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Abstract
We consider reinforcement learning in systems
with unknown dynamics. Algorithms such as
E3 (Kearns and Singh, 2002) learn near-optimal
policies by using “exploration policies” to drive
the system towards poorly modeled states, so as
to encourage exploration. But this makes these
algorithms impractical for many systems; for ex-
ample, on an autonomous helicopter, overly ag-
gressive exploration may well result in a crash. In
this paper, we consider the apprenticeship learn-
ing setting in which a teacher demonstration of
the task is available. We show that, given the
initial demonstration, no explicit exploration is
necessary, and we can attain near-optimal per-
formance (compared to the teacher) simply by
repeatedly executing “exploitation policies” that
try to maximize rewards. In finite-state MDPs,
our algorithm scales polynomially in the num-
ber of states; in continuous-state linear dynami-
cal systems, it scales polynomially in the dimen-
sion of the state. These results are proved using
a martingale construction over relative losses.

1. Introduction
The Markov Decision Processes (MDPs) formalism pro-
vides a powerful set of tools for modeling and solving con-
trol problems, and many algorithms exist for finding (near)
optimal solutions for a given MDP (see, e.g., Bertsekas &
Ttsitsiklis, 1996; Sutton & Barto, 1998). To apply these
algorithms to control problems in which the dynamics are
not known in advance, the parameters of the MDP typically
need to be learned from observations of the system.

A key problem in learning an MDP’s parameters is that
of exploration: How can we ensure that all relevant parts
of the MDP are visited sufficiently often that we man-
age to collect accurate statistics for their state transition
probabilities? The state-of-the-art answer to this problem
is the E3-algorithm (Kearns & Singh, 2002) (and vari-
ants/extensions: Kearns & Koller, 1999; Kakade, Kearns
& Langford, 2003; Brafman & Tennenholtz, 2002). These

This is the long version of Abbeel and Ng (2005). The main bodies
of both papers are identical. This version includes an appendix
with complete proofs of all theorems, propositions and lemmas.

algorithms guarantee that near-optimal performance will
be obtained in time polynomial in the number of states of
the system. The basic idea ofE3 is that it will repeat-
edly apply an “exploration policy,” i.e., one that tries to
visit state-action pairs whose transition dynamics are still
inaccurately modeled. After a polynomial number of it-
erations, it will deem itself to have modeled enough of
the MDP accurately. Then, it will apply an “exploita-
tion policy,” which (given the current MDP model) tries
to maximize the sum of rewards obtained over time. In the
original E3 work (Kearns & Singh, 2002), the algorithm
would explicitly use an exploration policy until the model
was considered accurate enough, after which it switched
to an exploitation policy. In later variants such as (Braf-
man & Tennenholtz, 2002) this choice of exploration vs.
exploitation policy was made less explicitly, but through a
reward scheme reminiscent of “optimism in the face of un-
certainty,” (e.g., Kaelbling, Littman & Moore, 1996). How-
ever, the algorithm still tends to end up generating (and us-
ing) exploration policies in its initial stage.

To achieve its performance guarantees, theE3-family of
algorithms demand that we run exploration policies on the
unknown system until we have an accurate model for the
entire MDP (or at least for the “reachable” parts of it). The
strong bias towards exploration makes the policies gener-
ated by theE3-family often unacceptable for running on
a real system. Consider for example runningE3 on an au-
tonomous helicopter. This would require executing policies
that aggressively explore different parts of the state-space,
including parts of it that would lead to crashing the heli-
copter.1 As a second example, if the system to be controlled
is a chemical plant,E3-generated policies may well cause
an explosion in the plant through its aggressive exploration
of the entire state space. Despite the strong theoretical re-
sults, for many robotics and other applications, we do not
believe thatE3 is a practical algorithm.

In this paper, we consider the apprenticeship learning set-
ting, in which we have available an initial teacher demon-
stration of the task to be learned. For example, we may

1Indeed, in our work on an autonomous helicopter flight, our
first crash occurred during (manual flight) exploration, when a hu-
man pilot was over-aggressive in exploring the boundaries of the
flight envelope (moving the control sticks through their extreme
ranges), which placed excessive strain on the rotor head assembly
and caused it to disintegrate in mid-air.
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have a human pilot give us an initial demonstration of heli-
copter flight. Given this initial training data with which to
learn the dynamics, we show that it suffices to only execute
exploitation policies (ones that try to do as well as possible,
given the current model of the MDP). More specifically, we
propose the following algorithm:

1. Have a teacher demonstrate the task to be learned,
and record the state-action trajectories of the teacher’s
demonstration.

2. Use all state-action trajectories seen so far to learn a
dynamics model for the system. For this model, find
a (near) optimal policy using any reinforcement learn-
ing (RL) algorithm.

3. Test that policy by running it on the real system. If the
performance is as good as the teacher’s performance,
stop. Otherwise,add the state-action trajectories from
the (unsuccessful) test to the training set, and go back
to step 2.

Note that the algorithm we described uses a greedy policy
with respect to the current estimated model at every iter-
ation. So there is never an explicit exploration step. In
practice, exploitation policies tend to be more benign, and
thus we believe this is a significantly more palatable algo-
rithm for many applications. For example, unlikeE3, this
is a procedure that can much more safely and confidently
be tried on an autonomous helicopter.2 Further, if we are
designing a controller for a client and each experiment con-
sumes a non-trivial amount of time/resources, we believe
it is much more palatable to tell them that the next pol-
icy we try will represent our best attempt at solving their
problem—i.e., an exploitation policy that represents our
current best attempt at controlling the system—rather than
that we will be repeatedly running expensive experiments
to slowly gather more and more data about the MDP.

We note that the algorithm proposed above also parallels a
reasonably common practice in applied control, in which
some initial policy is used to collect data and build a model
for a simulator. Then, if subsequently a controller is found
that works in simulation but not in real-life, the designer
tries (usually manually) to adjust the simulator to make it
correctly predict the failure of this policy. If machine learn-
ing is used to build the simulator, then a natural way to
modify the simulator after observing an unsuccessful pol-
icy is to add the data obtained from the unsuccessful policy
to the training set. Thus, our work can also be viewed as
formally analyzing, and thereby attempting to cast light on,
the conditions under which a procedure like this can be ex-
pected to lead to a good policy.

Previous work has shown the effectiveness of using teacher

2For example, in our autonomous helicopter work, no ex-
ploitation policy that we have ever used—out of many dozens—
has ever deliberately jerked the helicopter back-and-forth in the
manner described in footnote 1.

or expert demonstrations (called apprenticeship learning,
also imitation learning, and learning by watching) in vari-
ous ways for control. Schaal and Atkeson (1994) and Smart
and Kaelbling (2000) both give examples where learning
is significantly faster when bootstrapping from a teacher.
Their methods are somewhat related in spirit, but different
in detail from ours (e.g., Smart and Kaelbling, 2000, uses
model-free Q-learning, and does not learn the MDP param-
eters), and had no formal guarantees.

Other examples include Sammut et al. (1992); Kuniyoshi,
Inaba & Inoue (1994); Demiris & Hayes (1994); Amit
& Mataric (2002); and Pomerleau (1989), which apply
supervised learning to learn a parameterized policy from
the demonstrations. In these examples, neither the reward
function nor the system dynamics need to be specified since
a policy is learned directly as a mapping from the states to
the actions. This approach has been applied successfully in
a variety of applications, but may require careful selection
of an appropriate policy class parameterization, and gen-
erally lacks strong performance guarantees. Abbeel and
Ng (2004) uses the demonstrations to remove the need for
explicitly specifying a reward function; there, the system
dynamics were assumed to be known.

In what follows, we prove that, with high probability, our
algorithm given above terminates with a policy whose per-
formance is comparable to (or better than) the teacher. In
the case of discrete state MDPs, the algorithm scales at
most polynomially in the number of states. In the case of
linearly parameterized dynamical systems, we use a mar-
tingale over relative losses to show that the algorithm scales
at most polynomially in the dimension of the state space.

This paper is the long version of Abbeel and Ng (2005).
The main bodies of both papers are identical. This version
includes an appendix with complete proofs of all theorems,
propositions and lemmas.

2. Preliminaries
A Markov decision process (MDP) is a tuple
(S,A, T,H,D,R), where S is a set of states;A is a
set of actions/inputs;T = {P (·|s, a)}s,a is a set of
state transition probabilities (here,P (·|s, a) is the state
transition distribution upon taking actiona in state s);
H is the horizon time of the MDP, so that the MDP
terminates afterH steps;3 D is a distribution over states
from which the initial states0 is drawn; andR : S 7→ R is
the reward function, which we assume to be non-negative
and bounded byRmax. A policy π is a mapping from
statesS to a probability distribution over the set of actions
A. The utility of a policyπ in an MDP M is given by
UM (π) = E[

∑H
t=0 R(st)|π,M ]. Here the expectation is

over all possible state trajectories in the MDPM .

3Any infinite horizon MDP with discounted rewards can be
ε-approximated by a finite horizon MDP, using a horizonHε =
dlogγ(ε(1 − γ)/Rmax)e.
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Specifying an MDP therefore requires specifying each item
of the tuple(S,A, T,H,D,R). In practice, the state transi-
tions probabilitiesT are usually the most difficult element
of this tuple to specify, and must often be learned from
data. More precisely, the state spaceS and action space
A are physical properties of the system being controlled,
and thus easily specified.R (andH) is typically given by
the task specification (or otherwise can be learned from a
teacher demonstration, as in Abbeel & Ng, 2004). Finally,
D is usually either known or can straightforwardly be esti-
mated from data. Thus, in the sequel, we will assume that
S,A,H,D andR are given, and focus exclusively on the
problem of learning the state transition dynamicsT of the
MDP.

Consider an MDPM = (S,A, T,H,D,R), and suppose
we have some approximation̂T of the transition probabili-
ties. Thus,M̂ = (S,A, T̂ ,H,D,R) is our approximation
to M . The Simulation Lemma (stated below) shows that so
long asT̂ is close toT on states that are visited with high
probability by a policyπ, then the utility ofπ in M̂ is close
to the utility of π in M . (Related results are also given
in Kearns & Singh, 2002; Kearns & Koller, 1999; Kakade,
Kearns & Langford, 2003; Brafman & Tennenholtz, 2002.)

Lemma 1 (Simulation Lemma). Let any ε, η ≥ 0 be
given. Let an MDPM = (S,A, T,H,D,R) be given. Let
M̂ = (S,A, T̂ ,H,D,R) be another MDP which only dif-
fers fromM in its transition probabilities. Letπ be a policy
over the state-action setsS,A, so thatπ can be applied to
both M and M̂ . Assume there exists a set of state-action
pairsSAη ⊆ S ×A such that the following holds

(i) ∀(s, a) ∈ SAη, dvar(P (·|s, a), P̂ (·|s, a)) ≤ ε,

(ii) P ({(st, at)}H
t=0 ⊆ SAη|π,M) ≥ 1 − η.

(Above,dvar denotes variational distance.4) Then we have

|UM (π) − UM̂ (π)| ≤ H2εRmax + ηHRmax.

Consider the special case where every state-action pair
(s, a) ∈ S × A satisfies condition (i), in other words,
SAη = S ×A and thus condition (ii) is satisfied forη = 0.
Then the Simulation Lemma tells us that accurate transition
probabilities are sufficient for accurate policy evaluation.
The Simulation Lemma also shows that not necessarily all
state-action pairs’ transition probabilities need to be accu-
rately modeled: it is sufficient to accurately model a subset
of state-action pairsSAη such that the probability of leav-
ing this setSAη under the policyπ is sufficiently small.

Let there be some event that has probability bounded away
from zero. Suppose we would like to observe that event
some minimum number of times in a set of IID experi-
ments. The following lemma allows us to prove bounds

4Let P (·), Q(·) be two probability distributions over a setX ,
then the variational distancedvar(P,Q) is defined as follows:
dvar(P,Q) = 1

2

R

x∈X
|P (x) −Q(x)|dx.

on how often we need to repeat the experiment to see that
event at least the desired number of times (with high prob-
ability).

Lemma 2. Let any δ > 0 and a > 0 be given. Let
{Xi}m

i=1 be IID Bernoulli(φ) random variables. Then for
∑m

i=1 Xi ≥ a to hold with probability at least1 − δ, it
suffices thatm ≥ 2

φ (a + log 1
δ ).

3. Problem description
The problems we are concerned with in this paper are
control tasks that can be described by an MDPM =
(S,A, T,H,D,R). However the system dynamicsT are
unknown. Everything else in the specification of the MDP
is assumed to be known. We consider two specific classes
of state-action spaces and transition probabilities, which we
will refer to as discrete dynamics and linearly parameter-
ized dynamics respectively.

• Discrete dynamics: The setsS andA are finite sets.
The system dynamicsT can be described by a set of
transition probabilitiesP (s′|s, a), which denote the
probability of the next-state beings′ given the current
state iss and the current action isa. More specifically
we have a multinomial distributionP (·|s, a) over the
set of statesS for all state-action pairs(s, a) ∈ S×A.

• Linearly parameterized dynamics: The setsS = R
nS

andA = R
nA are now continuous. We assume the

system obeys the following dynamics:5

xt+1 = Aφ(xt) + But + wt, (1)

whereφ(·) : R
nS → R

nS . Thus, the next-state is a
linear function of some (possibly non-linear) features
of the current state (plus noise). This generalizes the
familiar LQR model from classical control (Anderson
& Moore, 1989) to non-linear settings. For example,
the (body-coordinates) helicopter model used in (Ng
et al., 2004) was of this form, with a particular choice
of non-linearφ, and the unknown parametersA and
B were estimated from data. The process noise{wt}t

is IID with wt ∼ N (0, σ2InS
). Hereσ2 is a fixed,

known, constant. We also assume that‖φ(s)‖2 ≤ 1
for all s, and that the inputsut satisfy‖ut‖2 ≤ 1.6

4. Algorithm
Let πT be the policy of a teacher. Although it is natural
to think of πT as a good policy for the MDP, we do not
assume this to be the case. Let anyα > 0 be given. Our
algorithm (with parametersNT andk1) is as follows:

5We chose to adhere to the most commonly used notation for
continuous systems. I.e., states are represented byx, inputs byu
and the system matrices byA andB. We use scriptA for the set
of actions and standard fontA for the system matrix.

