N

N
N

HAL

open science

QoS-aware dynamic service composition in ambient

intelligence environments

Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas, Valérie Issarny

» To cite this version:

Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas, Valérie Issarny. QoS-aware dynamic service
composition in ambient intelligence environments.
Automated Software Engineering: ASE 2005, 2005, Long Beach, California, United States. pp.317-

320. inria-00414943

HAL 1d: inria-00414943
https://inria.hal.science/inria-00414943
Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

20th IEEE/ACM International Conference on

https://inria.hal.science/inria-00414943
https://hal.archives-ouvertes.fr

QoS-aware Dynamic Service Composition in Ambient

Intelligence Environments

*

Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas and Valérie Issarny
INRIA Rocquencourt, BP 105
78153 Le Chesnay Cedex, France

{Sonia.Ben_Mokhtar,Jinshan.Liu,Nikolaos.Georgantas,Valerie.lssarny}@inria.fr

ABSTRACT

Due to the large success of wireless networks and handheld
devices, the ambient intelligence (Aml) paradigm is becom-
ing a reality. One of the most challenging objectives to
achieve in Aml environments is to enable a user to perform
a task by composing on the fly networked services avail-
able at a specific time and place. Towards this goal, we
propose a solution based on semantic Web services, and we
show how service capabilities described as conversations can
be integrated to perform a user task that is also described
as a conversation, further meeting the QoS requirements of
the user task. Experimental results show that the runtime
overhead of our algorithm is reasonable, and further, that
QoS-awareness improves its performance.

Categories and Subject Descriptors: D.2.12 [Software
Engineering]: Interoperability

General Terms: Algorithms, Experimentation.

Keywords: Semantic Web services, OWL-S, Web services
composition, QoS-awareness, Automata theory.

1. INTRODUCTION

Ambient Intelligence (Aml) envisions human-centric re-
trieval and consumption of information, in contrast to the
conventional computer-centric approach. Systemically, this
is realized as a synergistic combination of intelligent human-
machine interfaces and ubiquitous computing and network-
ing. One of the most challenging issues in Aml environ-
ments is to compose user applications by integrating on the
fly networked software components that are available at a
specific time and place, without any previous knowledge of
these components. This would allow a mobile user carry-
ing a handheld device with limited resources, to execute

*This research is supported by the European IST AMIGO
(investigating Aml systems, to realize the full potential of
home networking to improve people’s lives) project (IST-
004182).

potentially complex applications in different Aml environ-
ments, benefiting from the richness of each such environ-
ment. Building upon semantic Web services (OWL-S), we
introduce an approach to the QoS-aware dynamic composi-
tion of user tasks from networked services in Aml environ-
ments, which are user applications described in the form of
a workflow (conversation) realizing a user’s goal. This work-
flow description resides on the user’s handheld device and is
abstract, that is, it does not refer to any specific service to be
integrated. Furthermore, the task description specifies the
QoS required by the user. Accordingly, networked services
have a description specifying their supported conversation
and QoS. We propose a composition algorithm that inte-
grates the networked services’ conversations into a task’s
workflow, further considering QoS. Moreover, our solution
introduces an abstraction of OWL-S conversations as finite
state automata, and a QoS model.

The remainder of this paper is structured as follows. First,
we present our approach of modeling and measuring QoS
(Section 2). We then introduce our approach of modeling
abstract user tasks and networked services (Section 3) and
to the dynamic composition of tasks (Section 4). Further,
we describe our prototype implementation and evaluation
(Section 5). Finally, we conclude with a summary of our
contribution and future work (Section 6).

2. MODELING AND MEASURING QOS

We introduce a base QoS specification of services that is
suitable to AmI environments. Usually, a small number of
parameters is sufficient to capture the dominant QoS prop-
erties of a system [3]. Along with the factor of limited re-
sources on mobile devices, we only take into account the
most dominant and descriptive dimensions in our base QoS
specification, instead of trying to incorporate every possible
applicable dimension. However, it can be easily extended
with more dimensions, if required by specific services, by
supporting the new dimensions in a way similar to the one
discussed in this section. Below is the table of dimensions we
introduce for specifying non-functional properties of services
in AmI environments.

