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Abstract
We consider reinforcement learning in systems
with unknown dynamics. Algorithms such as
E? (Kearns and Singh, 2002) learn near-optimal

algorithms guarantee that near-optimal performance will
be obtained in time polynomial in the number of states of
the system. The basic idea & is that it will repeat-
edly apply an “exploration policy,” i.e., one that tries to

visit state-action pairs whose transition dynamics até sti
inaccurately modeled. After a polynomial number of it-
erations, it will deem itself to have modeled enough of
the MDP accurately. Then, it will apply an “exploita-
tion policy,” which (given the current MDP model) tries
to maximize the sum of rewards obtained over time. In the
original E2 work (Kearns & Singh, 2002), the algorithm
would explicitly use an exploration policy until the model
was considered accurate enough, after which it switched
to an exploitation policy. In later variants such as (Braf-
man & Tennenholtz, 2002) this choice of exploration vs.
exploitation policy was made less explicitly, but through a
reward scheme reminiscent of “optimism in the face of un-
certainty,” (e.g., Kaelbling, Littman & Moore, 1996). How-
ever, the algorithm still tends to end up generating (and us-
ing) exploration policies in its initial stage.

To achieve its performance guarantees, Bvefamily of
algorithms demand that we run exploration policies on the
unknown system until we have an accurate model for the
. entire MDP (or at least for the “reachable” parts of it). The
1. Introduction strong bias towards exploration makes the policies gener-

The Markov Decision Processes (MDPs) formalism pro-ated by thefz*-family often unacceptable for running on
vides a powerful set of tools for modeling and solving con-2 real system. Consider for example runniigon an au-
trol problems, and many algorithms exist for finding (near)tonomous helicopter. This would require executing poicie
optimal solutions for a given MDP (see, e.g., Bertsekas &hat aggressively explore different parts of the statespa
Ttsitsiklis, 1996; Sutton & Barto, 1998). To apply these including parts of it that woult_j lead to crashing the heli-
algorithms to control problems in which the dynamics arecopter! As a second example, if the system to be controlled
not known in advance, the parameters of the MDP typicallyiS & chemical plantiz®-generated policies may well cause
need to be learned from observations of the system. an explosion in the plant through its aggressive explonatio

A key problem n leaing an MDP' parameters is thar?]1° €11 alo space. Despie e tong heorte)
of exploration How can we ensure that all relevant parts ' y PP '

X 3% . i
of the MDP are visited sufficiently often that we man- beheye thats |saprac_t|cal algorithm. _ _ _

age to collect accurate statistics for their state tramsiti N this paper, we consider the apprenticeship learning set-
probabilities? The state-of-the-art answer to this proble ting, in which we have available an initial teacher demon-
is the E3-algorithm (Kearns & Singh, 2002) (and vari- Stration of the task to be learned. For example, we may
ants/extensions: .Kearns & Koller, 1999; Kakade, Kearns Yindeed, in our work on an autonomous helicopter flight, our
& Langford, 2003; Brafman & Tennenholtz, 2002). These (st crash occurred during (manual flight) exploration, when a hu-

T . . ._man pilot was over-aggressive in exploring the boundaries of the
This is the long version of Abbeel and Ng (2005). The main bodiegjight envelope (moving the control sticks through their extreme

of both papers are identical. This version includes an appendignges), which placed excessive strain on the rotor head assembly
with complete proofs of all theorems, propositions and lemmas. gnq caused it to disintegrate in mid-air.

policies by using “exploration policies” to drive
the system towards poorly modeled states, so as
to encourage exploration. But this makes these
algorithms impractical for many systems; for ex-
ample, on an autonomous helicopter, overly ag-
gressive exploration may well resultin a crash. In
this paper, we consider the apprenticeship learn-
ing setting in which a teacher demonstration of
the task is available. We show that, given the
initial demonstration, no explicit exploration is
necessary, and we can attain near-optimal per-
formance (compared to the teacher) simply by
repeatedly executing “exploitation policies” that
try to maximize rewards. In finite-state MDPs,
our algorithm scales polynomially in the num-
ber of states; in continuous-state linear dynami-
cal systems, it scales polynomially in the dimen-
sion of the state. These results are proved using
a martingale construction over relative losses.
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have a human pilot give us an initial demonstration of heli-or expert demonstrations (called apprenticeship learning
copter flight. Given this initial training data with which to also imitation learning, and learning by watching) in vari-
learn the dynamics, we show that it suffices to only execut@®us ways for control. Schaal and Atkeson (1994) and Smart
exploitation policies (ones that try to do as well as posgsibl and Kaelbling (2000) both give examples where learning
given the current model of the MDP). More specifically, we is significantly faster when bootstrapping from a teacher.
propose the following algorithm: Their methods are somewhat related in spirit, but different
in detail from ours (e.g., Smart and Kaelbling, 2000, uses
1. Have a teacher demonstrate the task to be learneghodel-free Q-learning, and does not learn the MDP param-
and record the state-action trajectories of the teacher’sters), and had no formal guarantees.

demonstration. Other examples include Sammut et al. (1992); Kuniyoshi,
2. Use all state-action trajectories seen so far to learn #haba & Inoue (1994); Demiris & Hayes (1994); Amit
dynamics model for the system. For this model, find& Mataric (2002); and Pomerleau (1989), which apply
a (near) optimal policy using any reinforcement learn-supervised learning to learn a parameterized policy from
ing (RL) algorithm. the demonstrations. In these examples, neither the reward
3. Test that policy by running it on the real system. If the function nor the system dynamics need to be specified since
performance is as good as the teacher’s performancé Policy is learned directly as a mapping from the states to
stop. Otherwiseadd the state-action trajectories from the actions. This approach has been applied successfully in

the (unsuccessful) test to the training,seid go back @ variety of applications, but may require careful selectio
to step 2. of an appropriate policy class parameterization, and gen-

erally lacks strong performance guarantees. Abbeel and

Note that the algorithm we described uses a greedy pOIiCKlg (2004) uses the demonstrations to remove the need for

W'.th respect to the current est|m§1t(_ad model _at every Iter'explicitly specifying a reward function; there, the system
ation. So there is never an explicit exploration step. In

. N - : namics were assumed to be known.
practice, exploitation policies tend to be more benign, anddy N "
thus we believe this is a significantly more palatable algo!" What follows, we prove that, with high probability, our

rithm for many applications. For example, unlié8, this algorithm given above terminates with a policy whose per-

is a procedure that can much more safely and confidenti{Prmance is comparable to (or better than) the teacher. In
be tried on an autonomous helicopteEurther, if we are he case of discrete state MDPs, the algorithm scales at

designing a controller for a client and each experiment conMost polynomially in the number of states. In the case of
sumes a non-trivial amount of time/resources, we believain€arly parameterized dynamical systems, we use a mar-
it is much more palatable to tell them that the next IOO|_t|ngale over relative losses to show that the algorithmescal

icy we try will represent our best attempt at solving their & Most polynomially in the dimension of the state space.

problem—i.e., an exploitation policy that represents ourThis paper is the long version of Abbeel and Ng (2005).
current best attempt at controlling the system—rather tharf he main bodies of both papers are identical. This version
that we will be repeatedly running expensive experimentsncludes an appendix with complete proofs of all theorems,
to slowly gather more and more data about the MDP. propositions and lemmas.

We notebtlhat the algorithm'proposedlgt;ove als<|) paralrlslig_ Preliminaries
reasonably common practice in applied control, in whic - .
some initial policy is used to collect data and build a modeIAS MaTrkgde;C's'OE prgcgss (MD'? S a tuple
for a simulator. Then, if subsequently a controller is found( ’A’f ) ’/. ): w;re_ |sPa set o st_ates4 IS af
that works in simulation but not in real-life, the designer S€t ©f actions mpUtbS,b'l"_ {h(-ls,a)}s,a IS "’;1 set o
tries (usually manually) to adjust the simulator to make jtState wransition probabilities ( erd([s,a) is the state

. - ; : ; transition distribution upon taking actiom in state s);
correctly predict the failure of this policy. If machine fea . ) :
ing is used to build the simulator, then a natural way tol 1 the horizon time of the MDP, so that the MDP

modify the simulator after observing an unsuccessful poll€/minates after/ steps; D is a distribution over states

icy is to add the data obtained from the unsuccessful policfaorn WhICQ 1t£he ”?'“a' str?ters]() is drawn; ande: S Ris .
to the training set. Thus, our work can also be viewed a: e reward function, which we assume to be non-negative

; ; ; d bounded byR,.x. A policy = is a mapping from
formally analyzing, and thereby attempting to cast light on an ax: 7 P )
the conditions under which a procedure like this can be exStatess to a probability distribution over the set of actions
pected to lead to a good policy A. The utility of a policy= in an MDP M is given by
Un(m) = E[Y>1L, R(s;)|w, M]. Here the expectation is

Previous work has shown the effectiveness of using teacheover all possible state trajectories in the MDP

2For example, in our autonomous helicopter work, no ex-""3, . . .. . T
o P H Any infinite horizon MDP with discounted rewards can be
ploitation pol_lcy that we have ever u_sed—out of many doze_ns— -apprc?ximated by a finite horizon MDP, using a horizein —
has ever deliberately jerked the helicopter back-and-forth in theEHog (e(1 = 7)) Ronar)] ’ -
0% max .

manner described in footnote 1.
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Specifying an MDP therefore requires specifying each itenon how often we need to repeat the experiment to see that
of the tuple(S, A, T, H, D, R). In practice, the state transi- event at least the desired number of times (with high prob-
tions probabilitiesI” are usually the most difficult element ability).

of this tuple to specify, and must often be learned from emma 2. Let anys > 0 anda > 0 be given. Let
data. More precisely, the state spat@nd action space {x;}™  be IID Bernoullig) random variables. Then for

A are physical properties of the system being controlledg?i1 X, > a to hold with probability at least — §, it

and thus easily specified? (and H) is typically given by

the task specification (or otherwise can be learned from a

suffices thatn > 2 (a + log 5).

teacher demonstration, as in Abbeel & Ng, 2004). Finally,3. Problem description

D is usually either known or can straightforwardly be esti- 1,4 problems we are concerned with in this paper are
mated from data. Thus, in the sequel, we will assume thaty ol tasks that can be described by an MDP —

S, A, H, D and R are given, and focus exclusively on the (S, A, T,H,D,R)

problem of learning the state transition dynamilcsf the
MDP.

Consider an MDRPV/ = (S, A, T, H, D, R), and suppose
we have some approximatidhof the transition probabili-
ties. Thus,M = (S, A, T, H, D, R) is our approximation

. However the system dynamids are
unknown. Everything else in the specification of the MDP
is assumed to be known. We consider two specific classes
of state-action spaces and transition probabilities, iahie

will refer to as discrete dynamics and linearly parameter-
ized dynamics respectively.

to M. The Simulation Lemma (stated below) shows that so
long asT is close tol’ on states that are visited with high
probability by a policyr, then the utility ofr in M is close

to the utility of 7 in M. (Related results are also given
in Kearns & Singh, 2002; Kearns & Koller, 1999; Kakade,
Kearns & Langford, 2003; Brafman & Tennenholtz, 2002.)