6The generalizations to unknownσ2, to non-diagonal noise
covariances, and to non-linear features over the inputs (Bψ(ut)
replacingBut) offer no special difficulties.
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1. RunNT trials under the teacher’s policyπT . Save
the state-action trajectories encountered during these
trials. ComputeÛM (πT )—an estimate of the utility
of the teacher’s policyπT for the real systemM—by
averaging the sum of rewards accumulated in each of
theNT trials. Initializei = 1.

2. Using all state-action trajectories saved so far, esti-
mate the system dynamicsT using maximum likeli-
hood estimation for the discrete dynamics case, and
regularized linear regression for the linearly parame-
terized dynamics case (as described below). Call the
estimated dynamicŝT (i).

3. Find aα/8 optimal policy7 for the MDP M̂ (i) =

(S,A, T̂ (i),H,D,R). Call this policyπ(i).

4. Evaluate the utility of the policyπ(i) on the real sys-
temM . More specifically, run the policyπ(i) for k1

trials on the systemM . Let ÛM (π(i)) be the average
sum of rewards accumulated in thek1 trials. Save the
state-action trajectories encountered during these tri-
als.

5. If ÛM (π(i)) ≥ ÛM (πT ) − α/2, returnπ(i) and exit.
Otherwise seti = i + 1 and go back to step 2.

In the ith iteration of the algorithm, a policy is found
using an estimatêT (i) of the true system dynamicsT .
For the discrete dynamics, the estimate used in the al-
gorithm is the maximum likelihood estimates for each
of the multinomial distributionsP (·|s, a). For the lin-
early parameterized dynamics, the model parametersA,B
are estimated via regularized linear regression. In par-
ticular the kth rows of A and B are estimated by8

arg minAk,:,Bk,:

∑

j(x
(j)
next−(Ak,:φ(x

(j)
curr)+Bk,:u

(j)
curr))2+

1
κ2 (‖Ak,:‖2

2 + ‖Bk,:‖2
2), where j indexes over all state-

action-state triples{(x(j)
curr, u

(j)
curr, x

(j)
next)}j occurring after

each other in the trajectories observed for the system.

5. Main theorem
The following theorem gives performance and running time
guarantees for the algorithm described in Section 4.9

Theorem 3. Let an MDP M = (S,A, T,H,D,R) be
given, except for its transition probabilitiesT . Let the sys-
tem either be a discrete dynamics system or a linearly pa-
rameterized dynamical system as defined in Section 3. Let

7A policy π1 is an ε-optimal policy for an MDPM if
UM (π1) ≥ maxπUM (π) − ε.

8We use matlab-like notation.Ak,: denotes thekth row ofA.
9The performance guarantees in the theorem are stated with

respect to the teacher’s demonstrated performance. However, the
proof requires only that the initial dynamical model be accurate
for at least one good policy. Thus, for example, it is sufficient to
observe a few good teacher demonstrations along with many bad
demonstrations (ones generated via a highly sub-optimal policy);
or even only bad demonstrations that manage to visit good parts
of the state space.

anyα > 0, δ > 0 be given. LetπT be the teacher’s pol-
icy, and letπ be the policy returned by the algorithm de-
fined above. LetN denote the number of iterations of the
main loop of the algorithm until the exit condition is met.
Let T = (H,Rmax, |S|, |A|) for the discrete case, and let
T = (H,Rmax, nS , nA, ‖A‖F, ‖B‖F) for the linearly pa-
rameterized dynamics case. Then for

UM (π) ≥ UM (πT ) − α, (2)

N = O(poly( 1
α , 1

δ , T )) (3)

to hold with probability at least1 − δ, it suffices that

NT = Ω(poly( 1
α , 1

δ , T )), (4)

k1 = Ω(poly( 1
α , 1

δ , T )). (5)

Note that Eqn. (2) follows from the termination condition
of our algorithm and assuming we choosek1 andNT large
enough such that the utilities of the policies{π(i)}i andπT

are sufficiently accurately evaluated inM .

The proof of this theorem is quite lengthy, and will make
up most of the remainder of this paper. We now give a
high-level sketch of the proof ideas. Our proof is based on
showing the following two facts:

1. After we have collected sufficient data from the
teacher, the estimated model is accurate for evaluating
the utility of the teacher’s policy in every iteration of
the algorithm. (Note this does not merely require that
the model has to be accurate after theNT trials un-
der the teacher’s policy, but also has to stay accurate
after extra data is collected from testing the policies
{π(i)}i.)

2. One can visit inaccurately modeled state-action pairs
only a “small” number of times until all state-action
pairs are accurately modeled.

We now sketch how these two facts can be proved. After
we have collected sufficient data from the teacher, the state-
action pairs that are visited often under the teacher’s policy
are modeled well. From the Simulation Lemma we know
that an accurate model of the state-action pairs visited often
under the teacher’s policy is sufficient for accurate evalua-
tion of the utility of the teacher’s policy. This establishes
(1.). Every time an inaccurate state-action pair is visited,
the data collected for that state-action pair can be used to
improve the model. However the model can be improved
only a “small” number of times until it is accurate for all
state-action pairs. This establishes (2.).

We now explain how these two facts can be used to bound
the number of iterations of our algorithm. Consider the
policy π(i) found in iterationi of the algorithm. This pol-
icy π(i) is the optimal policy10 for the current model. When

10For simplicity of exposition in this informal discussion, we
assumeπ(i) is optimal, rather than near-optimal. The formal re-
sults in this paper do not use this assumption.



Exploration and Apprenticeship Learning in Reinforcement Learning

finding this policyπ(i) in the model we could have chosen
the teacher’s policy. So the policyπ(i) performs at least as
well as the teacher’s policy in the current model. Now if in
the real system the utility of the policyπ(i) is significantly
lower than the teacher’s utility (which is the case as long as
the algorithm continues), then the model incorrectly pre-
dicted thatπ(i) was better than the teacher’s policy. From
(1.) we have that the model correctly evaluates the utility
of the teacher’s policy. Thus the model must have eval-
uated the policyπ(i) inaccurately. Using the (contraposi-
tive of) the Simulation Lemma, we get that the policyπ(i)

must be visiting (with probability bounded away from 0)
state-action pairs that are not very accurately modeled. So
when running the policyπ(i) we can collect training data
that allow us to improve the model. Now from (2.) we
have that visiting inaccurately modeled state-action pairs
can only happen a small number of times until the dynam-
ics is learned, thus giving us a bound on the number of
iterations of the algorithm.

The theorem will be proved for the discrete dynamics case
in Section 6 and for the linearly parameterized dynamics
case in Section 7.

6. Discrete state space systems
In this section we prove Theorem 3 for the case of discrete
dynamics.

The Hoeffding inequality gives a bound on the number of
samples that are sufficient to estimate the expectation of
a (bounded) random variable. In our algorithm, we want
to guarantee that the model is accurate (for the teacher’s
policy) not only when we have seen the samples from the
teacher, but also any time after additional samples are col-
lected. The following lemma, which is a direct conse-
quence of Hoeffding’s inequality (as shown in the long ver-
sion), gives such a bound.

Lemma 4. Let anyε > 0, δ > 0 be given. LetXi be IID
k-valued multinomial random variables, with distribution
denoted byP . Let P̂n denote then sample estimate ofP .
Then formaxn≥Ndvar(P (·), P̂n(·)) ≤ ε to hold with prob-

ability 1 − δ, it suffices thatN ≥ k2

4ε2 log k2

δε .

Lemma 4 will serve two important purposes. In the proof
of Lemma 5 it is used to bound the number of trajecto-
ries needed under the teacher’s policy to guarantee that fre-
quently visited state-action pairs are accurately modeled
in all models{M̂ (i)}i. This corresponds to establishing
Fact (1.) of the proof outline in Section 5. In the proof of
Lemma 6 it is used to bound the total number of times a
state-action pair can be visited that is not accurately mod-
eled. This latter fact corresponds exactly to establishing
Fact (2.) of the proof outline in Section 5.11

11Fact (2.) follows completely straightforwardly from
Lemma 4, so rather than stating it as a separate lemma, we will
instead derive it within the proof of Lemma 6.

Lemma 5. Let any α > 0, δ > 0 be given.
Assume we use the algorithm as described in Sec-
tion 4. Let NT satisfy the following conditionNT ≥
4096|S|3|A|H5R3

max

α3 log 32H2Rmax|S|3|A|
δα . Then with prob-

ability 1 − δ we have that∀i ≥ NT |UM̂(i)(πT ) −
UM (πT )| ≤ α/8.

Proof (sketch).Let ε > 0, η > 0. LetSAξ ⊆ S ×A be the
set of state-action pairs such that the probability of seeing
any specific state-action pair(s, a) ∈ SAξ under the policy
πT in a single trial of durationH is at least η

|S||A| . From
Lemma 4 and Lemma 2 we have that for any(s, a) ∈ SAξ

for
∀i ≥ NT dvar(P (·|s, a), P̂ (i)(·|s, a)) ≤ ε (6)

to hold with probability1 − δ′ − δ′′, it is sufficient to have

NT ≥ 2|S||A|
η ( |S|2

4ε2 log |S|2
δ′ε + log 1

δ′′ ). (7)

Taking a union bound over all state-action pairs(s, a) ∈
SAξ (note |SAξ| ≤ |S||A|) gives that for Eqn. (6) to
hold for all (s, a) ∈ SAξ with probability1 − |S||A|δ′ −
|S||A|δ′′, it suffices that Eqn. (7) is satisfied. We also
have from the definition ofSAξ that P({(st, at)}H

t=0 ⊆
SAξ|πT ) ≥ 1 − η. Thus the Simulation Lemma gives us
that

∀i |UM̂(i)(πT ) − UM (πT )| ≤ H2εRmax + ηHRmax.

Now chooseε = 1
2

α/8
H2Rmax

, η = 1
2

α/8
HRmax

andδ′ = δ′′ =
δ

2|S||A| to get the lemma. �

Lemma 5 shows that, after having seen the teacher suffi-
ciently often, the learned model will be accurate for evalu-
ating the utility of the teacher’s policy. Moreover, no later
data collection (no matter under which policy the data is
collected) can make the model inaccurate for evaluation of
the utility of the teacher’s policy. I.e.,UM̂(i)(πT ) will be
close toUM (πT ) for all i.

Lemma 6. Let anyα > 0, δ > 0 be given. Let

Nubound = 32HRmax

α (log 4
δ +

162H4R2
max|S|3|A|
4α2 log 64H2Rmax|S|3|A|

αδ ). (8)

Assume in the algorithm described in Section 4 we use

k1 ≥ 162H2R2
max

2α2 log 8Nubound

δ , (9)

NT ≥ 4096|S|3|A|H5R3
max

α3 log 256H2Rmax|S|3|A|
δα .(10)

LetN denote the number of iterations of the algorithm until
it terminates. Then we have that with probability1 − δ the
following hold

(i) N ≤ Nubound, (11)

(ii) ∀i = 1 : N |UM̂(i)(πT ) − UM (πT )| ≤ α
8 , (12)

(iii) ∀i = 1 : N |ÛM (π(i)) − UM (π(i))| ≤ α
16 , (13)

(iv) |ÛM (πT ) − UM (πT )| ≤ α
16 . (14)



Exploration and Apprenticeship Learning in Reinforcement Learning

Proof (sketch).From Lemma 5 and from the Hoeffding in-
equality we have that for Eqn. (12), (13) and (14) to hold
(for all i ≤ Nubound) with probability1− δ

2 , it suffices that
Eqn. (10) and Eqn. (9) are satisfied.

Now since the algorithm only exits in iterationN , we must
have for alli = 1 : N − 1 that

ÛM (π(i)) < ÛM (πT ) − α/2. (15)

Combining Eqn. (15), (12), (13) and (14) and the fact that
π(i) is α/8-optimal forM̂ (i) we get

∀i = 1 : N − 1 UM̂(i)(π(i)) ≥ UM (π(i)) + α/8. (16)

In words: when the algorithm continues (in iterationsi =
1 : N − 1), the model overestimated the utility ofπ(i).
Using the contrapositive of the Simulation Lemma with
ε = 1

2
α/8

H2Rmax
we get that for alli = 1 : N − 1 the policy

π(i) must be visiting a state-action pair(s, a) that satisfies

dvar(P (·|s, a), P̂ (i)(·|s, a)) > α
16H2Rmax

(17)

with probability at least α
16HRmax

. From Lemma 2 and
Lemma 4 we get that if the algorithm had run for a num-
ber of iterationsNubound then with probability1 − δ

2 all
state-actions pairs would satisfy

dvar(P (·|s, a), P̃ (N)(·|s, a)) ≤ α
16H2Rmax

. (18)

On the other hand we showed above that if the algorithm
does not exit in iterationi, there must be a state-action pair
satisfying Eqn. (17), which contradicts Eqn. (18). Thus
Nubound gives an upper bound on the number of iterations
of the algorithm. �

The proof of Theorem 3 for the case of discrete dynamics
is a straightforward consequence of Lemma 6.

Proof of Theorem 3 for discrete dynamics.First note that
the conditions onNT andk1 of Lemma 6 are satisfied in
Theorem 3. So Lemma 6 proves the bound on the number
of iterations as stated in Eqn. (3). Now it only remains to
prove that at termination, Eqn. (2) holds. We have from the
termination condition that̂U(π) ≥ Û(πT )−α/2. Now us-
ing Eqn. (13) and Eqn. (14) we getUπ ≥ UπT

− 5
8α, which

implies Eqn. (2). �

7. Linearly parameterized dynamical systems
In this section we prove Theorem 3 for the case of linearly
parameterized dynamics described in Eqn. (1). As pointed
out in Section 5, the performance guarantee of Eqn. (2) fol-
lows from the termination condition of our algorithm and
assuming we choosek1 andNT large enough such that the
utility of the policies{π(i)}i andπT are sufficiently accu-
rately evaluated inM . This leaves us to prove the bound
on the number of iterations of the algorithm. As explained

more extensively in Section 5, there are two main parts to
this proof. In Section 7.2 we establish the first part: the
estimated model is accurate for evaluating the utility of the
teacher’s policy in every iteration of the algorithm. In Sec-
tion 7.3 we establish the second part: one can visit inaccu-
rately modeled states only a “small” number of times (since
every such visit improves the model). In Section 7.4 we
combine these two results to prove Theorem 3 for the case
of linearly parameterized dynamical systems.