The values of quantitative QoS dimensions can be pro-
vided by QoS measurements using available software util-

Permission to make digital or hard copies of all or part of this work for ities (e.g., pathchar! for bandwidth measurement). How-
personal or classroom use is granted without fee provided that copies arégver, providing values of metrics in service advertisements

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ASE’05,November 7-11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/001155.00.

requires QoS prediction. QoS prediction prior to actual
service execution can be carried out based on histories [4],
which has been proved to be accurate and efficient [5].

"http://www.caida.org/tools/utilities /others /pathchar

| Category [Dimension [Definition ‘
Reliability Availability Probability=]0..1]
Performance Latency Service Time (in ms)
CPU Load Percentage = [0..1
Cost Memory Percentage = |0..1
Bandwidth Percentage = [0..1
Battery Percentage = [0..1
Confidentiality Boolean
Security Integrity Boolean
Non-repudiation Boolean
Atomicity Boolean
T . Consistency Boolean
ransaction -
Isolation Boolean
Durability boolean

Table 1: QoS dimensions in our base specification

3. SEMANTIC WEB SERVICE AND TASK
DESCRIPTIONS

3.1 Service and Tasks Descriptions

OWL-S is a Web service ontology based on the Ontology
Web Language (OWL), used to describe Web services prop-
erties and capabilities. This language describes Web services
capabilities using three parts : the service profile, the process
model and the service grounding. The service profile gives a
high level description of a service and its provider, the pro-
cess model describes the service’s behavior as a process and
the service grounding specifies the information necessary for
service invocation. In our approach, each networked ser-
vice is described as an OWL-S process model with QoS at-
tributes on each involved atomic process (operation). These
attributes are obtained from dynamic QoS measurement as
described in section 2. On the other hand, the user task de-
scription is given in the form of an abstract OWL-S process
with QoS requirements. The main difference between the
user task’s description and the services’ descriptions is that
contrary to the atomic processes involved in the services’
processes, those involved in the user task process are not
bound to any service, since services to be invoked are dynam-
ically discovered. Finally, the non-functional requirements
of the user task are expressed in the form of arithmetical
constraints (e.g., Availability > 50%) and have to be taken
into account during the service composition. Our objective
is to allow a user to perform a task on the fly, without any
previous knowledge about the networking environment and
to guarantee that the task will meet the requested QoS. Ex-
isting composition approaches based on OWL-S, use service
profiles for matching services’ advertised capabilities against
users required capabilities, while the process model is used
only for dynamic service invocation. However, we argue that
the process model contains more information about the ser-
vice capabilities than the service profile and may lead to a
more precise matching. Therefore, in contrast to the ap-
proach implied by OWL-S, our matching between the task
and the integrated services is based on the process model.
Our composition approach is divided in two steps. First,
semantic discovery of atomic processes delivers a set of ser-
vices that provide atomic processes which are semantically
equivalent with those of the user task. Second, QoS-aware
process integration composes the selected services processes
to produce the user task’s process.

318

3.2 Modeling OWL-S Processes as finite state
automata

Towards dynamic composition of services, we use formal
modeling of OWL-S processes as finite state automata as
described in [1]. This model defines mapping rules for trans-
lating an OWL-S process model to a finite state automaton.
In this model, automata symbols correspond to the OWL-S
atomic processes (the services operations) involved in the
OWL-S process and a transition between two states is per-
formed when an atomic process is executed. Each process
involved in the OWL-S process model, is mapped to an au-
tomaton and linked together with the other automata in or-
der to build the OWL-S process automaton. Both user tasks
and networked services are modeled as finite state automata.
However, the user task’s automaton is complemented with
additional information in some of its transitions, i.e., the
probability for one transition to be selected. More precisely,
a probability value is introduced in the case of a Repeat-
While, Repeat-Until and Choice constructs. For the first two
constructs (loops), the information added is the probabil-
ity for the corresponding process to be executed once again.
In the case of the Choice control construct, a probability is
attached to each possible choice. This information is neces-
sary to estimate the QoS of a composition on the basis of
the user’s histories. For example, if a composition involves
a loop, the QoS of this composition depends on how many
times the user will execute this loop. All these probabilities
are evaluated based on histories and are updated each time
the user task is executed.

