Learning to Verify Branching Time Properties

Abhay Vardhan and Mahesh Viswanathan *

Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA

Abstract. We present a new model checking algorithm for verifying computation
tree logic (CTL) properties. Our technique is based on using language inference
to learn the fixpoints necessary for checking a CTL formula instead of comput-
ing them iteratively as is done in traditional model checking. This allows us to
analyze infinite or large state-space systems where the traditional iterations may
not converge or may take too long to converge. We allow fairness constraints
to be specified for verification of various liveness properties. The main challenge
in developing a learning based model checking algorithm for CTL is that CTL
properties express nested fixpoints. We overcome this challenge by developing a
new characterization of CTL properties in terms of functions that have unique
fixpoints. We instantiate our technique to systems in which states are encoded
as strings and use a regular inference algorithm to learn the CTL fixpoints. We
prove that if the fixpoints have a regular representation, our procedure will always
terminate with the correct answer. We have extended our LEVER tool to use the
technique presented in this paper and demonstrate its effectiveness by verifying a
number of parametric and integer systems.

1 Introduction

Infinite state models, such as pushdown systems, communicating finite state machines
with unbounded FIFO buffers, and automata with integer variables, often arise as natural
abstractions of software systems at the design and modeling stage. Developing automated
verification techniques for such systems is, therefore, an important problem in formal
verification.

Computation Tree Logic (CTL) [17] is a temporal logic in which one can express
properties about the branching, non-deterministic behavior of the system. Properties
about information flow in the system, which cannot be expressed in a specification lan-
guage that reasons only about individual computations, can be written in CTL. For these
reasons, CTL is very often used to describe the correctness requirements of a system.

Algorithmic verification typically involves computing sets of states that are fixpoints
of certain functions. For example, in order to check if a certain invariant holds in a system,
one needs to compute the set of reachable states of the system and then check that none
of the reachable states violate the invariant. The computation of the reachable states is a
fixpoint computation: the set of reachable states is the smallest set that is closed under the
one-step transition relation associated with the system. When one is analyzing an infinite
state system, computing such fixpoint sets may not terminate; in fact, the problem of
verifying an infinite state system is, in general, undecidable . For example, in an infinite
state system, one may need to apply the transition relation an unbounded number of

* Supported in part by DARPA/AFOSR MURI Award F49620-02-1-0325 and NSF 04-29639.
! For certain classes of infinite state systems, some problems become decidable; see [21] for
some general results.

times to the set of initial states before all the reachable states are encountered. Hence,
the focus of the research community has been to develop semi-decidable algorithms for
these problems. There have been two broad approaches to algorithmically verify infinite
state systems. The first approach uses ideas like widening [13,9,27] and acceleration [10,
8,7] to conservatively approximate (in the case of invariants) the set of reachable states
of the system. The second complementary approach that has been proposed recently, is
to use machine learning [30, 29,31, 22]. The idea here is to view the verification problem
as a problem where the (unknown) fixpoint set needs to be learnt from examples. The
approach has been applied to verify safety properties and w-regular properties of infinite-
state systems.

The learning based approach to verification enjoys several benefits. First, the running
time of the algorithm does not depend on the time it takes to converge to the fixpoint,
but rather on the size of the symbolic representation of the fixpoint set. If the fixpoint set
being computed has a succinct representation, then the learning algorithm will converge
to it very quickly. Second, because intermediate approximations to the fixpoint are never
computed, it avoids the space overhead of storing fixpoint approximations that may
have a large symbolic representation. Finally, the learning based algorithms are typically
accompanied by a precise statement of when the method is guaranteed to work: if the
set being computed for verification can be represented using the symbolic representation
used by the learner, the method is guaranteed to either prove the system to be correct,
or produce a counter-example demonstrating its violation. The learning based approach
has thus far been used in the context of reqular model checking, where states of the
system are encoded as strings, and sets of states are represented using deterministic
finite automata (DFA). In this context, the completeness theorem takes the form that
if the set of reachable states (in the case of invariant properties) is regular, then the
learning based model checking algorithm is guaranteed to work.

In this paper, we present a learning based model checking algorithm for infinite state
systems with respect to CTL properties. The algorithm presented here is the first CTL
model checker (based on machine learning or otherwise) for infinite state systems with
fairness constraints; the CTL model checker for infinite state systems reported in [15]
did not account for fairness constraints. It is also the first extension of the learning
based method to branching-time properties, as all previous applications of learning were
confined to linear-time properties. Finally, there is precise characterization of the class
of systems for which this model checking algorithm is complete; for every subformula, if
the set of states satisfying it form a regular language, then the algorithm presented here
is guaranteed to terminate with the right answer.

In order to apply the learning based verification method to CTL, we need to overcome
three fundamental challenges. To better understand these problems, let us consider the
case of verifying invariants. As outlined before, the learning based method to verify
invariants calls an algorithm that attempts to learn the set of reachable states, and then
checks whether the invariant is violated in any of the states in the learnt set. To guarantee
soundness, the model checker has to check if the set returned by the learning algorithm is
indeed the set of reachable states, without actually computing the set of reachable states
again. This turns out to be a difficult problem because while it is easy to check if a set is
closed with respect to the transition relation (and hence contains all reachable states),
there is no easy way to check if it is the smallest such set. Instead, the learning based
method checks whether the learnt set contains all reachable states and does not violate
the invariant, or whether a specific unsafe state in the learnt set is reachable. These

“approximate” tests turn out to be feasible, and sufficient for the purposes of verifying
the invariant. Thus, in the case of invariant verification, the learning based model checker
does not ever know whether it has actually computed the set of reachable states, but
only knows whether it has discovered a proof of correctness or a proof of violation.

To extend the learning approach to verify CTL, the following approach suggests itself
immediately. Similar to the classical model checking algorithm for CTL [17], progressively
compute the set of states satisfying each of the subformulas, starting from simple atomic
propositions; the only difference being that we learn the sets instead of computing them
iteratively. However, this approach runs into the problem that unlike safety properties
and w-regular properties, CTL properties are nested fixpoints, where the set of states
satisfying inner subformulas is used in the computation of the set of states satisfying outer
subformulas. Hence, we will need a test that checks whether the learning algorithm has
learnt the exact set of states satisfying a particular subformula (and not some over or
under-approximation). Once again, while it is easy to check if a set is a fixpoint, it is
unclear how to check if it is the least fixpoint or the greatest fixpoint. We overcome
this central problem by presenting a new characterization of CTL operators in terms of
functions with unique fixpoints. The output of a learning algorithm trying to discover
these unique fixpoints can then be easily checked, and this allows us to get a learning
based model checking algorithm for CTL.

The next challenge is to adequately take into account the fairness constraints that
might be associated with the system being verified. In the case of finite state systems, this
is handled using the observation that it is sufficient to only consider fair computations
that are wltimately periodic and looping, i.e., computations that repeatedly execute a
sequence of steps that loop to a state. However, this observation does not extend to
infinite state systems. In order to soundly verify an infinite state system with respect to
fairness constraints, we need to also consider fair computations that are truly infinite, and
are not looping. We generalize ideas that we developed for the verification of w-regular
properties [31] to account for fairness.