7.1. Preliminaries

The following proposition will allow us to relate accuracy
of the expected value of the next-state to variational dis-
tance for the next-state distribution. This will be important
for using the Simulation Lemma, which is stated in terms
of variational distance.

Proposition 7. We have

dvar(N (µ1, σ
2In),N (µ2, σ

2In)) ≤ 1√
2πσ

‖µ1 − µ2‖2.

7.2. Accuracy of the model for the teacher’s policy

Given a set of state-action trajectories, the system matrices
A,B are estimated by solvingnS separate regularized lin-
ear regression problems, one corresponding to each row of
A andB. After appropriately relabeling variables and data,
each of these regularized linear regression problems is of
the form

minθ

∑

i(y
(i) − θ>z(i))2 +

‖θ‖2
2

κ2 . (19)

Hereθ ∈ R
nS+nA corresponds to a row inA andB, and

the norm bounds onu andφ(x) result in‖z‖2 ≤
√

2. The
relabeled data points are kept in the same order as they were
collected. The training data collected from the teacher’s
demonstration is indexed from1 to m = NT H. The ad-
ditional training data collected when testing the policies
{π(j)}N

j=1 is indexed fromm + 1 to m̃ = NT H + k1NH.
The data is generated according to a true modelM as de-
scribed in Section 4. In the notation of Eqn. (19), this
means there is someθ∗ such that

∀i y(i) = θ∗>z(i) + w(i), (20)

where the{w(i)}i are IID, withw(i) ∼ N (0, σ2). The data
generation process that we just described will be referred
to as “data generated according to Eqn. (20)” from here on.
Note that the training data{z(i)}i in this setup arenon-IID.
The teacher’s policyπT induces a distribution over states
xt and inputsut at all timest. However these distributions
need not be the same for different timest, making the data
non-IID. Moreover, the training data indexed fromm+1 to
m̃ is obtained from various policies and the resulting data
generation process is very difficult to model. As a conse-
quence, our analysis will consider the worst-case scenario
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where an adversary can choose the additional training data
indexed fromm + 1 to m̃.

For 1 ≤ k ≤ NT H + k1NH let the following equations
defineθ̂(k) andloss(k)(θ):

loss(k)(θ) =
∑k

i=1(y
(i) − θ>z(i))2 + 1

κ2 ‖θ‖2
2,

θ̂(k) = arg minθ loss(k)(θ). (21)

The following lemma establishes that a “small” number of
samples from the teacher’s policyπT is sufficient to guar-
antee an accurate modelθ̂(k) for all time stepsk = NT H
to NT H + k1NH.

Lemma 8. Let anyδ > 0, ε > 0, η > 0 be given. Con-
sider data{y(i), z(i)}NT H+k1NH

i=1 generated as described
in Eqn. (20). Let{θ̂(k)}k be defined as in Eqn. (21). Let
{ỹ(t), z̃(t)}H

t=1 be data generated from one trial underπT

(and appropriately relabeled as described in paragraph
above). Then for

P (maxt∈1:H |θ>z̃(t) − θ∗>z̃(t)| > ε) ≤ η (22)

to hold with probability1−δ for all θ ∈ {θ̂(k)}NT H+k1NH
k=NT H ,

it suffices that

NT = Ω
(

poly(1
ε , 1

η , 1
δ ,H, ‖θ∗‖2, nS , nA, k1, N)

)

.

If θ satisfies Eqn. (22) then it is accurate for data gener-
ated under the teacher’s policy and we refer to it as accu-
rate in the discussion below; otherwise it is referred to as
inaccurate. We now sketch the key ideas in the proof of
Lemma 8. A full proof is provided in the appendix. The
proof proceeds in four steps.

Step 1. For any inaccurate parameterθ we establish that
with high probability the following holds

loss(NT H)(θ) > loss(NT H)(θ∗) + Ω(NT ). (23)

I.e., the true parameterθ∗ outperforms an inaccurate pa-
rameterθ by a margin ofΩ(NT ) after seeingNT trajec-
tories from the teacher. The key idea is that the expected
value of the loss differenceloss(NT H)(θ)− loss(NT H)(θ∗)
is of orderNT for inaccurateθ. Our proof establishes the
concentration result for this non-IID setting by looking at
a martingale over the differences in loss at every step and
uses Azuma’s inequality to prove the sum of these differ-
ences is close to its expectated value with high probability.

Step 2. Let loss
(k)
adv(θ) =

∑k
i=NT H+1(y

(i) − θ>z(i))2 be
the additional loss incurred over the additional data points
{z(i)}k

i=NT H+1. We establish that for any−a < 0,

P (∃k > NT H : loss
(k)
adv(θ) < loss

(k)
adv(θ

∗)−a) ≤ exp(− a

σ2
).

In words, the probability ofθ ever outperformingθ∗ by a
margina on the additional data is exponentially small ina.
The proof considers the random walk{Zk}k

Zk = loss
(k)
adv(θ) − loss

(k)
adv(θ

∗).

Crudely speaking we exploit the fact that no matter how an
adversary chooses each additional data pointz(i) as a func-
tion of the history up to timei−1, the random walk{Zk}k

has a positive bias. More precisely, we use the Optional
Stopping Theorem on the martingaleYk = exp( −1

2σ2 Zk).12

Step 3.Let θ be an inaccurate parameter. From Step 1 we
have that the optimalθ∗ outperformsθ by a marginΩ(NT )
after having seen the initial data points{z(i), y(i)}NT H

i=1 .
Step 2 says that the probability forθ to ever make up for
this marginΩ(NT ) is exponentially small inNT . Our proof
combines these two results to show that a “small” number
of samplesNT from the teacher is sufficient to guarantee
(with high probability) thatθ∗ has a smaller loss thanθ in
every iteration, and thusθ /∈ {θ̂(k)}NT H+k1NH

k=NT H .

Step 4. Our proof uses a covering argument to extend the
result thatθ /∈ {θ̂(k)}NT H+k1NH

k=NT H for one specific inaccu-
rate θ from Step 3 to hold for all inaccurate parameters
θ simultaneously. As a consequence, the estimated pa-
rametersθ̂(k) throughout all iterationsk (NT H ≤ k ≤
NT H + k1NH) must be accurate. Which establishes
Lemma 8.

Theorem 9. Let any δ > 0, α > 0 be given. Let
{M̂ (i)}N

i=1 be the models estimated throughoutN it-
erations of the algorithm for the linearly parameter-
ized dynamics case, as described in Section 4. Then
for |UM̂(i)(πT ) − UM (πT )| ≤ α to hold for all i ∈
1 : N with probability 1 − δ, it suffices thatNT =
Ω
(

poly( 1
α , 1

δ ,H,Rmax, ‖A‖F, ‖B‖F, nS , nA, k1, N)
)

.

Proof (idea). From Prop. 7 and Lemma 8 we conclude that
the estimated models{M̂ (i)}N

i=1 are close to the true model
in variational distance with high probability for states vis-
ited under the teacher’s policy. Using the Simulation
Lemma gives the resulting accuracy of utility evaluation.
�

Theorem 9 shows that a “small” number of samples from
the teacher’s policyπT is sufficient to guarantee accu-
rate modelsM̂ (i)

i throughout all iterations of the algo-
rithm. An accurate model here means that the utility of the
teacher’s policyπT is accurately evaluated in that model,
i.e.,UM̂(i)(πT ) is close toUM (πT ).

7.3. Bound on the number of inaccurate states visits

Based on the online learning results for regularized linear
regression in Kakade and Ng (2005), we can show the fol-
lowing result.

12Definition(Martingale.) Let(Ω,F , P ) be a probability space
with a a filtrationF0,F1, · · · . Suppose thatX0, X1, · · · are ran-
dom variables such that for alli ≥ 0, Xi is Fi-measurable. The
sequenceX0, X1, · · · is a martingale provided, for alli ≥ 0, we
have thatE[Xi+1|Fi] = Xi. Due to space constraints we can not
expand on these concepts here. We refer the reader to, e.g., (Dur-
rett, 1995; Billingsley, 1995; Williams, 1991), for more details on
martingales and stopping times.
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Lemma 10. Let any µ > 0, δ > 0 be given. For
the algorithm described in Section 4 we have with prob-
ability 1 − δ that the number of times a state-action
pair (x, u) is encountered such that‖(Aφ(x) + Bu) −
(Â(i)φ(x) + B̂(i)u)‖2 > µ is bounded byNµ =
O(k1

√
k1N(log k1N)3poly(‖A‖F , ‖B‖F , nS , nA, log 1

δ ,

H, 1
µ )).

Lemma 10 is proved in the appendix. Lemma 10 is key to
proving the bound on the number of iterations in the algo-
rithm.

7.4. Proof of Theorem 3 for linearly parameterized
dynamical systems

Proof (rough sketch).The conditions in Eqn. (4), (5) en-
sure thatÛM (πT ), {ÛM (π(i)}i are accurately evaluated
with high probability (by the Hoeffding inequality) and
Eqn. (4) also ensures that{UM̂(i)(πT )}i are accurate es-
timates ofUM (πT ) (by Theorem 9). Using the Simulation
Lemma and the same reasoning as in the proof of Lemma 6
gives us that if the algorithm does not terminate in step 4 of
the algorithm, then the policyπ(i) must be visiting a state-
action pair(x, u) that satisfies

dvar(P (·|x, u), P̂ (i)(·|x, u)) > α
16H2Rmax

(24)

with probability at least α
16HRmax

. If (x, u) satisfies
Eqn. (24) then we must have (using Prop. 7) that

‖(Aφ(x) + Bu) − (Â(i)φ(x) + B̂(i)u)‖2 >
√

2πσα
16H2Rmax

.

From Lemma 10 this can happen only

O(k1

√

k1N(log k1N)3poly(‖A‖F , ‖B‖F , nS , nA,

log
1

δ
,H,Rmax,

1

α
)) (25)

times inN iterations of the algorithm. On the other hand,
if the algorithm continues, we have from above that such
an error must be encountered (with high probability)

Ω(
α

HRmax
N) (26)

times. Note that the lower bound on the number of state-
action pairs encountered with large error in Eqn. (26) grows
faster inN than the upper bound in Eqn. (25).13 Once the
lower bound is larger than the upper bound we have a con-
tradiction. Thus from Eqn. (26) and (25) we can conclude
that after a number of iterations as given by Eqn. (3) the al-
gorithm must have terminated with high probability. Also,
since we chosek1, NT such that{ÛM (π(i)}i andÛM (πT )
are accurately evaluated, Eqn. (2) holds when the algorithm
terminates. �

13In this proof sketch we ignore a dependence ofk1 onN . See
the long version for a formal proof.
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A. Some properties of the variational distance
In this section we state some known results involving the
variational distance between probability distributions.(We
include proofs to keep the paper self-contained.) We prove
(and sometimes state) the propositions for probability dis-
tributions over a discrete domain only. The proofs (and
statements) for continuous domains are very similar.

Proposition 11. Let Q,Q∗ be probability distributions
over a domainX , letf be a bounded random variable over
X . Then

|EQf − EQ∗f | ≤ (sup
x∈X

f(x) − inf
x∈X

f(x))dvar(Q,Q∗).

Proof. Let c = infx∈X f(x). Then we have

EQf − EQ∗f

= EQ(f − c) − EQ∗(f − c)

=
∑

x:Q(x)>Q∗(x)

(f(x) − c)(Q(x) − Q∗(x))

+
∑

x:Q(x)≤Q∗(x)

(f(x) − c)(Q(x) − Q∗(x))

≤
∑

x:Q(x)>Q∗(x)

(f(x) − c)(Q(x) − Q∗(x))

≤ sup
x∈X

(f(x) − c)
∑

x:Q(x)>Q∗(x)

(Q(x) − Q∗(x))

= (sup
x∈X

f(x) − inf
x∈X

f(x))dvar(Q,Q∗). (27)

Here we used in order: adding and subtractingc; splitting
the summation into positive and negative terms; dropping
the negative terms from the summation;f(x) is bounded
by supx∈X f(x); definition ofdvar

14 andc. The same ar-
gument with roles ofQ andQ∗ interchanged gives us:

EQf − EQ∗f ≤ (sup
x∈X

f(x) − inf
x∈X

f(x))dvar(Q,Q∗).

(28)
Eqn. (27) and (28) combined prove the proposition. �

Proposition 12. Let Q0(·) and Q∗
0(·) be probabil-

ity distributions over a domainX . Let ∀x ∈
X P (·|x) be a probability distribution overX . Let
Q1(·) =

∑

x0∈X P (·|x0)Q0(x0) and let Q∗
1(·) =

∑

x0∈X P (·|x0)Q
∗
0(x0), then

dvar(Q1(·), Q∗
1(·)) ≤ dvar(Q0(·), Q∗

0(·)).
14Let P (·), Q(·) be two probability distributions over a set

X , then in the main body we defined the variational distance
dvar(P,Q) as follows:dvar(P,Q) = 1

2

R

x∈X
|P (x)−Q(x)|. It is

well known the following definition is equivalent:dvar(P,Q) =
R

x∈X :P (x)>Q(x)
|P (x) −Q(x)|.

Proof. We have

dvar(Q1(·), Q∗
1(·))

=
1

2

∑

x1∈X

∣

∣

∣

∑

x0∈X
P (x1|x0)Q0(x0) − P (x1|x0)Q

∗
0(x0)

∣

∣

∣

=
1

2

∑

x1∈X

∣

∣

∣

∑

x0:Q0(x0)>Q∗
0(x0)

P (x1|x0)(Q0(x0) − Q∗
0(x0))

+
∑

x0:Q0(x0)<Q∗
0(x0)

P (x1|x0)(Q0(x0) − Q∗
0(x0))

∣

∣

∣

≤ 1

2

∑

x1∈X

(

∑

x0:Q0(x0)>Q∗
0(x0)

P (x1|x0)(Q0(x0) − Q∗
0(x0))

+
∑

x0:Q0(x0)<Q∗
0(x0)

P (x1|x0)(−Q0(x0) + Q∗
0(x0))

)

=
1

2

∑

x0:Q0(x0)>Q∗
0(x0)

(Q0(x0) − Q∗
0(x0))

+
1

2

∑

x0:Q(x0)<Q∗
0(x0)

(−Q0(x0) + Q∗
0(x0))

= dvar(Q0(·), Q∗
0(·)).

