
Generalized LARS as an Effective Feature Selection Tool

for Text Classification With SVMs

S. Sathiya Keerthi selvarak@yahoo-inc.com

Yahoo! Research Labs, 210 S. DeLacey Avenue, Pasadena, CA-91105

Abstract

In this paper we generalize the LARS feature
selection method to the linear SVM model,
derive an efficient algorithm for it, and empir-
ically demonstrate its usefulness as a feature
selection tool for text classification.

1. Introduction

Text classification is an interesting collection of clas-
sification problems in which the number of features is
large that often exceeds the number of training ex-
amples and, for which, linear classifiers such as lo-
gistic regression (Genkin et al., 2004), linear SVMs
(Joachims, 1998) and regularized least squares work
very well. For these problems, feature selection can be
important, either for improving accuracy or for reduc-
ing the complexity of the final classifier. Filter meth-
ods such as information gain (Yang & Pedersen, 1997)
and bi-normal separation (Forman, 2003) are usually
employed to do feature selection.

LARS (Least Angle Regression and Shrinkage) is a
‘semi-wrapper’1 feature selection approach devised by
Efron et al (Efron et al., 2004) for ordinary least
squares. It is closely related to the Lasso model (Tib-
shirani, 1996) which corresponds to the use of L1 regu-
larizer for least squares problems. The great advantage
of LARS is its ability to order variables according to
their ‘importance’, while keeping the total computa-
tional cost small.

In this paper we generalize the LARS approach to lin-

1Unlike filter methods which order features by analyzing
them independently, LARS sequentially chooses new fea-
tures that are dependent on the features that are already
chosen, and is ‘wrapped around’ the induction algorithm.
However, it is not a full-fledged wrapper method since it is
only based on optimizing the training set performance.

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

ear SVMs, derive an efficient algorithm for it, along the
lines of Rosset and Zhu’s path tracking algorithm for
L1 regularized models (Rosset & Zhu, 2004), and point
out that this algorithm is computationally practical,
say for ordering and choosing the top 1000 features
of a (binary) text classification problem. We evaluate
the generalization performance (F-measure) on several
text classification benchmark datasets and show that
SVM with LARS generates an ordering of features that
is much better than that obtained using information
gain. Regularized least squares with LARS (Zou &
Hastie, 2005; Efron et al., 2004) is also evaluated and
shown to be inferior for text classification compared to
SVM with LARS.

SVM with LARS can be viewed as an efficient approxi-
mate algorithm for a modified SVM formulation which
uses both, an L2 regularizer and an L1 regularizer.
(The algorithm essentially efficiently tracks the solu-
tion curve for all possible L1 regularizer coefficient val-
ues.) As a part of our study we also evaluate the use-
fulness of keeping (or leaving out) the L2 regularizer.
When the L2 regularizer is left out, the model with
LARS is close in spirit to the sparse logistic regression
model recently proposed (and shown to be very good)
by Genkin et al (Genkin et al., 2004) for text classi-
fication. Keeping only the L1 regularizer leads to an
aggressive reduction of the training cost using a small
subset of features. On some datasets this leads to an
impressive performance while, on other datasets that
need to keep a large number of features2 for optimal
performance, the aggressive feature removal property
of the L1 regularizer (acting alone) leads to a loss in
performance. Thus, it is better to try both classifiers:
one which keeps the L2 regularizer and a second which
leaves out the L2 regularizer, and choose the better one
based on validation.

The paper is organized as follows. Section 2 is the main
section where the generalized LARS idea is explained
and the SVM-LARS algorithm is derived. Section 3

2The 20 Newsgroups dataset is a good example of this
case.

Generalized LARS for SVM Feature Selection

evaluates the various methods on 6 benchmark binary
classification problems. Concluding remarks are given
in section 4.

The following notations will be used in the paper. x′

will denote the transpose of the vector/matrix x. xj

is the j-th component of the vector x. Given a set
A, |A| will denote the cardinality of A. For β ∈ Rm

and A ⊂ {1, . . . ,m}, βA is the A dimensional vector
containing {βj , j ∈ A}. If q = maxp∈P h(p) and p̄ =
arg maxp∈P h(p), then we say p̄ defines q.

2. Generalized LARS Algorithm

Consider a (binary) classifier whose training can be
expressed as

min
β

f(β) (1)

where f is the sum of a regularizer term and a data-fit
term, and the parameter vector β is an element of Rm.
Let g(β) denote the gradient of f . We are interested
in the following two models.

