Preventing Format-String Attacks via Automatic and
Efficient Dynamic Checking

Michael F. Ringenburg and Dan Grossman
Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195

miker@cs.washington.edu, djg@cs.washington.edu

ABSTRACT

We propose preventing format-string attacks with a combi-
nation of static dataflow analysis and dynamic white-lists of
safe address ranges. The dynamic nature of our white-lists
provides the flexibility necessary to encode a very precise
security policy—namely, that %n-specifiers in printf-style
functions should modify a memory location = only if the
programmer explicitly passes a pointer to xz. Our static
dataflow analysis and source transformations let us auto-
matically maintain and check the white-list without any
programmer effort—they merely need to change the Make-
file. Our analysis also detects pointers passed to vprintf-
style functions through (possibly multiple layers of) wrapper
functions. Our results establish that our approach provides
better protection than previous work and incurs little per-
formance overhead.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); D.2.0 [General]: Protection
mechanisms; D.2.4 [Software/Program Verification]: Re-
liability

General Terms
Security

Keywords

Format-String Attacks, Static Analysis, White-Lists, Dy-
namic Checking

1. INTRODUCTION

The well-known vulnerabilities of systems implemented
in the C programming language are unsurprising when we
consider C programming from a security perspective:

Permission to make digital or hard copies of all or part of this work for

e (’s lack of memory safety essentially means any piece
of code might modify any part of the address space.
Moreover, for performance reasons, libraries typically
do not check function arguments.

e The principle of least privilege [29], probably the clos-
est thing there is to an axiom of security, states that
no entity should be given more rights than necessary
to complete its task.

The inherent conflict between the two points above is ob-
vious and grows worse as we build ever larger systems in
C: Most code is permitted to do much more than it should,
particularly with respect to modifying memory. At a high-
level, format-string attacks, as well as many other standard
exploits, take advantage of this security weakness.
Previous proposals for addressing format-string attacks
(and other vulnerabilities in C) include: software-fault isola-
tion or virtual execution [37, 32, 18], hardened libraries [36],
run-time detection of illegal writes [7, 23, 13], type-safe di-
alects or implementations of C [1, 5, 14], static lint-like code
analysis for likely errors [15, 33, 2, 10], more sophisticated
static analysis [31], and code rewriting techniques [6]. As
Section 5 discusses in detail, these projects are all valuable:
They catch real bugs and should be used more than they are.
However, they tend either to restrict code (e.g., banning %n
in non-static format strings), or to miss large classes of vul-
nerabilities (e.g., in wrapper functions that call vprintf).
In this paper, we propose a new approach for preventing
format-string attacks. We combine the precision and se-
curity of run-time approaches with the ease-of-use of static
analyses and automatic source transformations. Specifically,
at run-time we maintain a dynamically updated white-list of
Yn-writable address ranges. This allows us to encode a very
precise security policy—namely, that %n-specifiers in format
strings should be allowed to modify a memory location if
and only if the programmer explicitly passes a pointer to
it. We use static dataflow analysis to determine automat-
ically which addresses should be in the white-list at any
given time. Our source-to-source transformation then uses
the knowledge gleaned from static analysis to insert the code

personal or classroom use is granted without fee provided that copies arethat maintains and checks the white-list. Thus the program-
not made or distributed for profit or commercial advantage and that copies mer merely needs to update the Makefile and recompile. We
bear this notice and the full citation on the first page. To copy otherwise, t0 haye tested our tool on a number of programs, and did not

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
CCS’05,November 7-11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0013$5.00.

have to change any source files. All the programs ran cor-
rectly, and all the format-string vulnerabilities disappeared.
Our tool is available for download from our website [26].



1.1 Format-String Attacks

Since their discovery roughly five years ago [35], format-
string attacks have become all-too-common [6]. For exam-
ple, a recent search on securityfocus.com revealed 62 sepa-
rate vulnerabilities posted in 2004 that contained the phrase
“format string”. This has occurred even though (or perhaps
because) such vulnerabilities are well-understood [22, 38]
and there exist (partial) techniques for avoiding them [6,
31].

The essence of the vulnerability is straightforward:

e User-supplied input is frequently used as the format-
string argument to a printing function (such as sprintf,
snprintf, fprintf, vprintf, vsprintf, vsnprintf,
viprintf, syslog, or vsyslog).

e The format-string argument to printing functions
causes memory writes if the %n format specifier ap-
pears. Specifically, %n writes the number of bytes out-
put by the printing function (prior to the %n) to the
memory location specified by the corresponding argu-
ment.

e Printing functions do not check the number or types
of their variable arguments.*

Thus, an attacker can perform unauthorized writes by in-
serting unexpected %n’s into user-supplied input strings (e.g.,
command-line arguments) that eventually get passed to print-
ing functions. For example, if a malicious user calls the fol-
lowing program (adapted from [22]) with the command line
argument "aaaabbbcccn", the value 10 will be written to
the address 0x61616161:

int main(int argc, char **argv) {
char buf[100];
snprintf (buf, 100, argv[1]);

}

The snprintf statement first writes “aaaabbbccc” to buf.
It then pulls the next argument off of the stack, assumes it
is an integer pointer, and writes the number of bytes output
so far (10 in this example) to the pointed to location. In
this case, however, there is no next argument. Thus the first
four bytes of buf are grabbed off the stack instead, and 10 is
written to 0x61616161 (0x61 is ‘a’ in ASCII). Furthermore,
%n ignores the length argument of snprintf, and instead
writes the number of bytes that it believes would have been
printed had there been no length restrictions. Thus, this
style of attack can be used to write an arbitrary value to an
arbitrary location in memory.

