionListener type, 137
java.awt.Toolkit type, 131, 179
java.lang.Runnable type, 137, 138
java.lang.Runtime type, 131
JavaDoc, 131, 152, 167
Javalight , 10, 12
Javas, 9–12
javax.swing.Action type, 137
JIT, 7
JML, 16, 16
Jon Whittle, iv
JUnit, 2
Just In Time, 7
JVM, 7, 7, 8, 43, 44, 176

Koos van Tubergen, iv
KT, 21

LabelPeer type, 184
lazy instantiation, 36, 191
leitmotif, 21
LePUS, 20, 20, 153, 155, 156, 158, 160, 161,

164
comparison with SPINE, 160

lex, 29

Listener type, 188
LOOP, 12, 13, 18, 54

Map type, 38
Max Blewitt, vi
metaprogramming, 164
micro-patterns, 20
mini-pattern, 19, 24, 24, 39, 41, 63, 123, 154,

158, 165, 166, 168, 173, 176, 191–192
mini-transformation, 24, 154, 154, 155
Modula-3, 15, 16
multiset, 84, 84

native methods, 74
NEC/Digital Systems Research Center, see Compaq

Systems Research Center
negation depth, 84
noise, 94
nonterminal, 92

Object type, 184
Objective C, 48, 141
Observer type, 188
OCL, 14, 14, 15, 16

participant, 20, 20
pattern, 1, 33, 166, 168, 173, 176

Abstract Factory, 11, 38, 45, 51, 114, 121–
123, 131, 133, 165, 179, 179, 181

AbstractFactory, 89, 90
Adapter, 22, 124–127, 133, 142, 172, 182,

182, 184, 187
behavioural, 175
Bridge, 34, 41, 49, 51, 89, 90, 125, 127,

133, 135, 139–140, 144, 182
Builder, 133, 138, 180, 181
Chain, 136–138
Chain of Responsibility, 22, 133, 136, 162,

187
Command, 13, 14, 19, 22–24, 34, 35, 49,

51, 52, 61, 120, 134, 136–138, 144,
153, 162, 163, 167, 171, 172, 187

Composite, 22, 125, 127, 133, 162, 184,
184

creational, 175
Decorator, 22, 50, 126–127, 133, 142–143,

162, 172, 184, 184

INDEX 207

Enum, 38
Façade, 133, 136, 144, 186
Façade, 186
Factory Method, 38, 49, 123, 133, 154,

165, 181, 191
Flyweight, 24, 38, 61, 133, 186
Immutable, 61–63, 131, 134, 135, 187, 187
Interpreter, 22, 49, 120, 121, 134, 136–

138, 162, 187
Iterator, 42, 50, 127, 131, 134, 141, 162,

163, 167, 188, 188
LazySingleton, 36, 38, 39, 89, 116, 170
Listener, 34
Mediator, 134, 138, 187
Memento, 61, 134, 138, 140, 144, 162,

187
mini, see mini-pattern
Multipleton, 38, 39
Non Instantiable, 63, 181, 191
Observer, 34, 128, 134, 147, 150, 152, 156,

158, 170, 188
PartialDecorator, 143
PrivateSingleton, 37, 39, 99–101
Prototype, 45, 131, 133, 135, 141–142, 150,

182, 182, 188
Proxy, 48, 50, 126–127, 133, 142, 186,

187
PublicSingleton, 37, 39, 89
Registry Of Singletons, 38
SingleAccess, 39, 41
Singleton, 24, 34, 36–39, 41, 43, 43, 44,

46–50, 63–65, 89, 97, 99, 104, 108,
116, 123–124, 131, 133, 135, 162, 167,
170, 182, 191

State, 22, 49, 134, 135, 189
Static Constructor, 181, 191
Strategy, 22, 49, 51, 52, 134, 162
SubclassableSingleton, 37, 38, 39
Template Method, 22, 49, 50, 120, 128–

129, 134, 135, 137, 162, 189
Toolkit, 179
Utility, 39, 40, 41, 170
Visitor, 34, 41, 51, 120, 129, 134, 135,

147, 149, 189
patterns, 33–52

patterns as constraints, 119
Patterns Wizard, 19, 155
PatternsBox, 20
PDL, 21
Plain Old Java Object, 138
POJO, see Plain Old Java Object
popularity, 169
predicate, 176, 194

adds, 194
and, 195
built-in, 194
derived, 195
exists, 194
forAll, 194
hasModifier, 194
implements, 194
implies, 195
instantiates, 194
instantiates, 181
invokes, 194
isAbstract, 195
isClass, 194
isConstant, 194
isFinal, 195
isFriendly, 195
isInterface, 194
isLiteral, 194
isPrivate, 195
isProtected, 196
isPublic, 196
isSideEffectFree, 194
isStatic, 196
lazyInstantiates, 195
modifies, 195
named, 195
navigable, 195
nonNull, 195
not, 196
or, 196
prefix, 195
realises, 196
realises, 181
related, 195
removes, 195
returns, 195