Lemma 1 (Simulation Lemma) Let anye,n > 0 be
given. Letan MDPM = (S, A, T, H, D, R) be given. Let
M = (S, A, T, H, D, R) be another MDP which only dif-
fers fromM/ in its transition probabilities. Let be a policy
over the state-action sef§ A, so thatr can be applied to
both M and M. Assume there exists a set of state-action
pairs SA,, C S x A such that the following holds

(i) V(s,a) € SA,, dea(P(|5,a),P(-|5,a)) <e,
(i) P({(st,a)}ily C SA,|m, M) > 1 —1.
(Above d,,,. denotes variational distand®.Then we have

‘UZ\/I (ﬂ-) - U]f] (7T)| < H26Rmax + UHRInax~

Consider the special case where every state-action pair
(s,a) € S x A satisfies condition (i), in other words,

S A, =5 x Aand thus condition (ii) is satisfied far= 0.
Then the Simulation Lemma tells us that accurate transition
probabilities are sufficient for accurate policy evaluatio
The Simulation Lemma also shows that not necessarily all
state-action pairs’ transition probabilities need to beuac

4.

e Discrete dynamics: The sefsand.A are finite sets.
The system dynamic®' can be described by a set of
transition probabilitiesP(s’|s, a), which denote the
probability of the next-state being given the current
state iss and the current action is More specifically
we have a multinomial distributio®(-|s, a) over the
set of state$ for all state-action pairés,a) € S x A.

e Linearly parameterized dynamics: The s&ts- R"s
and A = R"™4 are now continuous. We assume the
system obeys the following dynamies:

T = Ad(xy) + Buy + wy, 1)

whereg(-) : R*s — R”s. Thus, the next-state is a
linear function of some (possibly non-linear) features
of the current state (plus noise). This generalizes the
familiar LQR model from classical control (Anderson
& Moore, 1989) to non-linear settings. For example,
the (body-coordinates) helicopter model used in (Ng
et al., 2004) was of this form, with a particular choice
of non-linearg, and the unknown parametessand

B were estimated from data. The process néisg};

is IID with w, ~ N(0,0%I,,). Herec? is a fixed,
known, constant. We also assume thats)|ls < 1

for all s, and that the inputs; satisfy||u|» < 1.8

Algorithm

rately modeled: it is sufficient to accurately model a subset-et 7 be the policy of a teacher. Although it is natural
of state-action pair§'A,, such that the probability of leav- to think of 71 as a good policy for the MDP, we do not

ing this setSA,, under the policyr is sufficiently small.

assume this to be the case. Let any- 0 be given. Our

Let there be some event that has probability bounded awa§9°rithm (with parametersr andk) is as follows:

from zero. Suppose we would like to observe that event

SWe chose to adhere to the most commonly used notation for

some minimum number of times in a set of IID experi- continuous systems. I.e., states are represented inputs byu
ments. The following lemma allows us to prove boundsand the system matrices byand B. We use scriptA for the set

Let P(), Q(-) be two probability distributions over a sét,
then the variational distancé...(P, Q) is defined as follows:

d\"dr(P7Q) = % TEX |P(x) - Q(m)ldx

of actions and standard forit for the system matrix.

5The generalizations to unknows?, to non-diagonal noise

covariances, and to non-linear features over the inpBis({:)
replacingBu.) offer no special difficulties.
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1. Run Ny trials under the teacher’s policyr. Save anya > 0, > 0 be given. Letrr be the teacher’s pol-
the state-action trajectories encountered during thesiey, and letr be the policy returned by the algorithm de-
trials. ComputeU M (mr)—an estimate of the utility fined above. Lelv denote the number of iterations of the
of the teacher’s policyr for the real systemd/—by  main loop of the algorithm until the exit condition is met.
averaging the sum of rewards accumulated in each ofet7 = (H, Rnax, |S|, |A|) for the discrete case, and let

the N trials. Initializei = 1. T = (H, Rmax, ns, 4, ||Allr, || Bl|r) for the linearly pa-
2. Using all state-action trajectories saved so far, estif@meterized dynamics case. Then for
mate the system dynamids using maximum likeli- Un(m) > Uy(nr) —a, )

hood estimation for the discrete dynamics case, and
regularized linear regression for thila linearly parame- N = O(pOIY(i’ %’ 7)) )
terized dynamics case (as described below). Call théo hold with probability at least — 4, it suffices that
estimated dynamicg(®). -

3. Find a«/8 optimal policy for the MDP M) = Nr = Q(pdy(f’f’ﬂ)’ “)
(S, A, 7@, H, D, R). Call this policyr . kio= Q(poly(3,5 7)) (%)

4. Evaluate the utility of the policyr”) on the real sys-  Note that Eqn. (2) follows from the termination condition
tem M. More specifically, run the policy” for k1 of our algorithm and assuming we chodseand Ny large

trials on the system/. LetUy; (") be the average enough such that the utilities of the policigs” }; andmy
sum of rewards accumulated in thetrials. Save the are Sufﬁcient]y accurate|y evaluatedi.

state-action trajectories encountered during these tri.-l.

als he proof of this theorem is quite lengthy, and will make

; _ . _ _ up most of the remainder of this paper. We now give a
5. If Un(n™) > Uny(nr) — /2, returnn) and exit.  high-level sketch of the proof ideas. Our proof is based on
Otherwise set = i + 1 and go back to step 2. showing the following two facts:

In the i*" iteration of the algorithm, a policy is found 1. After we have collected sufficient data from the
using an estimatd’(” of the true system dynamic. teacher, the estimated model is accurate for evaluating
For the discrete dynamics, the estimate used in the al-  the utility of the teacher’s policy in every iteration of
gorithm is the maximum likelihood estimates for each the algorithm_ (Note this does not merely require that

of the multinomial distributionsP(:|s,a). For the lin- the model has to be accurate after the trials un-
early parameterized dynamics, the model parameters der the teacher’s policy, but also has to stay accurate
are estimated via regularized linear regression. In par-  after extra data is collected from testing the policies
ticular the k" rows of A and B are estimated By {x@}.)

: ) _ () (4) \\2 o . .
argming, . 5y 2 (Trexe — (A, (T curr )+ Br,ticuirr) )"+ 2. One can visit inaccurately modeled state-action pairs
(| Ak,:|13 + || Br,:[13), where j indexes over all state- only a “small” number of times until all state-action
action-state triple§ (z3., ullh, z7),)}; occurring after pairs are accurately modeled.

each other in the trajectories observed for the system.  \ve now sketch how these two facts can be proved. After
we have collected sufficient data from the teacher, the-state

5. Main theorem action pairs that are visited often under the teacher'spoli
The following theorem gives performance and running time2® modeled well. From the Simulation Lemma we know
guarantees for the algorithm described in Sectién 4. that an accurate model of the state-action pairs visiteghoft

B under the teacher’s policy is sufficient for accurate evalua
Theorem 3. thet in IMDP.IM N és’b“élli[g’gﬂlv_’j?’tf) be tion of the utility of the teacher’s policy. This establishe
given, exceptor Its transition probabilities. Letthe Sys- (1.). Every time an inaccurate state-action pair is visited

tem elth'er be a dlsqrete dynamics sygtem ora Imgarly P3e data collected for that state-action pair can be used to
rameterized dynamical system as defined in Section 3. L

%prove the model. However the model can be improved
A policy 7, is an e-optimal policy for an MDP M if only a “small” number of times until it is accurate for all
Uni(m1) > max,Un(m) — . state-action pairs. This establishes (2.).

8 H : th
We use matlab-like notationi;. . denotes thé™ row of . \ve now explain how these two facts can be used to bound

g . .
The performance guarantees in the theorem are stated wn&’h . : . .
respect to the teacher’'s demonstrated performance. However, t 8¢ number of iterations of our algorithm.  Consider the

proof requires only that the initial dynamical model be accuratePOlicy (%) found in iteration; of the algorithm. This pol-
for at least one good policy. Thus, for example, it is sufficient toicy 7(¥) is the optimal policy® for the current model. When
observe a few good teacher demonstrations along with many bag—— o _ ]
demonstrations (ones generated via a highly sub-optimal policy); *°For simplicity of exposition in this informal discussion, we
or even only bad demonstrations that manage to visit good partassumer(® is optimal, rather than near-optimal. The formal re-
of the state space. sults in this paper do not use this assumption.
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finding this policyz*) in the model we could have chosen Lemma 5. Let any « > 0,6 > 0 be given.
the teacher’s policy. So the poliey?) performs at leastas Assume we use the algorithm as described in Sec-
well as the teacher’s policy in the current model. Now if in tion 4. Let N satisfy the following conditionvy >
the real system the utility of the poliey'") is significantly — 4096ISIPIAIH® Ry 1 32H2Rrgaxls\3\A|_ Then with prob-
lower than the teacher’s utility (which is the case as long agpjlity 1 — § we have thatvi > Nr |Uye(rr) —
the algorithm continues), then the model incorrectly pre-y,, (nr)| < a/8.

dicted thatr(?) was better than the teacher’s policy. From

(1.) we have that the model correctly evaluates the utilityProof (sketch).Lete > 0,7 > 0. Let SA: C S x A be the

of the teacher’s policy. Thus the model must have evalset of state-action pairs such that the probability of spein
uated the policyr(®) inaccurately. Using the (contraposi- any specific state-action pdis, a) € S Ag under the policy
tive of) the Simulation Lemma, we get that the policy’ 7 in a single trial of durationd is at Ieastﬁ. From
must be visiting (with probability bounded away from 0) | emma 4 and Lemma 2 we have that for drya) € SAg
state-action pairs that are not very accurately modeled. Sgyr

when running the policyr”) we can collect training data Vi > Np dyar(P(-|s,a), PO(|s,a)) < e (6)
that allow us to improve the model. Now from (2.) we
have that visiting inaccurately modeled state-actiongpair

to hold with probabilityl — ¢’ — §”, it is sufficient to have

_can_only happen a sm_al_l number of times until the dynam- Np > %( |f€\22 log |§|: +log %) @
ics is learned, thus giving us a bound on the number of ) )
iterations of the algorithm. Taking a union bound over all state-action pdissa) €

SAe (note |SA¢| < |S||A|) gives that for Eqn. (6) to
Hold for all (s,a) € SA¢ with probability1 — |S||.AJ6" —
S15||A|5”, it suffices that Eqn. (7) is satisfied. We also
have from the definition o5 A¢ that P({(ss,a:)}L, C

The theorem will be proved for the discrete dynamics cas
in Section 6 and for the linearly parameterized dynamic
case in Section 7.

6. Discrete state space systems SAg¢|rr) > 1 —n. Thus the Simulation Lemma gives us
In this section we prove Theorem 3 for the case of discretéhat
dynamiCS. Vi |U][,1(7‘,) (7TT) - U]LI (ﬂ-T)‘ < H26Rmax + nHRmax-

The Hoeffding inequality gives a bound on the number of 1 a/8 1 a/8 , .
samples that are sufficient to estimate the expectation of °" choose: = 5" 11 = Sy, andd’ = 9" =

a (bounded) random variable. In our algorithm, we wantzjsyay 0 9et the lemma. 0

to guarantee that the model is accurate (for the teacher’s i i
policy) not only when we have seen the samples from thé_.emma 5 shows that, after havmg seen the teacher suffi-
teacher, but also any time after additional samples are cof/€ntly often, the learned model will be accurate for evalu-
lected. The following lemma, which is a direct conse- ating the utility of the teacher’s policy. Moreover, no late

quence of Hoeffding's inequality (as shown in the long ver-data collection (no matter under which policy the data is
sion), gives such a bound collected) can make the model inaccurate for evaluation of

the utility of the teacher’s policy. l.el/ ¢, (7r) will be
Lemma 4. Let anye > 0,6 > 0 be given. LetX; be 1ID close toUy, () for all 4.
k-valued multinomial random variables, with distribution | amyma 6. Let anya > 0,6 > 0 be given. Let
denoted byP. Let P, denote the:x sample estimate aP.

Then formax, xdvar (P(-), Pa(-)) < € to hold with prob- Nupound = 22 max (log § +
ability 1 — 4, it suffices thatV > £ log £°. 16° B Ry |SPIAL 1o 041 RunselSPIAL) (g

Lemma 4 will serve two important purposes. In the proofAssume in the algorithm described in Section 4 we use

of Lemma 5 it is used to bound the number of trajecto- 162 H2 R?

. X k > max log 8 Nubound (9)

ries needed under the teacher’s policy to guarantee that fre L= 202 S .

quently visited state-action pairs are accurately modeled p; > A0%ISPIAIT Ry, 60 256H233nax|5|3|«4\ (10)
(% «

in all models{M()};. This corresponds to establishing B _— : .
Fact (1.) of the proof outline in Section 5. In the proof of Let V denote the number of iterations of the algorithm until

Lemma 6 it is used to bound the total number of times 4t l€rminates. Then we have that with probability- § the

state-action pair can be visited that is not accurately modt°!lowing hold
eled. This latter fact corresponds exactly to establishing (i) N < Nupound, (11)

Fact (2.) of the proof outline in Section'5. (i) Vi=1:N |Uye(mr) — Usi(mr)| < (12)

(]

]
UFact (2. follows completely straightforwardly from  (iii) Vi=1:N |Up(r®) — Upr(nD)] < % (13)
Lemma 4, so rather than stating it as a separate lemma, we will A
instead derive it within the proof of Lemma 6. (iv)  Unm(rr) = Un(mr)| < 5 (14)

v
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Proof (sketch).From Lemma 5 and from the Hoeffding in- more extensively in Section 5, there are two main parts to
equality we have that for Eqn. (12), (13) and (14) to holdthis proof. In Section 7.2 we establish the first part: the
(for all i < Nubouna) With probability1 — g it suffices that  estimated model is accurate for evaluating the utility ef th

Eqn. (10) and Eqgn. (9) are satisfied. teacher’s policy in every iteration of the algorithm. In Sec
Now since the algorithm only exits in iteratiovi, we must ~ tion 7.3 we establish the second part: one can visit inaccu-
have foralli = 1: N — 1 that rately modeled states only a “small” number of times (since
every such visit improves the model). In Section 7.4 we
Uu (7)) < ﬁM(WT) —a/2. (15) combine these two results to prove Theorem 3 for the case

of linearly parameterized dynamical systems.
Combining Eqgn. (15), (12), (13) and (14) and the fact that

70 is o/8-optimal for M () we get 7.1. Preliminaries

The following proposition will allow us to relate accuracy

of the expected value of the next-state to variational dis-

tance for the next-state distribution. This will be impaitta

for using the Simulation Lemma, which is stated in terms
h of variational distance.