Format-string attacks are also possible with specifiers (such
as %s) that read the memory pointed to by the correspond-
ing argument. However, Jn-based format-string attacks are
the most dangerous, because they allow the attacker to write
arbitrary values to arbitrary memory locations (and thus to
potentially execute arbitrary code on the victim machine).
In contrast, format-string attacks based on other specifiers
can only read data, or potentially crash the program (e.g.,
by following an invalid pointer). A quick scan of format-
string attacks in the wild (e.g., [28, 35, 30, 25, 24, 19, 17,
39, 34]) validates this assertion—the vast majority of real
attacks (and all the attacks we saw that execute malicious

In general, C’s variable-argument functions cannot check
this.

code) involve inserting unanticipated %n-specifiers into for-
mat strings. Thus we choose to focus on %n-based attacks in
this paper. However, our technique could easily be extended
to handle other types of format-string attacks.

1.2 White-Listing

We propose a simple, flexible, and direct way to con-
trol the memory modified by a function (such as printf):
An explicit, dynamic white-list of address ranges can con-
trol writes that may be unsafe, such as those exploited by
format-string attacks. We can add and remove address ranges
from the white-list at run-time, and we can require that the
writes we wish to guard first check that an address is in the
white-list before writing to it. White-lists can be viewed
as a direct representation of a simple but easily understood
security policy: Certain code should modify only certain lo-
cations. Of course, the white-list itself must not succumb to
malicious modification, but such an event can occur only if
an application is already compromised.

To see the flexibility of white-listing, notice that it can
easily encode many static approaches:

e Default: A white-list containing the range [0,2" — 1]
(for an n-bit address space) allows any write, effec-
tively turning off protection. This might be necessary,
for example, to ensure that legacy code executes un-
changed.

e Read-only: An empty white-list ensures that the vul-
nerable write it protects never successfully executes.
For format strings, the empty white-list is equivalent
to banning the %n format character.

e Sandboxing: A white-list containing just the range
[27,20FY _ 1] restricts writes to an aligned 27 range,
mirroring some approaches to software fault
isolation [37].

Furthermore, because our white-lists are dynamic, we can
express more interesting dynamic policies (such as the one
we describe in this paper), and we can change the policy at
run-time if desired.

In short, we believe dynamic white-lists are powerful tools
for increasing the security of C code by restricting memory
writes. In particular, in this paper we use the approach to
prevent format-string attacks. We show that it is effective,
easy-to-use, and efficient.

1.3 Contributions and Outline

We have implemented a white-list based approach to pre-
venting format-string attacks, and determined that the per-
formance overhead is reasonable. Moreover, our approach
uses a simple static code analysis to detect user-defined
wrapper functions that call vprintf and similar functions.
This allows us to rule out common? attacks that previous
work could not [6]. An explicit white-list lets us trade-off
precision and security when the flow analysis is too conser-
vative. Our approach does not rely on the C preprocessor

2A brief manual search found several known vulnerabilities
involving wrapper functions that call vEfprintf, including:
isc dhepd 3.0[30], rwhoisd 1.5[28], zkfingerd 0.9.1[25], unreal
ired 3.1.1[19], nn news reader[39], wu-ftpd[35], and tcpflow
0.2.0[34].



(we perform a source-to-source transformation on prepro-
cessed code) and does not require recompiling the standard
C library.

Section 2 shows how white-lists can prevent format-string
attacks. In Section 3, we describe the automatic mainte-
nance of the white-list. Section 4.1 presents vulnerability
prevention results, and in Section 4.2 we examine the run-
time overhead of white-listing. Section 5 contrasts our work
with related projects. Finally, Section 6 concludes and con-
siders other interfaces that may benefit from white-listing.

2. WHITE-LIST BASED PREVENTION OF
FORMAT-STRING ATTACKS

Using a white-list to prevent format-string attacks is
straightforward:

e We need a run-time white-list containing the address
ranges that printing functions are allowed to write.

e The printing functions must consult the white-list be-
fore executing the code for a %n qualifier.

e Callers to printing functions must register (add to the
white-list) any locations that might legally be written.

e For performance and security, callers should unregister
locations after the printing functions are called.

We represent the white-list with a (resizable) array of ad-
dress ranges. At any point during program execution, we
expect the white-list will need to contain at most a few ad-
dresses (because of the fourth point above). We store the
white-list in a global variable; in a multithreaded setting it
would be slightly more secure to use a separate white-list
for each thread.

To check the white-list, before executing a %n qualifier
the printing function must first verify that the location it is
about to write is in a registered address range. We expect
the addresses registered at the most recent call site to be
used first (we shall see why this is the case in Section 3).
Thus, the function checks the white-list array as a stack,
starting with the most recently registered range. We can
either modify (or reimplement) the printing functions, or
we can wrap them with a function that checks the white-
list. The former has the advantage of performance (parsing
the format string only once), but the disadvantage that we
intrusively change or circumvent the standard library. If a
white-list check fails, we choose to abort the program, but
other choices are possible (such as silently skipping the write
or sending a signal).

We provide a very simple API for users to adjust the
white-list; richer interfaces are certainly possible but we have
not needed them.

e __register(x,y) adds the range [z,y) to the white-
list.

e __register_word(x) adds the range [z, z] to the white-
list. We can use this function to register addresses
pointed to by arguments that are meant to be used as
%n targets.

e __unregister() removes the most recently added-but-
not-yet-removed range from the white-list (i.e., it pops
the stack). This is more efficient than searching the

white-list for a specific address, and has been suffi-
cient for our purposes. In particular, it is exactly what
we need for the automated approach described in Sec-
tion 3.

For programs that never use __register, we can implement
a simpler white-list by merely disabling the %n modifier.
Calling __unregister() on an empty white-list has no ef-
fect.