Here we used in order: the definition ofdvar; splitting the
summation into two summations; triangle inequality (all
terms are now positive); switching order of summation; the
definition ofdvar. �

Proposition 13. Let Q0(·) and Q∗
0(·) be probability dis-

tributions over a domainX . Let ∀x ∈ X P ∗(·|x)
and P (·|x) be probability distributions overX . Let
Q1(·) =

∑

x0∈X P (·|x0)Q0(x0) and let Q∗
1(·) =

∑

x0∈X P ∗(·|x0)Q
∗
0(x0), then

dvar(Q1(·), Q∗
1(·)) ≤ dvar(Q0(·), Q∗

0(·))
+ sup

x∈X
dvar(P (·|x), P ∗(·|x)).

Proof. Let Q̄1(·) =
∑

x0∈X P (·|x0)Q
∗
0(x0). Due to trian-

gle inequality we have

dvar(Q1(·), Q∗
1(·)) ≤ dvar(Q1(·), Q̄1(·))+dvar(Q̄1(·), Q∗

1(·)).
(29)

For the first term Proposition 12 gives us

dvar(Q1(·), Q̄1(·)) ≤ dvar(Q0(·), Q∗
0(·)). (30)
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For the second term we have

dvar(Q̄1(·), Q∗
1(·))

=
1

2

∑

x1∈X

∣

∣

∣

∑

x0∈X
P (x1|x0)Q

∗
0(x0)

−
∑

x0

P ∗(x1|x0)Q
∗
0(x0)

∣

∣

∣

≤ 1

2

∑

x1∈X ,x0∈X
|P (x1|x0) − P ∗(x1|x0)|Q∗

0(x0)

=
∑

x0∈X
dvar(P (·|x0), P

∗(·|x0))Q
∗
0(x0)

≤ sup
x0∈X

dvar(P (·|x0), P
∗(·|x0)). (31)

Combining Eqn. (29), (30) and (31) gives us the statement
of the proposition. �

B. Proofs for Section 2
B.1. Proof of Lemma 1

We first prove the following lemma.

Lemma 14. Let an MDP M = (S,A, T,H,D,R) be
given. Let another MDPM̂ = (S,A, T̂ ,H,D,R) – which
only differs fromM in its transition probabilities – be
given. Let anyε > 0 be given. If T̂ = {P̂ (·|s, a)}s,a

satisfies

∀s ∈ S, a ∈ A dvar(P (·|s, a), P̂ (·|s, a)) ≤ ε,

then we have for any policyπ mapping fromS to (proba-
bility distributions over)A that

|UM (π) − UM̂ (π)| ≤ H2εRmax.

Proof. With some abuse of notation, letPt andP̂t denote
the distributions over states at timet induced by the policy
π, the initial state distributionD and the transition prob-
abilities T and T̂ respectively. Then from using Prop. 13
inductively we have for allt ∈ 0 : H that

dvar(Pt(·), P̂t(·)) ≤ tε. (32)

So we get that

|UM (π) − UM̂ (π)| =
∣

∣

∣

H
∑

t=0

EPt
[R(st)] −

H
∑

t=0

EP̂t
[R(st)]

∣

∣

∣

=
∣

∣

∣

H
∑

t=0

EPt
[R(st)] − EP̂t

[R(st)]
∣

∣

∣

≤
H
∑

t=0

∣

∣

∣EPt
R(st) − EP̂t

R(st)
∣

∣

∣

≤
H
∑

t=0

dvar(Pt, P̂t)Rmax

≤
H
∑

t=0

tεRmax

≤ H2εRmax.

Where we used in order the definition ofU ; reordering
terms; standard inequality for the absolute value of a sum;
Prop. 11; Eqn. (32); simple algebra. �

Proof of Lemma 1.Consider the auxiliary MDPM (1) =
(S,A, T (1),H,D,R), whereP (1)(·|s, a) = P (·|s, a) if
(s, a) ∈ SAη andP (1)(·|s, a) = P̂ (·|s, a) otherwise. Then
we have∀s ∈ S, a ∈ A dvar(P̂ (·|s, a), P (1)(·|s, a)) ≤ ε.
Using Lemma 14 gives us that

|UM̂ (π) − UM(1)(π)| ≤ H2εRmax. (33)

Also, using condition (ii) of Lemma 1 and the definitions
of M,M (1) we trivially get

|UM(1)(π) − UM (π)| ≤ ηHRmax. (34)

Combining Eqn. (33) and Eqn. (34) using the triangle in-
equality gives the statement of the lemma. �

B.2. Proof of Lemma 2

We prove the following slightly stronger lemma, of which
the statement in Lemma 2 is a subset.

Lemma 15. Let anyδ > 0 and a > 0 be given. Let
{Xi}m

i=1 be IID Bernoulli(φ) random variables. Then for

P (

m
∑

i=1

Xi ≥ a) (35)

to hold with probability1 − δ it suffices that

m ≥ 1

φ

(

a + log
1

δ
+

√

(a + log
1

δ
)2 − a2

)

. (36)

We can relax the condition above to get the following less
tight, but simpler sufficient condition onm:

m ≥ 2

φ
(a + log

1

δ
).
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If a ≥ 2 and log 1
δ ≥ 2 we have that the following is a

sufficient condition onm

m ≥ 2

φ
a log

1

δ
.

Proof. We start from the multiplicative 1-sided Chernoff
bound for a Bernoulli distribution, with expectationφ. Let
ε > 0 then

P (

m
∑

i=1

Xi < m(φ − ε
√

φ)) ≤ exp(
−mε2

2
). (37)

Now let a = m(φ − ε
√

φ), which impliesε = mφ−a
m

√
φ

.
Substituting this into Eqn. (37) gives

P (
m
∑

i=1

Xi < a) ≤ exp(
−m

2
(
mφ − a

m
√

φ
)2)

= exp(
−1

2
(
mφ − a√

mφ
)2). (38)

Note for Eqn. (37) to be valid, we neededε > 0. So
Eqn. (38) is only valid if

mφ − a > 0. (39)

So forP (
∑m

i=1 Xi < a) ≤ δ to hold, it is sufficient that
Eqn. (39) holds and that

exp(
−1

2
(
mφ − a√

mφ
)2) ≤ δ.

By taking log on both sides, and multiplying with−2 we
get the equivalent condition

(
mφ − a√

mφ
)2 ≥ 2 log

1

δ
.

Algebraic manipulation gives the equivalent condition

m2φ2 − 2(a + log
1

δ
)mφ + a2 ≥ 0. (40)

Eqn. (40) is satisfied if

mφ ∈
(

−∞, a + log
1

δ
−
√

(a + log
1

δ
)2 − a2

]

⋃

[

a + log
1

δ
+

√

(a + log
1

δ
)2 − a2,∞

)

.

Now recall that the Chernoff bound was only meaningful
for ε > 0, which corresponds to the condition given by
Eqn. (39). So we get that forP (

∑m
i=1 Xi < a) ≤ δ to hold

it suffices that

mφ ≥ a + log
1

δ
+

√

(a + log
1

δ
)2 − a2.

�

C. Proofs for Section 6
C.1. Proof of Lemma 4

We first prove the following lemma.

Lemma 16. Let any ε, δ > 0 be given. LetXi ∼
Bernoulli(φ) be IID random variables. Let̂φn be the es-
timate for φ after n observations. I.e., we havêφn =
1
n

∑n
i=1 Xi. Then for

maxn≥N |φ − φ̂n| ≤ ε

to hold with probability1 − δ, it suffices that

N ≥ 1

ε2
log(

2

δε
).

Proof.

P (maxn≥N |φ − φ̂n| > ε) = P (
⋃

n≥N

{|φ − φ̂n| > ε})

≤
∑

n≥N

P (|φ − φ̂n| > ε)

≤
∑

n≥N

2e−2ε2n

=
2(e−2ε2)N

1 − e−2ε2

Hence, in order to guarantee thatP (maxn≥N |φ − φ̂n| >
ε) ≤ δ, it is sufficient forN to satisfy

2(e−2ε2)N

1 − e−2ε2
≤ δ

(e−2ε2)N ≤ δ(1 − e−2ε2)/2

log((e−2ε2)N ) ≤ log(δ(1 − e−2ε2)/2)

(−2ε2)N ≤ log δ + log(1 − e−2ε2) − log 2

N ≥ 1

2ε2
(− log δ − log(1 − e−2ε2) + log 2)

N ≥ 1

2ε2
(log

1

δ
+ log(

1

1 − e−2ε2
) + log 2).

Now using the fact that for anyx : −ξ < x < 0 we have
thatexp(x) < 1− |x|

ξ (1−exp(−ξ)), and more specifically,

for anyx : −2 < x < 0 we have thatexp(x) < 1− |x|
2 (1−

exp(−2)) < 1 − |x|/4. Thus forε ∈ (0, 1) it is sufficient
to have

N ≥ 1

2ε2
(log

1

δ
+ log

1

1 − (1 − (2ε2)/4)
+ log 2)

N ≥ 1

2ε2
(log

1

δ
+ log

2

ε2
+ log 2)

N ≥ 1

ε2
log

2

δε
.
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In caseε /∈ (0, 1), more specifically whenε ≥ 1, the lemma
holds with probability one independent of the number of
samples. �

Proof of Lemma 4.Let the multinomial distributionP be
parameterized by thek parameters(φ(1), · · · , φ(k)). Let
P̂n be parameterized by(φ̂(1)

n , · · · , φ̂
(k)
n ) which are the re-

spectiven-sample estimates for all parametersφ(·). Then
from Lemma 16 and the union bound we have that for

∀i ∈ 1 : k maxn≥N |φ(i) − φ̂(i)
n | ≤ ε′

to hold with probability1 − kδ′, it suffices that

N ≥ 1

ε′2
log(

2

δ′ε′
). (41)

Now we use the fact that

dvar(P, P̂n) =
1

2

k
∑

i=1

|φ(i) − φ̂(i)
n |.

We get that condition (41) is sufficient to ensure that

maxn≥Ndvar(P, P̂n) ≤ k

2
ε′

holds with probability at least1 − kδ′. Choosingε = k
2 ε′

andδ = kδ′ proves the lemma. �

C.2. Proof of Lemma 5

We first show that state-action pairs that are visited with
probability sufficiently bounded away from zero under a
policy π will be accurately modeled after observing suffi-
cient trials under that policyπ.

Lemma 17. Let an MDP(S,A, T,H,D,R) be given. Let
π be a policy for this MDP. Let anyε, δ, ξ > 0 be given.
Let {P̂n(·|s, a)}s,a be the maximum likelihood transition
probability estimates based upon observing the policyπ for
n trials of durationH. Let SAξ ⊆ S × A be the set of
state-action pairs such that the probability of seeing any
specific state-action pair(s, a) ∈ SAξ under the policyπ
in a single trial of durationH is at leastξ. Then for

∀n ≥ N, ∀(s, a) ∈ SAξ, dvar(P (·|s, a), P̂n(·|s, a)) ≤ ε

to hold with probability1 − δ, it suffices that

N ≥ 2

ξ
(
|S|2
4ε2

log
2|S|3|A|

δε
+ log

2|S||A|
δ

).

Proof. Let P̃k(·|s, a) denote the transition probability es-
timate after observing the state-action pair(s, a) k times.
From Lemma 4, for

∀k ≥ K, dvar(P (·|s, a), P̃k(·|s, a)) ≤ ε

to hold with probability1 − δ′, it suffices that

K ≥ |S|2
4ε2

log
|S|2
δ′ε

.

Now for (s, a) ∈ SAξ we combine this result with
Lemma 2. This gives that for

∀n ≥ N dvar(P (·|s, a), P̂n(·|s, a)) ≤ ε (42)

to hold with probability1 − δ′ − δ′′, it is sufficient to have

N ≥ 2

ξ
(
|S|2
4ε2

log
|S|2
δ′ε

+ log
1

δ′′
). (43)

Taking a union bound over all state-action pairs(s, a) ∈
SAξ (note |SAξ| ≤ |S||A|) gives that for Eqn. (42) to
hold for all (s, a) ∈ SAξ with probability1 − |S||A|δ′ −
|S||A|δ′′, it suffices that Eqn. (43) is satisfied. Choosing
δ′ = δ′′ = δ

2|S||A| gives the lemma. �

The above lemma tells us only a polynomial number of
sample trajectories under the teacher’s policy are neces-
sary, to guarantee that the state-action pairs frequently vis-
ited under the teacher’s policy are accurate in all models
{M (i)}i. Now we use the Simulation Lemma to translate
this into accurate evaluation of the utility of the teacher’s
policy in the models{M (i)}i.

Lemma 5 (restated). Let anyα, δ > 0 be given. Assume
we use the algorithm as described in Section 4. LetNT

satisfy the following condition

NT ≥ 32|S||A|HRmax

α

(

log
2|S||A|

δ

+
64|S|2H4R2

max

α2
log

32H2Rmax|S|3|A|
δα

)

,

or simplified and less tight (Notice that ifα/8 > HRmax,
the statement is trivially true with probability 1. So we can
simplify using the fact thatα/8 ≤ HRmax.)

NT ≥ 4096|S|3|A|H5R3
max

α3
log

32H2Rmax|S|3|A|
δα

Then with probability1 − δ we have that

∀i |UM̂(i)(πT ) − UM (πT )| ≤ α/8.

Proof. Let

ε =
1

2

α/8

H2Rmax

and let

η =
1

2

α/8

HRmax
.
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From the Simulation Lemma we have that if there exists a
set of state-action pairsSAη ⊆ S×A such that the follow-
ing holds

(i) ∀(s, a) ∈ SAη, dvar(P (·|s, a), P̂ (·|s, a)) ≤ ε,

(ii) P ({(st, at)}H
t=0 ⊆ SAη|πT ,M) ≥ 1 − η.

Then we have

|UM (πT ) − UM̂ (πT )| ≤ H2εRmax + ηHRmax =
α

8
.

Where the last inequality follows from our choice ofε
and η above. Now chooseSAη = {(s, a) ∈ S × A :
P((s, a) is visited in a trial of length Hunder πT ) ≥

η
|S||A|}, thenSAη satisfies condition (ii). So it remains to
show that condition (i) is satisfied. From Lemma 17 we
have that for all(s, a) ∈ SAη for

dvar(P (·|s, a), P̂n(s, a)) ≤ ε

to hold with probability1 − δ it suffices that

N ≥ 2|S||A|
η

(
|S|2
4ε2

log
2|S|3|A|

δε
+ log

2|S||A|
δ

).