Model 1. Regularized Least Squares (RLS)3

f(β) = fRLS(β) =
λ2

2
‖β‖2 +

1

2

n∑

i=1

r2
i (β) (2)

where ‖β‖ is the L2 norm of β, xi is the i-th example’s
input vector, ri(β) = β′xi − ti, ti ∈ {1,−1} is the tar-
get (1 denotes class 1 and -1 denotes class 2) for the i-
th example, and n is the number of training examples.4

The gradient of fRLS is: gRLS(β) = λ2β +X ′(Xβ− t)
where X is the n × m matrix whose rows have {x′

i}
and t is the target vector containing {ti}.
Model 2. SVM (with L2 loss)

f(β) = fSV M (β) =
λ2

2
‖β‖2 +

1

2

∑

i∈I(β)

r2
i (β) (3)

where I(β) = {i : tiri(β) < 0} and the other quantities
are as defined for fRLS . It is easy to check that fSV M

is continuously differentiable and that its gradient is
given by: gSV M (β) = λ2β + X ′

I(XIβ − tI) where XI

is the matrix whose rows have {x′
i, i ∈ I(β)} and tI is

the vector containing {ti, i ∈ I(β)}.
SVM with hinge loss corresponds to replacing the
r2
i (β) term in (3) by −2tiri(β). When there are no

severe outliers in the training set, the SVM models
using the L2 and hinge loss produce very similar clas-
sifiers. We work with L2 loss because our ideas for

3The model is same as ridge regression on the classifier
targets.

4We assume throughout this paper that the bias term
is built into β and that it is also regularized.

feature selection only apply to models for which f is
continuously differentiable. SVM with modified Huber
loss, which also has this property, is another excellent
alternative that can be used together with our LARS
ideas. In this paper we will present our ideas only for
the L2 loss. By doing minor modifications, these ideas
can be easily extended to the modified Huber loss.

Lasso (Tibshirani, 1996) and Elastic Net (Zou &
Hastie, 2005) are feature selection tools that apply to
fRLS . (Lasso is designed for λ2 = 0.) They do system-
atic feature selection by including an L1 regularizer in
the cost function:

min f̃(β) = f(β) + λ1‖β‖1 (4)

where ‖β‖1 is the L1 norm of β. When λ1 is large5

β = 0 is the minimizer of f̃ , which corresponds to the
case of all variables being excluded. As λ1 is decreased,
more and more variables take positive values. When
λ1 → 0, the solution of (4) approaches the minimizer
of f .

In the above approach, as λ1 is decreased, a βj can
move back and forth between zero and non-zero val-
ues more than once. LARS is a closely related, but
computationally much simpler approach that was de-
vised by Efron et al (Efron et al., 2004) for ordinary
least squares problems (i.e., fRLS with λ2 = 0); this
approach only keeps adding variables as a parameter
similar to λ1 is decreased.6

The basic idea behind LARS is simple. Though not
mentioned in Efron et al. (2004), LARS can be eas-
ily extended to other models such as fSV M . We
will refer to the extension also as LARS. To under-
stand the method, first note that β? is a minimizer
of f iff it is a (global) minimizer of the function
gmax(β) = maxj |gj(β)|. LARS starts from β = 0
and continuously decreases gmax by adding variables
one at a time until β? is reached. At β = 0 let j1

be the index which defines gmax. Take βj1 as the first
variable (at the current point it is the variable that
contributes most to the decrease in f) to be included.
Let sj1 = sgn(gj1(0)). If we start from λ1 = gmax(0)
and track the curve defined by gj1 = λ1sj1 with βj1

and λ1 as the only variables allowed to change, then
gmax can be decreased.7 This can be continued until
we reach a λ̃1 and β̃ where another variable index j2

also defines gmax, i.e., |gj2(β̃)| = |gj1(β̃)| = λ̃1. At this

5It is easy to see that, if λ1 > maxj |gj(0)|, then the di-
rectional derivatives of the λ1‖β‖1 term at β = 0 dominate

and so β = 0 is the minimizer of f̃ .
6Since we use only LARS in this paper, we will call this

parameter for LARS also as λ1.
7At any stage of the LARS algorithm λ1 equals gmax.

Thus, decreasing λ1 causes gmax to decrease.