Vi=1:N—1 Uy (r®) > Up(r®) + /8. (16)

In words: when the algorithm continues (in iterations
1 : N — 1), the model overestimated the utility af?).
Using the contrapositive of the Simulation Lemma witl

€= %Hf,éia we get that for ali = 1 : N — 1 the policy  Proposition 7. We have

7(") must be visiting a state-action pdir, a) that satisfies

dvar(N(,ula Uz[n),N(NQv Uz]n)) < #”/J’l - MQHQ'

270

dvar(P([5,0), PO ([s,0) > opfe—  (17)

- From Lemma 2 and 7.2. Accuracy of the model for the teacher’s policy

Lemma 4 we get that if the algorithm had run for a num-Given a set of state-action trajectories, the system nestric
ber of iterationsNupouna then with probabilityl — § all A, B are estimated by solvings separate regularized lin-
state-actions pairs would satisfy ear regression problems, one corresponding to each row of
S (V) N A andB. After appropriately relabeling variables and data,
dvar (P(+|s, a), PP (:[s,a)) < aer—- (18)  each of these regularized linear regression problems is of

On the other hand we showed above that if the algorithmthe form

does not exit in iteration, there must be a state-action pair . (i) _ T L())2 lle)|2 19
satisfying Eqn. (17), which contradicts Eqn. (18). Thus ming 3, (y SO (19)
Nubound gives an upper bound on the number of iterationsyg 6 g « Rrs+na corresponds to a row id and B, and

of the algorithm. 5" the norm bounds on ande(z) resultin||z||ls < v/2. The

The proof of Theorem 3 for the case of discrete dynamicsrelabeled data pomlts' are keptin the same order as they W:ere

is a straightforward consequence of Lemma 6 collected. '_I'he_trgmlng data collected from the teacher’s
’ demonstration is indexed fromto m = NrH. The ad-

ditional training data collected when testing the policies

with probability at least

Proof of Theorem 3 for discrete dynamidsirst note that DN e -
the conditions oV andk; of Lemma 6 are satisfied in 17~ }j—1 iSindexed fromn + 1 to7m = Ny H + ki N H.
Theorem 3. So Lemma 6 proves the bound on the numbefh€ data is generated according to a true madeds de-
of iterations as stated in Eqn. (3). Now it only remains toSC'ibed in Section 4. In the notation of Eqn. (19), this
prove that at termination, Eqgn. (2) holds. We have from the"€ans there is sonte such that

termination condition thal/ (w) > U () — /2. Now us- .G T (i ;

ing Eqn. (13) and Eqn. (14) we g&t. > Uy, — 3o, which Vi y@ =072 + ), (20)

implies Eqn. (2). where the{w®}; are 11D, withw® ~ N(0,0?). The data

. . . generation process that we just described will be referred
7. Linearly parameterized dynamical systems to as “data generated according to Eqn. (20)” from here on.
In this section we prove Theorem 3 for the case of linearlyNote that the training datge") }; in this setup ar@on-IID.
parameterized dynamics described in Eqgn. (1). As pointedhe teacher’s policyrr induces a distribution over states
out in Section 5, the performance guarantee of Eqn. (2) fola; and inputsu, at all timest. However these distributions
lows from the termination condition of our algorithm and need not be the same for different timegsnaking the data
assuming we choodg and Nt large enough such that the non-lID. Moreover, the training data indexed froany-1 to
utility of the policies{=(?}; andr are sufficiently accu- 7 is obtained from various policies and the resulting data
rately evaluated in\/. This leaves us to prove the bound generation process is very difficult to model. As a conse-
on the number of iterations of the algorithm. As explainedquence, our analysis will consider the worst-case scenario
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where an adversary can choose the additional training dat@rudely speaking we exploit the fact that no matter how an

indexed fromm + 1 to m.

Forl < k < NprH + kyNH let the following equations
defined® andloss® (6):

loss™ (6) Sy =07 20)2 4 L 6]13,

o) argming loss™™ (6).

(21)

adversary chooses each additional data pdinias a func-
tion of the history up to timeé — 1, the random walK Z;. }

has a positive bias. More precisely, we use the Optional
Stopping Theorem on the martingalg = exp(525 Zi).*2
Step 3. Let # be an inaccurate parameter. From Step 1 we
have that the optima™* outperforms) by a margirQ)( Nr)
after having seen the initial data poings®, y(®}¥7H.

The following lemma establishes that a “small” number of stepy 2 says that the probability férto ever make up for

samples from the teacher’s poliey- is sufficient to guar-
antee an accurate modgF) for all time stepsk = Ny H
toNrH + ki NH.

Lemma 8. Let anyd > 0,¢ > 0,7 > 0 be given. Con-
sider data{y®, ()} Nt H+ThNH generated as described
in Eqn. (20). Let{0*)}, be defined as in Eqn. (21). Let
{g®, 2} be data generated from one trial undey

this marginQ)( Nr) is exponentially small ilV. Our proof
combines these two results to show that a “small” number
of samplesNt from the teacher is sufficient to guarantee
(with high probability) that* has a smaller loss thahin
every iteration, and thu ¢ {(*)} Tt NI

Step 4. Our proof uses a covering argument to extend the
result thaty ¢ {9} Y7 (THE N for one specific inaccu-

(and appropriately relabeled as described in paragraphrate § from Step 3 to hold for all inaccurate parameters

above). Then for
P(max;cr.g|0T 20 —0*Tz0| > ) <y (22)

to hold with probabilityl —é for all § € {9} Y7 THR N
it suffices that

NT = (pOIy(éa %a %aHa ||0*H27TLS;TL.A7]€13N)) .

¢ simultaneously. As a consequence, the estimated pa-
rametersd)(*) throughout all iterationss (NyH < k <
NrH + kyNH) must be accurate. Which establishes
Lemma 8.

Theorem 9. Let anyd > 0,a > 0 be given. Let
{M®}N | be the models estimated throughobt it-
erations of the algorithm for the linearly parameter-

If 0 satisfies Eqn. (22) then it is accurate for data generi€d dynamics case, as described in Section 4. Then
ated under the teacher’s policy and we refer to it as accuf©r Uy (mr) — Un(mr)| < o to hold for all i €
rate in the discussion below; otherwise it is referred to ad : vV Wwith probability 1 — 4, it suffices thatNy =

inaccurate. We now sketch the key ideas in the proof of? (Poly (3, 5,

Lemma 8. A full proof is provided in the appendix. The
proof proceeds in four steps.

Step 1. For any inaccurate parameteémwe establish that
with high probability the following holds

1oss M H) (9) > 10ssNH) (6*) + Q(Ny). (23)

l.e., the true parameté* outperforms an inaccurate pa-
rameterd by a margin ofQ(N7) after seeingVr trajec-

L2 HaRmaxaHAHF7||BHF7nSanAak17N))-

Proof (idea). From Prop. 7 and Lemma 8 we conclude that
the estimated modefs\/ (V) } Y | are close to the true model
in variational distance with high probability for statesvi
ited under the teacher's policy. Using the Simulation
Lemma gives the resulting accuracy of utility evaluation.
O

Theorem 9 shows that a “small” number of samples from

tories from the teacher. The key idea is that the expectethe teacher's policyrr is sufficient to guarantee accu-

value of the loss differendess ™) (9) — loss V7 H) (%)
is of order Nt for inaccurated. Our proof establishes the

rate models]\?[i(i) throughout all iterations of the algo-
rithm. An accurate model here means that the utility of the

concentration result for this non-1ID setting by looking at teacher’s policyrr is accurately evaluated in that model,
a martingale over the differences in loss at every step ande., U ;) (7r) is close toUy; (7r).

uses Azuma'’s inequality to prove the sum of these differ-

ences is close to its expectated value with high probability7-3. Bound on the number of inaccurate states visits

Step 2. Let 1oss;’;)v(9) Zf:NTHH(y@) — 0T 2()2 be

the additional loss incurred over the additional data oint

{2} 141 We establish that for anya < 0,

P@Ek > NpH :1osst¥) (0) < loss™) (6%)—a) < exp(—%).

In words, the probability ob ever outperforming* by a
margina on the additional data is exponentially smalhin
The proof considers the random wglKy, }
(k) 9) — lossgfj)v(e*).

adv

7y, = loss

Based on the online learning results for regularized linear
regression in Kakade and Ng (2005), we can show the fol-
lowing result.

2pefinition(Martingale.) Let(Q, F, P) be a probability space
with a a filtrationFo, F1, - - - . Suppose thaky, X, --- are ran-
dom variables such that for all> 0, X; is F;-measurable. The
sequenceXo, X1, - - - is a martingale provided, for all> 0, we
have that£[ X, 11|F;] = X,. Due to space constraints we can not
expand on these concepts here. We refer the reader to, e.g., (Dur-
rett, 1995; Billingsley, 1995; Williams, 1991), for more details on
martingales and stopping times.
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Lemma 10. Let anyy > 0,6 > 0 be given. For References

the algorithm described in Section 4 we have with prob-appeel, P., & Ng, A. Y. (2004). Apprenticeship learning via in-
ability 1 — ¢ that the number of times a state-action verse reinforcement learningroc. ICML

pa}ir (z,u) is (Aen'countered such that(A¢(z) + Bu) —  Abbeel, P., & Ng, A. Y. (2005). Exploration and apprenticeship
(A(’)qb(x) T B(")u)Hz > u is bounded byN, = learning in reinforcement learningroc. ICML
O(k1vkyN(log k1N )*poly(|| Al r, || Bl r, ns, n.a,log %, Amit, R., & Mataric, M. (2002). Learning movement sequences
H, i)) from demonstrationProc. ICDL

. . : . Anderson, B., & Moore, J. (1989).Optimal control: Linear
Lemma 10 is proved in the appendix. Lemma 10 is key t0  quadratic methodsPrentice(-HaII.) P

proving the bound on the number of iterations in the aIgo-Bertsekas’ D. P, & Tsitsiklis, J. (1998Ysuro-dynamic program-
rithm. ming Athena Scientific.

Billingsley, P. (1995). Probability and Measure Wiley Inter-

7.4. Proof of Theorem 3 for linearly parameterized science.

dynamical systems
Brafman, R. ., & Tennenholtz, M. (2002). R-max, a general poly-

Proof (rough sketch)The conditions in Eqn. (4), (5) en-  nomial time algorithm for near-optimal reinforcement learning.

sure thatUy, (7r), {Un (7D}, are accurately evaluated — Journal of Machine Learning Research

with high probability (by the Hoeffding inequality) and Demiris, J., & Hayes, G. (1994). A robot controller using learning

Eqn. (4) also ensures th@t/,; ., (77)}; are accurate es- by imitation.

timates ofUy () (by Theorem 9). Using the Simulation Durrett, R. (1995).Probability: Theory and ExamplesDuxbury

Lemma and the same reasoning as in the proof of Lemma 6 Press.

gives us that if the algorithm does not terminate in step 4 okaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Rein-

the algorithm, then the policy”) must be visiting a state- forcement learning: A surveylAIR

action pair(z, v) that satisfies Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in
metric state space®&roc. ICML

e  (24)  Kakade, S., & Ng, A. Y. (2005). Online bounds for Bayesian
algorithms.NIPS 17

with probability at leastigzi—. |If (z,u) satisfies  Kearns, M., & Koller, D. (1999). Efficient reinforcement learning

dvar (P(-|z,w), PO (|z, 1)) >

Eqn. (24) then we must have (using Prop. 7) that in factored MDPsProc. [JCAL

) R Kearns, M., & Singh, S. (2002). Near-optimal reinforcement
[(Ap(z) + Bu) — (ADp(x) + BOu)||y > jo2m0e, learning in polynomial timeMachine Learning journal
) Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watch-
From Lemma 10 this can happen only ing: Extracting reusable task knowledge from visual observa-
tion of human performancé-RA 10, 799-822.
O(k1v/ k1N (log klN)?’poly(HAHp, IBllr,ns,na, Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,
1 1 Berger, E., & Liang, E. (2004). Inverted autonomous helicopter
log 5 H, Rpax, —)) (25) flight via reinforcement learningnternational Symposium on
o

Experimental Robotics

times in N iterations of the algorithm. On the other hand, Pomerleau, D. (1989). Alvinn: An autonomous land vehicle in a
if the algorithm continues, we have from above that such neural networkNIPS 1

an error must be encountered (with high probability) Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learn-
ing to fly. Proc. ICML
Q a N) (26) Schaal, S., & Atkeson, C. G. (1994). Robot learning by nonpara-
HR.x metric regressionProc. IROS

. Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement
times. Note that the lower bound on the number of state- learning in continuous spaceroc. ICML

action .palrs encountered with Iarge errorin Eqn. (26) groWSSutton, R. S., & Barto, A. G. (1998)Reinforcement learning
faster inN than the upper bound in Eqgn. (25).Once the MIT Press.

Iowe_r bound Is larger than the upper bound we have a Cor\7\/i||iams, D. (1991). Probability with Martingales Cambridge
tradiction. Thus from Eqn. (26) and (25) we can conclude ;- e matical Textbooks.

that after a number of iterations as given by Eqn. (3) the al-

gorithm must have terminated with high probability. Also,

since we chosg;, Ny such that{ Uy, (7 }; andUy; (r7)

are accurately evaluated, Eqn. (2) holds when the algorithm

terminates. |

131 this proof sketch we ignore a dependencéobn N. See
the long version for a formal proof.
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A. Some properties of the variational distance Proof. We have

In this section we state some known results involving the
variational distance between probability distributiof\s/e deae (Q1(), Q1)
include proofs to keep the paper self-contained.) We prove “Var 11/ =1
(and sometimes state) the propositions for probability dis — 1 Z ‘ Z P(z1]20)Qo(x0) — p($1|xO)Q8(x0)’
tributions over a discrete domain only. The proofs (and 2 P eX | el
statements) for continuous domains are very similar. 1

5| Y P@ifn)(@oo) - Qio)

Proposition 11. Let @, Q* be probability distributions 21€EX  0:Qo(z0)>Q} (o)

over a domaint’, let f be a bounded random variable over
X. Then Y Plileo)(Qolwe) - Qi)
20:Qo(70)<Qf(zo0)

<52 (Y PEal)@en) - @ao)

T1€EX  20:Qo(x0)>Q (x0)

+ Z P(z1|z0)(—Qo(zo) + QS(%)))

|EQf - EQ*.ﬂ < (Sup f(S(}) — inf f(x))dvar(Q7Q*)'
rEX reEX

Proof. Letc = inf,cx f(z). Then we have

Eof — Eqg-f , £0:Qo(20)<Qg (o)
= Eq(f—c)—Eqg-(f—c¢) = 3 Z (Qo(z0) — Q5 (20))
= Y (U@-9Q@) -Q @) it
2:Q(2)>Q* (v) +5 > (—Qo(z0) + Q5 (z0))
+ Y (@) - Q@) - Q(x) 20:Q(20)<Q3 (x0)

dvar(QO(')v QS())

#Q(@)<Q" (2)

< Y. (f@) - 9(@) - Q*(x))
2:Q()>Q" (@) Here we used in order: the definition @f,.; splitting the

< sup(f(z) —¢) Z (Q(z) — Q*(x)) summation into two summations; triangle inequality (all
reX 2:Q(2)>Q* (z) terms are now positive); switching order of summation; the

= (sup f(x) — inf f(2))dar(Q Q7). (27)  definition Ofdhar. .
zEX rzeEX

Here we used in order: adding and subtractingplitting

the summation into positive and negative terms; dropping

the negative terms from the summatiof(;z) is bounded Proposition 13. Let Qy(-) and Qf(-) be probability dis-
by sup, ¢ f(x); definition ofd,,* andc. The same ar- tributions over a domainY. LetVz € X P*(|z)

gument with roles of) and@Q* interchanged gives us: and P(-|z) be probability distributions overX. Let
Q1) = Y,ex P(lz0)Qo(xo) and let Qi(-) =
EQf - EQ"f < (Sup f(l') - lggf(x))dVdr(QvQ*) ZazoeX P*(|JIO)Q6(Z‘0), then
zeEX r
(28)

Egn. (27) and (28) combined prove the proposition. [J dear(Q1(1), Q5()) < dvar(Qo(-), QE(4))

+ sup dyar (P(+|2), P*(-|z)).
Proposition 12. Let Qo(-) and Qg(-) be probabil- TEX
ity distributions over a domainX. Let Vz €
X P(:|z) be a probability distribution overX. Let
Qi() = D ,.ex P(l70)Qo(z0) and let Qi(-) =
Y egerx Pll20)Q5 (0), then

Proof. Let Q1 (-) = 3, cx P(-120)Q5 (o). Due to trian-
gle inequality we have

dvar(Q1(+), Q1(1)) = dvar(Qo () & (+))- duar(Q1(), Q1 () < dvar (@1 (), Q1 () +ar (Q1 (), Q3 (-))-

et P(),Q(-) be two probability distributions over a set (29)

X, then in the main body we defined the variational distanceOr the first term Proposition 12 gives us
dvar (P, Q) as follows:dvar (P, Q) = 3 [, o |P(x)—Q(x)|. Itis
well known the following definition is equivalentlya, (P, Q) =

fz€X;P<I)>Q(I) |P(‘T) - Q($)| dvar(Ql('); Ql()) < dvar(QO<'>7 QS()) (30)
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For the second term we have

():Q1()
Z‘Z (z1|20) Qg (2o0)

ToEX

Var (Q
1
2

=Y P (w1]z0)Qp (o)

Zo

S%Z\P

r1EX ,xoEX
§ dvar
ToEX

sup dvar(P('|x0)7
roEX

(z1]w0) — P*(21|20)| Q) (20)

P*(-[x0)) Qo (o)
P*(-|zo)).

\350

IN

(1)

So we get that

H H
Uni(m) = Uy (@] = | S ErlR(s0)] = Y Ep [Rise)]
t;O t=0
_ ‘ZEpt[R(sf Ept[R(st)]’

IN

‘EP, (s:) — E; R(st)’

dvar(Pt7 Pt)anax

IN
= 117

~+
(=]

H
< Z teRmax
t=0

< H26Rmax .

Where we used in order the definition bf, reordering

Combining Eqgn. (29), (30) and (31) gives us the statementerms; standard inequality for the absolute value of a sum;

of the proposition. O

B. Proofs for Section 2
B.1. Proof of Lemma 1
We first prove the following lemma.

Lemma 14. Let an MDP M = (S, A,T,H,D, R) be

given. Let another MDR/ = (S, A, T, H, D, R) — which
only differs fromM in its transition probabilities — be
given. Let any > 0 be given. If T = {P(:|s,a)}s.a

satisfies

Vs e S,a€ A de(P(|s,a), P(-]s,a)) <e,

then we have for any policy mapping fromS to (proba-
bility distributions over)A that

Upnt (1) = Uy (1) < H?€Rppox.
M

Proof. With some abuse of notation, |I& and P, denote
the distributions over states at timéduced by the policy
m, the initial state distributiorD and the transition prob-

abilities 7 and 7" respectively. Then from using Prop. 13

inductively we have for alt € 0 : H that

dvar(Pt(')vpt(')) < te. (32)

Prop. 11; Eqn. (32); simple algebra. |

Proof of Lemma 1.Consider the auxiliary MDRV (D) =
(S, A, TV H,D,R), where PV (-|s,a) = P(:|s,a) if
(s,a) € SA, andPW(-|s,a) = P(-|s, a) otherwise. Then
we havevs € S,a € A dyar(P(]5,a), PM (s, a)) < e.
Using Lemma 14 gives us that

|Upy () —

Also, using condition (ii) of Lemma 1 and the definitions
of M, M) we trivially get

Uy (1) € H?*€ R (33)

|Unroo () = Une ()| < nH Ripax. (34)
Combining Eqgn. (33) and Eqgn. (34) using the triangle in-
equality gives the statement of the lemma. |

B.2. Proof of Lemma 2

We prove the following slightly stronger lemma, of which
the statement in Lemma 2 is a subset.

Lemma 15. Let anyd > 0 anda > 0 be given. Let
{X;}, be IID Bernoulli@p) random variables. Then for

P()_X;>a)
=1
to hold with probabilityl — ¢ it suffices that

mZ;<a+log§+\/(a+log§)2_a2>' (36)

We can relax the condition above to get the following less
tight, but simpler sufficient condition on:

(39)

2 1
g(a—l-log 6)
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If « > 2 and log% > 2 we have that the following is a
sufficient condition omn

m > falog
¢
Proof. We start from the multiplicative 1-sided Chernoff
bound for a Bernoulli distribution, with expectatign Let
e > 0 then

m

ZX < m( —e\f <exp 2 ) (37)
Now leta = m(¢ — /@), which impliese = jﬂn%a.
Substituting this into Eqgn. (37) gives
PO Xi<w) < el )
_ 1 mo—a,
= oxp(5( i )7). (38)

Note for Eqn. (37) to be valid, we needed> 0. So
Eqn. (38) is only valid if

me¢ —a > 0. (39)

SoforP(3"1", X; < a) < 4 to hold, it is sufficient that
Eqn. (39) holds and that
-1

meo —a. o
- (

vme

By taking log on both sides, and multiplying with2 we
get the equivalent condition

mo —a
me

Algebraic manipulation gives the equivalent condition

exp( ) ) <6.

1
2>92log =
( )" > 0g 5

m?¢? — 2(a + log — )mqb—l—a > 0. (40)
Eqn. (40) is satisfied if
m¢ € ( ooa+1og \/(a—i—logl)z—aﬂ
) 5

U[a—l—log(ls—i—\/(a—i—log(ls)Q—aQ,oo).

C. Proofs for Section 6
C.1. Proof of Lemma 4
We first prove the following lemma.

Lemma 16. Let anye,6 > 0 be given. LetX;
Bernoulli(¢) be 1ID random variables. Leb,, be the es-
timate for ¢ after n observations. l.e., we hawg, =
1§ . X;. Then for

~

max,>n|¢ — ¢n| < e

to hold with probabilityl — 4, it suffices that

2
N> = 1og(5)

Proof.

PO 16— dul > )

n>N

> P(l¢—énl >¢)

n>N

E 26726277,
n>N
2(67262)]\7

1 —e2¢

P(maXTLZN|¢ - an| > 6)

IN

IN

Hence, in order to guarantee thafmax,,>n|¢p — q3n| >
€) < 4, itis sufficient forV to satisfy

o2
(€ 2N < 6(1-e72))2
log((e**)™) < log(3(1 —e7*)/2)
(—2¢)N < logd + log(1 — 6_262) —log 2
> 212( logd — log(1 — =2 ) +log 2)
> %(log%+log(1_c%)+log2).

Now using the fact that for any : —¢ < 2 < 0 we have
thatexp(z) < 1— lel (1—exp(—§)), and more specifically,

foranyzr: -2 < < 0 we have thatxp(z) < 1— LI 5 (1—
exp(—2)) < 1 — |z|/4. Thus fore € (0,1) itis sufflClent

Now recall that the Chernoff bound was only meaningfulto have

for ¢ > 0, which corresponds to the condition given by
Eqn. (39). Sowe getthatfdP(}";", X; < a) < dto hold
it suffices that

m¢2a+log(15+\/(a+log(1s)2a2.

1 1 1
N > —(log—-+1 log 2
z gallos e gy T8
1 1 2
> ?(log 5 + log = +log2)
> Lie2
2 Slogo.
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Incases ¢ (0, 1), more specifically whea > 1, the lemma  to hold with probabilityl — ¢, it suffices that
holds with probability one independent of the number of

samples. O IS]* |S]?
> = .
K=z 4€2 log 0'e
Proof of Lemma 4 Let the multinomial distributionP be ] . )
parameterized by the parameterg¢™®), ... ¢*)). Let ~Now for (s,a) € SAc we combine this result with

P, be parameterized by, - - - , »)) which are the re- Lemma 2. This gives that for

spectiven-sample estimates for all parametefs. Then

from Lemma 16 and the union bound we have that for Vi 2 N dva(P([s,a), Pa(ls,a)) se (42)

Viel:k max >N|¢(i) -~ q;(i)‘ < to hold with probabilityl — ¢’ — §”, it is sufficient to have

2 1512, ISP 1

to hold with probabilityl — k¢, it suffices that ).
N_£(42 08 5 +10g5,,) (43)
2
Nz log((;/ )- (41) " Taking a union bound over all state-action paissa) €
SA¢ (note |SA¢| < |S||A]) gives that for Eqn. (42) to
Now we use the fact that hold for all (s, a) € SA¢ with probability 1 — |:S||.A|6" —
A |S].A|6”, it suffices that Egn. (43) is satisfied. Choosing
~ . A I V/A 0 i
dee(P,B) = %Z 16 — ). §' = 0" = g5 9ives the lemma. O

» ) o The above lemma tells us only a polynomial number of
We get that condition (41) is sufficient to ensure that sample trajectories under the teacher’s policy are neces-
I sary, to guarantee that the state-action pairs frequeigtly v
€ ited under the teacher’s policy are accurate in all models
2" {M®},;. Now we use the Simulation Lemma to translate

maXn>Ndvar(PP)

holds with probability at least — kd’. Choosinge = £¢’ this into accurate evaluation of the utility of the teachker’
andé = kd’ proves the lemma. g policy in the models M)},
C.2. Proof of Lemma 5 Lemma 5 (restated). Letany,d > 0 be given. Assume

We first show that state-action pairs that are visited withwe use the algorithm as described in Section 4. Net
probability sufficiently bounded away from zero under asatisfy the following condition
policy 7 will be accurately modeled after observing suffi-

cient trials under that policy. Ny 32|S[|A[H Rmax (log 2|S||A|

Lemma 17. Letan MDP(S, A, T, H, D, R) be given. Let a 2& A 52 5

7 be a policy for this MDP. Let any, 4,§ > 0 be given. 64|S| HARY, o log 32H" Rimax| S| |A|)’
Let {P,(:|s,a)}s . be the maximum likelihood transition a? el

probability estimates based upon observing the potiéyr or simplified and less tight (Notice thatf/s > H R

n trials of duration . LetSAe ¢ § x A be the set of the statement is trivially true with probability 1. So we can
state-action pairs such that the probability of seeing any y b y L

specific state-action paifs, a) € SA. under the policyr simplify using the fact tha /8 < H Fmax.)
in a single trial of durationH is at least¢. Then for 4096\S| |A|HP RS 32H2 Ry |2 ||
R max 1 max
Vn > N, Y(s,a) € SAe, dvar(P(]5,0), Pu(-]5,a)) < € a’ da

Then with probabilityl — 6 we have that

to hold with probabilityl — 4, it suffices that

2 |S‘2 2|S|3‘A| 2(S|| 4| Vi |UM<1;)(7TT)—UM(7TT)| < a/8.
N > 7(— og og
¢ o¢ J Proof. Let
Proof. Let P, (-|s, ) denote the transition probability es- €= 1_o/8
timate after observing the state-action p@aira) & times. 2 H? Rmax
From Lemma 4, for and let
1 «/8

Vk > K, dy(P(|s,a), Pe(-|s,a)) < € 1 S HRp
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From the Simulation Lemma we have that if there exists &So far we have shown that for Eqn. (12), (13), (14) and (47)
set of state-action pail$A, C S x A such that the follow- to hold with probabilityl — 2§’ — N¢§”, it suffices that
ing holds Eqn. (44) and Eqn. (45) are satisfied.

Now using the contrapositive of the Simulation Lemma and

o © SAJ’ har(P(]s.0). PCIs-a)) S € choosinge = 17725 we get from Eqn. (47) that the
(i) P({(st,ar)}i=g C SAy|mp, M) > 1. policy 7() must be visiting a state-action pd, a) that
Then we have satisfies
. 50) (. o
\Unt(77) — Uy (77)| < H?€Ruax + NH Ripax = a dyar (P(:|s,a), P (:|s,a)) > T EI. (48)

3
Where the last inequality follows from our choice of
andn above. Now choos&'A4, = {(s,a) € S x A : _ o
e b thenS 4, satisfies condition (ii). So it remains to els M are inaccurate; they overestimate the utility of the
show that condition (i) is satisfied. From Lemma 17 we policies{r(V},_.x_1. We used the contrapositive of the

with probability at least;z%— in every trial of horizon

have that for all’s, a) € SA, for Simulation Lemma to show this implies that an “inaccu-

rately” modeled state-action pair must be visited with prob
o (P(-]5,), Po(s, ) < € ability 157%— by such a policyr"). This means that data

collected under such a policy will improve the model. It re-

to hold with probabilityl — § it suffices that mains to show that this can only happen a limited number
of times until the model has become a good model.]

N> 2SlA (ﬁlog 2|5 A| +log 2|5\|A|). Let Py(-|s,a) be the estimate of(-|s,a) based upork
- 4e? o€ 0 observations of the state-action pgira). From Lemma 4

we have that for any state-action péit a) for

Filling in the choices ok and# into this condition gives
the sufficient condition oVt as stated in this lemma.ld «Q

Vk > K, dvar(P('|S,a>,P]g("S,Cb)) S m
C.3. Proof of Lemma 6

. . o ,
We now give a formal proof of Lemma 6. to hold with probabilityl — §’”, it suffices that

162H*R2, |S|?. 16H?Ryax|S|?
> log

Proof of Lemma 6 From Lemma 5 we have that for K >
402 ad

Eqn. (12) to hold with probability — ¢’ it suffices that

5 - 5 5 The above equation bounds the number of times a state-
> 4096| 9| \4|H Riax log 32H” Runax |S|°| Al action pair can be visited until it is “accurately” modeled
- ol fget 44 with probability1 — 6””. So with probabilityl — |S||.4]6"
(44) one can encounter state-action pdirs:) that—at the mo-

Eqn. (14) is trivially true whenae > 16HRpax. |If : . :
A L ment of encounter—satisfy Eqn. (48) (i.e., that are inaccu-
a < 16H Ry, the Hoeffding inequality gives us that for rately modeled) at most

Eqn. (14) to hold with probability at least- &', it is (more
than) sufficient thafVy satisfies Eqn. (44). 162H4R2,__|S|?
The Hoeffding inequality also gives us that for Egn. (13) to [SIIA]
hold with probabilityl — N ¢ it suffices that

) 16 H? Rypax|S|?
40&2 0g ad

(49)

times. Since (from above) such a state-action pair is en-

162H%R2,,, 2 countered with probability at Ieam in each itera-
ky 2 202 log 5 (45 tion of the algorithm before it exits, Lemma 2 gives that

w.p. 1 — ¢ after a number of iterations
Now since the algorithm only exits in iteratidv, we must

have foralli =1: N — 1 that _ 32HRpax 1
Nubound - ( 10g <
) ” ) « 1)
Un(n™) < Un(mr) — /2. (46) 162HR2_|S|> . 16H2Ryax|S|?
40&2 0&5”’

Combining Eqn. (46), (12), (13) and (14) and the fact that
7() is o /8-optimal for M () we get such a state-action pair has been encountered as many times
as stated in Eqn. (49). SW,pouna IS @an upperbound on
Vi (1 <i< N—1) Uy (7D) > Up(7'D)+a/8. (47)  the number of iterations of the algorithm with probability
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1—-26 —
such that

N(S// _ |S||A‘5/N _ 5////. Choose$/75//’ 5///75////

26" = Nypounad” = | S||A|6" = §"" = 35. (51)

Substituting these choices into Eqgn. (50), Eqn. (45) and

Eqgn. (44) gives us Eqgn. (8), Eqgn. (9) and Eqgn. (10). O

D. Proofs for Section 7.1

Proof of Proposition 7.W.l.0.g. assume a coordinate sys-
temzy.,, such that

Vi€ 2:n, ()i = (u2)i =0,
and
(11)1 < (p2)1-
Also, leta = (Ul)l andb = ([1,2)1. Let
- —lz — 3
f(zv ,LL) - (27_[_)%0_,” eXp ( 20_2 .
Then we have that
dvar(N H1,0 /~“27 ))
Tr1= +oo
= / iUzn/ [z Ml)—f(x;/m)!dﬂﬁl
" z1=(a+b)/2
= 3 dzs. n/ (f(a; ) = f (w3 p2))day
1 ” r1=+00
+ 5/ I2n/ (2 p2) — fla; 1)) day
To.n T1= (a+b)/2

xr1=-+00
dm2:n
T2:n

=
1(1—24

1-2

/r =(a+b)/2

1= ((L+b)/2

f(x;ul)d$1>

XT2:m

2in

f (s Mz)dm)

T1=—00

exp
V2ro /z—|ab/2

/a—bl/Q

|a —b]

2

(552 202
22
202

)dz

1

27r0

exp(=——)dx1

la—bl|/2

2ro

1
ﬁ“l@-/ﬂ”z-
(]

In our setting, we have Gaussian noise contributing ad-
ditively to the next-state given current-state and action.

Proposition 18. Let any N > 0,6 > 0,0 > 0 be

given. Let{w™}Y  be Gaussian random variables,
namelyw® ~ N(0,02). Then with probabilityl — § we
have

max;cq.n|w®| < o log 24X

V2ms®
Proof.
. 1 oo 22
P(lw®|>K) = 2 / exp(——=)dz
(] > K) | o)
1 oo
< 2 / 2exp(—i)dz
2no Ji—K %
1
= 4——exp(—K/o
Tz OP(~K/0)
So we have
) 1
Pmax;er.n|w®?| > K) < N4—— exp(—K/0),
( e1:N| |2 K) < e p( /o)
which is equivalent to the proposition. O

Note the bound we use for the tail is fairly loose, but it's a
simple form and enough for our purposes. Eet> 0, here
is an another bound (based upon integration by parts):

/°° 1 ., ( ZQ)dz [—oe ( 22)00
= Cexn(— 2 e N
K V2TO 2 P 202 V2T P 202 K
* o 1 22
— — — d
/Z_K o 2 xp(—5 5 )dz
< o exp! K2)
xp(——=).
T V2K P 202

E. Proofs for Section 7.2

In this section, let. = ng+n.4. In this section we establish
several helper lemmas, and then prove Lemma 8. Proofs of
helper lemmas are given as sketches or even left out in this
section. The proofs are given in the following sections.

We will prove Lemma 8 in the following two steps.

e In Section E.1 we establish that for any inaccu-
rate paramete), we have thatloss™¥7)(9) >
loss V1) (9*) + Q(N7). le., the true paramete
outperforms all inaccurate parameters by a margin of
Q(N7).

In Section E.2 we establish that no matter how the ad-

ditional data{z(®} Y7/t " are chosen, the prob-

ability that 6* ever gets outperformed by an inaccu-

As a consequence, the random variables (and their incre-
ments over time) are not bounded. The following proposi-
tion shows that we can “essentially” treat Gaussian random
variables as bounded random variables with high probabil-
ity by truncating the tails.

rate parameteff is exponentially small in the margin
Q(Nr). As a consequence, a “small” number of sam-
ples N from the teacher is sufficient to guarantee that
throughout all iterations an accurate parameter has the
smallest loss.
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E.1. Model estimated from teacher’s data

E.2. Influence of data from policies{n ("},

In this section we establish that for any inaccurate parami this section we study the power of an adversary to

eter 9, we have thafioss ™) () > loss™7H) (%) +
Q(Nr). lLe., the true parametér outperforms all inac-
curate parameters by a margin(®fNr). A standard way

favor one specificd over 0* by choosing the samples

{2} N VH L More specifically the following lemma
le.,

shows that the adversary’s power is very limited.

to prove this is to prove it for one specific inaccurate paramho matter what policy the adversary uses, the probabil-

eterd, and then use a cover éfspace and a union bound to

ity of ever makingé outperformé* by a margina > 0

prove it for the whole space. The following lemma showson this set of adversarially chosen samples is bounded by

that it is sufficient to cover only a “small” ball around the
origin. More specifically, it shows that with high proba-
bility all the solutions{*)} 7+ to the regularized
linear regression problem lie in a small ballaround the
origin. Note that the solution§d(®)} 't} NV 1o the
regularized linear regression problems at steps N H

exp(—a/o?). Let

loss(h) (0) = Y8 (y® — 07202,

By convention Ieilossgfj)V =0fork <m.
Lemma 21. Let anya > 0 be given. Let any € R" be

to NpH + ki N H are by definition the only parameters we gjven. Let all else be as defined above. Then we have

end up using in the algorithm. So it is sufficient to show

loss N7 (6) > 1oss V) (%) + (N7 for all inaccurate
6 in the “small ball’ S that contains alf§(*) } \7 [+l N
Lemma 19. Let any 6 > 0 be glven. Let
{y@D) O NrHTk NH “he generated as described in
Eqgn. (20). Let{0*)}; be defined as in Egn. (21). Let
m = NpH + kN H. Then we have with probability— o
thatVk (1 < k < 1n)

109l <~V (f 162 + o log

vr)
and that

max;—1. |y Z)| < \[”9 2 +olog \/7(5

Note Lemma 19 would not hold if we used unregularize
linear regression.
penalty, one could regularize by explicitly constrainéhig

be norm-bounded. This would directly result in a ball that N7 = £
is sufficient to be covered and thus simplify some of the
proofs. However, in practice regularized linear regrassio

Instead of regularizing with a quadrati

(k)

P(3k > m :loss,,(0) < loss

(07 —
The following lemma uses a covering argument to extend
Lemma 21 to hold for the sdt : ||0]2 < R}.