208 INDEX

sameSignature, 195
sameSupertype, 195
subtypeOf, 195
typeOf, 195

primitives, 7
Product type, 116
proof node, 76, 77, 92
proof state, 92
proof strategy, 80
proof trees, 92
PSL, 19, 19
PVS, 12, 13, 54
Python, 42, 127

realises, 36, 176
refactoring, 23
reference, circular, see circular reference
reflection, 69
results, 119, 131–134

analysis, 135–143
false negatives, 140–143

Decorator, 142–143
Prototype, 141–142
Proxy, 142

false positives, 140
no definition, 135–138

Builder, 138
Chain, 136–138
Command, 136–138
Façade, 136
Interpreter, 136–138
Mediator, 138
Memento, 138

summary, 134
true negatives, 139

Bridge, 139
true positives, 138

Richard Boulton, iv
Robert Blewitt, iv
role model, 152, 153
root proof node, 75, 92
rule, 31, 77, 92, 176
rules

implicational, 79
ruleset, 92

run-time error, 176

Simplify, 15, 16
SLURP, 9, 12
Smalltak, 150
Smalltalk, 7, 18, 19, 21, 25, 48, 49, 124, 129,

141
soundness, 81
SPINE, 53–65, 176

comparison with LePUS, 160
stack, 11
static semantic, 145
String type, 131, 186, 187
sub-goal, 77, 92, 177
sub-node, 92
successful, 94, 94
Sun Microsystems, 7
super-pattern, 39, 39

term, 177
terminal, 92
termination, 81–88
testing procedure, 129
Tony Brookes, iv
transformation, 19, 23, 24, 24, 153, 154
trick, 155, 164
tricks, 19
true negative, 132, 132, 177
true positive, 131, 132, 177
type model, 152, 153
types

Appointment, 181
ArrayList, 184
Button, 184
ButtonPeer, 184
Color, 186
Component, 184
Container, 184
Enumeration, 188
Enumerator, 50
Factory, 114
Iterator, 50, 188
java.awt.event.ActionListener, 137
java.awt.Toolkit, 131, 179
java.lang.Runnable, 137, 138
java.lang.Runtime, 131

INDEX 209

javax.swing.Action, 137
LabelPeer, 184
Listener, 188
Map, 38
Object, 184
Observer, 188
Product, 116
String, 131, 186, 187
UnmodifiableCollection, 186

UML, 13, 13, 14, 17, 20, 153, 155, 156, 158
unfound, 132, 177
UNIX, 29
UnmodifiableCollection type, 186
unrepresentable, 120–121, 132, 132, 177
use case, 153
Utrecht, 18

variant, 1, 36, 39, 41, 62, 64, 65, 141, 142,
158, 166, 170, 173, 182

vCal, 181

weak semantics, 61, see semantics,weak

yacc, 29

Z, 15

	Introduction
	Structure of the thesis
	Hypothesis and contributions

	Literature survey
	Java
	Byte-code
	Java language semantics
	Java modelling and constraints

	Design patterns
	Specification
	Detection
	Refactoring

	Summary

	System architecture
	Hedgehog
	Parsing Java source files
	Parsing and processing Spine files
	Interacting with the user
	Summary

	Design patterns
	The history of patterns
	Software design patterns

	Terminology
	Realises
	Variant
	Artefact
	Super-pattern
	Mini-pattern

	Formally defining patterns
	Run-time semantic definition
	Metaprogramming definition
	Declarative constraint definition

	Elements of patterns
	Reviewing existing patterns
	Intent

	Summary

	The Spine language
	Overview
	Syntax
	Semantics
	Basic propositions
	Evaluable propositions
	Evaluable sets

	Rules
	Java constraints
	Structural constraints
	Semantic constraints
	Weak semantic constraints

	Patterns
	Immutable
	Singleton

	Summary

	The Hedgehog proof engine
	Representing Java
	Java source files
	Java class files
	Inner classes
	Native methods

	Proof engine
	Overview of proof process
	Proof tree
	Rules
	Backtracking
	Proof strategy
	Soundness
	Termination
	Complexity

	Built-in functions and predicates
	Summary

	Generating error messages
	Tree filtering
	Converting trees to error messages
	Displaying a complete reason
	Compressing the message

	Interesting errors
	Chains with uninteresting beginnings or ends
	Tree nodes with interesting children

	Pattern annotation
	From nodes to explanations
	Example
	Summary

	Worked examples
	Startup
	Simple proofs
	Proving a class realises a pattern
	Parsing the Java source
	Applying quantifiers

	Multi-class patterns
	Dealing with failure
	Summary

	Results
	Critique of patterns as constraints
	Unrepresentable patterns
	Abstract Factory
	Factory Method
	Singleton
	Adapter
	Bridge
	Composite
	Decorator
	Proxy
	Iterator
	Observer
	Template Method
	Visitor

	Testing procedure
	Selecting the examples
	Selecting non-examples
	Results
	Analysis
	No pattern definition
	True positives
	True negatives
	False positives
	False negatives

	Summary

	Related work
	ESC/Java
	The fragment model
	Refactoring of design patterns
	LePUS
	Graphical representation
	Textual representation

	Detection of patterns
	Summary

	Further work and conclusions
	Further analysis of design patterns
	Applicability to other languages
	Reformulation of patterns using ESC/Java
	Integration with IDEs
	Integration with automated building tools
	Automated searching
	Automated introduction of design patterns
	Conclusion
	Summary

	Glossary
	List of design patterns
	Creational patterns
	Abstract Factory
	Builder
	Factory Method
	Prototype
	Singleton

	Structural patterns
	Adapter
	Bridge
	Composite
	Decorator
	Façade
	Flyweight
	Proxy

	Behavioural patterns
	Unrepresentable patterns
	Immutable
	Iterator
	Observer
	State
	Template Method
	Visitor

	Mini-patterns
	Static Constructor
	Non Instantiable
	Lazy instantiation

	List of Spine functions and predicates
	Functions
	Predicates
	Built-in
	Derived

	Bibliography
	Index