In addition to the above probabilities that will be used
to estimate the average QoS value of a service composition,
some other information is needed to estimate the worst case
value of QoS parameters. This information is attached to
each loop construct in the task’s process and gives the max-
imum number of times the loop can be carried out during
the execution of a user task.

3.3 Evaluating the QoS of User Tasks

In our approach, as the task is abstract and does not re-
fer to specific services, we need to extract the QoS formu-
lae corresponding to each QoS metric. These formulae are
extracted in advance and stored with the task’s description.
Then, during the composition, each time an abstract atomic
process is replaced with a concrete one, these formulae are
used to check the fulfillment of the task’s QoS requirements.
A number of research efforts propose reduction rules to com-
pute the QoS of a workflow. We use the model in [2] to ex-
tract the formula of each QoS dimension, corresponding to
the task’s automaton structure. In this approach, a mathe-
matical model is used to compute QoS for a given workflow
process. More precisely, an algorithm repeatedly applies a
set of reduction rules to a workflow until only one atomic
node remains. This remaining node contains the QoS for-
mula for each considered metric, corresponding to the work-
flow under analysis. We apply the reduction rules to OWL-S
workflow constructs.

In our case, while evaluating the QoS of a service compo-
sition, we provide two estimations for each QoS dimension:
(1) a history-based, probabilistic estimation; and (2) a pes-
simistic estimation. The former corresponds to an average
estimation, while the latter corresponds to a worst case esti-
mation. They are used to satisfy different user requirements,
i.e., deterministic or probabilistic. For example, if the user

demands a deterministic QoS, our approach compares the
requested QoS with the pessimistic estimation of the com-
posite service. If the user requires an average QoS, the latter
is compared against the probabilistic estimation.

4. QOS-AWARE, DYNAMIC TASKS COM-
POSITION

The first step towards dynamic composition of user tasks
is the semantic service discovery, which aims at selecting a
set of services providing atomic processes that are semanti-
cally equivalent to the processes requested by the user task.
This algorithm compares semantically the atomic processes
of the user task with those of the networked services. Our
semantic service discovery is based on the matching algo-
rithm proposed by Paolucci et al. in [7]. This algorithm is
used to match a requested service with a set of advertised
ones. In our case we use this algorithm to match services’
operations rather than services’ capabilities.

4.1 QoS-Aware Process Integration

In this section, we present our QoS-aware process integra-
tion algorithm, which integrates the processes of the selected
services to reconstruct the process of the target user task.
To perform such an integration, we employ the finite state
automata model that we have defined earlier. Thus, we con-
sider the automaton representing the user task’s process and
the automata representing the selected services’ processes.
In a first stage, we connect the services’ automata together
to form a global automaton. The next stage is to parse each
state of the task’s automaton starting with the start state
and following the automaton transitions. Simultaneously, a
parsing of the global automaton is carried out in order to
find for each state of the task’s automaton an equivalent
state of the global automaton. An equivalence is detected
between a task’s automaton state and a global automaton
state when for each incoming operation of the former there
is at least one semantically equivalent incoming operation
of the latter. In addition to checking for each state the
equivalence between incoming operations, a verification of
the conformance to the QoS constraints of the user task is
performed. This is done by using the QoS formulae that
have been extracted from the task’s automaton structure as
described in Section 3.3. Thus, we start with the QoS for-
mula for each QoS dimension, in which the QoS values of all
operations are initialized with the best value (e.g., latency
= 0, availability = 1). Then, each time we examine a ser-
vice operation, we replace the corresponding best value in
the formula of the considered dimension, with the real QoS
value of the operation. This allows evaluating the values
of all QoS dimensions if the current operation is selected.
These values are then compared to the corresponding val-
ues required by the user task, and if the constraints are not
met, the path in the global automaton that includes this
operation is rejected.