Filling in the choices ofε andη into this condition gives
the sufficient condition onNT as stated in this lemma.�

C.3. Proof of Lemma 6

We now give a formal proof of Lemma 6.

Proof of Lemma 6.From Lemma 5 we have that for
Eqn. (12) to hold with probability1 − δ′ it suffices that

NT ≥ 4096|S|3|A|H5R3
max

α3
log

32H2Rmax|S|3|A|
δ′α

.

(44)
Eqn. (14) is trivially true whenα > 16HRmax. If
α ≤ 16HRmax, the Hoeffding inequality gives us that for
Eqn. (14) to hold with probability at least1− δ′, it is (more
than) sufficient thatNT satisfies Eqn. (44).

The Hoeffding inequality also gives us that for Eqn. (13) to
hold with probability1 − Nδ′′ it suffices that

k1 ≥ 162H2R2
max

2α2
log

2

δ′′
. (45)

Now since the algorithm only exits in iterationN , we must
have for alli = 1 : N − 1 that

ÛM (π(i)) < ÛM (πT ) − α/2. (46)

Combining Eqn. (46), (12), (13) and (14) and the fact that
π(i) is α/8-optimal forM̂ (i) we get

∀i (1 ≤ i < N−1) UM̂(i)(π
(i)) ≥ UM (π(i))+α/8. (47)

So far we have shown that for Eqn. (12), (13), (14) and (47)
to hold with probability1 − 2δ′ − Nδ′′, it suffices that
Eqn. (44) and Eqn. (45) are satisfied.

Now using the contrapositive of the Simulation Lemma and
choosingε = 1

2
α/8

H2Rmax
we get from Eqn. (47) that the

policy π(i) must be visiting a state-action pair(s, a) that
satisfies

dvar(P (·|s, a), P̂ (i)(·|s, a)) >
α

16H2Rmax
(48)

with probability at least α
16HRmax

in every trial of horizon
H.

[High-level proof intuition. Eqn. (47) states that the mod-
elsM̂ (i) are inaccurate; they overestimate the utility of the
policies{π(i)}i=1:N−1. We used the contrapositive of the
Simulation Lemma to show this implies that an “inaccu-
rately” modeled state-action pair must be visited with prob-
ability α

16HRmax
by such a policyπ(i). This means that data

collected under such a policy will improve the model. It re-
mains to show that this can only happen a limited number
of times until the model has become a good model.]

Let P̃k(·|s, a) be the estimate ofP (·|s, a) based uponk
observations of the state-action pair(s, a). From Lemma 4
we have that for any state-action pair(s, a) for

∀k > K, dvar(P (·|s, a), P̃k(·|s, a)) ≤ α

16H2Rmax

to hold with probability1 − δ′′′, it suffices that

K ≥ 162H4R2
max|S|2

4α2
log

16H2Rmax|S|2
αδ′′′

.

The above equation bounds the number of times a state-
action pair can be visited until it is “accurately” modeled
with probability1− δ′′′. So with probability1− |S||A|δ′′′
one can encounter state-action pairs(s, a) that—at the mo-
ment of encounter—satisfy Eqn. (48) (i.e., that are inaccu-
rately modeled) at most

|S||A|162H4R2
max|S|2

4α2
log

16H2Rmax|S|2
αδ′′′

(49)

times. Since (from above) such a state-action pair is en-
countered with probability at least α

16HRmax
in each itera-

tion of the algorithm before it exits, Lemma 2 gives that
w.p. 1 − δ′′′′ after a number of iterations

Nubound =
32HRmax

α

(

log
1

δ′′′′

+ |S||A|162H4R2
max|S|2

4α2
log

16H2Rmax|S|2
αδ′′′

)

(50)

such a state-action pair has been encountered as many times
as stated in Eqn. (49). SoNubound is an upperbound on
the number of iterations of the algorithm with probability
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1 − 2δ′ − Nδ′′ − |S||A|δ′′′ − δ′′′′. Chooseδ′, δ′′, δ′′′, δ′′′′

such that

2δ′ = Nuboundδ′′ = |S||A|δ′′′ = δ′′′′ =
1

4
δ. (51)

Substituting these choices into Eqn. (50), Eqn. (45) and
Eqn. (44) gives us Eqn. (8), Eqn. (9) and Eqn. (10). �

D. Proofs for Section 7.1
Proof of Proposition 7.W.l.o.g. assume a coordinate sys-
temx1:n such that

∀i ∈ 2 : n, (µ1)i = (µ2)i = 0,

and
(µ1)1 ≤ (µ2)1.

Also, leta = (µ1)1 andb = (µ2)1. Let

f(z;µ) =
1

(2π)
n
2 σn

exp

(−‖z − µ‖2
2

2σ2

)

.

Then we have that

dvar(N (µ1, σ
2),N (µ2, σ

2))

=
1

2

∫

x2:n

dx2:n

∫ x1=+∞

x1=−∞

∣

∣f(x;µ1) − f(x;µ2)
∣

∣dx1

=
1

2

∫

x2:n

dx2:n

∫ x1=(a+b)/2

x1=−∞

(

f(x;µ1) − f(x;µ2)
)

dx1

+
1

2

∫

x2:n

dx2:n

∫ x1=+∞

x1=(a+b)/2

(

f(x;µ2) − f(x;µ1)
)

dx1

=
1

2

(

1 − 2

∫

x2:n

dx2:n

∫ x1=+∞

x1=(a+b)/2

f(x;µ1)dx1

)

+
1

2

(

1 − 2

∫

x2:n

dx2:n

∫ x1=(a+b)/2

x1=−∞
f(x;µ2)dx1

)

= 1 − 2
1√
2πσ

∫ ∞

z=|a−b|/2

exp(
−z2

2σ2
)dz

=
1√
2πσ

∫ |a−b|/2

z=−|a−b|/2

exp(
−z2

2σ2
)dx1

≤ 1√
2πσ

|a − b|

=
1√
2πσ

‖µ2 − µ1‖2.

�

In our setting, we have Gaussian noise contributing ad-
ditively to the next-state given current-state and action.
As a consequence, the random variables (and their incre-
ments over time) are not bounded. The following proposi-
tion shows that we can “essentially” treat Gaussian random
variables as bounded random variables with high probabil-
ity by truncating the tails.

Proposition 18. Let any N > 0, δ > 0, σ > 0 be
given. Let {w(i)}N

i=1 be Gaussian random variables,
namelyw(i) ∼ N (0, σ2). Then with probability1 − δ we
have

maxi∈1:N |w(i)| ≤ σ log 4N√
2πδ

.

Proof.

P(|w(i)| ≥ K) = 2
1√
2πσ

∫ ∞

z=K

exp(− z2

2σ2
)dz

≤ 2
1√
2πσ

∫ ∞

z=K

2 exp(− z

σ
)dz

= 4
1√
2π

exp(−K/σ)

So we have

P(maxi∈1:N |w(i)| ≥ K) ≤ N4
1√
2π

exp(−K/σ),

which is equivalent to the proposition. �

Note the bound we use for the tail is fairly loose, but it’s a
simple form and enough for our purposes. LetK > 0, here
is an another bound (based upon integration by parts):

∫ ∞

z=K

1√
2πσ

z

z
exp(− z2

2σ2
)dz =

[ −σ

z
√

2π
exp(− z2

2σ2
)

]∞

K

−
∫ ∞

z=K

σ√
2π

1

z2
exp(− z2

2σ2
)dz

≤ σ√
2πK

exp(− K2

2σ2
).

E. Proofs for Section 7.2
In this section, letn = nS+nA. In this section we establish
several helper lemmas, and then prove Lemma 8. Proofs of
helper lemmas are given as sketches or even left out in this
section. The proofs are given in the following sections.

We will prove Lemma 8 in the following two steps.

• In Section E.1 we establish that for any inaccu-
rate parameterθ, we have thatloss(NT H)(θ) >

loss(NT H)(θ∗) + Ω(NT ). I.e., the true parameterθ∗

outperforms all inaccurate parameters by a margin of
Ω(NT ).

• In Section E.2 we establish that no matter how the ad-
ditional data{z(i)}NT H+k1NH

i=NT H+1 are chosen, the prob-
ability that θ∗ ever gets outperformed by an inaccu-
rate parameterθ is exponentially small in the margin
Ω(NT ). As a consequence, a “small” number of sam-
plesNT from the teacher is sufficient to guarantee that
throughout all iterations an accurate parameter has the
smallest loss.
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E.1. Model estimated from teacher’s data

In this section we establish that for any inaccurate param-
eter θ, we have thatloss(NT H)(θ) > loss(NT H)(θ∗) +
Ω(NT ). I.e., the true parameterθ∗ outperforms all inac-
curate parameters by a margin ofΩ(NT ). A standard way
to prove this is to prove it for one specific inaccurate param-
eterθ, and then use a cover ofθ-space and a union bound to
prove it for the whole space. The following lemma shows
that it is sufficient to cover only a “small” ball around the
origin. More specifically, it shows that with high proba-
bility all the solutions{θ̂(k)}NT H+k1NH

k=NT H to the regularized
linear regression problem lie in a small ballS around the
origin. Note that the solutions{θ̂(k)}NT H+k1NH

k=NT H to the
regularized linear regression problems at stepsk = NT H
to NT H + k1NH are by definition the only parameters we
end up using in the algorithm. So it is sufficient to show
loss(NT H)(θ) > loss(NT H)(θ∗)+Ω(NT ) for all inaccurate
θ in the “small ball”S that contains all{θ̂(k)}NT H+k1NH

k=NT H .

Lemma 19. Let any δ > 0 be given. Let
{y(i), z(i)}NT H+k1NH

i=1 be generated as described in
Eqn. (20). Let{θ̂(k)}k be defined as in Eqn. (21). Let
m̃ = NT H + k1NH. Then we have with probability1− δ
that∀k (1 ≤ k ≤ m̃)

‖θ̂(k)‖2 ≤ κ
√

m̃

(√
2‖θ∗‖2 + σ log

4m̃√
2πδ

)

and that

maxi=1:m̃|y(i)| ≤
√

2‖θ∗‖2 + σ log
4m̃√
2πδ

.

Note Lemma 19 would not hold if we used unregularized
linear regression. Instead of regularizing with a quadratic
penalty, one could regularize by explicitly constrainingθ to
be norm-bounded. This would directly result in a ball that
is sufficient to be covered and thus simplify some of the
proofs. However, in practice regularized linear regression
with a quadratic penalty (as used in our algorithm) is much
more commonly used than linear regression with a norm
constraint onθ.

The following lemma establishesloss(NT H)(θ) >

loss(NT H)(θ∗) + Ω(NT ) for all inaccurateθ ∈ S.

Lemma 20. Let any δ, ε, η > 0 be given. Let
{y(i), z(i)}NT H+k1NH

i=1 be generated as described in
Eqn. (20). Letm̃ = NT H + k1NH. Let ymax =
maxi=1:m̃|y(i)| ≤

√
2‖θ∗‖2 + σ log 8m̃√

2πδ
and let R ≤

κ
√

m̃
(√

2‖θ∗‖2 + σ log 8m̃√
2πδ

)

. Let S = {θ : ‖θ‖2 ≤
R}. Then for allθ ∈ S that do not satisfy Eqn. (22) we
have that forloss(NT H)(θ) − loss(NT H)(θ∗) ≥ NT ε2η/4
to hold with probability1 − δ/4, it suffices that

NT = Ω(poly(1
ε , 1

η , 1
δ ,H, ‖θ∗‖2, nS , nA, k1, N)). (52)

E.2. Influence of data from policies{π(i)}i

In this section we study the power of an adversary to
favor one specificθ over θ∗ by choosing the samples
{z(i)}NT H+k1NH

i=NT H+1 . More specifically the following lemma
shows that the adversary’s power is very limited. I.e.,
no matter what policy the adversary uses, the probabil-
ity of ever makingθ outperformθ∗ by a margina ≥ 0
on this set of adversarially chosen samples is bounded by
exp(−a/σ2). Let

loss
(k)
adv(θ) =

∑k
i=m+1(y

(i) − θ>z(i))2.

By convention letloss
(k)
adv = 0 for k ≤ m.

Lemma 21. Let anya ≥ 0 be given. Let anyθ ∈ R
n be

given. Let all else be as defined above. Then we have

P(∃k > m : loss
(k)
adv(θ) ≤ loss

(k)
adv(θ

∗) − a) ≤ exp( −a
2σ2 ).

The following lemma uses a covering argument to extend
Lemma 21 to hold for the set{θ : ‖θ‖2 ≤ R}.

Lemma 22. Let any δ, ε, η > 0 be given. Let
{y(i), z(i)}NT H+k1NH

i=1 be generated as described in
Eqn. (20). Letm̃ = NT H + k1NH. Let

R = κ
√

m̃

(√
2‖θ∗‖2 + σ log

8m̃√
2πδ

)

.

Let S = {θ : ‖θ‖2 ≤ R}. Then for allθ ∈ S that do not
satisfy Eqn. (22) we have that for

loss
(k)
adv(θ) − loss

(k)
adv(θ

∗) ≥ −NT ε2η/8 > 0

to hold with probability1 − δ
4 for all k ∈ NT H : k1NH,

it suffices that

NT = Ω

(

poly(
1

ε
,
1

η
,
1

δ
,H, ‖θ∗‖2, nS , nA, k1, N)

)

.