Generalized LARS for SVM Feature Selection

point LARS includes βj2 as the new variable for inclu-
sion and tracks the curve defined by the two equations,
gj1 = λ1sj1 , gj2 = λ1sj2 , where sj2 = sgn(gj2(β̃))
and, βj1 , βj2 and λ1 are the only variables allowed to
change. The procedure is repeated to include more
variables while gmax is continuously decreased.

Because the choice of new variables is done conditional
on variables already included, LARS has the potential
to be better than filter methods which analyze fea-
tures independently. Since the importance of variables
is judged by the size of the derivative of f , it is neces-
sary to scale the variables uniformly. Most representa-
tions employed in text classification (binary, normal-
ized binary, normalized tf-idf etc) have such a uniform
scaling. They all give data values spread in the (0,1)
range. Let us now give full details of the (generalized)
LARS algorithm.

Algorithm LARS

1. Let β̄ = 0. Find j̄ = arg maxj |gj(β̄)|. Let A =
{j̄}, sj̄ = sgn(gj̄(β̄)), λ̄1 = |gj̄(β̄)|. Go to step 2.

2. Consider the curve P in (β, λ1) space defined by

P = {(β, λ1) : gj = sjλ1 ∀j ∈ A,

βk = 0 ∀k 6∈ A, λ1 ≤ λ̄1} (5)

Find

λ̃1 = sup{ λ1 : (β, λ1) ∈ P, |gk| ≥ λ1

for some k 6∈ A } (6)

Let the corresponding β be β̃. If λ̃1 = 0, stop. If
λ̃1 6= 0, then by continuity arguments there exists
k̃ 6∈ A for which |gk| = λ̃1; obtain k̃ and go to
step 3.

3. Let A := A∪ {k̃}, β̄ = β̃, sk̃ = sgn(gk̃(β̃)) and go
back to step 2.

Consider a generic stage of the algorithm at which β̄

satisfies ḡj = sjλ1 ∀j ∈ A and β̄j = 0 ∀j 6∈ A. It is
easy to see that β̄ is the minimizer of f − s′AβA where
only βA is varied, and sA is the A dimensional vector
containing {sj , j ∈ A}.
Suppose we decide to run the algorithm only upto a
point where d variables have been chosen and so stop
at the end of step 2 when |A| = d occurs. At that
point what is the β that should be used as the pa-
rameter vector for the classifier? One idea is to use
β = β̃. This is the parameter vector we have used in
all the computational experiments reported in this pa-
per. Since we are terminating the algorithm with only

a partial set of variables, g(β̃) 6= 0. We can take the
d parameters defined by A, optimize f with respect
to these parameters and obtain the parameter vector,
β̂. This is another worthwhile possibility for use in
the final classifier. For ordinary least squares (fRLS

with λ2 = 0), Efron et al (Efron et al., 2004) refer to
this alternative as the OLS/LARS hybrid. One can
also think of fundamentally altering the algorithm by
solving gj = 0, j ∈ A to obtain β̄, j ∈ A, and then
choosing the next entering variable to be the one which
has the largest magnitude gradient component. Such
an aggressive forward selection scheme can be overly
greedy, leading to a poor selection of features (Efron
et al., 2004).

Let us now discuss the computer implementation of
the above algorithm. Let us begin with f = fRLS

since the ideas are simpler for it. Although details for
the least squares case are given in Efron et al. (2004)
and Zou and Hastie (2005), we repeat them here since
they smoothly lead us to the details for f = fSV M .
Let βA denote the |A| dimensional vector containing
{βj , j ∈ A}. For f = fRLS , the gj are affine functions
of βA and so P is a linear curve. The direction of that
linear curve, δβA can be determined by solving the
linear system,

HAδβA = sA (7)

where: HA = λ2I|A| + X ′
AXA; I|A| is the identity

matrix of size |A|; XA is the n× |A| submatrix of the
data matrix X corresponding to the variables defined
by A; and sA is a |A| dimensional vector containing
{sj , j ∈ A}. The computational algorithm can now be
easily given. By the way δβA is defined in (7) note
that βA has to be moved in the negative δβA direction
in order to decrease λ1.

Algorithm RLS-LARS

1. Let β̄ = 0. Compute ḡ = −X ′t and find j̄ =
arg maxj |ḡj |. Let A = {j̄}, sj̄ = sgn(ḡj̄), λ̄1 =

|ḡj̄ |, L =
√

HA where HA = λ2+X ′
AXA. (Since A

is a singleton, HA is a real number. Throughout
the algorithm L will denote the lower triangular
Cholesky factorization of HA.) Go to step 2.