For security, clients should register as few ranges as pos-
sible, and unregister them as soon as possible. Ideally, that
would mean registering the correct arguments just before
calling a printing function and unregistering them imme-
diately afterward. However, wrapper functions that pass
va_lists to functions like vfprintf (e.g., wrapper1() in
Figure 1) cannot do the registration: They do not know the
number or types of the arguments in the list. Therefore, the
function deeper in the call stack that does know this infor-
mation must do the registration (i.e., we must register at the
call site of the function whose arguments are pointed to by
the va_list). As the next section shows, we can automate
this process with a simple static analysis.

3. AUTOMATIC WHITE-LIST
MAINTENANCE

We have implemented a fully automatic source-to-source
transformation that inserts calls to __register_word (and
__unregister) for any argument of type int* or unsigned*
that might be passed to a printing function (either directly
or via a va_list).® Section 3.1 describes the basic approach.
Section 3.2 discusses trickier issues (function pointers and
non-local va_list values). Section 3.3 considers separate
compilation (when not all source code is available). Sec-
tion 3.4 describes some important automatic optimizations
for avoiding unnecessary API calls. Finally, Section 3.5 con-
siders manual optimizations.

3.1 Basic Approach

We built our transformation using the freely available
CIL [20, 4] system for manipulating C programs. CIL takes
a program, performs a number of meaning-preserving sim-
plifying transformations, and produces an Abstract Syntax
Tree (AST). The CIL system is easily extensible, and pro-
vides code to simplify the process of creating static analyses
and source transformations. The CIL system also has the
capability to merge separate source files (with the --merge
command line flag), which greatly simplifies the construc-
tion of whole-program analyses. For our purposes, whole-
program analysis is not strictly necessary, but leads to more
precise results (see Section 3.3). Extending CIL also makes
it easy for programmers to use our approach: they can
simply use cilly --merge --doautoWhitelist as their “C
compiler”, and the transformation and subsequent C com-
pilation will happen seamlessly.

3We chose the more secure policy here of only registering in-
teger pointer arguments, because we felt that it was unlikely
that programmers would intend to use other types with a %n.
Our mechanism will also support more permissive policies
that register other types of arguments. There is a trade-
off here, however, because more registration means a larger
white-list, which in turn means less security.



The actual transformation we perform involves function
calls: For each call e0O(el,e2,...,en) and argument ei
(where i > 1), we determine if:

1. ei is passed to the callee as a variable argument (which
we can tell from the type of e0)

2. ei is a pointer to an integer (which we can tell from
the type of ei)

3. e0 is a printing routine or its variable arguments may
be passed to a printing routine.

If all three facts hold, we surround the function call with
__register_word(ei) and __unregister(). Of course, we
may register and unregister multiple arguments. Figure la
contains an example program, with printf calls and with
wrapper functions calling vprintf. We also include a printf
with a constant format string. This call is not rewritten nor
are its arguments registered, as explained in Section 3.4.
Figure 1b shows the result of transforming the example with
our tool.

Because we duplicate the registered expressions, we must
be sure that they have no side-effects. For example, if we
need to register argument p++, we must ensure that our
transformation does not increment the pointer p twice. For-
tunately, we can exploit a transformation that already hap-
pens automatically in CIL. This transformation replaces
all function arguments with effect-free expressions (such as
variables). For example, foo (p++) will get transformed to:

tmp = pt++;
foo(tmp);

Our transformation will then register the temporary vari-
able, rather than p++, thus avoiding the duplication of side
effects.

The only necessary question that is not directly answered
by CIL (or by any system that type-checks C code) is whether
fact (3) holds. The arguments passed to a printing function
may come from two different sources. They may be supplied
directly at the call site (as in the case of printf, syslog,
fprintf, etc.), or they may be part of another function’s
variable-argument list, and passed via a va_list (as in the
case of vprintf, vsyslog, viprintf, etc.). If the arguments
are supplied directly, we can simply register (and unregis-
ter) them at the call site. However, if the arguments are
passed from elsewhere, we must determine which functions
they could have come from. We can then register arguments
at the call sites of those functions. We identify those func-
tions with a conventional, whole-program dataflow analysis.
As Section 4.2 shows, this analysis is tractable even for large
programs.

In particular, our analysis determines the contents of two
sets of functions. The first set, S1, contains exactly those
functions whose integer-pointer arguments must be regis-
tered. Specifically, these are the variable-argument printing
functions (printf, sprintf, etc.), and the functions that
create a va_list that may be passed to a va_list printing
function (vprintf, vsprintf, etc.). The second set, Sz, con-
tains those functions that take a va_list as an argument,
and that may eventually pass that va_list to a vprintf-
style function. They may either pass the va_list directly, or
they may pass it through other functions that (transitively)
pass it to vprintf. Note Ss also includes the vprintf-style
functions themselves.

Our analysis proceeds as follows. We initialize S1 with the
printf-style functions, and S with the vprintf-style func-
tions. We then iterate over every function in the program.
For each function f:

1. If £ is a variable-argument function that passes a
va_list to a function in Ss, then we must add f to
Si. (The function in S; may pass f’s arguments to
vprintf, so we must register them.)

2. If £ has a va_list argument and calls a function in
S2, then we must add f to Sz. (The function in Sa
may pass f’s va_list to a vprintf, so £ needs to be
in 8> as well.)

The above cases handle va_lists that are created in £, or
passed into £. The other possibility—that the va_list is
drawn from some data structure—is discussed in Section 3.2.
We repeatedly iterate over all the functions until no new
functions are added to either set. At this point, S will con-
tain all the functions that can (transitively) pass a va_list
argument to a vprintf-style function. The set S1 will con-
tain all the variable-argument functions that call any of the
functions in Sz, plus the original variable-argument print-
ing functions. Thus Si will contain the functions whose
arguments must be registered. Note that there is nothing
unusual here: It is a “textbook example” of a dataflow anal-
ysis. We also expect it to be tractable for even the largest
programs because only functions with a variable number of
arguments or an argument of type va_list are relevant: We
can precompute that the vast majority of functions are irrel-
evant and need not be considered when the analysis iterates.