Lemma 22. Let any d,e,n > 0 be given. Let
{y®D) 2O NrH+k NH he generated as described in
Egn. (20) Leth = NrH + k1 NH. Let

R = /i (VB o + o log

a) < exp(g55).

Vo)
LetS = {0 : ||0]]2 < R}. Then for all§ € S that do not
satisfy Egn. (22) we have that for

()

loss, 4, () — lossg?v(Q*) > —Nre?n/8>0

OIto hold with probabilityl — é forall k € NrH : ks NH,

it suffices that

1
. H, 0% ||l2,ns,n4, k1, N)

(53)

11
1 -z
(poy( il

with a quadratic penalty (as used in our algorithm) is muchg 3. Proof of Lemma 8

more commonly used than linear regression with a nor
constraint org.

The following lemma establishesoss™*)(9) >
loss V) (9*) 4 Q(Ny) for all inaccuratd) € S.
Lemma 20. Let any §,e,n > 0 be given. Let

{y @, N NrH+NH e generated as described in
Eqn. (20). Letin = NpH + by NH. Let ypae =
maxi—1.5|yM| < V2(0* ||z + olog 22 and letR <

V2rs
KV (\/§H9*||2+alog jgé). LetS = {6 : ||9].
R}. Then for all§ € S that do not satisfy Eqn. (22) we
have that forloss~7 ) (9) — 1ossV7H) (6*) > Nye2n/4
to hold with probabilityl — §/4, it suffices that

IN

NT:Q(POIY(% %,H,H9*||2,TLS7TLA,I{?1,N)) (52)

1
57

"broof of Lemma 8 From Lemma 19 we have with prob-

ability 1 — £ that all the estimateg§(®)}r -tk TH

lie in a bounded sphereS = {# 6] <
L) (\/§|\9*||2+alog \/8%5)} around the origin and

8m

thatmax;— 1.7 |y?| < v/2||0* |2 + o log a5+ Lemma 20
gives us that for alf in this spheres that do not satisfy the
accuracy condition of Egn. (22) we have that

loss V) (9) —1oss VT H) (9%) > Npe?n/4 (54)

holds with probabilityl — % for large enoughVr as quan-

tified in Eqn. (52), which corresponds to the condition on
Nt inthe lemmawe are proving. From Lemma 22 we have

that

lossgé)v(ﬁ) loss (9*)> —Nre*n/8 (55)
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holds with probabilityl — g under the same condition on
Nr. Now since for anyk > Ny H we have by definition
loss® () = loss™H)(6) 4 losséﬁ)v(Q). We can combine
Eqn. (54) and Eqgn. (55) to obtain that
loss™ (8) > loss™® (6*) + Npe®n/8 (56)

holds with probabilityl — 6. This means that ah € S

that do not satisfy the accuracy condition of Egn. (22) are

outperformed by the true parameté&r by a margin of at

least Nze2n/8 for all k > NpH. As a consequence all
the 0 estimates{(*) } Y7 (I 1 V7 must satisfy the accu-
racy condition of Eqgn. (22). |

E.4. Proof of Lemma 19
Proof of Lemma 19Let 4,0, = max;—1.7|y®|. For any

Proof. Note that the first inequality in Eqn. (58) trivially
holds by definition ofA. We now prove the second in-
equality. Consider the difference in loss for two weight
vectors#, 6. The contribution of one training sample is
bounded by

sup [(y — 07 2)* = (y — 63 2)°|
Z:HZHS\/iay:‘y‘Symax
Sup ](y - 91TZ>2 —(y— 91TZ + (61 — 92)TZ)2‘

2| 2| <V2,9: |y <ymax

sup | — (01 — 02)72)% —2(y — 6T 2)(0) — 92)Tz|
2|2l <v2,y:|y| Symax

2(|61 — 0213 + 2V2(ymax + V2R)||61 — 022
4R||61 — 02l2 + 2v2(Ymax + V2R) (|01 — 62
(4Ymax + 8R)||01 — O2]|2.

IN AN IA

k:1 <k < mwe haveloss® (0) = Y8 (y@)2 <
M (Ymax)?. Sinced®) achieves the minimal loss, we must So we have
haveloss*) (0")) < 171 (ymax)?, and thus A®(6,0,)
1891 < - 2 57 — 1104013 1621
U < ()2 (67) < k(4ymax +8R)[61 — ball2 + —5[lI61]13 — 1623]
g ” 1
We also have (usinfiz"")||; < v2 and Proposition 18) that — k(44,1 8R)|[6: — s]s + —| (01 +02) " (61 — 02)]
Ymax < \/i 0% |2 + max;—1.m|w @
19°1 || < k(ymax + SR)01 — 2]l2 + - Lor)6, - 0,
< V2[|0*|l2 + o log iw.p. 1 - 1
which combined with Eqn. (57) proves the lemma. O < (4 + (8K + 2?)]%)“91 = O2lfe-

E.5. Proof of Lemma 20
Let

AN (01,00) = — |||91||2 16:2]13]

+maxg.( oy, Z |(y(i) — 9:%“)2 — (y(b) — ng(i))2‘.

i=1
We first prove the following lemma.

Lemma 23. Let any\ > 0,7 > 0 be given. Lelynax =
max;—1.5 |y |. There is a subsef of the spheres = {0 :
[I1]l= < R} such that for alld € S, there exist® € S such
that for all (1 < k < m) we have:

loss®) (0) — loss® (6)] < A®)(9,0) < A

loss (58)

And we have the following bound on the number of point$roof of Lemma 20Let § € R™.

inS
2Rv/n(4MYmax +
A

81 < ( (8171—&—2&12)}%))".

In the special case wher&k < nf(xf”@"ug +

Ulog \/8%5) andymax < \/5”9*“2 + UlOg \/—5
- 11,
log|S| =0 <nlogpoly()\7 g,m, |12 ||2,n)> .

To cover a sphere of radiusup to||- ||2 < 7, itis sufficient
to have (cover the enclosing cube with sid@ &fregularly)
(2R+/n/~)™ points. In our case we want to cover the set
of considered’s up to loss accuracy, so we havey =

A S !
Ty + (SEF2 5 R resulting in a number of points

(

This establishes the lemma for one spedificlt is easily
seen that the cover used fér= m can be used for all
k < m. This proves the theorem. O

n

2R/ (4kymax +
)

(8k+2;2)R)>

We will use S(n, 1, 4,1m,]16*||2) if we want to explicitly
show the dependence on the parameters.

Let e((;) = 6*T2(0) —
672, and let & be ¢! clipped to the interval
[~ K, K] Let K,, be such thainax;cy.n, g|w®| <
K,,. Then we have that

Nt H )
> (@ + )
t=1

Nt H ) 1
> &) + 5613

t=1

1
lossN7H) (9) + Eneng

v
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Now consider the difference in loss f6rand the optimal We also have that

0*: N i | |

| > EIE) - BlE))|
i=1

loss M) (9) — 1oss VT H) (9%)

NrH
NrH Nt H ~(i)\2 ~(i)\2
_ b e Lo oz Lo < 3[R - EiE)?)|
= WO e L0 3 O — L 2 [l 0
ot Nest Nol
T T (1)y2 (2)
w® 4 g2 4 L ygna @2 _ Lygep2 < El(e;")"] — E[( )]‘
S SR P R Sy U e I 2
ot - NeH
A b (), 1 = T, (0) _ §T (02
= @2 S0l 1071 (59) 2 Bl =02
=1
—E[(G*TZ(Z) _ eTz(l))Q]‘
Let Z, = S0, (e)? + 20ef) — B(ef”)2. Note that . @ AT ena
i=1.€g 0 o )" - Z ‘E[(G* PONBHONLNON]

Vt,|Z,—Z,—1| < 4K?2. Then applying Azuma’s inequality
to the martingalg Z, }; gives us that ] ) ,
_E[(0* T2 4 @ — 9T2<z>)2]‘

NpH

NrH , , (i) _ §T ()2
~(1)32 M50 _paline > _ < E max, o o |[(y* =0 2*)7]

E (€7)" +2w'e,” —E(é’)" > -\ (60) —

i=1

_[(y(i) _ gTZ(i))Q]‘_

holds with probabilityl —exp(—A?/(2Np H4K?2)). Com-

bining Eqn. (59) and (60) gives that The second inequality uses the fact that for affy, we

have| ()2 — (2§")?] < [(eS")? = (e§)?].
And thus we have
loss M) (9) — 1oss VT H) (%) >

NrH ~()y2 2| o L 1yg2 2
(i 1 . E(e;")” —E(e")"| + —|l16lz — 116]]
> EEy)? = A+ (1013 — [16°]3) | g ? o+ Sl — e
i=1 < A(NTH)(Q 0)
< A (62)
holds with probabilityl — exp(—\2/(8N7HK?2)). Now
using Lemma 23 we get that with probability —  Combining Eqn. (61) and (62) gives us
|S|exp(—A2/(8JYTH~K5)) the following holds for all on ot
6(/6]ls < R): 36 € § s.t. ANTH)(9.§) < X and loss ") (9) — loss' VT (67)
NrH
> Y BED - 33+ 5 (1605 - 16°13)
loss VT H) (9) — 1oss VT H) (9%) i=1

= lossVTH) (9) — 1oss VT ) (§)

Now for anye > 0,7 > 0, if 6 satisfies
+loss VT H) (§) — loss VT H) (%)

> —A+lossNTH)(G) —1oss VT H) (p%) P(maxiel:H(eéi)) >e€) > (63)
NrH
~(i)\2 Loz 2 (note this corresponds # not satisfying Eqn. (22)) then
> E(e:’)" =22+ —=(]|0]|5 — ||0
- ; (¢5") + /@2(” Iz = 1167112 we have that (let = min{K,,, ¢})
NrH
~(7 1 % 1 (NTH) 9) —1 (Nt H) o*
= Y@ - 2x (101 - [°13) o) o T ()
= > Npen—3\+ = (||9||2 167113)
Nt H

> B(ey)” ~ By +7(”9”2 I61>)- (61) holds w.p.1 — | 5] exp(—A2/(8Np HEK2)).
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Now choosing\ =

loss N7 H) (g —

So if

N1 gives us that

loss N7 H) (%)

then we have that

lossN7H) (g —

NT€277 2 *1(2
0y 01— 167 ).
4 * (12
Np > EQWJQHQ 12
NTEQ’U

loss M7 H) (%) > 1

holds w.p.1 — | S| exp(—(Nre*n?/ (288 HK?2)).
We have from Prop. 18 thatmax;ci.n, gw®

ANz H \with probability 1 — &'.

o log et
K, = Jlog

and thus

log |S| =

4NTH

0 (n log poly(n,

’NT a(;a

1 1
NT€21]’ 8"’

Now we choose

o _
8
- 32NrH
= |S|exp(—(Np&*n?/(288 Ho? log? 22 L0
|S] exp(—(Nre™n~/( & o
This gives us the following conditions a¥i.
(i)  Eqn. (64),
288Ho? log® 2L &
(i) Np > ® vom 1ogﬂ.
€in? 0/8

Recalle = min{K,,, ¢}. So we can replace conditions (i)
and (ii) by the following conditions oV (recall K, =

ANTH y.
V2rs/8

(ia)

(ib)

o log

(iia)

(iib)

Combining the four conditions o7 with the expression

4 2
Np > WHQ*M

4 * (12
Nr > N 2 S 107112

(olog V2e3/8
288 H o2 log? 32Nz 18]

V2w
Np > log
= e*n? 5/8
27,2 32Np H
~ (olog %578)47;2 5/8

(64)

So we can choose
(and add in a failure probability af).
Making the dependenues i% (and recall we chosa =

Nreny explicit, we have here(n, x-S, 1,7, [|6%2)

i, 9*||2)> ,

))-

for |S| gives us the following condition oV suffices:

Nr = Q(poly(

111

5 Ho 107112, ns, 104, k1 log N)).

This proves the lemma. Note that in the statement of the
lemma we have slightly weaker result, namely a polyno-
mial dependence oV rather than a polynomial depen-
dence orog N, which we proved here. |

E.6. Proofs of Lemmas 21 and 22

We first prove the following lemma about a (possibly ad-
versarial) biased random walk. We refer the reader to,
e.g., (Durrett, 1995; Billingsley, 1995; Williams, 19919r
more details on martingales and stopping times.