Figure 1 gives an example of how we evaluate the aggre-
gate QoS during the integration process. In this example,
the abstract task automaton (left higher corner), which in-
volves the operations op1, op2, ops, opa and ops, is going to be
matched against the global automaton (right higher corner),
which connects together the automata of services Si, 52,53
and S4. These services have been selected after the semantic
discovery stage, as their respective processes contain oper-

319

ations that are semantically equivalent with those of the
abstract user task. Note that in this figure, for readability
purposes, semantically equivalent operations are represented
with the same names. The abstract user task has a single
QoS requirement, which is Latency < 6. The QoS formula
for average latency corresponding to the task’s structure is
given by: Latency = o1(L1+(o2%La+0os*L3))+0a(La+Ls),
where each L; is the latency corresponding to the abstract
operations op;, and o; is the probability for op; to be ex-
ecuted. Initially, the value of each L; is assumed to be
equal to 0. While browsing simultaneously the two au-
tomata, we can notice that when matching the operation
op1 of the user task against the equivalent operations Si.op1
and S2.op1 provided by the services Si and So, the latency
in these two cases is respectively equal to: 0.8 * (2 + (0.3 *
04+ 0.7%0)) + 0.2 % (0+ 0) = 1.6 if Sy.0op; is selected, and
0.8% (34 (0.3x0+0.7%0))+ 0.2 (04 0) = 2.4 if So.0p1 is
selected. In both cases the constraint Latency < 6 is met.
Later, when matching the operations ops and ops of the user
task, two paths are possible using the service S; alone, or us-
ing a composition of S2.0p1 and Ss. However, the first choice
gives a latency equal to: 0.8%(0.3%x340.7%7)40.2%(040) =
6.64 > 6. Thus, this path is rejected, as it does not meet the
QoS required by the user task. On the contrary, the second
solution is kept. The complete resulting composition, which
is a concrete realization of the abstract user task with avail-
able services, is shown in the left lower corner of the figure.

The proposed process integration algorithm gives a set of
sub-automata from the global automaton that behave like
the task’s automaton and meet the QoS requirements of the
user task. Omnce the set of possible compositions is given,
the last stage is to choose the best among resulting com-
positions, on the basis of provided QoS. We evaluate every
resulting service composition sc with the benefit function as
proposed in [6]: Overall Benefit = >-7_ | (di *w;), where d; is
the value of dimension d for the service composition sc, and
w; is the relative importance of the considered dimension.
Note that different dimensions are in different units and are
therefore normalized as in [6] to be comparable.

After selecting a composition scheme, an executable de-
scription of the user task that includes references to existing
networked services is generated, and entered into an execu-
tion engine that executes this description by invoking the
appropriate service operations.

5. PROTOTYPE IMPLEMENTATION AND
EVALUATION

We have developed a prototype for evaluating the perfor-
mance of our process integration algorithm. Whereas, our
semantic service discovery is based on a semantic matching
algorithm that have already been implemented and evalu-
ated [7]. We have implemented our prototype in Java, on
a Linux platform running on an Intel Pentium 4, 2.80 GHz
CPU with 512 MB of memory. The performance of our pro-
cess integration algorithm depends largely on the complexity
of the task and the services candidate to the integration in
terms of the number of involved operations. More specif-
ically, the run time overhead of the algorithm is propor-
tional to the number of possible (intermediate) composition
paths assessed during the whole execution of the algorithm.
We have carried out an experiment for evaluating the im-
pact of the number of operations involved in the task’s and