Having precomputed the two sets as just described, it is
trivial to determine if part (3) holds, provided e0 is the name
of a function. Specifically, part (3) holds if €0 is in Si.

In practice, this basic approach has sufficed for every ap-
plication we have investigated. Nonetheless, it is not quite
sufficient for arbitrary C programs, or for programs where
some of the source code is unavailable. We now consider
these complications.

3.2 Function Pointers and Data Structures

In the previous section, we assumed that function expres-
sions (i.e., e0) were function names, and that every va_list
was either a local variable or a function argument. In prac-
tice these assumptions hold for printing functions, but in
theory they might not.

If we cannot statically determine the function pointed
to by a variable-argument function pointer, we can instead
“guess” whether or not its arguments should be registered.
Guessing yes means we will not risk aborting a program that
is using %n correctly. On the other hand, guessing no is more
secure because the white-list stays smaller. Our current sys-
tem errs on the side of more security, and thus always guesses
no. However, this is a question of policy—our mechanism
can support either choice.

We can also do arbitrary things with a va_list, such
as storing it in a data structure or a global variable. In
this case, we may not be able to determine at compile-time
whether the program might subsequently pass the va_list
to a printing routine; so again we “guess”. As before, we
err on the side of more security and guess no. However, our
mechanism could easily support a policy of guessing yes. We
would simply treat any function that assigns a va_list to a



void wrapperl(char *fmt, va_list args){
vprintf (fmt, args);

}

void wrapper2(char *fmt, ...){
va_list args;
va_start(args, fmt);
wrapperl(fmt, args);
va_end(args) ;

}

int main(int argc, char **argv){
char str[100] = "Hello%n world!";
int x;
int *y = &x;
printf(str, y);
wrapper2(str, y);
printf ("Hello world!");

(a)

void wrapperl(char *fmt, va_list args){
__vprintf_Checked(fmt, args);

}

void wrapper2(char *fmt, ...){
va_list args;
va_start(args, fmt);
wrapperl(fmt, args);
va_end(args) ;

}

int main(int argc, char *xargv){
char str[100] = "Hello%n world!";
int x;
int *y = &x;
__register_word(y);
__printf_Checked(str, y);
__unregister();
__register_word(y);
wrapper2(str, y);
__unregister();
printf ("Hello world!");

(b)

Figure 1: Example code (a) before and (b) after automatic white-listing.

“strange place” (such as a struct field or global variable) as
though that function might call vprintf with the va_list.
Doing so will cause our analysis to trace the va_list back
to its source.

3.3 Separate Compilation

Our iterative program analysis assumes that all the source
code is available (except for the standard library). CIL
makes it easy to provide all the source code, as long as it
is available to the programmer. If it is not, then we can-
not know whether a function taking variable arguments (or
a va_list) might use them for printing. Programmers can
write stub functions to provide the answer, or the tool can
“guess”. Once again, we choose to err on the side of more
security and guess no. However, as before, this is a matter of
the policy that we chose for our prototype. The mechanism
of white-listing can easily support either policy choice. Sim-
ilarly, annotations such as gcc’s printf attribute can guide
the guesses.

3.4 Optimizations

In many cases, we can avoid the run-time overhead asso-
ciated with registration and white-list checking. In particu-
lar, we can circumvent registration and white-list checking
whenever the format string is immutable. Format string
attacks involve inserting unexpected format specifiers into
user-supplied format strings. Thus static format strings are
not vulnerable.

Alternatively, if we also wanted to provide protection
against incorrect uses of %n-specifiers by programmers, we
could instead treat constant format strings as follows: For
each Yn-specifier (typically none) in the format string, check
statically that the corresponding actual argument is an in-
teger pointer. Then, as above, circumvent registration and
white-list checking.

The constant-string optimization requires two versions of
each printf-style function (one that checks the white-list
and one that does not). However, as we will see in sec-
tion 4.2, the performance benefit more than makes up for
this small amount of code duplication.

Another possible optimization, which we have not yet
implemented, would be to transform calls where no argu-
ments follow the format string into calls with a constant
format string. In particular, we can replace calls of the form
printf (buf) with printf("%s", buf), as long as no argu-
ments appear after buf. If buf contains no format specifiers,
these two calls are identical. On the other hand, if buf does
contain format specifiers, the behavior of printf (buf) is
undefined (because there are no corresponding arguments).
Thus a C compiler can do whatever it chooses—including
the proposed replacement.* The new form has a constant
format string, and thus we can apply the previous optimiza-
tion.

3.5 Manual registration

Explicit white-list maintenance allows the programmer to
control the cost of registering address ranges. For example,
consider this code fragment, where we assume that each el-
ement of arr is a string of the form "... %d ... %n™

int total = 0, x = 0, i = 0;
for(; i < arr_len; ++i) {
__register_word(&x) ;
printf (arr[i], i, &x);
__unregister();
total += x;

}

4Tt is debatable whether using program rewriting to mask a
potential error is worthwhile. In the interest of security, we
believe it is.




int main(int argc, char **argv) {
int i;
char buf[50];
for (i=0; i < 10000000; i++) {
sprintf (buf, "butter");
}

Figure 2: The first performance microbenchmark.
In this test, the format string contains no format
specifiers.

int main(int argc, char **xargv) {
int 1i,j,k;
char buf[50];
for (i=0; i < 10000000; i++) {
sprintf (buf, "butter}d%d", j, k);
}

Figure 3: The second performance microbenchmark.
In this test, the format string contains two format
specifiers.