(53)

E.3. Proof of Lemma 8

Proof of Lemma 8.From Lemma 19 we have with prob-
ability 1 − δ

2 that all the estimates{θ̂(k)}NT H+k1NH
k=NT H+1

lie in a bounded sphereS = {θ : ‖θ‖2 ≤
κ
√

m̃
(√

2‖θ∗‖2 + σ log 8m̃√
2πδ

)

} around the origin and

thatmaxi=1:m̃|y(i)| ≤
√

2‖θ∗‖2 + σ log 8m̃√
2πδ

. Lemma 20
gives us that for allθ in this sphereS that do not satisfy the
accuracy condition of Eqn. (22) we have that

loss(NT H)(θ) − loss(NT H)(θ∗) ≥ NT ε2η/4 (54)

holds with probability1− δ
4 for large enoughNT as quan-

tified in Eqn. (52), which corresponds to the condition on
NT in the lemma we are proving. From Lemma 22 we have
that

loss
(k)
adv(θ) − loss

(k)
adv(θ

∗) ≥ −NT ε2η/8 (55)
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holds with probability1 − δ
4 under the same condition on

NT . Now since for anyk ≥ NT H we have by definition
loss(k)(θ) = loss(NT H)(θ) + loss

(k)
adv(θ). We can combine

Eqn. (54) and Eqn. (55) to obtain that

loss(k)(θ) ≥ loss(k)(θ∗) + NT ε2η/8 (56)

holds with probability1 − δ. This means that allθ ∈ S
that do not satisfy the accuracy condition of Eqn. (22) are
outperformed by the true parameterθ∗ by a margin of at
leastNT ε2η/8 for all k ≥ NT H. As a consequence all
the θ estimates{θ̂(k)}NT H+k1NH

k=NT H+1 must satisfy the accu-
racy condition of Eqn. (22). �

E.4. Proof of Lemma 19

Proof of Lemma 19.Let ymax = maxi=1:m̃|y(i)|. For any
k : 1 ≤ k ≤ m̃ we haveloss(k)(~0) =

∑k
i=1(y

(i))2 ≤
m̃(ymax)

2. Sinceθ̂(k) achieves the minimal loss, we must
haveloss(k)(θ̂(k)) ≤ m̃(ymax)

2, and thus

‖θ̂(k)‖2
2

κ2 ≤ m̃(ymax)
2. (57)

We also have (using‖z(i)‖2 ≤
√

2 and Proposition 18) that

ymax ≤
√

2‖θ∗‖2 + maxi=1:m̃|w(i)|
≤

√
2‖θ∗‖2 + σ log 8m̃√

2πδ
w.p. 1 − δ

2 ,

which combined with Eqn. (57) proves the lemma. �

E.5. Proof of Lemma 20

Let

∆(k)(θ1, θ2) =
1

κ2

∣

∣‖θ1‖2
2 − ‖θ2‖2

2

∣

∣

+ max{z(i),y(i)}i

k
∑

i=1

∣

∣(y(i) − θ>1 z(i))2 − (y(i) − θ>2 z(i))2
∣

∣.

We first prove the following lemma.

Lemma 23. Let anyλ > 0, m̃ > 0 be given. Letymax =
maxi=1:m̃|y(i)|. There is a subset̃S of the sphereS = {θ :

‖θ‖2 ≤ R} such that for allθ ∈ S, there exists̃θ ∈ S̃ such
that for all k(1 ≤ k ≤ m̃) we have:

|loss(k)(θ) − loss(k)(θ̃)| ≤ ∆(k)(θ, θ̃) ≤ λ (58)

And we have the following bound on the number of points
in S̃

|S̃| ≤
(

2R
√

n(4m̃ymax + (8m̃ + 2 1
κ2 )R)

λ

)n

.

In the special case whereR ≤ κ
√

m̃(
√

2‖θ∗‖2 +
σ log 8m̃√

2πδ
) andymax ≤

√
2‖θ∗‖2 + σ log 8m̃√

2πδ
we get

log |S̃| = O

(

n log poly(
1

λ
,
1

δ
, m̃, ‖θ∗‖2, n)

)

.

Proof. Note that the first inequality in Eqn. (58) trivially
holds by definition of∆. We now prove the second in-
equality. Consider the difference in loss for two weight
vectorsθ1, θ2. The contribution of one training sample is
bounded by

sup
z:‖z‖≤

√
2,y:|y|≤ymax

∣

∣(y − θT
1 z)2 − (y − θT

2 z)2
∣

∣

= sup
z:‖z‖≤

√
2,y:|y|≤ymax

∣

∣(y − θT
1 z)2 − (y − θT

1 z + (θ1 − θ2)
T z)2

∣

∣

= sup
z:‖z‖≤

√
2,y:|y|≤ymax

∣

∣− ((θ1 − θ2)
T z)2 − 2(y − θT

1 z)(θ1 − θ2)
T z
∣

∣

≤ 2‖θ1 − θ2‖2
2 + 2

√
2(ymax +

√
2R)‖θ1 − θ2‖2

≤ 4R‖θ1 − θ2‖2 + 2
√

2(ymax +
√

2R)‖θ1 − θ2‖2

≤ (4ymax + 8R)‖θ1 − θ2‖2.

So we have

∆(k)(θ1, θ2)

≤ k(4ymax + 8R)‖θ1 − θ2‖2 +
1

κ2

∣

∣‖θ1‖2
2 − ‖θ2‖2

2

∣

∣

= k(4ymax + 8R)‖θ1 − θ2‖2 +
1

κ2

∣

∣(θ1 + θ2)
>(θ1 − θ2)

∣

∣

≤ k(4ymax + 8R)‖θ1 − θ2‖2 +
1

κ2
2R‖θ1 − θ2‖2

≤ (4kymax + (8k + 2
1

κ2
)R)‖θ1 − θ2‖2.

To cover a sphere of radiusR up to‖·‖2 ≤ γ, it is sufficient
to have (cover the enclosing cube with side of2R regularly)
(2R

√
n/γ)n points. In our case we want to cover the set

of consideredθ’s up to loss accuracyλ, so we haveγ =
λ

4kymax+(8k+2 1
κ2 )R

, resulting in a number of points

(

2R
√

n(4kymax + (8k + 2 1
κ2 )R)

λ

)n

.

This establishes the lemma for one specifick. It is easily
seen that the cover used fork = m̃ can be used for all
k ≤ m̃. This proves the theorem. �

We will use S̃(n, 1
λ , 1

δ , m̃, ‖θ∗‖2) if we want to explicitly
show the dependence on the parameters.

Proof of Lemma 20.Let θ ∈ R
n. Let e

(i)
θ = θ∗>z(i) −

θ>z(i), and let ẽ
(i)
θ be e

(i)
θ clipped to the interval

[−Kw,Kw]. Let Kw be such thatmaxi∈1:NT H |w(i)| ≤
Kw. Then we have that

loss(NT H)(θ) =

NT H
∑

t=1

(w(i) + e
(i)
θ )2 +

1

κ2
‖θ‖2

2

≥
NT H
∑

t=1

(w(i) + ẽ
(i)
θ )2 +

1

κ2
‖θ‖2

2.
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Now consider the difference in loss forθ and the optimal
θ∗:

loss(NT H)(θ) − loss(NT H)(θ∗)

=

NT H
∑

i=1

(w(i) + e
(i)
θ )2 +

1

κ2
‖θ‖2

2 −
NT H
∑

i=1

(w(i))2 − 1

κ2
‖θ∗‖2

2

≥
NT H
∑

i=1

(w(i) + ẽ
(i)
θ )2 +

1

κ2
‖θ‖2

2 −
NT H
∑

i=1

(w(i))2 − 1

κ2
‖θ∗‖2

2

=

NT H
∑

i=1

(ẽ
(i)
θ )2 + 2w(i)ẽ

(i)
θ +

1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2) (59)

Let Zt =
∑t

i=1(ẽ
(i)
θ )2 + 2w(i)ẽ

(i)
θ − E(ẽ

(i)
θ )2. Note that

∀t, |Zt−Zt−1| ≤ 4K2
w. Then applying Azuma’s inequality

to the martingale{Zt}t gives us that

NT H
∑

i=1

(ẽ
(i)
θ )2 + 2w(i)ẽ

(i)
θ − E(ẽ

(i)
θ )2 ≥ −λ (60)

holds with probability1−exp(−λ2/(2NT H4K2
w)). Com-

bining Eqn. (59) and (60) gives that

loss(NT H)(θ) − loss(NT H)(θ∗) ≥
NT H
∑

i=1

E(ẽ
(i)
θ )2 − λ +

1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2)

holds with probability1 − exp(−λ2/(8NT HK2
w)). Now

using Lemma 23 we get that with probability1 −
|S̃| exp(−λ2/(8NT HK2

w)) the following holds for all
θ(‖θ‖2 ≤ R) : ∃θ̃ ∈ S̃ s.t. ∆(NT H)(θ, θ̃) ≤ λ and

loss(NT H)(θ) − loss(NT H)(θ∗)

= loss(NT H)(θ) − loss(NT H)(θ̃)

+loss(NT H)(θ̃) − loss(NT H)(θ∗)

≥ −λ + loss(NT H)(θ̃) − loss(NT H)(θ∗)

≥
NT H
∑

i=1

E(ẽ
(i)

θ̃
)2 − 2λ +

1

κ2
(‖θ̃‖2

2 − ‖θ∗‖2
2)

=

NT H
∑

i=1

E(ẽ
(i)
θ )2 − 2λ +

1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2)

+

NT H
∑

i=1

E(ẽ
(i)

θ̃
)2 − E(ẽ

(i)
θ )2 +

1

κ2
(‖θ̃‖2

2 − ‖θ‖2
2). (61)

We also have that

∣

∣

∣

NT H
∑

i=1

E[(ẽ
(i)

θ̃
)2] − E[(ẽ

(i)
θ )2]

∣

∣

∣

≤
NT H
∑

i=1

∣

∣

∣
E[(ẽ

(i)

θ̃
)2] − E[(ẽ

(i)
θ )2]

∣

∣

∣

≤
NT H
∑

i=1

∣

∣

∣E[(e
(i)

θ̃
)2] − E[(e

(i)
θ )2]

∣

∣

∣

=

NT H
∑

i=1

∣

∣

∣
E[(θ∗>z(i) − θ̃>z(i))2]

−E[(θ∗>z(i) − θ>z(i))2]
∣

∣

∣

=

NT H
∑

i=1

∣

∣

∣E[(θ∗>z(i) + w(i) − θ̃>z(i))2]

−E[(θ∗>z(i) + w(i) − θ>z(i))2]
∣

∣

∣

≤
NT H
∑

i=1

maxz(i),y(i)

∣

∣

∣[(y(i) − θ̃>z(i))2]

−[(y(i) − θ>z(i))2]
∣

∣

∣.

The second inequality uses the fact that for anyz(i), we
have|(ẽ(i)

θ̃
)2 − (ẽ

(i)
θ )2| ≤ |(e(i)

θ̃
)2 − (e

(i)
θ )2|.

And thus we have

∣

∣

∣

NT H
∑

i=1

E(ẽ
(i)

θ̃
)2 − E(ẽ

(i)
θ )2

∣

∣

∣
+

1

κ2

∣

∣

∣
‖θ̃‖2

2 − ‖θ‖2
2

∣

∣

∣

≤ ∆(NT H)(θ, θ̃)

≤ λ. (62)

Combining Eqn. (61) and (62) gives us

loss(NT H)(θ) − loss(NT H)(θ∗)

≥
NT H
∑

i=1

E(ẽ
(i)
θ )2 − 3λ +

1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2).

Now for anyε > 0, η > 0, if θ satisfies

P (maxi∈1:H(e
(i)
θ ) > ε) > η (63)

(note this corresponds toθ not satisfying Eqn. (22)) then
we have that (let̄ε = min{Kw, ε})

loss(NT H)(θ) − loss(NT H)(θ∗)

≥ NT ε̄2η − 3λ +
1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2)

holds w.p.1 − |S̃| exp(−λ2/(8NT HK2
w)).
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Now choosingλ = NT ε̄2η
6 gives us that

loss(NT H)(θ) − loss(NT H)(θ∗)

≥ NT ε̄2η

2
+

1

κ2
(‖θ‖2

2 − ‖θ∗‖2
2).

So if

NT ≥ 4

ε̄2ηκ2
‖θ∗‖2

2 (64)

then we have that

loss(NT H)(θ) − loss(NT H)(θ∗) ≥ NT ε̄2η

4

holds w.p.1 − |S̃| exp(−(NT ε̄4η2/(288HK2
w)).

We have from Prop. 18 thatmaxi∈1:NT Hw(i) ≤
σ log 4NT H√

2πδ′
with probability 1 − δ′. So we can choose

Kw = σ log 4NT H√
2πδ′

(and add in a failure probability ofδ′).

Making the dependencies iñS (and recall we choseλ =
NT ε̄2η

6 ) explicit, we have herẽS(n, 6
NT ε̄2η , 1

δ , m̃, ‖θ∗‖2)
and thus

log |S̃| = O

(

n log poly(n,
1

NT ε̄2η
,

1

δ′
, m̃, ‖θ∗‖2)

)

,

Now we choose

δ

8
= δ′

= |S̃| exp(−(NT ε̄4η2/(288Hσ2 log2 32NT H√
2πδ

)).

This gives us the following conditions onNT .

(i) Eqn. (64),

(ii) NT ≥
288Hσ2 log2 32NT H√

2πδ

ε̄4η2
log

|S̃|
δ/8

.

Recall ε̄ = min{Kw, ε}. So we can replace conditions (i)
and (ii) by the following conditions onNT (recall Kw =
σ log 4NT H√

2πδ/8
):

(ia) NT ≥ 4

ε2ηκ2
‖θ∗‖2

2

(ib) NT ≥ 4

(σ log 4NT H√
2πδ/8

)2ηκ2
‖θ∗‖2

2

(iia) NT ≥
288Hσ2 log2 32NT H√

2πδ

ε4η2
log

|S̃|
δ/8

,

(iib) NT ≥
288Hσ2 log2 32NT H√

2πδ

(σ log 4NT H√
2πδ/8

)4η2
log

|S̃|
δ/8

.

Combining the four conditions onNT with the expression
for |S̃| gives us the following condition onNT suffices:

NT = Ω(poly(
1

ε
,
1

η
,
1

δ
,H, ‖θ∗‖2, nS , nA, k1, log N)).

This proves the lemma. Note that in the statement of the
lemma we have slightly weaker result, namely a polyno-
mial dependence onN rather than a polynomial depen-
dence onlog N , which we proved here. �

E.6. Proofs of Lemmas 21 and 22

We first prove the following lemma about a (possibly ad-
versarial) biased random walk. We refer the reader to,
e.g., (Durrett, 1995; Billingsley, 1995; Williams, 1991),for
more details on martingales and stopping times.

Lemma 24. Let {w(i)}∞i=1 be IID random variables with
w(i) ∼ N (0, τ2). LetFn = σ(w(1), . . . , w(n)), the sigma
algebra induced by these random variables. Let∀i, e(i) ∈
Fi−1, i.e., e(i) has to be chosen based upon the past. Let
∀n,

Zn =
n
∑

i=1

(e(i))2 + 2w(i)e(i).

Let anya > 0 be given. LetTa = inf{n : Zn ≤ −a}.

Then we have

P (Ta < ∞) ≤ exp(
−a

2σ2
).