Latency < 6

Abstract user task automaton
and QoS requirements

S4.0p2

Global automaton

S : service

S3.0p5 dp : operation

User Task automaton after the L : latency value
process integration wobability

Figure 1: Example of the QoS-aware process inte-
gration

the services’ processes on the performance of our algorithm.
Furthermore, we have evaluated the impact of introducing
QoS-awareness. Figure 2 shows the preliminary results of
these experiments. In this figure the number of operations
of the networked services is fixed to the extreme case equal
to 100 semantically equivalent operations, while the task’s
number of operations is increasing from 1 to 10. Two results
are reported in this figure: the performance of our algorithm
with and without considering QoS. This figure shows an ex-
treme scenario for our algorithm, as each operation of the
user task is matched against 100 operations, and the re-
sulting number of possible compositions is equal to: 100™°
in each case, where nb is the task’s number of operations.
We can see that even in the extreme case of 100*° possible
compositions our algorithm takes less time than the XML
parsing time of services’ and task’s descriptions. This figure
shows also another important result, which is the impact of
introducing QoS in our integration algorithm. This impact
amounts to a small increase in the XML parsing time, which
is due to the addition of XML tags for describing QoS, while
at the same time to a considerable decrease of the execution
time of our algorithm. This is attributed to the rejection of
a number of paths that do not fulfill the QoS requirements
of the user task during the integration.

6. CONCLUSION

The Aml vision foresees that the environment around
us is populated with networked, both computing and in-
put/output devices, that provide services. Our objective is
to allow a user entering into an Aml environment to per-
form tasks, abstractly described on his/her device, by in-
tegrating on the fly available networked services. Our so-
lution building on semantic Web services offers much more
flexibility by enabling semantic matching of interfaces and
dynamic integration of services’ processes to perform the
target user task. Furthermore, the computed service com-
position provides an estimated QoS that fulfills the initial
QoS requirements of a user task. The distinctive feature of
our solution is the ability to compose Web services that ex-
pose complex behaviors to realize a user task that itself has

320

700 T

Matching Algorithm —+—
Matching Algorithm with QoS
XML Parsing ---:---
eXML-Paasing with QoS &
K ey

400

Time (ms)

100

0 I I I I I
0 2 4 6 8 10 12

User Task's Depth

Figure 2: Performance of the Process Integration
Algorithm with and without QoS

a complex behavior. Existing approaches in process-level
matching generally consider that either the services or the
task have a simple behavior, thus leading to simple integra-
tion solutions. In our case, we assume complex behaviors for
both services and task described as OWL-S processes, and
we propose a matching algorithm that attempts to integrate
the services’ processes to realize the user task. In order to
deal with such level of complexity, our solution introduces
an abstraction of OWL-S processes as finite state automata.
A preliminary version of our matching algorithm was pre-
sented in [1]. The current version of the algorithm, which we
have presented in this paper, introduces QoS-awareness, and
a prototype implementation and evaluation. We have eval-
uated the performance of our matching algorithm with and
without QoS-awareness. The results show that the proposed
algorithm has a reasonable runtime overhead, and that the
introduction of QoS constraints improves its performance.
Our ongoing research effort includes the integration of the
semantic discovery of operations into a scalable service dis-
covery protocol, which is appropriate to Aml environments,
optimizing at the same time the semantic matching per-
formed during the discovery.

7.
(1]

REFERENCES
S. Ben Mokhtar, N. Georgantas, and V. Issarny. Ad hoc
composition of user tasks in pervasive computing environments.
In Proceedings of SC’05. LNCS 3628.
J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut.
Quality of service for workflows and Web service processes.
Journal of Web Semantic, 2004.
H. V. Dijk, K. Langendoen, and H. Sips. ARC: a bottom-up
approach to negotiated QoS. In Proceedings of WMCSA’00.
J. Flinn, S. Y. Park, and M. Satyanarayanan. Balancing
performance, energy, and quality in pervasive computing. In
Proceedings of ICDCS’02.
S. Gurun, C. Krintz, and R. Wolski. NWSLite: a light-weight
prediction utility for mobile devices. In Proceedings of ACM
MobiSys’04.
J. Liu and V. Issarry. Qos-aware service location in mobile
ad-hoc networks. In Proceedings of MDM’04.
K. S. N. Srinivasan, M. Paolucci. An efficient algorithm for owl-s
based semantic search in UDDI. In Proceedings of SWSWPC’04.

(2]

(3]
(4]

(5]

(6]
(7]