2. (a) Solve LL′δβA = sA (two triangular linear
systems) to get the direction vector δβA.
Then compute δg = X ′XAδβA, the change
in g caused by δβA.

(b) For each k 6∈ A: solve ḡk +(λ1 − λ̄1)δgk = λ1

to get λ+
1k; solve ḡk + (λ1 − λ̄1)δgk = −λ1 to

get λ−
1k; and then set λ̃1k = min+{λ̃+

1k, λ̃−
1k}

where min+ means that, when the minimum
is taken, negative quantities are ignored. (As

Generalized LARS for SVM Feature Selection

λ1 is decreased from λ̄1 and P is tracked, λ̃1k

is the first λ1 value at which |gk| = λ1 oc-
curs.)

(c) Let λ̃1 = max{λ̃1k : k 6∈ A} and k̃ be the
k which defines λ̃1. (If A = {1, . . . ,m} then
simply set λ̃1 = 0; in this case, k̃ is unde-
fined.) Go to step 3.

3. Reset β̄A := β̄A + (λ̃1 − λ̄1)δβA, ḡ := ḡ + (λ̃1 −
λ̄1)δg, and λ̄1 := λ̃1. If λ̃1 = 0 stop. Else, set
A := A∪{k̃}, sk̃ = sgn(ḡk̃), incrementally update
the cholesky factor L to include the new variable
and go back to step 2.

In text classification problems the number of variables
is large and so the above algorithm will be imprac-
tical if a complete ordering of the full set variables
is to be carried out. But, there is rarely a need to
run the above algorithm beyond the selection of about
500-1000 top variables. In many cases the classifier
performance peaks within that selection; if the perfor-
mance continues to rise even beyond, that is usually
an indication that using the full set of variables is the
best way to go. Therefore it is sufficient to run the
algorithm till about 500-1000 variables are chosen.

Let us do a complexity analysis for an early termina-
tion of the algorithm when it is run till d variables are
chosen. Let mA = |A| and nnz denote the number
of non-zero elements in X. In textual problems X is
usually very sparse and so nnz is a small fraction of
nm (which is the value of nnz for a dense X matrix).
For our analysis we can take n and m to be smaller
than nnz. The main cost of the algorithm is associated
with steps 2(a) and (3), which respectively have the
complexities, O(m2

A + nnz) and O(m2
A). Accumulat-

ing upto d variables we get the algorithm’s complexity
upto d variables as O(d3 + nnzd). To get an idea of
the times involved, take a problem with about 10,000
examples having 100 non-zero elements in each exam-
ple, i.e., nnz is about 1 million. If d = 1000 then d3

and nnzd are about the same order and so the over-
all cost of running the algorithm upto 1000 variables
is only about few times the cost of inverting a 1000
dimensional dense square matrix.

Let us now turn to the extension of the algorithm to
SVM. For fSV M , the gj are piecewise-affine functions
of βA and so the curve P in (5) is piecewise-linear.
Rosset and Zhu (Rosset & Zhu, 2004) discuss a range
of models for which the overall curve parametrized
with respect to λ1 is piecewise-linear. Though they do
not explicitly include fSV M in their list of such models,
all their ideas can be easily extended to fSV M too. Let
us now take up these details. Apart from identifying

λ1 values at which a new variable enters, we also need
to locate points at which an example leaves or enters
the active index set, I. The following algorithm gives
all the details. Many of the steps are same as those in
algorithm RLS-LARS. In the algorithm we use yi to
denote tiri; thus, yi < 0 means that i ∈ I.

Algorithm SVM-LARS

1. Let β̄ = 0, I = {1, . . . , n} and ȳi = −1,
i = 1, . . . , n. Compute ḡ = −X ′t and find
j̄ = arg maxj |ḡj |. Let A = {j̄}, sj̄ = sgn(ḡj̄),

λ̄1 = |ḡj̄ |, L =
√

HA where HA = λ2 + X ′
AXA.

Go to step 2.

2. (a) Solve LL′δβA = sA to get the direction vec-
tor δβA. Then compute δr = XAδβA, and
then, δg = X ′δr.

(b) For each k 6∈ A: solve ḡk +(λ1 − λ̄1)δgk = λ1

to get λ+
1k; solve ḡk + (λ1 − λ̄1)δgk = −λ1 to

get λ−
1k; and then set λ̃1k = min+{λ̃+

1k, λ̃−
1k}.

(c) Let λ̃1 = max{λ̃1k, k 6∈ A} and k̃ be the k

which defines λ̃1. (If A = {1, . . . ,m} then
simply set λ̃1 = 0; in this case, k̃ is unde-
fined.)

(d) For each i = 1, . . . , n, compute δyi = tiδri

and λ1i, the solution of ȳi +(λ1− λ̄1)δyi = 0.
(As βA is changed from β̄A along the line
defined by the δβA direction, λ1i is the λ1

value at which the i-th example will hit the
margin plane corresponding to it.)

(e) Find λ̂1a, the first λ1 ≤ λ̄1 at which an
example from group I moves out of I, i.e.,
λ̂1a = max{λ1i : i ∈ I, δyi < 0}. Let îa be

the i ∈ I that defines λ̂1a. (If, either λ̂1a < 0
or 6 ∃ i ∈ I such that δyi < 0, then simply
reset λ̂1a = 0. For this case, the value of îa
is immaterial and can be left undefined.)

(f) Find λ̂1b, the first λ1 ≤ λ̄1 at which an exam-
ple from outside group I moves into I, i.e.,
λ̂1b = max{λ1i : i 6∈ I, δyi > 0}. Let îb be

the i 6∈ I that defines λ̂1b. (If, either λ̂1b < 0
or 6 ∃ i 6∈ I such that δyi > 0, then simply
reset λ̂1b = 0. For this case, the value of îb is
immaterial and can be left undefined.)

(g) If λ̂1a ≥ λ̂1b then set λ̂1 = λ̂1a, î = îa; else

set λ̂1 = λ̂1b, î = îb;

(h) If λ̃1 ≥ λ̂1 go to step 3; else go to step 4.

3. Reset β̄A := β̄A + (λ̃1 − λ̄1)δβA, ȳ := ȳ + (λ̃1 −
λ̄1)δy, ḡ := ḡ+(λ̃1−λ̄1)δg, and λ̄1 = λ̃1. If λ̃1 = 0
stop. Else, set A := A∪ {k̃}, sk̃ = sgn(ḡk̃), incre-

Generalized LARS for SVM Feature Selection

mentally update the cholesky factor L to include
the new variable and go back to step 2.

4. Reset β̄A := β̄A + (λ̂1 − λ̄1)δβA, ȳ := ȳ + (λ̂1 −
λ̄1)δy, ḡ := ḡ+(λ̂1−λ̄1)δg, and λ̄1 = λ̂1. If λ̂1 = 0
stop. Else, do the following. If î ∈ I, remove î

from I, incrementally update the cholesky factor
L (see text below) to remove the effect of example
î; else, include î in I, incrementally update the
cholesky factor L (see text below) to include the
effect of example î. Go back to step 2.

The Cholesky update in step 4 can be implemented as
follows. Let x̂ be the |A| dimensional vector formed
by taking the î-th example, xî and keeping only the
elements corresponding to A. Then the update corre-
sponds to forming the Cholesky factors of LL′ ± x̂x̂′.
This can be accomplished in O(|A|2) effort.

Though the complexity of one loop of steps 2-4 of
SVM-LARS is same as the complexity of one loop
of steps 2-3 of RLS-LARS, the overall complexity of
SVM-LARS is higher than that of RLS-LARS due to
the number of loops executed. Typically, examples
only move out of I as the algorithm proceeds (note
that, at the beginning, I = {1, . . . , n}). For our analy-
sis here, let us assume that this is true. Let nch be the
number of examples that move out of I by the time
d variables have been included. The total number of
loops of steps 2-4, then, is d + nch. The total cost of
the algorithm is bounded by O((nnz + d2)(nch + d)).
Let nsv denote the number of support vectors (i.e., |I|)
in the SVM which uses all the variables. Then we have
nch ≤ (n− nsv). This bound gives us a good estimate
of nch.

For problems in which nch is large (nsv is small)
the extra cost of SVM-LARS over RLS-LARS (i.e.,
O((nnz + d2)nch)) can be big. There is a simple way
to reduce this extra cost considerably while bringing
in some approximateness to the algorithm that is not
serious. For lack of space, we skip all these details
here. We have also developed an efficient method for
tracking an approximation of the leave-one-out error
as a function of λ1. For lack of space we skip these de-
tails too. This approximation serves well for selecting
the number of features to use.

3. Empirical Analysis

In this section we empirically evaluate the usefulness
of LARS as a feature selection tool for SVM and
RLS, and, in the process, also compare SVM and RLS
as well as study the usefulness of keeping (or leav-
ing out) the L2 regularizer term in f . Although we

have conducted the evaluation on many datasets, here
we only report representative results on the following
datasets.8

• Fbis-4: 1 binary problem of the Fbis dataset cor-
responding to class 4 (with 387 examples) against
the rest; n = 2463; m = 2000.

• La1-2, La1-4: 2 binary problems of the La1
dataset corresponding to class 2 (with 555 exam-
ples) and class 4 (with 943 examples) against the
rest; n = 3204; m = 31472.

• Ohscal-7: 1 binary problem if the Ohscal dataset
corresponding to class 7 (with 1037 examples)
against the rest; n = 11162; m = 11465.

• Reuters-Money-fx : 1 binary problem of the
Reuters dataset corresponding to the class money-
fx (with 717 examples) against the rest; n =
12902; m = 37207.

• News-3 : 1 binary problem of the 20 News-
groups dataset corresponding to class 3 (with 1000
examples) against the rest; n = 19928; m =
62061.

All these problems have a reasonably rich number of
examples in each class. We study generalization per-
formance as a function of the number of features. F-
measure is used as the generalization performance met-
ric. To evaluate the set of features obtained by LARS
we compare it (in terms of the F-measure) against the
set of features obtained by ordering according to in-
formation gain (IG).9

The following six methods were compared: SVM-
LARS (λ2 = 1); SVM-LARS (λ2 = 0); SVM-IG; RLS-
LARS (λ2 = 1); RLS-LARS (λ2 = 0); and, RLS-IG.
Note that, setting λ2 = 0 with SVMs does define a
meaningful model since the L1 regularizer is present.
For RLS, setting λ2 = 0 corresponds to the Lasso
model (Tibshirani, 1996). For the case of non-zero λ2,
we did not tune λ2, mainly to keep the computations

8Fbis, La1 and Ohscal, which use binary representa-
tion for the words, are as in Forman (2003). The Reuters
dataset is taken from (Lewis, 2004) and 20 Newsgroups is
as in Rennie and Rifkin (2001). For these two datasets we
use normalized tf-idf representation.

9One could also consider other good filter methods such
as BNS (Bi-Normal Separation) (Forman, 2003). We tried
BNS, but it did not perform as well as IG on the datasets
chosen by us. This is not inconsistent with the findings
of Forman (Forman, 2003) who found BNS to be better,
overall, on a range of problems in which many had large
class skew. The binary problems chosen by us do not have
big class skew.

Generalized LARS for SVM Feature Selection

manageable; also, it has been generally observed that,
for text classification problems λ2 = 1 is a good choice
that gives a performance close to optimal. For each
classifier used in our study we do a post-processing
tuning of the threshold to optimize the F-measure.
The validation outputs needed for doing this were ob-
tained using the LOO approximation mentioned in sec-
tion 2 for LARS and using 10-fold cross validation for
IG ordering.10

Since the training set/testing set split can cause vari-
ability that needs to be shown for a proper compari-
son of the methods, we set-up the comparison exper-
iments as follows. Each binary dataset was randomly
divided into 4 (classwise stratified) groups; 4 runs were
made, each time keeping one group as the testing set
and the remaining 3 groups as the training set. Thus,
for each classifier method and a given number of fea-
tures selected, we get 4 F-measure values as estimates
of generalization performance. Let Fmin, Fmean and
Fmax denote the minimum, mean and maximum of
these four values. The experiment was repeated for
10 different choices of the random 4-groupings; Fmin,
Fmean and Fmax were averaged over the 10 runs to
get the averaged values, avFmin, avFmean and avFmax.
While avFmean gives an estimate of the expected F-
measure value, avFmax − avFmin gives us an estimate
of its variability. For each method, we plot avFmin,
avFmean and avFmax as a function of the number of
features chosen. The analysis was done upto a max-
imum of 2000 chosen features. We also ran SVM
and RLS using all the features in a given dataset
and λ2 = 1 to get another baseline for comparison.
Only for the Reuters − Money − fx dataset, we did
not form any random groupings; going by standard
practice for the Reuters dataset, we simply use the
ModApte train/test split once.

For the six binary problems and the various methods,
Figure 1 gives plots of the F-measure statistics as a
function of the number of features chosen. For the
LARS approaches, the number of features is a non-
linear scaling of λ1. (Note that, as λ1 decreases more
features get included.) Also, since features are sequen-
tially added one at a time, the performance values for
LARS are available for every integer value of the num-
ber of features. Since we are using F-measure, bigger
values mean better performance. For the IG ordering
we fixed λ2 = 1 and only did the experiments for the
following values of the number of features: 2, 4, 8, 16,
32, 64, 128, 200 + k ∗ 150, k = 0, 1, . . . , 12. Figure 1

10Like Genkin et al (Genkin et al., 2004) one could also
simply use the training outputs to adjust the threshold.
This will reduce the computational cost, but the perfor-
mance of the chosen threshold will be slightly inferior.

also gives the statistics associated with the classifier
which uses all features and has λ2 = 1.

We can group the findings under three headings.

LARS versus IG. Although the initial, small set of
features chosen by IG is very good (sometimes these
initial features are even quite better than those cho-
sen by LARS), LARS usually does much better in the
middle phase where the performance either peaks or is
approaching the peak. This superiority is very strik-
ing in some cases; see, for instance, the performance
on Ohscal-7. In several cases, peak performance is
attained only when the number of features chosen is
very large. Even in such problems, LARS usually does
much better in pointwise comparison at various values
of the number of features. This win makes LARS to be
very useful in situations where there is a need to build
classifiers using only a restricted number of features.
La1-2 is one such case.

SVM versus RLS. In many cases, the performance
of RLS is severely degraded by the inclusion of a large
number of features. This is regardless of whether
LARS or IG was used for feature selection. Rarely,
a lesser degree of such degradation occurs with SVM
too (see Ohscal-7, for instance). In terms of the peak
performance achieved, SVM usually did quite better;
also, SVM achieved the peak with less number of fea-
tures.

Keeping (λ2 = 1) versus Leaving out (λ2 = 0)
the L2 regularizer. In the initial phase of feature
selection, the two classifiers are usually identical. This
is because, in this phase, the data-fit term gets the
maximum importance. After the gradient of the data-
fit term has reached small values, the classifier with
the L2 regularizer term concentrates on bridging the
effects of the regularizer term and the data-fit term,
while the classifier without the L2 regularizer term
continues to pick up features to aggressively reduce
the gradient of the data-fit term towards zero, leading
to overfitting and a severe loss in generalization perfor-
mance. It can also be seen that the number of features
at which the λ2 = 0 classifier falls to low values is gen-
erally much smaller for SVM than for RLS. This can
be easily explained by the fact that, while RLS always
concentrates on all the examples, the SVM only has to
fit the active examples (the elements of I) in its ‘least
squares’ process. Thus the SVM can achieve this fit
using much less features.

In some cases, peak generalization performance is
achieved in the initial phase of feature selection itself;
see Fbis-4, for instance. In such cases the absence of
the L2 regularizer is harmless. But, in several cases

Generalized LARS for SVM Feature Selection

(see the SVM case in La1-2, for example) the perfor-
mance of the classifier with the L2 regularizer keeps
rising as more features are added. For such problems,
leaving out the L2 regularizer is clearly a poor choice.

There are also some interesting cases (Reuters-Money-
fx ; News-3) where, in the initial phase of feature
selection, leaving out the L2 regularizer gives much
better performance.11 Genkin et al (Genkin et al.,
2004) obtained very good results on the Reuters’ bi-
nary problems using their logistic regression method
with the L1 regularizer. Our LARS method corre-
sponding to leaving out the L2 regularizer is very sim-
ilar to their method; the two methods mainly differ in
the loss function employed and the way λ1 is tuned.
Our experiments indicate that it is safer to try, both
λ2 = 1 and λ2 = 0, and choose the better one, say,
based on cross validation.

4. Conclusion

In this paper we applied generalized LARS to lin-
ear SVMs and showed that this leads to effective fea-
ture selection. SVM-LARS is close in spirit to an
SVM model in which both, L2 and L1 regularizers
are present. An important advantage of the SVM-
LARS algorithm is its ability to finely track the solu-
tion with respect to λ1 without losing efficiency. The
model without the L2 regularizer is also an interesting
model that is worth considering. We are working on
developing an efficient algorithm for applying gener-
alized LARS to logistic regression. For this case, the
solution curve with respect to λ1 is a nonlinear curve,
and hence the algorithmic aspects are more challeng-
ing.

In our empirical study we used only the standard ‘Bag-
Of-Words’ (BOW) representation for forming the fea-
tures. It is also possible to include other derived fea-
tures, say, the distributional word cluster features con-
sidered by Bekkerman et al (Bekkerman et al., 2003),
who found that their cluster representation is better
than that of BOW on some datasets, but worse on
others. By putting the BOW features and the derived
features together and using LARS to do feature selec-
tion, there is hope for getting the best properties of
both representations.

11This can be very useful in situations where there is
a need to work with a limited number of features. But,
if that is not the case, keeping the L2 regularizer could
be the better option. Note, for example, in the case of
News-3 that, the performance of the L2 regularizer using
all features is much better than the peak performance of
the classifier with λ2 = 0.

References

Bekkerman, R., El-Yaniv, R., Tishby, N., & Winter,
Y. (2003). Distributional word clusters vs. words for
text categorization. Journal of Machine Learning
Research, 3, 1183–1208.

Efron, B., Hastie, T., Johnstone, T., & Tibshirani, R.
(2004). Least angle regression. Annals of Statistics,
32, 407–499.

Forman, G. (2003). An extensive empirical study of
feature selection metrics for text classification. Jour-
nal of Machine Learning Research, 3, 1289–1305.

Genkin, A., Lewis, D. D., & Madigan, D. (2004).
Large-scale bayesian logistic regression for text cat-
egorization.

Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant fea-
tures. Proceedings of the Tenth European Conference
on Machine Learning (ECML) (pp. 137–142).

Lewis, D. D. (2004). Reuters-21578 text cat-
egorization test collection: Distribution 1.0
readme file (v 1.3) (Technical Report).
www.daviddlewis.com/resources/.

Rennie, J. D. M., & Rifkin, R. (2001). Improving mul-
ticlass text classification with the support vector ma-
chine (Technical Report). Artificial Intelligence Lab,
MIT.

Rosset, S., & Zhu, J. (2004). Piecewise linear regular-
ized solution paths.

Tibshirani, R. (1996). Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society, B, 58, 267–288.

Yang, Y., & Pedersen, J. O. (1997). A comparative
study on feature selection in text categorization.
Proceedings of the 14th International Conference on
Machine Learning (pp. 412–420).

Zou, H., & Hastie, T. (2005). Regularization and vari-
able selection via the elastic net. Journal of the
Royal Statistical Society, B.

Generalized LARS for SVM Feature Selection

0 1000 2000
0.6

0.65

0.7

0.75

0.8

0.85

No. of features

Fbis−4 (SVM)

0 1000 2000
0.6

0.65

0.7

0.75

0.8

0.85

No. of features

Fbis−4 (RLS)

0 1000 2000
0.7

0.75

0.8

0.85

0.9

No. of features

La1−2 (SVM)

0 1000 2000
0.7

0.75

0.8

0.85

0.9

No. of features

La1−2 (RLS)

0 1000 2000
0.7

0.75

0.8

0.85

No. of features

La1−4 (SVM)

0 1000 2000
0.7

0.75

0.8

0.85

No. of features

La1−4 (RLS)

0 1000 2000
0.55

0.6

0.65

0.7

0.75

No. of features

Ohscal−7 (SVM)

0 1000 2000
0.55

0.6

0.65

0.7

0.75

No. of features

Ohscal−7 (RLS)

0 1000 2000
0.65

0.7

0.75

0.8

No. of features

Money−fx (SVM)

0 1000 2000
0.65

0.7

0.75

0.8

No. of features

Money−fx (RLS)

0 1000 2000
0.55

0.6

0.65

0.7

0.75

0.8

No. of features

News−3 (SVM)

0 1000 2000
0.55

0.6

0.65

0.7

0.75

0.8

No. of features

News−3 (RLS)

Figure 1. F-measure, as a function of the number of features chosen, for the six binary problems. For each problem there
are two plots: the left one has the SVM results and the right one has the RLS results. In each plot, the avF-measure values
of LARS with λ2 = 1 are given as continuous (black) lines and the avF-measure values of LARS with λ2 = 0 are given by
(blue) broken lines. The avFmin, avFmean and avFmax values for the IG ordering with λ2 = 1 are respectively shown by
the (red) symbols, +, and ×. The avFmin and avFmax values for the classifier with λ2 = 1, using all the features are
shown by dotted (black) horizontal lines; the corresponding avFmean value is shown by a continuous horizontal (black)
line.