Proof. Let the martingale sequence{Yn}n over the filtra-
tion {Fn}n be defined as follows

Yn = exp
( −1

2σ2 Zn

)

= exp

(

−1

2σ2

n
∑

i=1

(2w(i)e(i) + (e(i))2)

)

.

It is easily verified that{Yn}n is adapted to{Fn}, that
E|Yn| < ∞ and thatE(Yn+1|Fn) = Yn for all n. ThusYn

is indeed a martingale with respect to{Fn}n. (Note this is
true no matter what the adversary’s policy is for choosing
theFi−1-measurable functionse(i).)

Let any integerK > 0 be fixed. Let

Tb = inf{n : Zn ≥ b},
N = min{Ta, Tb,K}.

ThenN is a finite stopping time. Thus we can apply the
Optional Stopping Theorem15 and get

1 = EY0 = EYN

= P (Ta < Tb, Ta < K)E[YN |Ta < Tb, Ta < K]

+P (Tb < Ta, Tb < K)E[YN |Tb < Ta, Tb < K]

+P (K ≤ Tb,K ≤ Ta)E[YN |K < Tb,K < Ta].

Now since∀n, Yn ≥ 0 we have

1 ≥ P (Ta < Tb, Ta < K)E[YN |Ta < Tb, Ta < K].

15See, e.g., Durrett, 1995.
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UsingE[YN |Ta < Tb, Ta < K] ≥ exp( a
2σ2 ) we get

P (Ta < Tb, Ta < K) ≤ exp(
−a

2σ2
).

Taking the limit forK → ∞ (and using the monotone con-
vergence theorem which allows us to interchange limit and
expectation (probability)) gives us

P (Ta < Tb, Ta < ∞) ≤ exp(
−a

2σ2
).

Sinceb > 0 was arbitrary, we get forb → ∞ (and us-
ing the monotone convergence theorem which allows us to
interchange limit and expectation (probability)) that

P (Ta < ∞) ≤ exp(
−a

2σ2
).

�

Proof of Lemma 21.We havey(i) = θ∗>z(i)+w(i), where
w(i) ∼ N (0, σ2). Let e(i) = θ∗>z(i) − θ>z(i). Then

lossadv
(k)(θ) − lossadv

(k)(θ∗)

=
k
∑

i=m+1

(θ∗>z(i) + w(i) − θ>z(i))2 − (w(i))2

=

k
∑

i=m+1

(w(i) + e(i))2 − (w(i))2

=

k
∑

i=m+1

(e(i))2 + 2w(i)e(i).

So we can apply Lemma 24 withZn = lossadv
(n+m)(θ)−

lossadv
(n+m)(θ∗), which proves the lemma. �

Proof of Lemma 22.Using aλ = NT ε2η/16 cover S̃ for
S and Lemma 21 gives us that∀k ≥ 1 and for allθ ∈ S
that

loss
(k)
adv(θ)−loss

(k)
adv(θ

∗) ≥ −λ−NT ε2η/16 = −NT ε2η/8

holds w.p.

1 − |S̃| exp(−NT ε2η/(32σ2)).

The last term corresponds to the probability of the biased
random walk reaching−NT ε2η/16. Now requiring that
the last term is smaller thanδ4 gives us the following re-
quirement:

NT ≥ 32σ2

ε2η
log

|S̃(n, 16
NT ε2η , 2

δ , m̃, ‖θ∗‖2)|
δ/4

,

which is satisfied whenNT satisfies Eqn. (53). �

E.7. Proof of Theorem 9

Proof of Theorem 9.From Lemma 8 we have that for a
trial under the teacher’s policy ({(xt, ut)}H

t=1) for

P
(

maxt∈1:H‖A(i)φ(xt) + B(i)ut

−(Aφ(xt) + But)‖2 > ε
)

≤ η (65)

to hold with probability1 − δ for all i ∈ 1 : N , it suffices
that

NT = Ω
(

poly(
1

ε
,
1

η
,
1

δ
,H, ‖A‖F, ‖B‖F, nS , nA, k1, N)

)

.

(66)

From Prop. 7 and Eqn. (65) we have that for

P
(

maxt∈1:Hdvar(P (· |xt, ut),

P (i)(· |xt, ut)) >
1√
2πσ

ε
)

≤ η (67)

to hold for all i ∈ 1 : N with probability 1 − δ it is suf-
ficient thatNT satisfies Eqn. (66). LetSAη = {(x, u) :
∀i dvar(P (· |x, u), P (i)(· |x, u)) ≤ ε√

2πσ
}. Then using

the Simulation Lemma combined with Eqn. (67) we obtain
that that for

|UM (πT ) − UM(i)(πT )| ≤ H2 1√
2πσ

εRmax + ηHRmax

to hold for all i ∈ 1 : N with probability1 − δ, it suffices
thatNT satisfies Eqn. (66). Choosingε =

√
2πσ

2H2Rmax
α and

η = 1
2HRmax

α proves the theorem. �

F. More elaborate/detailed version of
Section 7.3

F.1. A result for Bayesian model averaging

Consider an adversary generating a data sequence
{z(t)}T

t=1. For every time stept, w(t) ∼ N (0, σ2), and
y(t) = θ∗>z(t). We assume‖z(t)‖2

2 ≤ 2.16 Now define a
sequence{θ̂(t)}T

t=1 of estimates ofθ∗

θ̂(t) = arg min
θ∈Rn

t
∑

i=1

(y(i) − θ>z(i))2 +
1

κ2
‖θ‖2

2

= arg min
θ∈Rn

t
∑

i=1

1

σ2
(y(i) − θ>z(i))2 +

1

ν2
‖θ‖2

2,

hereν2 = κ2σ2. Let e(t) = θ∗>z(t) − θ̂(t)>z(t). In this
section, we will prove the following theorem

16Sincez(t) later corresponds to the concatenation ofφ(x(t))

andu(t), which both have norm smaller than one, this is the right
choice. Kakade and Ng (2005) use‖z(t)‖2 ≤ 1, which makes
their results slightly different from the way we state their results
in this paper.
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Theorem 25. Let everything be as above defined. Then
no matter how the adversary chooses eachz(t) (possibly
based on everything seen up to timet − 1), we have that
with probability1 − δ

Nµ =

T
∑

t=1

1{e(t) ≥ µ}

≤ O(
√

T (log T )3poly(‖θ∗‖2, n, log
1

δ
,
1

µ
)).

This result will be obtained in the following three steps:

• prove an online log-loss bound for Bayesian model
averaging (BMA),

• prove a bound on the variancess2
t used at every step

in the BMA algorithm, in particular prove a bound on
how often these variances can be ‘large’,

• prove a bound on the squared loss incurred for the
time-steps when the variancess2

t are ‘small’.

We now consider the Bayesian model averaging (BMA) al-
gorithm, and give a bound on its worst-case online loss. In
particular we consider the case of linear least squares re-
gression. We have

p(y|z, θ) =
1√
2πσ

exp

(−(θT z − y)2

2σ2

)

, (68)

whereσ2 is a fixed,knownconstant that is not a parameter
of our model. Note that Kakade and Ng (2005) give results
for generalized linear models. This section reviews a subset
of their results, where notation is specialized to the linear
regression case.

Let S = {(z(1), y(1)), (z(2), y(2)), . . . , (z(T ), y(T ))} be an
arbitrary sequence of examples, possibly chosen by an ad-
versary. We also useSt to denote the subsequence consist-
ing of only the firstt examples. Unless otherwise stated,
we will assume throughout this section that||z(i)||2 ≤

√
2

for all i.

Assume that we are going to use a Bayesian algorithm to
make our online predictions. Specifically, assume that we
have a Gaussian prior on the parameters:

p(θ) = N (θ;~0, ν2In),

whereIn is then-by-n identity matrix,N (·;µ,Σ) is the
density of a Gaussian with meanµ and covarianceΣ, and
ν2 > 0 is some fixed constant governing the variance in
our prior. Also, let

pt(θ) = p(θ|St) =

(

∏t
i=1 p(y(i)|x(i), θ)

)

p(θ)

∫

θ

(

∏t
i=1 p(y(i)|x(i), θ)

)

p(θ)dθ

be the posterior distribution overθ given the firstt training
examples. We also have thatp0(θ) = p(θ) is just the prior
distribution.

On iterationt, we are given the inputx(t), and the BMA al-
gorithm makes a prediction using the posterior distribution
over the outputs:

p(y|z(t), St−1) =

∫

θ

p(y|z(t), θ)p(θ|St−1)dθ.

We are then given the true labely(t), and we suffer logloss
− log p(y(t)|z(t), St−1). We define the cumulative loss of
the BMA algorithm afterT rounds to be

LBMA(S) =
T
∑

t=1

− log p(y(t)|z(t), St−1).

We will be interested in comparing against the loss of any
expert that uses some fixed parametersθ ∈ R

n. Define
`θ(t) = − log p(y(t)|x(t), θ), and let

Lθ(S) =

T
∑

t=1

`θ(t) =

T
∑

t=1

− log p(y(t)|z(t), θ).

A more general form of the following theorem has been
proved in Kakade and Ng (2005), we specialized it to the
linear regression case.

Theorem 26. [(Kakade & Ng, 2005) Theorem 2.2, forc =
1/σ2.] For all sequencesS of lengthT and for allθ∗

LBMA(S) ≤ Lθ∗(S)+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

Now we’ll take a closer look at the predictions done by the

BMA algorithm. DefineAt = 1
ν2 In + 1

σ2

∑t
i=1 z(i)z(i)T

,
andbt = 1

σ2

∑t
i=1 z(i)y(i). We have that

pt(θ) = p(θ|St) = N
(

θ; θ̂t, Σ̂t

)

, (69)

whereθ̂t = A−1
t bt, andΣ̂t = A−1

t . Also, the predictions
are given by

p(y(t+1)|z(t+1), St) = N
(

y(t+1); ŷt+1, s
2
t+1

)

(70)

whereŷt+1 = θ̂T
t z(t+1), s2

t+1 = z(t+1)T
Σ̂tz

(t+1) + σ2. In
contrast, the prediction of a fixed expert using parameterθ∗

would be

p(y(t)|z(t), θ∗) = N
(

y(t); y∗
t , σ2

)

, (71)

wherey∗
t = θ∗T z(t).

Note thats2
t ≥ σ2, i.e., the BMA algorithm always predicts

with a larger variance than a single expert.
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Lemma 27. The termss2
t satisfy the following:

s2
t − σ2

σ2
≤ 2ν2

σ2
, (72)

T
∑

t=1

s2
t − σ2

σ2
≤ 2ν2

σ2 log(1 + 2ν2

σ2 )
n log

(

1 +
2Tν2

nσ2

)

.

(73)

Proof. Let mt =
s2

t−σ2

σ2 . Consider a sequence of exam-
ples{(z(1), y(i)), . . . , (z(T ), y(T ))}, where all the outputs
y(1) = · · · = y(T ) = 0. Given this sequence, the BMA
algorithm’s predictions will also all bêyt = 0. Thus, we
have

LBMA(T ) =
T
∑

t=1

− logN (0; 0, s2
t ) (74)

=
T
∑

t=1

[

− log
1√
2π

+
1

2
log s2

t

]

. (75)

Now, consider the loss of an expert using the zero parame-
ter vectorθ = ~0. We have

Lθ∗(T ) =

T
∑

t=1

− logN (0; 0, σ2) (76)

=

T
∑

t=1

[

− log
1√
2π

+
1

2
log σ2

]

. (77)

Substituting Equations (75) and (77) into the main conclu-
sion of Theorem 26, we get

T
∑

t=1

1

2
log s2

t ≤
T
∑

t=1

1

2
log σ2 +

n

2
log

(

1 +
2Tν2

nσ2

)

. (78)

Using the definitionmt = s2
t /σ2 − 1, we get

T
∑

t=1

log(1 + mt) ≤ n log

(

1 +
2Tν2

nσ2

)

. (79)

Finally, observe that for all0 ≤ ε ≤ K, we have

log(1 + ε) ≥ log(1 + K)

K
· ε (80)

Also, we can boundmt as follows:

mt =
s2

t

σ2
− 1

=
z(t+1)T

Σ̂tz
(t+1) + σ2

σ2
− 1

=
1

σ2
z(t+1)T

(

1

ν2
In +

1

σ2

t
∑

i=1

z(t)z(t)T

)−1

z(t+1)

≤ 1

σ2
z(t+1)T

(

1

ν2
In

)−1

z(t+1)

≤ 2ν2

σ2
. (81)

For the last step, we used the fact that‖z(t+1)‖2 ≤
√

2.
This shows (72).

Putting together (81) and (80) withε = mt and K =
2ν2/σ2, we find that

mt ≤
2ν2

σ2 log(1 + 2ν2

σ2 )
log(1 + mt). (82)

Finally, Equations (82) and (79) together imply (73).

�

Proof of Theorem 25.As a direct consequence of Eqn. (73)
of Lemma 27, we have the following bound for the number
of timesNs2

t >σ2(1+ε2) thats2
t > σ2 + ε2σ2:

Ns2
t >σ2(1+ε2) ≤

1

ε2
2ν2

σ2 log(1 + 2ν2

σ2 )
n log(1 +

2Tν2

nσ2
).

(83)

If we let θ∗ denote the “true” underlying parameter, and
w(t) the noise at timet, then we have

y(t) = θ∗>z(t) + w(t).

Using the notation we just introduced we can then rewrite
Theorem 26 as

T
∑

t=1

(

1

2s2
t

(

w(t) + θ∗>z(t) − θ̂>t−1z
(t)
)2

+ log
√

2πst

)

≤

T
∑

t=1

(

1

2σ2

(

w(t)
)2

+ log
√

2πσ

)

+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

From now on lete(t) = θ∗>z(t) − θ̂>t−1z
(t).

Splitting up the summation into case wheres2
t > σ2(1+ε2)

ands2
t ≤ σ2(1 + ε2), and leaving out some positive terms

from the left-handside, and using the fact thatst ≥ σ for
all t we get:

∑

t:s2
t≤σ2(1+ε2)

1

2s2
t

(

w(t) + e(t)
)2

≤

T
∑

t=1

1

2σ2

(

w(t)
)2

+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

,

which implies
∑

t:s2
t≤σ2(1+ε2)

1

2σ2(1 + ε2)

(

w(t) + e(t)
)2

≤

T
∑

t=1

1

2σ2

(

w(t)
)2

+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

(84)
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Now we would like to bound the number of times we can
have thate(t) > µ as a function ofµ. Sincee(t) could
depend on the whole history{y(i), z(i)}t−1

i=1, we use a mar-
tingale argument.