Finally, we have implemented this algorithm in our tool LEVER, and extensively
experimented with the tool on many examples. Since we represent sets of states using
DFAs, we use algorithms for learning regular languages that have been investigated in the
literature. In order to make them scalable to practical software systems, we make some
improvements to these algorithms. First we combine Rivest and Schapire’s idea [26]
for processing counterexamples, with the Kearns and Vazirani algorithm [23] to yield
a space and time efficient learning algorithm for regular languages. Second, the main
challenge to the scalability of this algorithm is that the running time and space of the
learning algorithm depends on the size of the alphabet used in encoding the state. Since
the alphabet size grows exponentially in the number of variables in the system being
verified, this presents a significant hurdle when analyzing practical software systems. We
address this problem by representing the transition relation of the DFA using ordered
BDDs; the idea of representing the transition relation of a DFA using BDDs as been
explored before in [24, 3], though in a slightly different context.

The rest of the paper is organized as follows. In Section 2 we discuss the represen-
tation we use for programs, the classical model checking algorithm for CTL and give
some background about learning algorithms. Section 3 gives details of the learning based
verification for CTL with and without fairness constraints. In Section 4, this procedure
is instantiated for systems with states represented as strings and it is shown how various
operations described in Section 3 can be achieved with regular sets. Section 5 discusses

the implementation of these ideas in our LEVER tool and presents our experimental
results. Finally, Section 6 concludes the paper and discusses some future work.

1.1 Related Work

Some of the popular approaches used for verification of infinite state systems are: widen-
ing [13,9,27,19], where the computation of a fixpoint is extrapolated to get an over-
approximation in finite time; meta-transition or acceleration [10,8,7], where the effect
of infinite iteration of certain loops in the system is calculated; collapsing of automata
states based on simulation relations as in the framework of Regular Model Checking [12,
1]; and iterating transducers as described in Boigelot et. al. [11]. As mentioned earlier,
the main advantage of using the alternative learning-based verification is that as long
as the set being computed for verification is representable in the class of concepts being
learned, the method is guaranteed to provide a sound answer to the verification problem.

We introduced the learning to verify approach in [30, 29] for verifying safety properties
of FIFO automata. In [31], we used learning techniques for verifying w-regular properties
(which can express safety as well as liveness properties) and applied it in the context
of regular model checking. Concurrently and independently of our work, Habermehl
et al. [22] have also proposed a learning based approach for verification of systems.
However, the important class of branching times was not covered earlier in the learning
paradigm and this is what we address in the present paper. The other major work that
has addressed CTL properties (using techniques different from learning) is that of Bultan
et. al. [15] where a combination of widening and finite iteration are used for conservative
approximations. The notable differences between their work and our work are: first, we
also are able to handle fairness constraints which are needed for liveness properties and
second, we never return a “do not know” answer which a conservative analysis can return.

Machine learning has also been applied to other contexts in verification such as learn-
ing assumptions about the environment for compositional verification [18, 3,16]); synthe-
sis of interface specifications [2] and mining specifications [5].

2 Preliminaries

2.1 Program Representation

We use an event-action based language as in [14] to represent programs. In this represen-
tation, a program is a tuple (V, I, E') where V is a finite set of control or data variables,
I gives the initial values of the variables in V and E is a finite set of events. Each event
e € E has an enabling condition enabled(e) which constraints the states in which the
transition can be taken and an action(e) specifying how the variables are transformed by
the transition. Event-action based languages have been used in the literature to express
concurrent programs including abstractions of multi threaded Java programs, parameter-
ized systems, petri nets, communication protocols, counter systems, broadcast protocols
and cache coherence protocols [4, 20].

Example 1. A simplified example program written in this language is shown in Figure 1.
In this example, a producer adds items to a buffer b while two consumers consume these
items from b. The variable o records the total number of items produced while i1 and iy
record the number of items consumed by each of the two consumers respectively. In the
action clause, the new value of a variable is given by a primed version of that variable

(for brevity, only the variables that are changed are shown). Note that this program has
an infinite number of reachable states.

Data Variables: b, 0,11, i2: integer

Control Variables: pc: {qo}

Initial Conditions: b =0 =141 =i =0, pc = qo
Events:

1. enabled: true,

action: b =b+ 1,0 =0o+1
2. enabled: b > 0,

action: b’ =b—1,i] =i1 +1
3. enabled: b > 0,

action: b’ =b—1,i5 =ix + 1

Fig. 1. A event-action program for a simple buffer problem

2.2 Kripke Structures and CTL

While event-action based languages are rich enough to model and define the semantics of
programs, they need to be enhanced in order to perform verification. In particular, states
of the system need to be annotated with logical propositions that describe properties that
are relevant for verification. For example, a state in which two processes are incorrectly
accessing a critical resource simultaneously may be labeled bad while other states may
be labeled good. Such a model of the software system where states are annotated with
atomic propositions is formally called a Kripke structure, and is defined as follows. It
is a quintuple (S, AP, R, Sy, L) where S is a set of (possibly infinite) states, AP is a
finite set of atomic propositions, R C S x S is a (total) transition relation, Sy C S is
a set of initial states and £ : S — 247 is function that assigns to each state the set
of propositions that are true in that state. We restrict ourselves to Kripke structures
that are finitely branching, i.e., for any state s, the set {s’ | R(s,s’)} is finite. We will
sometimes denote (s1,82) € R by s1 — s2. A computation starting from state s is a
sequence of states sg, s1,. .. such that sg = s, and s; — s;41 for each 7. Constructing the
Kripke structure corresponding to an event-action program is straightforward, provided
we are also given the labeling function £: the states S are functions that assign to each
variable of the program a value in the appropriate domain, and each event e € E defines
a binary relation R, C S x S to be {(s1, $2) | s1 € enabled(e) and (s1,s2) € action(e)}.
Then, the transition relation is simply given by R = |J . Re.

Kripke structures are sometimes augmented with fairness constraints that hold in the
system. Formally, a Fair Kripke structure is (S, AP, R, Sy, L, F), where (S, AP, R, Sy, L)
is a Kripke structure, and F C S is the set of fair states. A fair computation starting

from s is then a computation sg, s1, . .. starting from s that visits the fair states infinitely
often, i.e., s; € F for infinitely many j 2.

Computation Tree Logic (CTL) [17] is a popular temporal logic used to specify cor-
rectness requirements. Formulas in the logic are built up from atomic propositions, using
the temporal operators X (“next time”), G (“globally”), and U (“until”). In addition,
the logic has the path quantifier E (“for some computation path”). The formal syntax
of formulas in CTL is as follows (p is an atomic proposition) 3:

fo=pl=flfiVv | EXfIEGS|E[fiU fa

Informally, a state s satisfies a formula EX f if there is a computation starting from s
where f holds in the second state; s satisfies EGf if there is a computation starting from
s where every state satisfies f; s satisfies E[f1U fo] if there is a computation starting
from state s such that f; holds in all states until a state satisfying fo is encountered.
The connectives = and V are boolean negation and disjunction and are interpreted as
in propositional logic. In the presence of fairness constraints, the path quantifiers are
interpreted only over fair paths. So for example, a state s satisfies EGf in the presence
of fairness, if there is a fair computation starting from state s such that f holds in all
states. For a formal presentation of the semantics for all the operators, the reader is
referred to [17].