Our automated process would produce the above code, but
the following is more efficient:

int total = 0, x =0, i = 0;

__register_word(&x) ;

for(; i < arr_len; ++i) {
printf(arr[il, i, &x);
total += x;

¥

__unregister();

Notice that we have hoisted the registration and unregistra-
tion out of the loop, so the program executes them only once.
It is conceivable that an optimizing compiler could also de-
tect this optimization opportunity. However, there will al-
ways be cases where the programmer knows more than the
compiler, and thus can do a better job placing registrations.

Although formatted output is rarely performance-critical,
this feature of white-lists may be more important for other
applications. Thus, our tool allows programmers to turn off
automatic registration and instead insert their own calls. If
a programmer forgets to register an argument the program
may abort, but it will not compromise security.

4. RESULTS

In this section we present performance results for our
white-listing format-string tool. Section 4.1 discusses our
effectiveness at preventing format-string vulnerabilities, and
Section 4.2 presents our run-time performance overhead.

In both sections, we compare our results with Format-
Guard [6]. FormatGuard is similar to our approach in that
it combines compile-time source transformations with run-
time checks (see Section 5.1 for more details). It has proven
effective at preventing many format-string vulnerabilities.

4.1 \Vulnerability Prevention

We tested our approach on four programs with known
format string vulnerabilities:

int main(int argc, char *xargv) {
int i,j,k;
char buf[50];
for (i=0; i < 10000000; i++) {
sprintf (buf, "butter/nin", &j, &k);
}

Figure 4: The third performance microbenchmark.
In this test, the format string contains two ‘/n’ for-
mat specifiers.

The tcpflow program is frequently run as root, and
can be attacked by inserting format specifiers into spe-
cific command-line arguments [34]. Thus an ordinary
user can obtain a root shell via this exploit.

The splitvt program is also typically run as root, and
can also be attacked by inserting format specifiers into
one of its command line arguments [17]. Thus splitvt
is another potential source of unauthorized root shells.

e The rwhoisd 1.5 [28] server® is vulnerable to format
specifiers embedded in strings that follow the -soa di-
rective. Attackers can use this vulnerability to gain a
remote shell on the machine running rwhoisd.

The pfinger client is vulnerable to format specifiers
in remote .plan files [24].

Our white-listing approach fixes all these vulnerabilities.
The FormatGuard approach, on the other hand, fixes only
the splitvt and pfinger vulnerabilities.

The key difference between the power of our approach
and the power of the FormatGuard approach is that we are
able to prevent attacks on vprintf format-strings, such as
the attacks on tcpflow and rwhoisd mentioned above. We
feel this additional expressiveness is vital, because a num-
ber of well-known format-string attacks specifically involve
vprintf-style functions. In addition to the two already
mentioned, these include the famous wu-ftpd vulnerabil-
ity [35] (the first well-known format-string vulnerability),
and the vulnerabilities in isc dhcpd 3.0 [30], zkfingerd
0.9.1[25], unreal ircd 3.1.1 [19], and the nn news reader
[39].° Additionally, a system where vprintf is insecure
discourages the use of wrapper functions for logging and
1/O—which is generally considered good software engineer-
ing practice.

4.2 Performance Overhead

To determine our overhead per printf call, we ran a se-
ries of simple microbenchmarks consisting of a single loop
containing a single sprintf call. We also downloaded a
copy of FormatGuard, and compared our overhead with its
overhead. The tests were run on a 2.26 GHz Pentium 4,

5We had to modify the rwhoisd code slightly, because it
would not compile with the version of gcc installed on our
machines (version 3.3.3). We emphasize that these modifi-
cations were necessary because of gcc, and not because of
our tool.

5We were unable to test our approach on all of these vul-
nerabilities, however, because updated versions have been
released (and the old source code is no longer available).



with 500 MB of RAM, and compiled with gcc version 3.3.3
using no compile flags.” The tests were all run with the
constant string optimization disabled (otherwise the white-
listing overhead would have been 0%, because our micro-
benchmarks use only constant strings). We also chose to
wrap calls to printf-style functions with whitelist-checking
functions,® rather than to reimplement the printf func-
tions. Reimplementing printf would have likely led to bet-
ter results, but it would also lead to an unfair comparison
with FormatGuard—because they also chose to wrap func-
tions rather than reimplement them.

Our performance varied with the number and types of
the specifiers in the format string. This was expected: The
overhead of white-list checking is proportional to the num-
ber of specifiers. With no specifiers (Figure 2), white-listing
added an overhead of 10.2% and FormatGuard added an
overhead of 7.5%. With two non-"%n’ specifiers (Figure 3),
our approach added an overhead of 28.6%, and Format-
Guard added 20.9%. With two ’%n’ specifiers (Figure 4),
our overhead was 60.0%, and FormatGuard’s was 38.1%.

We also tested vsprintf by moving the printing loop in-
side a wrapper function. We observed an overhead of 26.4%
with no specifiers, 39.8% with two non-"%n’ specifiers, and
74.7% with two *%n’ specifiers. FormatGuard does not pro-
tect against vsprintf vulnerabilities, and thus does not
transform these benchmarks. Note that the vsprintf over-
head percentages are exaggerated relative to the sprintf
overheads because vsprintf executes faster than sprintf.
The results for all our microbenchmarks are summarized in
Figure 5.

These overheads may seem high, but we stress that these
are microbenchmarks and not realistic programs. In addi-
tion, we had to turn off our constant-string optimization.
As we show below, this optimization can often significantly
reduce the overhead.

We also searched for a real, printf-intensive application
to test our performance. We had some difficulty finding an
application where printf was performance critical, because
most I/O intensive programs implement their own I/O pro-
cedures. We eventually settled on man2html, the same pro-
gram used by the FormatGuard authors to test their perfor-
mance. As the name suggests, the man2html program con-
verts man pages to HTML web pages. We used the same ma-
chine and compiler that we used for the microbenchmarks.
With the constant format string optimization turned off, our
approach added an overhead of 14.1%. With the optimiza-
tion enabled, our approach added only 0.7%. The Format-
Guard approach added an overhead of 9.0%. As we see,
our optimization allowed us to execute this printf-heavy
application with insignificant overhead. Our performance
with the optimization enabled was also noticeably better
than FormatGuard, even though they catch a smaller class
of vulnerabilities.

There are two likely reasons that would explain why we
experienced a higher overhead than FormatGuard on the

"We tried compiling our microbenchmarks with optimiza-
tions enabled, but found that this actually slowed down the
code, with or without white-listing. This occurred regard-
less of whether we used -01, 2, or 3.

80ur wrapped functions ensure correct parsing by using
the glibc function parse_printf_format—the same func-
tion that the actual printing functions use to parse their
format strings.

microbenchmarks, and in the man2html test without opti-
mizations. Both tools use the parse_printf_format func-
tion to parse the format strings, but our approach must
do more with the result of the parse. FormatGuard only
needs a count of the number of format specifiers (returned
by parse_printf_format), whereas we need to actually look
at each specifier to determine if it is a %n. In addition, we
must pay the extra cost of registering (and unregistering)
pointer arguments.

However, as we saw when we turned on the constant-string
optimization, our overhead on “real-world” applications is
insignificant. This is further borne out by performance tests
we ran on the applications we mentioned in Section 4.1
(once again, with the same machine and compiler). We ran
rwhoisd in local mode (to avoid network delays), and ob-
served an average overhead of 1.3% to start-up and respond
to a query (1.6% without optimization). We ran tcpflow
over a 273MB tcpdump output file and observed an overhead
of 0.3% (0.9% without optimization). We also attempted to
test the pfinger client, but found that the variability due
to network delays drowned out any difference between the
white-listed and normal versions. We did not test the over-
head of splitvt, as we could not think of a sensible test.®
In general, these results confirm our belief that many vul-
nerable C applications do not benefit from the performance
gained by using insecure library facilities. Figure 5 summa-
rizes these results.

We also measured the compile-time overhead of our ap-
proach (with the same machine and compiler as above).
These results are summarized in Figure 6. We see that using
CIL added a significant overhead to each compile, but that
our analysis and transformation added only a small addi-
tional overhead—between 0 and 4.7%. We implemented our
prototype using CIL because it was much simpler to extend,
but these results suggest that an implementation could gain
significant compile time savings by instead integrating di-
rectly into the compiler. The overhead when we use CIL is
primarily caused by parsing and typechecking the program
twice (once by CIL, and then again by gcc when it compiles
the transformed program produced by CIL). If we instead
integrated our approach directly into the compiler, we would
need to parse and typecheck the program only once.

5. RELATED WORK

Our approach to preventing format-string attacks nicely
complements other approaches:

e It prevents more attacks than FormatGuard (Section
5.1).

e It rejects fewer safe programs than approaches pre-
venting format arguments from “tainted” sources (Sec-
tion 5.2).

e It is more efficient than approaches that check all writes
in an application (Section 5.3).

e It is more efficient and less intrusive than approaches
that change the variable-argument calling convention
(Section 5.4).

9The splitvt application simply splits a terminal into two
terminals. There is no noticeable delay when interacting
with the terminals, either with or without white-listing.



Benchmark White-listing Optimized | FormatGuard
White-listing
sprintf microbenchmark, no specifiers 10.2% | 0% (see below) 7.5%
sprintf microbenchmark, 2 %d specifiers 28.6% | 0% (see below) 20.9%
sprintf microbenchmark, 2 %n specifiers 60.0% | 0% (see below) 38.1%
vsprintf microbenchmark, no specifiers 26.4% | 0% (see below) no protection
vsprintf microbenchmark, 2 %d specifiers 39.8% | 0% (see below) no protection
vsprintf microbenchmark, 2 %n specifiers 74.7% | 0% (see below) no protection
man2html 14.1% 0.7% 9.0%
rwhoisd 1.6% 1.3% no protection
tcpflow 0.9% 0.3% no protection

Figure 5: Performance results comparing the overhead of white-listing format strings (both with and without
the constant string optimization) with the overhead of FormatGuard. The microbenchmarks have no overhead

with optimized white-listing, because their format strings are constant.

Benchmark | Source Lines | gcc 3.3.3 | gcc + CIL | gec + CIL + | White-listing

Whitelisting Overhead
splitvt 5288 lines 1.85 sec. 2.91 sec. 2.94 sec. 1.0%
pfinger 331 lines 0.15 sec. 0.36 sec. 0.36 sec. 0%
man2html 3630 lines 0.60 sec. 1.14 sec. 1.15 sec. 0.9%
rwhoisd 29702 lines 7.95 sec. 19.18 sec. 20.09 sec. 4.7%
tcpflow 1695 lines 0.67 sec. 1.14 sec. 1.16 sec. 1.8%

Figure 6: The time required to compile the macrobenchmarks with gcc 3.3.3, with gcc and CIL, and with
gce and CIL extended with our white-listing analysis and transformations. The final column indicates the
overhead due to white-listing (i.e., it compares the fourth and fifth columns).

5.1 FormatGuard

FormatGuard [6] cleverly uses features of the Gnu C Pre-
processor to count arguments to printf-style functions. It
then calls wrapper functions that reject calls with too many
format specifiers. This approach relies on the fact that the
number of arguments is known at compile-time. As dis-
cussed in the previous section, the run-time overhead is
comparable to our approach. FormatGuard is simpler in
that it requires no compile-time flow analysis, but it has
corresponding limitations.

Most importantly, it does not detect attacks on vprintf-
style functions. Not only are such attacks common, but
a system in which printf is more secure than vprintf dis-
courages the good practice of interceding output with
application-specific functions. On the other hand, Format-
Guard could probably be extended to allow programmers to
explicitly declare their printing functions.

The FormatGuard approach will also miss an attack that
replaces another format specifier with %n. We are unaware
of any such attacks; they seem quite difficult to construct.

FormatGuard also lacks an analogue of our constant-string
optimization. It may be possible to add such an optimiza-
tion to FormatGuard by using gcc’s builtin function
__builtin_constant_p (or something similar). In our sys-
tem, however, the optimization was trivial to implement be-
cause of the type-checked abstract-syntax tree provided by
CIL.

5.2 Tainted-String Detection

A compile-time or run-time analysis can detect whether
a format string passed to a printing function could possibly

have come from an untrusted source. These format strings
can then be rejected. Different systems use different analyses
and different definitions of untrusted sources.

Shankar et. al. [31] and Guyer et. al. [12] use compile-
time flow analyses to identify and track strings that may
have come from I/O or that may have been modified by
the user. If this potentially tainted data is used as the for-
mat string of a printf or syslog call, an error is declared.
This approach is more conservative than necessary because
static analysis is inherently limited and much supposedly
“tainted” data is actually perfectly safe. In addition, purely
static-analysis based techniques like these require changing
the code to fix any potential vulnerabilities that are found—
which can be difficult when dealing with large applications
that you do not understand well (e.g., if you are trying to
protect open-source code that you are compiling and in-
stalling on your machine). With our approach, however, the
protection is automatic—the user does not have to change
any code.

Other compile-time approaches are less complete. For ex-
ample, Alan DeKok’s PScan [9] finds printf call sites where
the format string is both non-static and the final parame-
ter. The gcc compiler [11] flag -Wformat=2 causes the com-
piler to issue a warning whenever a non-static format string
is found. These approaches give warnings about safe code
(false positives) and can miss format-string vulnerabilities
(false negatives).

At run-time, we can detect suspicious format strings or
writes that corrupt function return addresses. The
libformat library, by Tim Robbins [27], takes the former
approach. It rejects any printf that uses a format string



that is in writable memory and that contains a %n-specifier.
This is essentially equivalent to using an empty white-list
in conjunction with our constant string optimization. This
approach may abort safe and correct programs, including
the example in Figure 1. The libsafe library of Tsai and
Singh [36] takes the latter approach, verifying that the write
caused by a %n is not to a function return address. It is
equivalent to white-listing all of memory except the loca-
tions of the return addresses. This approach might miss
less direct format-string attacks. The implementation also
requires frame pointers, i.e., it is incompatible with gcc’s
-fomit-frame-pointer flag.

5.3 Restricting Writes

One can view our explicit white-list as a software approach
to restricting a memory write based on the address being
written. Related work has taken a similar approach for an
entire application, rather than a specific vulnerability such
as format-string attacks.

Software fault isolation (SFI) [37] is one such approach.
The legal address range is chosen ahead of time and the bi-
nary code rewritten to enforce the restriction efficiently. Un-
fortunately, a compile-time white-list is not flexible enough
to prevent format-string attacks.

Systems like Safe-C [1, 16] are more flexible than SFI,
checking at run-time that writes to memory do not violate
array bounds, follow dangling pointers, etc. This approach
can slow down applications by as much as an order of mag-
nitude, making it inappropriate in many settings. On the
other hand, our white-list approach is relevant to only print-
ing functions, making the performance overhead more than
reasonable.

54 Safeprintf

CCured [21, 5] (a type-safe implementation of C) and
Cyclone [14, 8] (a type-safe dialect of C) take similar ap-
proaches to making the printing functions safe. Roughly,
the caller provides the number and types of the variable ar-
guments, and the callee compares them against the format
string at run-time. The compiler does this implicitly at call
sites so there is no burden for the programmer using the
printing functions.

In Cyclone, no attempt is made to preserve the native
calling convention for variable-argument functions. Instead,
a stack-allocated array holds the variable arguments and
their type tags. In CCured, the type information can be
passed via a global variable. In both cases, there is extra
data (the type tags) and extra parameter passing, even when
the format string does not contain %n. Despite using a flow
analysis, our approach is simpler and more efficient than
making C type-safe.

6. CONCLUSIONS

We have presented a solution to the problem of format-
string attacks, by providing an automated approach to main-
taining an explicit white-list. We have found that a white-
list directly encodes the relevant security policy, namely that
printing functions should modify only certain caller-specified
memory locations. Furthermore, a dynamic white-list pro-
vides flexibility: We can change the policy at run-time and
we can directly encode common policies ranging from “no
checking” to sandboxing to “no writes.” With little perfor-
mance overhead, our approach has fewer false positives and

fewer false negatives than previous work. In particular, we
catch attacks using vprintf and we do not forbid the %n
format specifier in non-static format strings.

An efficient, automatic, whole-program static analysis and
transformation performs white-list maintenance without bur-
dening programmers. The analysis is simple and efficient
using the right tool (such as CIL, which provides a type-
checked abstract-syntax tree), but would be impossible with
macros or simple scripts. Moreover, we use the analysis just
to insert the correct run-time checks, so the imprecision of
static analysis is not a limitation.

We believe white-lists are a useful tool for implement-
ing software security policies and consider this work a com-
pelling example. We look forward to considering white-lists
for reducing other security vulnerabilities. Specific examples
include preventing race conditions for file I/O [3], limiting
references to kernel data in user buffers, and restricting ac-
cess to communication ports.

7. ACKNOWLEDGMENTS

We would like to thank Steve Gribble, Michael Hicks,
Jesse Rothstein, and the anonymous reviewers for helpful
comments on earlier drafts.

8. REFERENCES

[1] Todd Austin, Scott Breach, and Gurindar Sohi.
Efficient detection of all pointer and array access
errors. In ACM Conference on Programming Language
Design and Implementation, pages 290-301, Orlando,
FL, June 1994.

[2] William Bush, Jonathan Pincus, and David Sielaff. A
static analyzer for finding dynamic programming
errors. Software Practice and Ezxperience,
30(7):775-802, June 2000.

[3] Hao Chen, Drew Dean, and David Wagner. Model
checking one million lines of C code. In Proceedings of
the Network and Distributed System Security
Symposium, San Diego, CA, 2004.

[4] CIL - Infrastructure for C' Program Analysis and
Transformation, version 1.3.2. Available at
http://manju.cs.berkeley.edu/cil/.

[5] Jeremy Condit, Matthew Harren, Scott McPeak,
George Necula, and Westley Weimer. CCured in the
real world. In ACM Conference on Programming
Language Design and Implementation, pages 232—244,
June 2003.

[6] C. Cowan, M. Barringer, S. Beattie, and
G. Kroah-Hartman. FormatGuard: Automatic
protection from printf format string vulnerabilities.
In Proceedings of the 10th USENIX Security
Symposium, Washington, D.C., Aug. 2001.

[7] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang.
StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In 7th USENIX
Security Symposium, pages 63-78, San Antonio, TX,
January 1998.

[8] Cyclone, version 0.8. Available at
http://www.research. att.com/projects/cyclone.



[9]

[10]

[11]

[12]

[13]

[15]

[16]

[19]

[20]

[21]

[22]

Alan DeKok. Pscan: A limited problem scanner for C
source files, July 2000. Available at

www. striker.ottawa.on.ca/ "aland/pscan/.

Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using
system-specific, programmer-written compiler
extensions. In 4th USENIX Symposium on Operating
System Design and Implementation, pages 1-16, San
Diego, CA, October 2000.

Free Software Foundation. The GNU compiler
collection. Available at hitp://gnu.gcc.org/.

S. Z. Guyer, E. D. Berger, and C. Lin. Detecting errors
with configurable whole-program dataflow analysis.
Technical Report UTCS TR-02-04, UT-Austin, 2002.
Reed Hastings and Bob Joyce. Purify: Fast detection
of memory leaks and access errors. In Winter USENIX
Conference, pages 125-138, San Francisco, CA,
January 1992.

T. Jim, G. Morrisett, D. Grossman, M. Hicks,

J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, pages
275-288, Monterey, CA, June 2002.

Stephen Johnson. Lint, a C program checker.
Computer Science Technical Report 65, Bell
Laboratories, December 1977.

Richard Jones and Paul Kelly. Backwards-compatible
bounds checking for arrays and pointers in C
programs. In AADEBUG’97. Third International
Workshop on Automatic Debugging, volume 2(9) of
Linképing Electronic Articles in Computer and
Information Science, 1997.

Michel Kaempf. Multiple vulnerabilities in splitvt,
January 2001. At www.securityfocus.com/
archive/1/156251.

Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Secure execution via program
shepherding. In 11th USENIX Security Symposium,
pages 191-206, August 2002.

Gabriel A. Maggiotti. Unreal ircd format string vuln,
February 2002. At www.securityfocus.com/
archive/82/258190.

G. C. Necula, S. McPeak, S. P. Rahul, and

W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
Proceedings of the Conference on Compiler
Construction, pages 213-228, 2002.

George Necula, Scott McPeak, and Westley Weimer.
CCured: Type-safe retrofitting of legacy code. In 29th
ACM Symposium on Principles of Programming
Languages, pages 128-139, January 2002.

T. Newsham. Format string attacks. White Paper,
Sept. 2000. At www.securityfocus.com/quest/ 3342.

23]

(24]

(25]

(30]

(31]

Bruce Perens. Electric fence. At www.gnu.org/
directory/All_Packages_in_Directory/Electric-
Fence.html.

NGSSoftware Insight Security Research. Pfinger 0.7.8
format string vulnerability, December 2002.
http://www.securityfocus.com/archive/1/303555.
NGSSoftware Insight Security Research. zkfingerd
0.9.1 format string vulnerability, December 2002.
http://www.securityfocus.com/archive/1/303557.
Michael F. Ringenburg and Dan Grossman.

www. cs.washington.edu/homes/miker/formatstring/.
Tim Robbins. libformat, November 2001. At

www. wiretapped.net/ " fyre/software/libformat. html.
Rwhoisd remote format string vulnerability, October
2001. At www.securityfocus.com/archive/1/ 222756.
Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278-1308, September
1975.

VOID.AT Security. isc dhcpd 3.0 format string
exploit, January 2003. At www.securityfocus.com/
archive/1/306527.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type
qualifiers. In 10th USENIX Security Symposium, pages
201-220, 2001.

Christopher Small and Margo Seltzer. MiSFIT:
constructing safe extensible systems. IEFE
Concurrency, 6(3):33-41, July—September 1998.
Splint manual, version 3.0.6, 2002.
http://www.splint.org/manual/.

@stake, Inc. tcpflow 0.2.0 format string vulnerability,
August 2003. At

www. securityfocus.com/advi-sories /5686.
tf8@zolo.freelsd.net. Wu-ftpd remote format string
stack overwrite vulnerability, June 2000. At

www. securityfocus.com/bid/1387.

T. Tsai and N. Singh. Libsafe: Protecting critical
elements of stacks. Technical Report ALR-2001-019,
Avaya Labs, Aug. 2001.

Robert Wahbe, Steven Lucco, Thomas Anderson, and
Susan Graham. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review,
7(5):203-216, December 1993.

J. Wilander and M. Kamkar. A comparison of publicly
available tools for static intrusion prevention. In
Proceedings of the Tth Nordic Workshop on Secure IT
Systems, pages 68—84, Nov. 2002.

zillion. nn format string exploit, July 2002.
http://www. securityfocus.com/archive/82/280687.