Lemma 24. Let {w(¥}22, be IID random variables with
w® ~ N(0,72). LetF, = o(w™, ... w™), the sigma
algebra induced by these random variables. Yat()
Fi_1, i.e.,e!) has to be chosen based upon the past. Let
Vn,

Z =3 ()2 4 20,

-

1

Let anya > 0 be given. Lefl,, = inf{n : Z,, < —a}.
Then we have
—a
P(T, < >) < exp(2 5)-

Proof. Let the martingale sequené&’, },, over the filtra-
exp (202 Z )

tion {F,, },, be defined as follows
exp ( 5 Z (20D el 4 ()2 ))

It is easily verified that{Y,,},, is adapted to{F,,}, that
E|Y,| < oo and thatt/(Y,,+1|F,) = Y, forall n. Thusy,,

is indeed a martingale with respect{té,, },.. (Note this is
true no matter what the adversary’s policy is for choosing
the F;_,-measurable functions?.)

Let any integerX’ > 0 be fixed. Let

Y, =

T, =
N =

inf{n : Z, > b},
min{T,, T,, K}.

Then N is a finite stopping time. Thus we can apply the
Optional Stopping Theorethand get

1 = EY,=EYy
= P(T,<Ty,,T, < K)E[YN|T, < Ty, T, < K]
+P(Ty, < T,, Ty < K)E[YN|T, < Ty, Ty < K]
+P(K <T,, K <T,)E[YN|K < Tp, K < T,].

Now sincevn, Y,, > 0 we have

1> P(T, <Tp, T, < K)E[YN|T, < T, T, < K].

15See, e.g., Durrett, 1995.
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UsingE[Yy (T, < Ty, T, < K] > exp(532) we get E.7. Proof of Theorem 9
L Proof of Theorem 9From Lemma 8 we have that for a
P(T, <Tp, T, < K) < exp(2—2). trial under the teacher’s policy{ (¢, u;) }L,) for
g
Taking the limit forK — oo (and using the monotone con- P(maxer. || AD () + By
vergence theorem which allows us to interchange limit and —(A¢(x¢) + Bug)|2 > €) <n (65)

expectation (probability)) gives us
to hold with probabilityl — § foralli € 1 : N, it suffices

P(T, < Ty, T, < o0) < exp(5). that
g

)

Al
| =

1
Sinceb > 0 was arbitrary, we get fob — oo (and us- N7 = Q(POIY( 50 i, | Allr, HB||F7“S»nA7klaN))~
ing the monotone convergence theorem which allows us to (66)
interchange limit and expectation (probability)) that From Prop. 7 and Eqn. (65) we have that for

P(T, <o0) < eXP(E)- P (maxtel:Hdvar(P(~ |z, we),

, 1

O POz, up)) > —e€) < 67
(feeu)) > —o—e) <0 (67

to hold for alli € 1 : N with probability 1 — ¢ it is suf-

ficient that N satisfies Eqn. (66). Le§A, = {(z,u) :

Vi dyar(P(- |2, u), PO(- |z,u)) < =1} Then using

the Simulation Lemma combined with Eqn. (67) we obtain

that that for

Proof of Lemma 21We havey® = 6*T 2() 44 where
w® ~ N(0,0%). Lete® = 0*T2() — 9T 29 Then

lossadv(k)(H) — 1OSSadV(k)(9*)

k
Z (0*T 200 1@ — 9T (D)2 _ (4(D)?2
=m 1

k+ \Unt (m7) — Upgor (77)| € H?> ———€Runax + NH Rinax

2ro
Z (w(i) + e(i))Z _ (w(i))2 _ B _ _
i to hold for alli € 1 : N with probability1 — ¢, it suffices
k

that Nz satisfies Eqn. (66). Choosirg= 5 Hfgr‘n’axa and

= (ef)2 4 20D, 1 = s« proves the theorem. O
i=m—+1
_ F. More elaborate/detailed version of
So we can apply Lemma 24 with, = lossaq, "™ (0) — Section 7.3
lossaqy "™ (6*), which proves the lemma. O

F.1. A result for Bayesian model averaging

Proof of Lemma 22Using a\ = Npe?5/16 coverS for ~ Consider an adversary generating a data sequence
S and Lemma 21 gives us thet: > 1 and foralld € S {z®}T_,. For every time step, w® ~ AN(0,0?), and

that y® = 0*T2). We assuméz(||2 < 2.1 Now define a
sequencdd®}”_ of estimates of*

loss™™ (9)—1055(];) (0*) > —A—Npe*n/16 = —Nre?n/8 =t

adv adv

t
. , . 1
(R ] () _ 9T ,\2 1L 119112
holds w.p. 0% = arg min Z;(y 0" 2\")" + 2 19115
1 — |S| exp(—Nre?n/(3202)). bty , 1
= arg min 7(y(l) - GTZ(“)Q + 7||9H37
The last term corresponds to the probability of the biased OeRm i 0 v

random walk reaching-Nze?n/16. Now requiring that .
the last term is smaller thah gives us the following re- herev? = k202 Letel® = 67Tz — 9V T2(H)_In this

quirement; section, we will prove the following theorem
~ B « 16q; (t) i (t)
3952 1S(n, N71~§2n’ %’m’ 16%112)| S(ISCEZ. later corresponds to the concatenatlc_)nz_b(rfc ) _
Nr > ——log , andu'”, which both have norm smaller than one, this is the right
€n 5/4 choice. Kakade and Ng (2005) uge||> < 1, which makes

L. e . their results slightly different from the way we state their results
which is satisfied wheV satisfies Eqn. (53). O inthis paper.
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Theorem 25. Let everything be as above defined. Thenbe the posterior distribution ovérgiven the first training
no matter how the adversary chooses eath (possibly —examples. We also have thaf(§) = p(6) is just the prior
based on everything seen up to time 1), we have that distribution.

with probability 1 — ¢ On iterationt, we are given the input*), and the BMA al-
- gorithm makes a prediction using the posterior distributio
over the outputs:
Nu =Y 1{el > ) P
t=1

(t) — (t)
- P01, Si0) = [ plul=?,0)p(61501)a6.
< O(VT(logT)?poly(||6* |2, log 5 ﬁ))' 0
We are then given the true labgl), and we suffer logloss
This result will be obtained in the following three steps:  —log p(y® |2, S; ;). We define the cumulative loss of
the BMA algorithm aftefl” rounds to be

e prove an online log-loss bound for Bayesian model

. T
averaging (BMA),
ong ( ‘ . Lpma(S) = Z —log p(y[z", S 1)
e prove a bound on the variance$used at every step =1
in the BMA algorithm, in particular prove a bound on
how often these variances can be ‘large’, We will be interested in comparing against the loss of any

expert that uses some fixed parameters R™. Define

e prove a bound on the squared loss incurred for the@g(t) — _log p(y®|z®,0), and let

time-steps when the variancesare ‘small’.
T T

We.now consider the Bayesiar} model averaging_ (BMA) al- Lo(S) = Z lo(t) = Z log p(y ™21, 0).

gorithm, and give a bound on its worst-case online loss. In t=1 t=1

particular we consider the case of linear least squares re-

gression. We have A more general form of the following theorem has been
proved in Kakade and Ng (2005), we specialized it to the

1 — (072 — y)? linear regression case.
p(ylz,0) = exp 5 ; (68)
V2ro 20 Theorem 26. [(Kakade & Ng, 2005) Theorem 2.2, for=

1/02.] For all sequencesS of lengthT" and for all §*
whereo? is a fixed, knownconstant that is not a parameter
of our model. Note that Kakade and Ng (2005) give results 1 2 N 2T 2

) ) X . ‘ , < Ly~ — — .
for generalized linear models. This section reviews astubseLBMA(S) < Lo-(8) + 212 171+ 2 log | 1+ no?
of their results, where notation is specialized to the linea
regression case. Now we’ll take a closer look at the predictions done by the
Let S = {(z,yW), (2@, y@),..., (2D, yT))} bean  BMA algorithm. Defined, = %1, + 25 St FOFOS
arbitrary sequence of examples, possibly chosen by an agmndp, = % 2271 2Dy We have that
versary. We also us§, to denote the subsequence consist- a
ing of only the firstt examples. Unless otherwise stated, 0) = n(0|S,) = N (g.é N ) 69
we will assume throughout this section thiat? ||, < /2 Pi(0) = p(0IS:) e (69)
for all s.

_ _ _ whered, = A;'b,, and3, = A;!. Also, the predictions
Assume that we are going to use a Bayesian algorithm tg, ¢ given by

make our online predictions. Specifically, assume that we
have a Gaussian prior on the parameters: Py D) 8y = N (y(t“)- it 5?+1) (70)

)

whereg; . = 07 2(HD, 2, = A+DTS 204 4 62
where I, is the n-by-n identity matrix, N'(-; 4, ¥) is the ~ contrast, the prediction of a fixed expert using paranttter
density of a Gaussian with meanand covarianc&, and ~ would be

v?* > 0 is some fixed constant governing the variance in . .
our prior. Also, let py?)z",67) = N (y(t); Yt 02) ; (71)

(I P21, 6)) p(6) wherey; = 6*7(),
Note thats? > o2, i.e., the BMA algorithm always predicts

pe(0) = p(6]S:) = ; —
Jo (Hé:1 p(y@ |z, 9)) p(0)do with a larger variance than a single expert.
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Lemma 27. The terms:? satisfy the following:

2 2 2
sy — 0o 2v
T S o (72)
Z S? — 0'2 2V2 1 (1 + 2TV2)
n 10, .
p o? o2log(1 + QUL;) & no?
(73)
Proof. Let m; = 83;2"2. Consider a sequence of exam-

ples{(z(M, @), ..., (2™, y™))}, where all the outputs
yM = ... = y(¥ = 0. Given this sequence, the BMA
algorithm’s predictions will also all bg, = 0. Thus, we
have

M=

Leva(T) = —log (050, 5%) (74)
t=1
T
= Z[—10g+1log52 . (75)
Vor o 2 !

t

1

For the last step, we used the fact that'* Y|, < /2.
This shows (72).

Putting together (81) and (80) with = m, and K
202 /02, we find that

< 202
m, <
b= 52 log(1 + %2)

Finally, Equations (82) and (79) together imply (73).
O

log(1 4+ my). (82)

Proof of Theorem 25As a direct consequence of Eqn. (73)
of Lemma 27, we have the following bound for the number
of imes Nz 52(1 42 thats? > 0° + €0

2712
no?

1 202

——————-nlog(l+
2 o2log(1 + 24) d

).
(83)

If we let * denote the “true” underlying parameter, and
w(® the noise at time, then we have

st>02(1+52) <

Now, consider the loss of an expert using the zero parame-

ter vectord = (. We have

T
Le-(T) = > —1logN(0;0,0%) (76)
T 11
= Z{longrQlogaz]. 77
t=1

Substituting Equations (75) and (77) into the main conclu-

sion of Theorem 26, we get
T

>

t=1

272
no?

T

1 1

ilogs? < E 510g02+glog <1+
t=1

> . (78)

Using the definitionn; = s? /0% — 1, we get

T
2T 2
3 log(1 +my) < nlog (1 + = ) . (79)
— no
Finally, observe that for all < ¢ < K, we have
log(1+ K
log(1+¢€) > % € (80)

Also, we can boundh; as follows:

my

Z(t+1)T2tZ(t+1) + o2
2

-1
o

1 1 1 < -
t+)T OO (t+1)
022 <1/2 I, + = E z\Wz > z

=1

L )T ( 1 >1 (t+1)
L Q—— —1 z
2 2
< = (81)

o2

g = 07T 0 |0,

Using the notation we just introduced we can then rewrite
Theorem 26 as

1
2s?

S (3t (4) s vmo)

t=1

T . 2
(w(t) 40T _ ijlz(t)) —|—10g\/27rst> <

t=1

272
no?

1 n
—10*|* + = log ( 1 .
gl + iog (142
From now on lee® = ¢*T2(0) — 4T (0,

Splitting up the summation into case whefe> o2 (1+¢2)
ands? < o%(1 + €%), and leaving out some positive terms
from the left-handside, and using the fact that> o for

all t we get:

L (wu) n e(t))2 <
St

>

t:52<02(14¢€2)
T

3 1
2

P 20

which implies

1
2 i

t:s2<02(1+€2)

T

1 2 1 n

— <t>) 1612+ 210 (1
;202@ + o 0717+ S log {1+

2 1 n 2712
<t>) 10t 12 + Zog (1
(w + 2u2” "+ 2 g\t no?

).

2
(wm + e(t)) <

272
no?

).

(84)
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Now we would like to bound the number of times we can As a consequence we have
have thate® > 1 as a function ofu. Sincee® could

depend on the whole histofy*), 2V }!=1 we use a mar- 2
tingale argument.

Let K,, be such that for alt we havelw| < K, and

W
Netzoreen) e 2up00(1 4 )

2
such thaiu < K,,. (The latter condition ensures that when Z ;/f < TLH
clipping the errors, errors do not get clipped belay Let b2 <o? (L) O3 202(1 + €2) 202
¢® be defined ag™® clipped to the interval— K, K.,]. N \ - . o2
l.e., we defing® = min{K,,, max{—K,,e®}}. Then _T% +— 6717+ 2 og (1 4 1’2 ) _
we have 202(14+¢€2) 2w 2 no
(w® + )2 < (w® 4 M), Substitutingl’ = T — N+ 52(14.2) (@nd using-A < +))
we get
For the left-hand side of Eqn. (84) we apply Azuma’s in-
equality to the martingal&, = >'_ (w® 4é1)2 — 52 — N u?
()2, which gives (the increment/decrement in one time ~ *i 7> (1+<*)etV 2527 172y =
step is at most K2 + o) 202 4 €2\ 4+ 2\ o2 1\
A A A —
202(1 + €2) tNspare) 202(1 + €2)
B ~ 1 2 N 2712
P Z (w® + &2 — (e0)2 _ T2 < —TA| < +ﬁ”9 II“+ §log 1+ ol B
t:s2<02(1+€?)
—TA\? o +a’)?), ubstituting the boun $2502(14c2) from Eqn. we
exp (—TXN*/2(3K, + 0%)?) (85) Substituting the bound fa¥,: . 2 1.4 ) from Eqn. (83)
get '
whereT =T — Nz p2(1 4.2
For the right-hand side of Eqn. (84) we apply Azuma’s u? - T6202 + 2N+ 2)
inequality to the martingaleZ, = >'_, (w®)? — o2, SESot (4. eW2un00 (1 1 2) =7 7 252(1 + €2)
thiCh g(;vedsbus gthe ir;;:rement/decrement in one time step . 24N 1 9,2 log(1+ QTVZ)
is bounde = nlo
WG, +o 202(1 + €2) €2 aﬂog(l—f—%) g no?
1 n 272
—|10*]I* + = log ( 1 .
+2u2” I +2 0g< + mrQ)

P (Z(w“))2 —To* > TA) < exp(—TA%/2(K2 4+0%)?).
t
(86)
Combining the concentration results of Eqn. (85,86)

with  Egn. (84) gives that with probability ) s o o
1—exp(—TA2/2(3K2402)2)—exp(—TA2/2(K2+02)2)  Na<oraie)ewsut” < T(€707 + A+ 2A)

Multiplying both sides witl2o2(1 + €2) gives

the following holds: I )\)lLinog(l N 2T1/2)
) 2y i 262 o2 log(1 + 20%) no? 2
t:sfgag(:l-l,-é) m(éu))z + Tm < +#”9*”2 4+ no?(1 4 €)log (1 N 2nTaV2 ) |
TUZ;A + #HQ*H2 + 7 log (1 + ii) : This all holds w.p.
Which is equivalent to L—exp(—=TA? /23K, +07%)?)—exp(~TA? /2(K}, +07)?).
3 m(é(n)z < TUZ;—;)\ Now choose

t:s2<o2(1+€?)

2

~ 2 _ 1 2T2 2v2nlog(1 + 2nTU” )

T 0P log (14 ). & = : not -, (87)
202(1+4€2) 202 2 no? To?log(1l+ 7)
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then we get

Ns%§02(1+62),e(‘)2uu2 < 2T
+2(0% + )\)\/
2T v2

2 2 (0] + 5
2Tl/

To2log(l + 24)
AT
+ {1+ no-log | 1+ 5
no

2Tv2
Substituting Eqgn. (87) into Eqn. (83) gives

2
273::2 )

2Tv%nlog(1 +
o2 log(1l 4+ 2(%22)

o2

ol

2v2nlog(l + =5
To?log(1+ 2{%;)

).

2Tv2
no?

202

Ng2so2(14e2) < \/T(ﬂlog(l—i—nlog(l +

).

2:22 )

So we have that there exists* = O(poly(n)) (note we
assumey, ¢ are fixed in our analysis) such that for @ll>
T* we have thatV,: ;2142 < 37 Thus (forT > T*)
all the above holds w.p.

1 —2exp(—TA*/4(3K?2 + 02)?).

Now setting = 2exp(—TA\?/4(3K?2 + 02)?), or equiva-
3K2 402)2
T

lently A2 = 265Ky log $ we get that

we have that

2
N <o2(iter),em>uht <

8T 4

4 1 >+ 0%)4/Tlog <

(3(max{y, o log \/%5}) +0%)\/Tlog -
+2 <02 + 2(3(max{y, o log \/8%5})2 +0?) %log ;)

2
273;-1/2 )

2Tv%nlog(1 +
o2log(l + 24)

o+ /
2v2nlog(1 + =%

)\ o
sl
+ {1+ 5 ) n0210g<1+2TV2>.
To?log(1 + 24) no?
holds with probabilityl — .

After simplification we get that for any” > T* =
O(poly(n)) that

2702
2v2nlog(1 + =%

To?log(l+ 2{%;)

2Tv2

Ns%§02(1+62),e(’5)2u =

11
O(VT (log T)*poly([|6%||2, n, log 5,;)) (89)
holds with probabilityl —¢. The condition thal” > T* =
O(poly(n)) is readily incorporated by adjusting the poly-
nomial in Egn. (89), and can thus be omitted.
Taking into account that we might hav&) > ;. when
s?2 > (14 €%)o?, we get that

< st§02(l+e2),e(”2u

Newr>p
+st§o2(1+e2)

1

L

))-
O

1
O(\/T(logT)gpoly(H@*Hg, n,log 5
Which proves the theorem.

F.2. Proof of Lemma 10

) \/ 4(3K2 +02)2 4
Na<or(ven) e zutt” < 2T T log 5 Lemma 10 considers the setting where the model is not up-
13K2 + 022 1 [2TvPnlog(l + QT,,;) dated fork, H steps. And then updated for all thes_e steps at
+2(0? + \/” log )\/ S once. The result we have from Theorem 25 applies only to
T 0 o?log(l + Z7) the setting where the updates are done between every dat-
22nlog(1 + 222V o2 , apoint. Moreover Lemma 10 considerdinear regression
+ (1 + Tolog(1 1 &) > §||9*H problems simultaneously.
o8 o? Lemma 28. Let anyl € 1 : n be fixed. For the algorithm
, 202nlog(1 + 27:.{;1122 ) 2] . 2T1/2 describ_ed in Section 4 we have that the numigiof times
+{1+ To?log(1 1 2%22) no” log ( e ) -a state is encountered such that

88) |(Ar.p(we) + Brou) — (A ¢(w) — Buy)| > o (90)
satisfies

= O(kiH+\/NkH(log Nk H)?
1

1
poly([[Ai:|| 7, [| Bi: || py s, n4, log 5 ;))

g

holds with probabilityl — 5. Now recall thatk,
max{, max;e1.7|w®|}. Thus from Prop. 18 we have that

K, < max{u,olog \/5%6} with probability 1 — g. Thus

Ny




Exploration and Apprenticeship Learning in Reinforcement Learning

Proof. Considerk; H versions of the data, permuted such to hold with probabilityl — 6", it suffices thatVy =
that within each subsequence of lengtl obtained un-
der one policy, in every permutation a different data pointg) (poly(l, %, H, Riax; | Allp, || Bllp, ns, 4, k1, N)
comes first, but no data points are permutated accross tri- a6
als under different policies. Then every prediction done in__ ) o ) (96)
our algorithm is also done for (at least) one permutatior>NC€ the algorithm only exits in iteratio¥i, we must have
in this new setup (the new setup includes more prediction®r alli = 1: N — 1 that
than just these). Thus bounding the number of large errors 2 i 9
in this new setup gives us a bound on the number of large UM(W( )) < Un(rr) — /2. ©7)
errors encountered in our algorithm. This new setup conCombining Eqn. (97, 91, 93, 95) and the fact thé? is
sists ofk; H data sequences of lengiik; H each. Using  /8-optimal for M we get
Theorem 25 we get that
Vi(1 <i < N — 1)Uy (D) > Upr(7D) + /8. (98)

N, = O(kH\/ Nk H(log Nk H)? o .

Eqn. (98) states that for every iteratiothat the algorithm

11 . . . . .
poly (\/ | Av: 1%, | Bi: |3, s + na, log 5 =) continues, the model is inaccurate in evaluating the util-
H ity of the policy 7(¥). Now using the contrapositive of the

which can be simplified (and be made less tight) to theSimulation Lemma (choosing= %H,f‘éiax) we get from

statement of the lemma. O Egn. (98) that the policyt must be visiting a state-action
, pair (z, v) that satisfies

Proof of Lemma 10Whenz,, u, satisfy||(Aé(x)+ Bu) —

(ADp(z) — BDu)|| > p, then there must bee 1 : ng dyar(P(2,0), PO (|2, u) > ofe—  (99)

such that _ . ] _ ]
with probability at least;;;-— in every trial of horizon

|(Ar:¢(xt) + Byoug) — (I‘il(f;)¢(xt) - Bl(f;)ut)\ >pu/vns  H. If (z,u) satisfies Egn. (99) then we must have (using
Prop. 7) that

is satisfied. From Lemma 28 we have
that this can happen at mostN’ = ||(A¢(x)+3u)_(A(i)qs(g;)_é(i)u)llg>416\22275,1~

O(kiH\/Nk, H(log Nky H)?poly(|| Ay, .|| 7, | B..||
ng,n4,log %, i)) times for eacH w.p. 1 — 4. Soitcan From Lemma 10 we have that with probability- 5" this
happen at mosis N’ times w.p.1 — ngd. This proves the can happen only

lemma. O
N, = O(ki\/kiN(logkiN)*poly(||Al|F,
F.3. Proof of Theorem 3 for linearly parameterized 1 1 16 H2 Ryyax
dynamiCS ||BHF,7?;S,H_A,10g W7Ev 9 \/%0’0[

Proof of Theorem 3Assume the algorithm runs fay it-

erations. Using the Hoeffding inequality we have that for times in N iterations of the algorithm. Substituting in the

expression fok; from Egn. (92) and simplifying gives us

S T (@)Y (i) il
Vis LN U —Un@Ol< g5 D N, = O(VN(log N)poly (Al |1 Bll, s, ma,
. - . . 1 1 1
to hold with probabilityl — ¢, it suffices that log S H, Ry ax, log 5))' (100)
271712 P2
ky > %bgg. (92) On the other hand, if the algorithm continues, we have
20 0 from Eqgn. (99) and Lemma 2 (choose= mmz -
Using the Hoeffding inequality, we also have that for log 5+-) that such an error must be encountered with prob-
R o ability 1 — """ at least
[Un(mr) = Un(mr)| < — (93)
16 o
to hold with probabilityl — 4”, it suffices that max
2179 12 times. From Egn. (100) and Eqn. (101) we have that after
> 16°H Rmaxl 2 94 a number of iterations
T T 502 0og 5 (94)
1 1
From Theorem 9 we have that for Ooly(|Allr, IBllr, ns, na,log =7, —, H,

1

« 1
|UM(1'> (WT) —Un (WT)| < g (95) Rmax’ log y’ log s ))
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the algorithm must have terminated with probability-

6/ _ 5// _ 5/// _ 6//// _ 5/////. NOW Chooses/ — 5// — 5/// —

oM = 1§ = g to obtain the bound on the number of
iterations of Eqn. (3). Given this bound on the number
of iterationsV, it is easily verified that the conditions of
Eqgn. (92, 94, 96) onVy andk; are met by Eqgn. (4) and
Eqn. (5) of Theorem 3. Also, since we cha¥e, k; such
thatUy; (77) and{U,; (7"}, are accurately evaluated (as
specified in Eqn. (91,93)), we have that Eqn. (2) holds when
the algorithm terminates.

O