2.3 Model Checking CTL and Fixpoints

The verification or model checking problem for CTL is as follows. Given a system de-
scription in terms of a Kripke structure (S, AP, R, So, L) (or alternatively, a fair Kripke
structure (S, AP, R, So, L, F)) and a CTL specification f, we have to check if all states
s € Sy satisfy the formula f. The standard algorithm [17] for CTL model proceeds by
progressively computing the set of states that satisfy the various subformulas of f (in-
cluding f itself). Initially, we compute the set of states that satisfy each of the atomic
propositions in f. We know that s satisfies p iff p € £(s). The algorithm then proceeds in
stages. In the ith stage, the set of states corresponding to subformulas with ¢ — 1 nested
CTL operators are computed using the results of the computation in the previous stages.
Once the states satisfying f are found, the system is deemed to be correct if and only if
this set wholly contains Sy, the initial set of states.

The algorithm to compute the set of states satisfying a subformula g in some stage,
say ¢, depends on the outermost logical operator of g. For the operators EU and EG,
computing the set of states satisfying them, involves computing the least and great-
est fixpoint, respectively, of certain functions. We conclude this section, by introducing
terminology about fixpoints and operators that we will find useful.

Consider a function 7" : 29 + 29, from sets of states to sets of states. A fizpoint for T
isaset Z C S such that T(Z) = Z; it is the least fizpoint if it is the least, with respect to
C-ordering, among all the fixpoints of T, and is denoted as u(T"). Greatest fizpoint of T
is defined analogously and is denoted by v(T"). The function T is said to be monotonic if

2 Usually fairness in CTL is described by a set of constraints using the so called generalized
Biichi condition. However, it is known that a generalized Biichi condition can be converted
into the kind of fairness constraint described here.

3 Typical presentations of CTL have additional temporal operators like F' (“eventually”) and
R (“release”), and also the universal path quantifier. However it can be shown [17] that the
logic presented here as just as expressive

71 C Zy = T(Z1) CT(Zs). It is well-known that if T is monotonic, then both p(7T) and
v(T) exist. T is U-continuous if Z1 C Zs C ... = T(U; Z;) = U;T(Z;). Tt is N-continuous
it Z1 27,2 ... = T(MN:Z;) = NyT(Z;). Another well-known result about fixpoints is
that if T is U-continuous then u(T") can be calculated by starting from the empty set
and repeatedly applying the function until the result does not change. Analogously, if T’
is N-continuous then the greatest fixpoint can be computed by starting from the entire
set S and repeatedly applying the function until convergence. Finally, T? will denote the
i-fold composition of a function 7.

2.4 Learning Regular Languages

We use the framework of active learning [6], in which the learning algorithm is given
access to a knowledgeable teacher who can be queried. The teacher can be thought of as
a pair of oracles: a membership oracle and an equivalence oracle. The membership oracle
provides answers to queries about whether an example belongs to the concept being
learnt or not. The equivalence oracle is a more powerful oracle which answers question
about whether a hypothesis proposed by the learning algorithm is indeed equivalent to
the concept being learnt. If at some point the learning algorithm’s hypothesis is deemed
correct by the equivalence oracle then the learning process stops. If on the other hand,
the learner submits a hypothesis which is not equivalent to the target concept, the
equivalence oracle not only says no, but also provides a counter-example to demonstrate
why the hypothesis is wrong. The counter-example is either an example belonging to the
hypothesis but not to the target concept, or it is an example belonging to the target
concept but not to the submitted hypothesis.

The specific algorithm that we use to learn regular languages is due to Kearns and
Vazirani [23], which is a variation of the classical algorithm by Angluin [6]. The algorithm
maintains a candidate DFA for the language being learnt. This DFA has two character-
istics. First it is a minimal DFA i.e., every pair of states can be distinguished by string
that leads one to an accept state and the other to a non-accept state. Second, the DFA is
consistent with the sample strings the learning algorithm has seen so far, i.e., all strings
observed that belong to the language are accepted by the DFA, and all observed strings
that do not belong to the language are rejected. Progressively, the algorithm queries the
equivalence oracle and the membership oracle, and stops when the equivalence oracle
deems the candidate DFA to be correct. In this process, the learner may discover incon-
sistencies with the current DFA, which it resolves by splitting certain states. The details
of the algorithm determine how the DFA is represented, which queries are asked, and
how inconsistencies when discovered are resolved by splitting states. In what follows, we
present only a brief overview of the algorithm, giving only the details that are relevant
to highlight our improvements. For a comprehensive presentation the reader is referred
to [23].

Each state of the candidate DFA is represented as a string, namely, the input string
that takes the DFA from the initial state to the given state. These strings are called
access strings and the learner maintains a set AS of such access strings. In addition,
the learner also maintains a set DS of distinguishing strings, that demonstrate why each
string in AS will correspond to a different state in the desired minimal DFA. So for any
two access strings sjand so there is a string d € DS such that exactly one out of s1.d
and ss.d belongs to the regular language being learnt. The algorithm maintains the sets
AS and DS in a binary classification tree where each internal node is labeled by a string
in DS and each leaf by a string in AS. Any one string d that distinguishes between

two access strings can be placed at the root of the tree. All access strings s such that sd
belongs to the concept being learnt are placed in the right subtree and the rest are placed
in the left subtree. This process is repeated for each subtree until each access string is at
its own leaf. The classification tree implicitly represents the current candidate automaton
in the following manner. The states correspond to the access strings AS. The transition
on a symbol a from a state s can be obtained by “sifting” through the classification
tree as follows. Start from the root (say labeled d), and check whether the string s.a.d
belongs to the learnt concept or not, by asking the membership oracle. If s.a.d belongs to
the concept then move to the right child else move to the left child. Repeat this process
recursively, until a leaf is reached. This is the target state of the transition.

Observe, that the process of “sifting” can be used to determine whether two strings
s1 and s must go to different states in the smallest DFA for the concept: if sifting s,
and sy result in reaching different leaves then s; and sy must go to different states. This
observation plays a crucial role determining how the candidate DFA must be refined
when an inconsistency is encountered. Let w be the counter-example returned by the
equivalence oracle, and let u be the first prefix of w where the state s reached on reading
u in the DFA is different than the state s’ obtained when wu is sifted through the clas-
sification tree. Then the state s must be split in order to resolve the inconsistency. In
our variant of the Kearns and Vazirani algorithm, we use the Rivest and Schapire’s [26]
binary search to discover this prefix u, to get a faster algorithm. The resulting algorithm
is guaranteed to learn the minimal DFA and runs in polynomial time.

Theorem 1. (/26]) The regular inference algorithm described above always terminates
after making O(kn® + nlogm) membership queries and O(n) equivalence queries. Here,
k is the size of the alphabet, n is the number of states in the minimal automaton repre-
senting the target regular language, and m is the longest counterexample returned by the
teacher.

3 Learning to Verify CTL Properties

Recall (from Section 2.3) that the classical model checking algorithm for CTL proceeds
by inductively determining the set of all states that satisfy each of the subformulas. For
each subformula, the algorithm to determine the set of states satisfying it is determined
based on the outermost logic operator. Given a suitable representation for sets of states,
=f and f1 V f2 correspond to performing the boolean operations of complementation
and union on the sets of states satisfying f, f1 and fs. In the case of FX it involves
computing predecessors: EX(Z) = {s| 3s — s’ and s’ € Z}.

The most interesting cases are those of FU and EG, which are handled by com-
puting fixpoints. To illustrate the challenges in developing a model checking algorithm
for infinite-state systems, let us consider a formula E[true U f] which is also sometimes
written as EF'f. The set of states satisfying E'F f consists of the states which can reach a
state labeled by f. Thus, EF f can be found by starting with a set Z, consisting of states
satisfying f and in the ith iteration adding the states that can reach a state satisfying
f in i-steps. Clearly this method of computing the set of states satisfying EFf may
not terminate for a system with infinitely many states. As mentioned before, therefore,
our idea is to learn this set instead of performing this iterative computation. In order
to do this, we have to answer membership and equivalence queries for the set of states
satisfying E'F f. We do have a weak test for equivalence; if the set hypothesized for EF f

changes under backward reachability then it is certainly not the right set. However, even
if it does not change under backward reachability, it may be just an overapproxima-
tion of EF f (in the case of EGf this can be an underapproximation). For membership
queries the situation is even more difficult; it is unclear how we can answer whether a
state s satisfies E'F f without solving the original verification problem. The solution is to
learn a set with more information from which EF' f can be computed and which allows
answering membership and equivalence queries. In the case of EF f, one simple way to
achieve this is to learn a set X of (s,4) pairs where (s,i) € X means that the state s
can reach some state labeled f in ¢ steps. Now, a membership check (s,i) € X involves
checking if in ¢ steps a computation from s can reach X, which is an easier problem.
Moreover, it can be shown that there is a unique set that does not change under the
function I'(Z) = {(s,j) | 3s — s" and (s',5 — 1) € Z} U{(s,1) | s = f}. This allows us
to answer the equivalence query for EF' f exactly.

Using the ideas informally presented above, we can develop a learning based algorithm
for CTL, in the absence of fairness constraints. This is formally presented next. After
this, we consider the case of model checking in the presence of fairness constraints.

3.1 CTL formulas without Fairness

First let us consider the problem of model checking a Kripke structure that does not
have any fairness constraints. As we saw before, =, V, EX can be handled in a fairly
straightforward manner. From [17], we know that E[f1U fa] is the least fixpoint of the
function T, v, : 25 — 29 given by Trp,v,1(Z2) = [f]U([/1]NEX Z) or equivalently:

Teipup)(Z)={s|se[fi] and Is".s — s’ and s’ € Z} U [f2]

Here, [f] denotes the set of states satisfying the subformula f. Further, EGf is the
greatest fixpoint of the function Trgy(Z) : 25 +— 25 given by Tras(Z) = [fINEX Z
or equivalently:

Tecr(Z)={s|se[f] and 3s'.s — ' and s’ € Z} N [f]

It can also be shown that Tg[f 1 ,] and Tggy are monotonic, Tr[f, vy, is U-continuous
and Tgqgy is N-continuous. As discussed before, we want to derive new functions which
will allow us to use learning techniques.

Let N be the set of natural numbers, and Ig(f,up) @ 257N — 25% and I'eqy :

25xN |, 95xN he two functions defined as follows.

Definition 1.

Ipipup)(Z) ={(s,i+1) | s € [f1] and
3s'.s = s" and (s',i) € Z}U [fo] x {1}

Definition 2.

I'pci(Z) ={(s,i+1) | s € [f] and
3s'.s = ¢ and (s',i) € Z} U [f] x {1}

Intuitively, I'gf,uf,) (resp. I'ecy) keeps an additional counter 7 with each state, with
the counter value of 1 associated with all states in [f2] (resp. [f]). Both functions do
a similar backward transition step as Tg(f,uy,) and Trcy except that at each step the

value of the counter is incremented by one. It can be shown that I'g(s,yr,) and I'ggy are
monotonic and U-continuous.

Instead of trying to learn the least (greatest) fixpoint of T'g(f15,], We can learn
I'gis,uf) (I'Bcy) and then retrieve the desired fixpoint of 7. The first challenge is to
answer equivalence queries. For this, we have the following proposition.

Proposition 1. Fach of I'g(y,uys,) and I'gcy has a unique fizpoint.

Proof (Sketch). Since I'g(f, iy, is monotonic, it has fixpoints. Let Z and Z’ be two
fixpoints for I'g(,vf,]- Let Z<; be the set {(s,7) | (s,4) € Z and j < i}. We will prove
by induction on i that for all i, Z<; and Z_, are the same. The base case for i = 1 is trivial
since for all fixpoints of I'g(y, 1 1,], the set of states with counter value of i as 1 has to be
[f2]. Assume that the inductive hypothesis holds up to some j > 1. We need to show that
(s,j+1) € Z<jy1 < (s,j+1) € Z<jJr1 If (s,j+1) € Z then (s,j+1) € I'gs,uf,)(Z). This
implies s € [f1] and there is some (s,) € Z or (s',j) € Z<; such that s — s’. By the
inductive hypothesis, (s',7) € Z; or (j) € Z'. But then, (s,j + 1) € I'gipus)(Z') or
(s,j+1) € Z' or (s,j+1) € Z<H_1 Slrmlaurly7 if (s,j+1) € ZL;, then (s,5+1) € Z<j11.
This establishes Z<;j41 = Z ;.
The proof for I'rgy goes through in the same manner.

The above proposition helps us answer equivalence queries as follows. The query asks
whether a proposed hypothetical set Z’ is the same as the fixpoint Z of I' (I" could be
I'gis,ug,) or I'egy). Since the fixpoint of I" is unique, this can be correctly answered by
checking if Z' itself is a fixpoint, i.e. comparing Z’ with the image I'(Z’). It is important
to note that in general the fixpoints encountered in CTL verification are not unique; it
is due to our construction of I" that the fixpoint is unique.

The next challenge is to answer a membership query asking if (s,4) is in the fixpoint
of I'g(f,u) or I'ecy. The following proposition shows that in order to check if some pair
(s,7) is in the fixpoint of I'gs, v, (I'Ecy) We only need to check the i-fold composition

Fl Elf1 Ufz](w) (FJiEGf(Q]))-

Proposition 2.

1. Let Z be the fizxpoint of I'giy,uys,). Then, for all i > 0, (s,i) € F}%J[fth](@) if and
only if (s,i) € Z

2. Let Z be the fizpoint of I'gcy. Then, for all i > 0, (s,i) € F};JGf((D) if and only if
(s,i) € Z

Proof (Sketch).

1. To show that (s,i) € I} [flUf]((Z)) implies (s,i) € Z we observe that I'gs g, is
U-continuous. This gives us Z = UiF};J[flUM((Z)).
We prove by induction on ¢ that (s,i) € Z implies (s,4) € F}ii[fth](@)' Base case
for ¢ = 1 is trivial. Assume the inductive hypothesis up to j. If (s,j + 1) € Z then
since Z is a fixpoint, (s,j + 1) € I'giy,uy,)(Z). But then s € [f1] and there must be
some (s',j) € Z such that s — s’. By the inductive hypothesis, (s',j) € I'; [flUfQ](@)
which easily leads us to (s,j +1) € F]{;[rfl v 121 (0)-

2. The proof follows the same steps as the case for I'g(s, v,

10

In case Z' # Z, the learner typically also needs an element in the symmetric difference
7' ® Z to make progress. We can obtain such an element using the method in our earlier
work [31] which is summarized for I'gis,uf,1(Z") (I'eay(Z') can be done in a similar
manner) as follows for the different cases possible.

= I'gpup)(Z')\Z # 0. Let | = (s,i) be some element in this set. If | = (s, 1) thenl € Z,
because the only way we can have any (s, 1) in I'gp,u,(Z2') isif (s,1) € I, v ,1(0).
In this case, ! is in Z and hence in Z’ & Z. If | = (s,4) for some ¢ > 1, we can check
if | € Z using the membership query. If yes, then [is also in Z’ @& Z and we are done.
Otherwise, | € I'gs,u,](Z") because of the existence of some pair (s',i —1) € Z".
Clearly (s’,4 — 1) cannot be in Z otherwise (s,7) would have to be in Z. Hence
(shi—-l)eZ @ Z.

— I'gipup,)(Z2") € Z'. From standard fixpoint theory, since Z happens to also be the
least fixpoint of I'g(f, 17 y,), it must be the intersection of all prefixpoints of I'gf, 1,
(aset Y is a prefixpoint if it shrinks under the function T, i.e. T(Y) C Y). Now, Z’ is
clearly a prefixpoint. Applying I'g[f, v f,] to both sides of the equation I'g(f, 175,1(Z") C
Z' and using monotonicity of g uy,), We get

FE[flUfz] (FE[flUf2] (Z/)) & FE[flUf2] (Z/)

Thus, I'gis,v,)(Z") is also a prefixpoint. Let [be some string in the set Z'\I'g(s, v £,1(Z").
Since [is outside the intersection of two prefixpoints, it is not in the least fixpoint
Z. Hence, lisin Z' ® Z.

Finally, once the learning procedure is done, we need to retrieve the set of states
satisfying E[f1 U fo] (resp. EGf) from fixpoint of I'gs, v, (resp. I'eay). The following
proposition addresses this.

Proposition 3.
1. Suppose Z be the fizrpoint of I'gy,uy,)- Then,
[E[f1 U f2]] ={s| Ji s.t. (s,i) € Z}
2. Suppose Z is the fizpoint of I'pcy. Then, [EGf] ={s | Vi > 0(s,1) € Z}.
Proof (Sketch).

1. First, we show that if (s,i) € Z then s € [E[f1 U f2]]. We use induction on i. Base
case for ¢ = 1 is trivial. Next, if (s,7 + 1) € Z then (s,j + 1) € I'gs,us,1(Z). But
then s € [f1] and there must exist some (s, j) € Z such that s — s’. The inductive
hypothesis for j gives s’ € [E[f1 U f2]]. This means that there is a path from s’ to
a state satisfying fo such that all states in the path satisfy f1. Since, s — s’ and s
satisfies f2, this path can be extended to start from s. Hence, s € [E[f1 U f2]]. For
the other direction, we show that if s € [E[f1 U f2]] then for some i € N, (s,i) € Z.
If a state s satisfies E[f1 U f2] then there exists a path from s to a state in f3 such
that all the states in this path satisfy fi. If the length of the path is i, it can be seen
that (s,7) will get included in FJiE[flUfz}(@)' Hence, (s,i) € Z.

2. First, we show that if for all ¢ > 0, (s,4) € Z then s € [EGf]. Construct a tree with
root s, containing edges appearing in all shortest paths such that all states in this
path satisfy f. A few observations about this tree are in order. First, the tree is finite

11

branching; an immediate consequence of the Kripke structure being finite branching.
Second, all nodes of the tree satisfy f. Finally, this tree has infinitely many vertices.
By Konig’s Lemma, there must be an infinite path in the tree. Clearly, this infinite
path witnesses EGf.

For the other direction, we need to show that if s € Z then for all ¢ > 0, (s,4) € Z.
If a state s satisfies EG f then there exists an infinite path from s such that all the
states in this path satisfy f. If s; is the ith state on this path (counting s as s7), it
can be seen that (s,) will get included in F}EGf((Z)). Hence, for all i > 0, (s,i) € Z.

Example 2. We illustrate the verification procedure using the system described in Fig-
ure 1. Suppose we want to verify the CTL property AG(i1 + i2 < o) which says that
in all states reachable from the initial states the number of items consumed is always
less than the number of items generated. This can be written as ~EF(—(i1 + i2 < 0))
or = E[true U (i1 + i2 > 0)]. Since there is only a single control state qo, we can repre-
sent the global state of the system by a four-tuple giving the values of the data variables,
x = (b,0,11,12). Then, we have to calculate the least fizpoint of the function

T(Z) = {(ba07i17i2) | Z'1 +ZQ > 0}
U{z|z—2 and2’ € Z}

This is transformed into another function

F(Z) = {(b70,i1,i2,1) | 11+ 19 > 0}
U{(z,j+1) |z — 2 and (2,j) € Z}

Once the fixpoint for I' is learnt, we can project away the fifth component of the
states of the fixpoint to get the states satisfying EF(i; + i > 0). We complement this
set and then check if all the initial states are included in the complement. If the answer
is yes, then the system verifies the property otherwise it does not.

3.2 CTL with Fairness Constraints

We are now ready consider the problem of model checking a Kripke structure that has
fairness constraints F. Evaluating CTL formulas with fairness constraints is known to
be harder than the case where there are no fairness constraints. As shown in [17], the
problem can be reduced to the following. Let fair denote the set of all states s such that
there is a fair computation starting from s. It can be shown that EX (f) under fairness
conditions is equivalent to EX (f A fair) without fairness conditions. Similarly, E[f U g])
under fairness conditions is equivalent to E[f U gA fair]) without fairness conditions. The
set fair can be shown to be the states satisfying EGtrue under the fairness constraint.
Therefore, if we can evaluate a formula EGf under fairness constraints, we can compute
all other CTL formulas using the method in Section 3.1.

Let us now look at the learning problem for EGf under a fairness constraint F. As
described in Section 2.3, EG f means that there exists a path beginning with the current
state on which f holds globally and states in F are encountered infinitely often on this
path. The set of such states Z is the largest set with the following properties: a) all of the
states in Z satisfy f, b) for all states s € Z, there is a sequence of states of length one or
greater to a state in Z which is also in F such that all states on the path satisfy f. This set
can be written as the greatest fixpoint of a function T'(Z) = fAEX E[f U (ZAF)] but we
cannot directly use the procedure outlined in the Section 3.1 because each application of

12

the function requires evaluating an FU formula which itself needs a fixpoint computation.
However, we can adapt a fixpoint characterization we developed in an earlier work ([31])
to EGf.

Definition 3. Let F};“gf 2 25XNXN pe g function defined by F};agf(Z) = ((I(Z2)ulx(Z)u
I(Z2)N[f]) x Nx N as follows.

IN(Z)={(s,0,j) | s€F and j € N}
IZ)={(s,4,7) | s¢F and 3s'.s — ¢

I < 4. (,i,7) € Z}
I3(Z) ={(s,i,4) | s€F and3s'.s — &

I <4 (si—1,5) e Z}

Intuitively, we associate two counters with each state. Let Zgqs be the fixpoint of F]J;aé}
A triple (s,4,7) in Zge means that there exists a path of length j starting from s which
encounters at least ¢ 4+ 1 states labeled with F and all states in this path satisfy f. Since

this can be checked in finite time, we have a method of answering membership queries.

Proposition 4. Féagf has a unique fizpoint (Zgay). Further, the set of states satisfying
EGYf is given by
{s | Vi.gj.(s,1,7) € Zpar}

Proof. The proof follows the same steps as in [31].

The uniqueness of the fixpoint allows equivalence queries to be answered as before. The
proposition also gives us a way to compute EGf from Zgg.

To recapitulate, we have developed fixpoint characterizations for all CTL operators
with or without fairness such that each such fixpoint can be computed using a learning
procedure. This allows us to model check any CTL formula by starting from the innermost
sub-expressions and finally checking to see if all initial states are in the states for the
outermost expression.

The overall verification procedure is depicted in Figure 2.

4 Representing States with Regular Sets

In the previous section, we presented a general set of conditions under which we can
use a learning based approach to verify CTL properties of systems. In this section, we
give details of how this can be achieved within the context of using regular languages
to represent sets of states. Regular sets are a popular symbolic representation for sets of
states of for infinite state systems and have been successfully used ([12]) for modeling
parameterized systems, FIFO automata, systems with integer variables and push down
stacks.

We assume that the states of the system can be encoded as strings over some finite
alphabet p. We further assume that the enabled and action pairs of the events the
program can be used to create a transducer representing the transition relation of the
Kripke structure. The transducer is a finite state machine which accepts a pair of strings
(s1,s2) if the state corresponding to s; can transition to the state corresponding to ss.
We assume that the set of initial states; the set of states with labeled with a atomic
proposition; and the fairness constraint F are all given as regular sets.

13

Start with innermost
CTL subformulas

no Zis not the target, os
as shown by ¢ Y .
s Z Subformula is EU, EG
s<a "| Learner
fixpoint? \
Is hypothesis Z the target? no
Equivalence pracle Is y a member?
yes/no

yes Evaluate with

Set operations
Membership
Compute oracle
CTL subformula

Learning Engine

Property yes Initial states Outermost subformula? S:xﬁevel
verified — | informula? yes

lno

Property

fails

Fig. 2. Verification procedure

4.1 Representation of states with counter

In general, a set Z of pairs (s,4) is a subset of p* x N. To encode Z as a regular set we
use the alphabet X given by (pU{L}) x {0,1}. This is the alphabet that will be used by
the learning algorithm. Here L is a new “filler” symbol. An element (s,%) is encoded as
string over X such that projecting the symbols on the first component gives us s (the L
symbols are ignored); and projecting on the second component gives 7 in binary notation.
A similar encoding can be used to represent sets of triples (s, 1, 7).

4.2 Symbolic computation of operators

The various operations required for verification can be done efliciently using regular
sets. Standard procedures are available for complementation and union of regular sets
represented by finite automata. Given a DFA My representing a set of states Z, the set
of states EX(Z) can be found as follows. Let 74,, which represents the inverse of the
Kripke relation. We define a construction 7(M) for a transducer 7 and DFA M as a DFA
(say D) whose states are the cross product of the states of M and the states of 7. Then,
D accepts a string s if and only if M accepts some string s’ and 7 accepts (s',s). It is
easy to see that EX (Z) is simply 7in, (Mz). Next, we discuss how to compute the image
of a regular set of states under the function I'gs,i/y,) (the case for I'egy and I’ glgf can
be handled similarly).

Definition 4. Given Z a set of strings in the alphabet of X, define

Inc(Z) ={(s,3) | (s,i—1) € Z}
Dec(Z) = {(s,3) | (s,i+1) e Z}

14

It is known ([10]) that if natural numbers are represented by strings in binary, a trans-
ducer exists which simply increments its input string.* This can be used to create a
transducer 7r,. for the operation Inc. Essentially, 77, only changes the “component”
for the counter i in any input string and copies the “component” for s. A similar con-
struction can be defined for Dec. Further, 74,, can be used to create another transducer
7/ . which ignores the counter component and only changes the state component. Using
this construction, for a DFA Mz representing a set of states Z, I'pis,u,)(Z) is found

by computing 77, (71, (Mz)), intersecting the resulting regular set with the regular set

wmuv
[f1] x N and finally applying union with the regular set [f2] x {1}.

Let Proj, denote the projection to the first component, Proj, to the second compo-
nent and Proj; 5 to the first and second component (if there are more than two com-
ponents). These projections can be done on regular sets using homomorphisms. For
example, Proj, can be done by a homomorphism & : X' — p* which takes each letter in
2/ and maps it to a letter in p which corresponds to the state component.

Finally, given a regular set Z we need a way to calculate the following.

— {s | Jist. (s,i) € Z} (needed for EU subformulas): This can be calculated as
Proj,(Z).
— {s | Vi > 0(s,i) € Z} (needed for EG subformulas without fairness): This is the

complement of the set {s | Ji.(s,i) € Dec(Z)}. Thus, the desired set is Proj(Dec(Z)).
— {s | Vi.3j.(s,4,j) € Z} (needed for EG subformulas with fairness): This can be
written as

{S | _‘(HZ_'(HJ<5727]) € Z))}

or equivalently, Proj,(Proj, 5(Z)).

Figure 3 outlines the procedure that can be used to compute an EU CTL subformula.

4.3 Soundness and Completeness

The learning based verification procedure is always sound since it computes all CTL
subformulas exactly. Further, we have the following completeness result.

Theorem 2. Given a C'TL property to verify, assume that the following conditions hold:

1. Given a Kripke structure K, for every subformula of the form E[f1U fa] or EGf the
fizpoints of I'g(s,uy,) and I'egy have a reqular representation

2. Giwen a fair Kripke structure K, for every subformula of the form E[f1U f3] or EG f
the fizpoints of I'g(f,uys,) and F]J;aé} have a regular representation

Then the learning-based verification procedure will always terminate and correctly infer
whether the system satisfies the given CTL property.

Remark 1. Note that the set of states for the subformulas for other CTL operators —,
V and EX always have reqular representation since they can be obtained using standard
automata operations.

4 For pedagogical reasons, we are visualizing a transducer as taking an input string and pro-
ducing possibly different output strings.

15

algorithm learner

begin

Regular inference algorithm
end

algorithm isMember
Input: (s,17)
Output: is (s,4) in fixpoint?
begin
Compute Z; = Fg[flUfQ](Q)) if not done already
Is (s,1) € Z;7
If yes return true
else return false
end

algorithm Equivalence Check
Input: Hypothesis Z’
Output: For fixpoint Z, is Z' = Z7
If not, then some string in Z' & Z
begin
If Ipipup.1(Z")\ Z" # 0 {fixpoint check}
let (S,i) S FE[flUfg](Z/) \ A
Find (s’,4") which causes (s,) to be in I'gigu,)(Z)
if isMember((s, 1))
return (no, (s,17))
else
return (no, (s',i’)
else if I'gpuys,)(Z2') € 2
return (no, I € (Z'\ I'e(pus,1(Z)))
else {found fixpoint}
CTL subformula = Proj,(Z’)
end

Fig. 3. Computing E[p1 U p2] with regular sets

16

4.4 Complexity Analysis

The main cost of the verification procedure is learning the fixpoints. Let f be the number
of CTL subformulas requiring fixpoint computations. We now analyze the cost of the
learning procedure.

Let m be the length of the longest string returned by the teacher in a negative answer
to an equivalence query, n be the number of states of the minimal automaton representing
a fixpoint, k be the size of the alphabet of the learned language and ¢ be the number of
states of the automaton representing the transducer for the function I" whose fixpoint is
being learned. By Theorem 1, the language inference algorithm makes O(kn? + nlogm)
membership queries and O(n) equivalence queries. The worst case for the equivalence
query for a hypothesis Y occurs when we look for a string in the difference of Y and
I'(Y). The size of DFA representing Y is bounded by n. Looking at I'(Y), it can be
seen that the DFA representing the difference of Y and I'(Y) would be O(nt). Thus the
length of the longest string returned by an equivalence query is m = O(nt).

The cost of answering membership queries dominates the total runtime cost of the
procedure. Using m = O(nt), the number of membership queries is O(kn?+nlognt). The
cost of the membership queries is equal to the number of membership queries and the
cost of building the DFA D, representing I (). The cost for D; is (O(t))’ which leads
to the total cost of membership queries of O(t°"") 4 kn? 4+ nlognt) (using maximum
value of j to be m = O(nt)).

Hence, the overall running time is O(f(t°™) + kn? + nlognt))

4.5 Scalability Issues

In the previous section, we observed that the model checking algorithm presented here
has running time that depends on an exponential factor t©("*). This cost arises when
constructing the DFA D; that represents I'i(D), where I' could be either I'giy,uy,) or
I'sgy. Although, the size of D; can grow exponentially, we have found that in practice,
the size of the minimal DFA equivalent to D; is manageable.

Another significant run-time cost is due to the size of the alphabet of the language.
Although the run-time cost is just linear in the alphabet size, the problem is that the
alphabet size itself grows exponentially in the number of variables in the system. We
now discuss some of the techniques we use to manage this cost.

As mentioned in Section 2.4, when the learner introduces a new state in its hypoth-
esis, it has to make membership queries to find the transition function from the new
state. Let the access string for the new state being formed be s. For each symbol b, to
find the destination for b-transition out of s, we have to sift sb down the classification
tree. This requires membership queries for strings in s.b.D.S. We first compute a DFA
A¥ representing I'(0) UI?(@)U...UI*(0) (where I' is either I'g(, s, or I'scy) up to a
sufficient depth k such that all the membership queries for s.X.DS can be answered by
looking up acceptance in AF. A naive implementation would now need O(|X|) member-
ship queries; since |X| is exponential in the number of variables, this is an unacceptable
cost. To mitigate this, we can use a symbolic learning algorithm that symbolically sifts
5.2 for the entire alphabet at one go, rather than individually sift sb for each b € Y. We
present its details next.

Let the automaton AF have states Q 4 and transition function § 4, and let ¢; € Q 4 be
the state of A* reached on reading s. Consider b; and by such that §4(qs,b1) = 64(qs, b2)-
Hence we know that for every d € DS, d4(qs,b1.d) = da(qs, bo.d). Since A*F was chosen

17

to be such that all membership queries for strings in s.3'.DS can be faithfully answered
by AF, it follows that for every d € DS, s.b;.d belongs to the concept iff s.b5.d belongs to
the concept. Thus, the strings s.b; and s.bs will sift in the same way in the classification.
One important consequence of this observation is that one need not sift all strings in s.2;
we only need to sift strings that go to different states in A*, which can be significantly
less than that number of symbols in Y. Furthermore, if the transition relation of all
our DFAs are represented using ordered BDDs, then all this computation can be done
implicitly and efficiently.

5 Implementation and Examples

We have extended our learning based verification tool LEVER [25] with the techniques
presented in this paper. The tool takes as input a representation of the system in terms
of its transitions and the initial states. Currently, systems with unbounded integers and
parameterized systems are supported. The transition actions, transition guards and the
description of the initial states and states corresponding to atomic propositions can be
expressed using formulas in Presburger arithmetic. As in FAST [20], the global state of
a system with n integer variables is represented by a string over the alphabet {0,1}".

Internally, we use the MONA tool [24] to store the transition relation as well as sets of
states. MONA represents edges between states of an automata symbolically using BDDs.
This allows us to use the symbolic method for answering membership queries for a new
state in the hypothesis automata as discussed in Section 4.5. It is commonly seen that
the BDD approach leads to a compact representation of the DFA even if the number of
variables is large.,

For efficiency, we first calculate the set of reachable states and restrict all intermediate
states calculated during fixpoint computations to be reachable.

5.1 Examples

We use the LEVER tool to analyze various examples taken from the literature. A number
of these examples are taken from the FAST [20] web site and include cache coherence pro-
tocols such as Dragon, Firefly, Illinois, MESI, MOESI, Berkeley, Futurebus and Synapse;
mutual exclusion protocols such as peterson, lamport, ticket and bakery; broadcast pro-
tocols such as consistency, and producer-consumer; petri nets such as lastinfirstserved
protocol, Esparza-Finkel-Mayr Counter Machine, RTP and manufacturing; and counter
machines such as lift and barber. We also analyze an example called noaccel for which the
reachability set is regular but on which the acceleration methods employed in tools such
as FAST cannot be applied because the transition relation does not satisfy the conditions
needed for acceleration.

We analyze three different CTL formulas AGp, AG(EFp) and AG(req — AFTresp).
In this, AGp is a simple reachability property which says that the property p holds
invariantly. AG(EFp) implies that it is always true in all states that it possible to get to
a state in future which satisfies p. This is often used to assert properties such as proper
termination. Note that this is a branching time property that cannot be expressed in
linear time logics. Finally, AG(req — AFTresp) illustrates the application to a liveness
property which also requires fairness constraints. The fairness constraints were manually
added to the examples taken from the literature but due to lack of time, this could be

18

done only for some of the more well known examples. Hence, AG(req — AFTresp) was
not analyzed for all the examples.

In order to evaluate the performance of our tool with other available tools, we compare
our LEVER tool with FAST [20] for the case of AGp. FAST was chosen because it has
already assembled a large number of examples from various sources in the literature.
While the comparison does not constitute an exhaustive analysis by any means, as shown
in Table 1, LEVER outperforms FAST on a number of examples. Further, it is interesting
to note that since LEVER only relies on regularity of the set being learnt, it is able
to analyze the example noaccel trivially, while FAST is unable to make any headway
(denoted in the table by the symbol T) since the transition relation does not lend itself
to acceleration based methods. Note that the comparison with FAST is restricted to AGp
properties since FAST can only handle reachability properties.

We plan to add comparisons of LEVER with other infinite state model checkers such
as ALV [4] and TREX [28] in future.

Tables 1 and 2 report the running times on an Intel Xeon based Linux machine
running at 1.70GHz with 2GB memory.

AGp AG(EFp)
LEVER|FAST| LEVER
dragon 1.279s |1.058s| 2.810s

Example

firefly 0.849s [0.647s| 1.269s
illinois 1.337s |0.714s| 3.202s
mesi 0.748s (0.337s| 1.381s
moesi 1.322s |0.417s| 2.372s

prod/consumer [21.142s|0.316s| 25.289s
synapse 0.192s [0.221s| 0.543s
bakery?2 7.019s [84.17s| 21.567s
barber 1.780s (1.387s| 2.199s
berkeley 0.265s [0.270s| 0.558s
consistency | 6.013s |142.6s| 9.661s
efm 0.261s |0.591s| 0.279s
futurbus 11.256s]1.599s| 14.048s
lamport 1.433s |1.805s 2.081s
lastinfirstserved|13.860s|1.436s| 15.910s
lift 7.445s [4.123s| 11.678s
manufacturing | 0.790s (2.331s| 0.824s
noaccel 0.024s T 0.025s
peterson 2.808s [3.448s| 3.844s
rtp 1.015s |1.578s| 15.984s
ticket2i 3.779s |0.669s| 15.368s

Table 1. Running times for CTL formula AGp and AG(EFp)

19

Example AG(req — AFresp)

LEVER

bakery?2 36.56s
barber 5.29s
consistency 8.03s
lamport 6.47s
lift 17.31s
ticket2i 45.92s

Table 2. Running times for CTL formula AG(req — AFresp) with fairness constraint

6 Conclusions and Future Work

We presented a learning based CTL model checking algorithm, which is the first CTL
model checker for infinite state systems that handles fairness constraints. We built a
prototype model checker LEVER based on these ideas and demonstrated that on many
practical examples the tool performs well.

The work presented here can be extended in many ways. We plan to compare the
performance of LEVER with other infinite state model checkers such as ALV [4] and
TREX [28] in future. Another interesting direction of future work would be develop a
learning based model checker for the full p-calculus. The main challenge is that p-calculus
allows to express fixpoints of functions with more than one argument variable; we will
need to extend the ideas presented here that work for fixpoints with a single argument
to this more general case.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in regular
model checking. In Computer-Aided Verification (CAV’03), volume 2725 of LNCS, pages
236—-248. Springer, 2003.

. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications for
java classes. In 2nd ACM SIGPLAN-SIGACT Symp. on Principles of Prog. Languages,
2005.

. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning
assumptions. In Proceedings of the 17th International Conference on Computer Aided Ver-
ification (to appear), 2005.

. ALV. Action language verifier. http://www.cs.ucsb.edu/ bultan/composite/, 2004.

. G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. ACM SIGPLAN Notices,
37(1):4-16, Jan. 2002.

. D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput.,
75(2):87-106, Nov. 1987.

. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: a tool for reachability analysis
of complex systems. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the
international conference on computer aided verification (CAV’01), Paris, France, volume
1855 of Lecture Notes in Computer Science. Springer, 2001.

. S. Bardin, A. Finkel, and J. Leroux. FASTer acceleration of counter automata in practice.
In K. Jensen and A. Podelski, editors, Proceedings of the 10th International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS’04), volume

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

2988 of Lecture Notes in Computer Science, pages 576-590, Barcelona, Spain, Mar. 2004.
Springer.

C. Bartzis and T. Bultan. Widening arithmetic automata. In Computer Aided Verification,
2004., 2004.

B. Boigelot. Symbolic Methods for Ezxploring Infinite State Spaces. PhD thesis, Collection
des Publications de la Faculté des Sciences Appliquées de I’Université de Liége, 1999.

B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large (extended abstract).
In CAV: International Conference on Computer Aided Verification, 2003.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In E. A.
Emerson and A. P. Sistla, editors, Proceedings of the 12th International Conference on
Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages 403-418. Springer,
2000.

T. Bultan. Automated symbolic analysis of reactive systems. PhD thesis, Dept. of Computer
Science, University of Maryland, College Park, Md., 1998.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state programs us-
ing presburger arithmetic. In Proceedings of the 9th International Conference on Computer
Aided Verification (CAV 1997), pages 400-411, 1997.

T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proceedings of the 16th IEEE
International Conference on Automated Software Engineering, pages 382-386, 2001.

E. Clarke, S. Chaki, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for
simulation conformance. In Proceedings of the 17th International Conference on Computer
Aided Verification (to appear), 2005.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. Number ISBN:0262032708.
The MIT Press, 2000.

J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for com-
positional verification. In Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 331-346, 2003.
G. Delzanno and A. Podelski. Model checking in CLP. LNCS, 1579:223-239, 1999.

FAST. Fast acceleration of symbolic transition systems. http://www.lsv.ens-cachan.fr/
fast/, 2004.

A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63-92, 2001.

P. Habermehl and T. Vojnar. Regular model checking using inference of regular languages.
In Proc. of Infinity’04, London, UK, 2004.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. The
MIT Press, Cambridge, Massachusetts, 1994.

N. Klarlund and A. Mgller. Mona. http://www.brics.dk/mona/, 2004.

LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/ vardhan/lever.html, 2004.
R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences.
Inform. Comput., 103(2):299-347, Apr. 1993.

T. Touili. Regular model checking using widening techniques. In ENTCS, volume 50.
Elsevier, 2001.

TReX. A tool for reachability analysis of complex systems. http://www.liafa.jussieu.
fr/"sighirea/trex, 2004.

A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify safety for
FIFO automata. In LNCS 3328, Proc. of FSTTCS 04, Chennai, India, pages 494-505, 2004.
A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety properties.
In LNCS 8308, Proc. of ICFEM’04, Seattle, USA, pages 274-288, 2004.

A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language inference to verify
omega-regular properties. In Proceedings of 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05), volume 3440, pages
45-60, Edinburgh, UK, April 2005. Springer.

21