Let Kw be such that for allt we have|w(t)| ≤ Kw and
such thatµ ≤ Kw. (The latter condition ensures that when
clipping the errors, errors do not get clipped belowµ.) Let
ẽ(t) be defined ase(t) clipped to the interval[−Kw,Kw].
I.e., we definẽe(t) = min{Kw,max{−Kw, e(t)}}. Then
we have

(w(t) + ẽ(t))2 ≤ (w(t) + e(t))2.

For the left-hand side of Eqn. (84) we apply Azuma’s in-
equality to the martingaleZt =

∑t
i=1(w

(i) + ẽ(i))2−σ2−
(ẽ(i))2, which gives (the increment/decrement in one time
step is at most3K2

w + σ2)

P





∑

t:s2
t≤σ2(1+ε2)

(w(t) + ẽ(t))2 − (ẽ(t))2 − T̄ σ2 < −T̄ λ



 ≤

exp
(

−T̄ λ2/2(3K2
w + σ2)2

)

, (85)

whereT̄ = T − Ns2
t >σ2(1+ε2).

For the right-hand side of Eqn. (84) we apply Azuma’s
inequality to the martingaleZt =

∑t
i=1(w

(i))2 − σ2,
which gives us (the increment/decrement in one time step
is bounded byK2

w + σ2)

P

(

∑

t

(w(t))2 − Tσ2 > Tλ

)

≤ exp(−Tλ2/2(K2
w+σ2)2).

(86)

Combining the concentration results of Eqn. (85,86)
with Eqn. (84) gives that with probability
1−exp(−T̄ λ2/2(3K2

w+σ2)2)−exp(−Tλ2/2(K2
w+σ2)2)

the following holds:

∑

t:s2
t≤σ2(1+ε2)

1

2σ2(1 + ε2)
(ẽ(t))2 + T̄

σ2 − λ

2σ2(1 + ε2)
≤

T
σ2 + λ

2σ2
+

1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

Which is equivalent to

∑

t:s2
t≤σ2(1+ε2)

1

2σ2(1 + ε2)
(ẽ(t))2 ≤ T

σ2 + λ

2σ2

−T̄
σ2 − λ

2σ2(1 + ε2)
+

1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

As a consequence we have

Ns2
t≤σ2(1+ε2),e(t)≥µ

µ2

2σ2(1 + ε2)
=

∑

t:s2
t≤σ2(1+ε2),e(t)≥µ

1

2σ2(1 + ε2)
µ2 ≤ T

σ2 + λ

2σ2

−T̄
σ2 − λ

2σ2(1 + ε2)
+

1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

SubstitutingT̄ = T −Ns2
t >σ2(1+ε2) (and using−λ < +λ)

we get

Ns2
t≤σ2(1+ε2),e(t)≥µ

µ2

2σ2(1 + ε2)
≤

T
ε2σ2 + ε2λ + 2λ

2σ2(1 + ε2)
+ Ns2

t >σ2(1+ε2)

σ2 + λ

2σ2(1 + ε2)

+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

Substituting the bound forNs2
t >σ2(1+ε2) from Eqn. (83) we

get

Ns2
t≤σ2(1+ε2),e(t)≥µ

µ2

2σ2(1 + ε2)
≤ T

ε2σ2 + ε2λ + 2λ

2σ2(1 + ε2)

+
σ2 + λ

2σ2(1 + ε2)

1

ε2
2ν2

σ2 log(1 + 2ν2

σ2 )
n log(1 +

2Tν2

nσ2
)

+
1

2ν2
‖θ∗‖2 +

n

2
log

(

1 +
2Tν2

nσ2

)

.

Multiplying both sides with2σ2(1 + ε2) gives

Ns2
t≤σ2(1+ε2),e(t)≥µµ2 ≤ T (ε2σ2 + ε2λ + 2λ)

+(σ2 + λ)
1

ε2
2ν2

σ2 log(1 + 2ν2

σ2 )
n log(1 +

2Tν2

nσ2
)

+
σ2(1 + ε2)

ν2
‖θ∗‖2 + nσ2(1 + ε2) log

(

1 +
2Tν2

nσ2

)

.

This all holds w.p.

1−exp(−T̄ λ2/2(3K2
w+σ2)2)−exp(−Tλ2/2(K2

w+σ2)2).

Now choose

ε2 =

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )
, (87)
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then we get

Ns2
t≤σ2(1+ε2),e(t)≥µµ2 ≤ 2λT

+2(σ2 + λ)

√

2Tν2n log(1 + 2Tν2

nσ2 )

σ2 log(1 + 2ν2

σ2 )

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

σ2

ν2
‖θ∗‖2

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

nσ2 log

(

1 +
2Tν2

nσ2

)

.

Substituting Eqn. (87) into Eqn. (83) gives

Ns2
t >σ2(1+ε2) ≤

√

T
2ν2

σ2 log(1 + 2ν2

σ2 )
n log(1 +

2Tν2

nσ2
).

So we have that there existsT ∗ = O(poly(n)) (note we
assumeν, σ are fixed in our analysis) such that for allT >
T ∗ we have thatNs2

t >σ2(1+ε2) ≤ 1
2T . Thus (forT > T ∗)

all the above holds w.p.

1 − 2 exp(−Tλ2/4(3K2
w + σ2)2).

Now settingδ
2 = 2 exp(−Tλ2/4(3K2

w + σ2)2), or equiva-

lently λ2 =
4(3K2

w+σ2)2

T log 4
δ we get that

Ns2
t≤σ2(1+ε2),e(t)≥µµ2 ≤ 2T

√

4(3K2
w + σ2)2

T
log

4

δ

+ 2(σ2 +

√

4(3K2
w + σ2)2

T
log

4

δ
)

√

2Tν2n log(1 + 2Tν2

nσ2 )

σ2 log(1 + 2ν2

σ2 )

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

σ2

ν2
‖θ∗‖2

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

nσ2 log

(

1 +
2Tν2

nσ2

)

.

(88)

holds with probability1 − δ
2 . Now recall thatKw =

max{µ,maxt∈1:T |w(t)|}. Thus from Prop. 18 we have that
Kw ≤ max{µ, σ log 8T√

2πδ
} with probability1 − δ

2 . Thus

we have that

Ns2
t≤σ2(1+ε2),e(t)≥µµ2 ≤

4(3(max{µ, σ log
8T√
2πδ

})2 + σ2)

√

T log
4

δ

+ 2

(

σ2 + 2(3(max{µ, σ log
8T√
2πδ

})2 + σ2)

√

1

T
log

4

δ

)

√

2Tν2n log(1 + 2Tν2

nσ2 )

σ2 log(1 + 2ν2

σ2 )

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

σ2

ν2
‖θ∗‖2

+

(

1 +

√

2ν2n log(1 + 2Tν2

nσ2 )

Tσ2 log(1 + 2ν2

σ2 )

)

nσ2 log

(

1 +
2Tν2

nσ2

)

.

holds with probability1 − δ.

After simplification we get that for anyT > T ∗ =
O(poly(n)) that

Ns2
t≤σ2(1+ε2),e(t)≥µ =

O(
√

T (log T )3poly(‖θ∗‖2, n, log
1

δ
,
1

µ
)) (89)

holds with probability1− δ. The condition thatT > T ∗ =
O(poly(n)) is readily incorporated by adjusting the poly-
nomial in Eqn. (89), and can thus be omitted.

Taking into account that we might havee(t) ≥ µ when
s2

t ≥ (1 + ε2)σ2, we get that

Ne(t)≥µ ≤ Ns2
t≤σ2(1+ε2),e(t)≥µ

+Ns2
t≤σ2(1+ε2)

= O(
√

T (log T )3poly(‖θ∗‖2, n, log
1

δ
,
1

µ
)).

Which proves the theorem. �

F.2. Proof of Lemma 10

Lemma 10 considers the setting where the model is not up-
dated fork1H steps. And then updated for all these steps at
once. The result we have from Theorem 25 applies only to
the setting where the updates are done between every dat-
apoint. Moreover Lemma 10 considersn linear regression
problems simultaneously.

Lemma 28. Let anyl ∈ 1 : n be fixed. For the algorithm
described in Section 4 we have that the numberNµ of times
a state is encountered such that

|(Al,:φ(xt) + Bl,:ut) − (Â
(i)
l,: φ(xt) − B̂

(i)
l,: ut)| > µ (90)

satisfies

Nµ = O(k1H
√

Nk1H(log Nk1H)3

poly(‖Al,:‖F , ‖Bl,:‖F , nS , nA, log
1

δ
,
1

µ
))



Exploration and Apprenticeship Learning in Reinforcement Learning

Proof. Considerk1H versions of the data, permuted such
that within each subsequence of lengthk1H obtained un-
der one policy, in every permutation a different data point
comes first, but no data points are permutated accross tri-
als under different policies. Then every prediction done in
our algorithm is also done for (at least) one permutation
in this new setup (the new setup includes more predictions
than just these). Thus bounding the number of large errors
in this new setup gives us a bound on the number of large
errors encountered in our algorithm. This new setup con-
sists ofk1H data sequences of lengthNk1H each. Using
Theorem 25 we get that

Nµ = O(k1H
√

Nk1H(log Nk1H)3

poly(
√

‖Al,:‖2
F , ‖Bl,:‖2

F , nS + nA, log
1

δ
,
1

µ
))

which can be simplified (and be made less tight) to the
statement of the lemma. �

Proof of Lemma 10.Whenxt, ut satisfy‖(Aφ(x)+Bu)−
(Â(i)φ(x) − B̂(i)u)‖2 > µ, then there must bel ∈ 1 : nS

such that

|(Al,:φ(xt) + Bl,:ut) − (Â
(i)
l,: φ(xt) − B̂

(i)
l,: ut)| > µ/

√
nS

is satisfied. From Lemma 28 we have
that this can happen at most N ′ =
O(k1H

√
Nk1H(log Nk1H)3poly(‖Al,:‖F , ‖Bl,:‖F ,

nS , nA, log 1
δ , 1

µ )) times for eachl w.p. 1 − δ. So it can
happen at mostnSN ′ times w.p.1 − nSδ. This proves the
lemma. �

F.3. Proof of Theorem 3 for linearly parameterized
dynamics

Proof of Theorem 3.Assume the algorithm runs forN it-
erations. Using the Hoeffding inequality we have that for

∀i = 1 : N |ÛM (π(i)) − UM (π(i))| ≤ α

16
(91)

to hold with probability1 − δ′, it suffices that

k1 ≥ 162H2R2
max

2α2
log

2N

δ′
. (92)

Using the Hoeffding inequality, we also have that for

|ÛM (πT ) − UM (πT )| ≤ α

16
(93)

to hold with probability1 − δ′′, it suffices that

NT ≥ 162H2R2
max

2α2
log

2

δ′′
. (94)

From Theorem 9 we have that for

|UM̂(i)(πT ) − UM (πT )| ≤ α

8
(95)

to hold with probability1 − δ′′′, it suffices thatNT =

Ω

(

poly(
1

α
,

1

δ′′′
,H,Rmax, ‖A‖F, ‖B‖F, nS , nA, k1, N)

)

.

(96)
Since the algorithm only exits in iterationN , we must have
for all i = 1 : N − 1 that

ÛM (π(i)) < ÛM (πT ) − α/2. (97)

Combining Eqn. (97, 91, 93, 95) and the fact thatπ(i) is
α/8-optimal forM̂ (i) we get

∀i(1 ≤ i ≤ N − 1)UM̂(i)(π
(i)) ≥ UM (π(i)) + α/8. (98)

Eqn. (98) states that for every iterationi that the algorithm
continues, the model is inaccurate in evaluating the util-
ity of the policyπ(i). Now using the contrapositive of the
Simulation Lemma (choosingε = 1

2
α/8

H2Rmax
) we get from

Eqn. (98) that the policyπ(i) must be visiting a state-action
pair (x, u) that satisfies

dvar(P (·|x, u), P̂ (i)(·|x, u)) > α
16H2Rmax

(99)

with probability at least α
16HRmax

in every trial of horizon
H. If (x, u) satisfies Eqn. (99) then we must have (using
Prop. 7) that

‖(Aφ(x) + Bu) − (Â(i)φ(x) − B̂(i)u)‖2 >
√

2πσα
16H2Rmax

.

From Lemma 10 we have that with probability1− δ′′′′ this
can happen only

Nµ = O(k1

√

k1N(log k1N)3poly(‖A‖F ,

‖B‖F , nS , nA, log
1

δ′′′′
,
1

α
,H,

16H2Rmax√
2πσα

))

times inN iterations of the algorithm. Substituting in the
expression fork1 from Eqn. (92) and simplifying gives us

Nµ = O(
√

N(log N)5poly(‖A‖F , ‖B‖F , nS , nA,

log
1

δ′′′′
,
1

α
,H,Rmax, log

1

δ′
)). (100)

On the other hand, if the algorithm continues, we have
from Eqn. (99) and Lemma 2 (choosea = α

16HRmax
N/2−

log 1
δ′′′′ ) that such an error must be encountered with prob-

ability 1 − δ′′′′′ at least

α

32HRmax
N − log

1

δ′′′′′
(101)

times. From Eqn. (100) and Eqn. (101) we have that after
a number of iterations

O(poly(‖A‖F , ‖B‖F , nS , nA, log
1

δ′′′′
,
1

α
,H,

Rmax, log
1

δ′
, log

1

δ′′′′′
))
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the algorithm must have terminated with probability1 −
δ′ − δ′′ − δ′′′ − δ′′′′ − δ′′′′′. Now chooseδ′ = δ′′ = δ′′′ =
δ′′′′ = δ′′′′′ = δ

5 , to obtain the bound on the number of
iterations of Eqn. (3). Given this bound on the number
of iterationsN , it is easily verified that the conditions of
Eqn. (92, 94, 96) onNT andk1 are met by Eqn. (4) and
Eqn. (5) of Theorem 3. Also, since we choseNT , k1 such
thatÛM (πT ) and{ÛM (π(i)}i are accurately evaluated (as
specified in Eqn. (91,93)), we have that Eqn. (2) holds when
the algorithm terminates.

�


