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Supervised dimensionality reduction using mixture models

Sajama, Alon Orlitsky

{sajama, alon}@ucsd.edu

Abstract

Given a classification problem, our goal is to find a low-dimensional linear transformation of
the feature vectors which retains information needed to predict the class labels. We present
a method based on maximum conditional likelihood estimation of mixture models. Use of
mixture models allows us to approximate the distributions to any desired accuracy while use
of conditional likelihood as the contrast function ensures that the selected subspace retains
maximum possible mutual information between feature vectors and class labels. Classification
experiments using Gaussian mixture components show that this method compares favorably
to related dimension reduction techniques. Other distributions belonging to the exponential
family can be used to reduce dimensions when data is of a special type, for example binary
or integer valued data. We provide an EM-like algorithm for model estimation and present
visualization experiments using both the Gaussian and the Bernoulli mixture models.

1 Introduction

Dimensionality reduction is a frequently used pre-processing step for supervised learning tasks.
Reducing dimensions may improve classifier performance since it can suppress noise in the data
and act as a form of regularization. Also, meaningful low dimensional representation can help in
visualizing data sets and is an important tool in exploratory data analysis.

In this paper, we consider the problem of finding discriminative linear feature transformations.
Given a collection of d-dimensional training samples and corresponding class labels, the goal is
to find an L-dimensional hyperplane in R

d such that the projected samples belonging to various
classes are well separated. Our approach to this problem, termed supervised dimensionality
reduction using mixture models (SDR-MM), is to model each class using a mixture model. The
parameters of the model include affine parameters for a subspace to which the mixture means
are constrained. Gaussian mixtures can approximate arbitrarily complex densities by lowering
the minimum allowed variance and increasing the number of mixture components. Hence, this
approach is semi-parametric - the subspace is determined by a set of affine parameters, while
the distributions on the projected space are approximated non-parametrically. We use maximum
conditional likelihood (MCL) estimation to determine the parameters of the lower dimensional
subspace which ensures that the predictive information in the feature vectors is retained in the
projected space. MCL has been widely used as a discriminative objective function for estimating
hidden markov models in speech recognition and for Gaussian mixture models in the context of
classification in [JP98].

Some dimension reduction methods make restrictive parametric assumptions about the distri-
butions. For example, Fisher’s linear discriminant analysis (LDA) can be obtained by maximum
likelihood estimation assuming that the classes are Normally distributed with a common covari-
ance matrix and different means, with the means constrained to lie in an L dimensional subspace.
Other parametric methods include projection pursuit regression [FS81] and Generalized additive
models [HT86].
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More recently, several semi-parametric methods have been proposed for supervised dimen-
sionality reduction including sliced inverse regression [Li91] and principal Hessian directions
(pHd) [Li92]. In terms of the density model used, the method most closely related to SDR-MM
is Mixture discriminant analysis (MDA) [HT96] which generalizes LDA by approximating each
of the classes by a mixture of Gaussians all of which have a common covariance matrix. SDR-
MM differs from MDA in two important ways. Firstly, in SDR-MM, we use spherical Gaussian
distributions while in MDA each Gaussian has the same full-covariance matrix. While this may
mean that SDR-MM needs to use more mixture components for each class, the total number of
parameters to be estimated is often reduced from not having to estimate the d2 parameters of
the covariance matrix. The second difference is that in MDA, parameters are estimated using
maximum likelihood, while in SDR-MM, the parameters are estimated discriminatively by max-
imizing the conditional likelihood which also eliminates the need for subclass shrinkage used in
MDA.

The other dimensionality reduction method closely related to SDR-MM is kernel dimension-
ality reduction (KDR) [FBJ04] which also chooses the lower dimensional subspace based on
maximum mutual information principle. SDR-MM differs from KDR in the way in which it mea-
sures the mutual information. While SDR-MM uses conditional likelihood, the KDR objective
function is based on cross-covariance operators on reproducing kernel Hilbert spaces. Another re-
lated method was proposed in [TC00] in which instead of using the Shannon mutual information,
a method is given to estimate a Renyi-entropy based expression for mutual information.

Our approach using Gaussian components can also be viewed as a prototype method with
Euclidean distance as measure of similarity. Recently, there has been a lot of work on a proba-
bilistic formulation of principal component analysis and its extension using the exponential family
of distributions [Tip99, CDS01, KG01, SO04b]. The idea common to these extensions is that an
appropriate Bregman distance (corresponding to various exponential family distributions) should
be used in place of Euclidean distance if data is of a special type, for example binary or integer
valued. In SDR-MM also, we allow the mixture components to be drawn from the exponen-
tial family in order to allow the method to be suitable for the various data types. SDR-MM
is an adaptation of the unsupervised method - semi-parametric principal component analysis
(SP-PCA) [SO04a, SO04b] to the supervised scenario.

We describe an EM-like algorithm for model estimation which uses iteratively re-weighted
least squares in the maximization step. We present classification experiments which show that
SDR-MM compares favorably to three related methods - pHd, MDA and KDR. We also show
visualization examples for real-valued and binary data.

2 Density model with Gaussian mixture components

We are concerned with multi-class supervised problems where the feature vectors x lie in R
d and

the class labels y are drawn from the set {1, . . . , M}. We are given training data (x1, y1), . . . , (xn, yn),
which are independently and identically distributed samples from a probability distribution
P (y)P (x|y). Each class m is modelled by a mixture of cm number of Gaussians N (x|θ, σI)
(σ common to all classes). Let c =

∑M
m=1 cm be total number of mixture components over all

classes, Π = {π1, . . . , πc} be the prior over these components and for each k ∈ {1, . . . , c}, let
ψk(m) be given by

ψk(m) =

{

1 if mixture component k ∈ class m
0 otherwise
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Let D(x,w) denote the squared Euclidean distance between x and w. The distribution specified
by this model is

P (Y = m) =
c

∑

k=1

ψk(m)πk

P (x, Y = m) =
c

∑

k=1

πkψk(m)(2π)−d/2e−D(x,θk)/2σ2

In order to obtain low dimensional representation and measure discriminative capability of feature
transformations, we consider the constrained Gaussian mixture model. The means of Gaussians
from all classes are restricted to lie in a lower (L) dimensional hyperplane in R

d. We represent this
constraint on mixture parameters using L×d rotation matrix V and d-dimensional displacement
vector b. Each mean θk belonging to this hyperplane can be represented by the L dimensional
vector ak

θk = akV + b

We use the matrix A, whose k’th row is ak, to represent the mixture component parame-
ters. Hence our model is parameterized by Θ = {Π, ψ, A, V, b}. The assumption that the
mixture components are spherical Gaussians with common variance ensures that we measure
the discriminative capabilities of linear projection, since the direction perpendicular to the
plane (V, b) is irrelevant in any metric involving relative values of likelihoods P (x|θk). To
see why this is the case, consider xp, the point on the hyperplane (V, b) closest to x. Now,
P (x|θk) ∝ exp(−{D(x,xp) + D(xp, θk)}/2σ2) and for a fixed x, the factor involving D(x,xp) is
common to all θk’s on the hyperplane (V, b) and hence cancels out.

Like LDA and MDA, there is an inherent classifier associated with the model we train for
reducing dimensions. Since each class is modelled by a mixture, the distribution P (y = m|x) can
be obtained using Bayes rule and used to label any given test vector x.

2.1 Relationship to radial basis function networks

The conditional distribution P (y = m|x) is obtained from the model using Bayes formula

P (y = m|x) =
c

∑

k=1

ψk(m)
πke

−D(x,θk)/2

∑c
k′=1 π′

ke
−D(x,θ

′

k)/2

=
c

∑

k=1

ψk(m)P (θk|x)

This expression corresponds to a radial basis function (RBF) network in which the normal-
ized basis functions are given by φk(x) = P (θk|x) and the second layer weights are given by
ψk(m) = P (y = m|θk). RBF networks have been a topic of extensive research since their use
can be motivated from the point of view of function approximation, regularization, noisy in-
terpolation, density estimation, optimal classification theory and potential functions [Bis95].
The important distinction between our approach and typical RBF network applications lies in
the training procedure used. We perform simultaneous supervised training of the first and sec-
ond layer weights whereas in RBF networks, typically the first layer weights are picked using
unsupervised techniques.
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2.2 Use of spherical Gaussians

We have already noted that use of fixed-variance spherical Gaussians corresponds to measuring
discriminative capability of a linear subspace when training samples are projected onto it. That
sphericality is not a restrictive assumption follows from the universal approximation property of
RBF networks with spherical gaussian kernels [PS91]. The idea is that spread of a given class
along the subspace (V, b) can be approximated by spread of Gaussian means belonging to that
class, assuming that a small enough variance is chosen. Use of full covariance matrices makes it
necessary to regularize model estimation by penalizing the objective function. The assumption
that all Gaussians have common spherical covariance reduces the number of parameters to be
estimated by O(d2) and thereby improves model generalization.

Our method is a soft equivalent of prototype methods like LVQ and its probabilistic nature
allows data to simultaneously influence multiple prototypes - attracting prototypes of the same
class and repelling prototypes belonging to a different class during MCL estimation - thereby
generating a large-margin like effect. This provides a simple alternative to subclass shrinkage
used in MDA [HT96]. There is a tradeoff between regularization and approximation capability
- smaller variance is better for approximation and larger variance for the regularization effect
described above.

3 The objective function

We propose using conditional likelihood of the training data as the objective function for choosing
appropriate feature transformations, i.e., we pick the lower dimensional space specified by (V, b)
using MCL estimation.

(Vopt, bopt) = arg max
(V,b)

max
A,Π

n
∏

i=1

P (yi|xi, Θ) (1)

Use of this objective function can be motivated in several ways. In a classification problem,
we are interested in finding a model which approximates the observed empirical conditional
distribution Pemp(y|x). Maximizing conditional likelihood is equivalent to minimizing the KL
divergence between Pemp(y|x) and the model P(V,b)(y|x). Also, on a related note, MCL estimation
is equivalent to maximum mutual information estimation [JP98, KJO03]. Hence, using this
objective function is equivalent to picking those transformations that preserve maximum amount
of the relevant information (under our model) between the distributions of x and y.

We present simple examples of projecting two-dimensional samples onto a line to illustrate
how MCL estimation extends the applicability of past techniques based on constrained mixture
of Gaussians. Figure 1 shows a two class example where each class is a mixture of four spherical
Gaussians. Projection using low-rank ML estimation fully merges samples from the two classes
while MCL estimated mixture model is able to find the best discriminant (see also [JP98]).

Figure 2 shows an interesting example where each of the two classes are generated by a single
Gaussian with almost the same mean, but they have very different variance in one direction. If
we used ML estimation with no constraints on the covariance matrices to find a one-dimensional
subspace, we would get the ML solution subspace shown in Fig. 2 even if each class is allowed to
be modelled by a mixture of several Gaussians. This is because no model can be better than the
‘true distribution’ in terms of likelihood of observed data (when data sample is large enough).
However, since MDA imposes common covariance constraints on all mixture components of all
classes, the MDA solution with three gaussian components for each class, coincides with the MCL
solution in this case.
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class 1

class 2Best Discriminant  

    MCL Solution   

ML Solution 

Figure 1: Illustrating advantage of MCL : Each class is a mixture of spherical Gaussians. ♦ and
∗ denote means of gaussian components of classes 1 and 2 respectively.

class 1

class 2

            

ML solution    

Best Discriminant  

   MCL solution    

Figure 2: Illustrating advantage of MCL : Two classes with different covariance matrices. ♦ and
∗ denote means of gaussian components of classes 1 and 2 respectively.

Simulation studies [KJO03] have found that MCL classifiers can compete with and sometimes
outperform other discriminative and generative classifiers. For fixed (V, b), picking the Gaussian
means which maximize conditional likelihood is equivalent to estimating a discriminative mixture
classifier based on data projected onto the subspace given by (V, b) (see also Section 2). Hence
optimizing the function (1) is equivalent to picking the best subspace for a discriminative Gaussian
mixture classifier.

4 Exponential family distributions as mixture components

As we noted before, using Gaussian means and constraining them to a lower dimensional subspace
of data space is equivalent to using a ‘soft’ prototype method where the prototypes are real
valued and D(x, θ), the distance between a point x and prototype θ, is Euclidean. This distance
measures the loss of information due to approximating x using the prototypes. This Gaussian
model may not appropriate for other data types, for instance binary or integer data. The Bernoulli
distribution may be better for binary data and Poisson for integer data. These three distributions,
along with several others, belong to a family of distributions known as the exponential family
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[MN83] and can be written in the form

log P (x|θ) = log P0(x) + xθ − G(θ)

Here, θ is called the natural parameter and G(θ) is a function that ensures that the probabilities
sum to one. An important property of this family is that the mean µ of a distribution and its
natural parameter θ are related through a monotone invertible, nonlinear function µ = g(θ) =
G′(θ). It can be shown that the negative log-likelihoods of exponential family distributions
can be written as Bregman distances (ignoring constants) which are a family of generalized
metrics associated with convex functions [CDS01, AW01, FW00]. Several studies, in the area of
unsupervised dimensionality reduction of special data types, have found that use of exponential
family models yields better low dimensional representations [Tip99, CDS01, KG01, SO04b].

Hence we extend the model described in Section 2 by using the appropriate multivariate
exponential family distributions for mixture components in the place of fixed variance Gaussians,

log P (x|θ) =
d

∑

j=1

{log P0j(xj) + xjθj − Gj(θj)} (2)

where xj and θj are the j’th components of x and θ. Note that by using different distributions
for different components of the feature vector x, we can model mixed data types. The prototypes
are now the natural parameters of these distributions and the measure of similarity is the negative
log likelihood − log(P (x|θ)) which is equivalent to using sum of Bregman distances between
components xj and θj . We note that from the RBF network point of view, this extension
corresponds to choosing different kernel functions (which determine region of influence of feature
vectors) depending on the type of data.

5 Low dimensional representation

We discuss two of the several ways in which low dimensional representations can be obtained
using the model Θ. The first method is to represent x by that point θ on (V, b) that is closest
according to the appropriate Bregman distance (it can be shown that there is a unique such θopt

on the plane). This representation is a generalization of the standard Euclidean projection.
The second method of low dimensional representation is based on Bayes rule. Each feature

vector x induces a posterior distribution over the latent domain P (θi|x) = πiP (x|θi)/P (x).
Under our model, all the information in x about y is contained in this posterior distribution since
y and x are independent when conditioned upon the latent variable θ. Hence x can be represented
by a suitable function of this posterior and we choose to use the mean. This representation
has been used in the unsupervised case successfully to get meaningful low dimensional views
[TB97, Tip99, KG01, SO04b].

6 Algorithm

Several iterative algorithms have been proposed for MCL estimation of mixture models, see for
example [JP98, KJO03]. The common thread in these algorithms is that each iteration involves
evaluating a tight lower bound which touches the objective function at the current parameter
value. Model parameters are then updated by maximizing this lower bound. This technique was
called bound maximization in [JP98] and is the basis of many iterative algorithms including the
expectation maximization (EM) algorithm.

We use the idea of bound maximization and derive an algorithm for MCL estimation under
low rank constraint on mixture component parameters Θ. Let Θt and Θt+1 denote the current
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and updated parameter values at iteration t. The change in conditional log-likelihood at iteration
t can be written as a difference of two terms

∆l =
n

∑

i=1

{log P (yi|xi, Θ
t+1) − log P (yi|xi, Θ

t)}

=
n

∑

i=1

log
P (xi, yi|Θ

t+1)

P (xi, yi|Θt)
−

n
∑

i=1

log
P (xi|Θ

t+1)

P (xi|Θt)

≥
n

∑

i=1

c
∑

k=1

ẑik log P (θk,xi, yi|Θ
t+1)

−
n

∑

i=1

ρiP (xi|Θ
t+1) + constant

where, ρi = 1/P (xi|Θt) and

ẑik =
P (θk,xi, yi|Θ

t)
∑c

k′=1 P (θk′ ,xi, yi|Θt)

Here the first term was lower bounded using Jensen’s inequality (similar to the EM algorithm)
and the second term using log w ≤ w − 1. At each iteration, we compute the lower bound by
computing ẑik and ρi for i = 1, . . . , n and k = 1, . . . , c. The lower bound is then optimized by
alternately maximizing over each of Π, A, V and b while holding the rest of the parameters
constant.

The lower bound can be written as (ignoring constants since they do not affect the optimiza-
tion steps)

∆l =
∑

i

∑

k

ẑik log πk +
∑

i

∑

k

ẑik log ψk(yi) (3)

+
∑

i

∑

k

ẑik log P (xi|θk) −
∑

i

∑

k

ρiπkP (xi|θk)

Updating Π : Πt+1 is obtained by maximizing the Lagrangian (formed using terms in ∆l
involving πk)

L =
c

∑

k=1

{c1k log πk − c2kπk} + λ(
c

∑

k=1

πk − 1)

where, c1k =
∑n

i=1 ẑik, c2k =
∑n

i=1 ρiP (xi|θk) and λ is a lagrange multiplier used to impose the
constraint that the latent distribution sums to one. This optimization is a little more complicated
than its counterpart in the EM algorithm for ML estimation since we have both linear and
logarithmic terms. Differentiating L and setting the derivative to zero, we get πk = c1k/(c2k −λ).
We need to find λ that satisfies f(λ) =

∑c
k=1 c1k/(c2k − λ) = 1. There is no explicit solution

for this equation, but it is easy to verify that at λ0 = mink(c2k − c1k), f(λ0) > 1 and that as
λ → −∞, f(λ) → 0. Moreover, f(λ) is continuous and monotone in the region [−∞, λ0] implying
that there is a unique λopt such that f(λopt) = 1, which can be found using bisection line search.

Optimizing A, V and b : For optimizing A and V, we use an iterative weighted least
squares method similar to that used in fitting generalized linear models [MN83], i.e., we apply
the Newton-Raphson (NR) procedure to the equations obtained by setting the derivative of ∆l
to zero. Upon taking the first and second derivatives with respect to the components of the
matrix A, it turns out that each row can be updated independently of the others in a given
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iteration. This decoupling is convenient since it means that updating the parameters involves
smaller matrix operations. Similarly, we find that each column of V and each component of b
can be updated independently.

∆l depends on A, V and b only through the last two terms in Equation 3. So, ignoring
constants, we want to maximize

c
∑

k=1

d
∑

j=1

(θkj x̃kj − G(θkj)z̃k) −
n

∑

i=1

c
∑

k=1

ρiπkP (xi|θk) (4)

where, x̃kj =
∑n

i=1 ẑikxij and z̃k =
∑n

i=1 ẑik and P (xi|θk) is as defined before in Equation 2.
Each row of A, ar is updated by adding δar which is calculated using (V ΩrV

t)δar = GRr,
where the d × d matrix Ωr and the L × 1 matrix GRr are given by

[Ωr]jj′ = {z̃r −
n

∑

i=1

ρiπrP (xi|θr)}
∂g(θrj)

∂θrj
δ(j = j′)

+
n

∑

i=1

ρiπrP (xi|θr)(xij′ − g(θrj′))(xij − g(θrj))

[GRr]s =

d
∑

j=1

vsj x̃rj − z̃rg(θrj)

−
n

∑

i=1

ρiπrP (xi|θr)(xij − g(θrj))

Each column of the matrix V , vs is updated by adding δvs obtained by solving (AtΩsA)δvs =
GRs, where the c × c diagonal matrix Ωs, and the L × 1 matrix GRs are given by,

[Ωs]kk = {z̃k −
n

∑

i=1

ρiπkP (xi|θk)}
∂g(θks)

∂θks

+
n

∑

i=1

ρiπkP (xi|θk)(xis − g(θks))
2

[GRs]r =
c

∑

k′=1

ak′r{x̃k′s − z̃k′g(θk′s)

+
n

∑

i=1

ρiπk′P (xi|θk′)(xis − g(θk′s)}

Each column of the row matrix b, bs, is updated by adding δbs obtained by solving Hsδbs =
GRs, where the 1 × 1 matrices Hs and GRs are given by

Hs =
c

∑

k=1

{{z̃k −
n

∑

i=1

ρiπkP (xi|θk)}
∂g(θks)

∂θks

+

n
∑

i=1

ρiπkP (xi|θk)(xis − g(θks))
2}
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GRs =
c

∑

k′=1

{x̃k′s − z̃k′g(θk′s)

n
∑

i=1

ρiπk′P (xi|θk′)(xis − g(θk′s)}

Note that using the NR method does not guarantee monotone increase in the value of L̃.
Monotonicity can be enforced using standard optimization procedures like line search or the
trust regions method [BGLS03].

Computational complexity : Time taken for each iteration of this algorithm is O(cdnL2).
Computing ẑik and ρi involve computing P (xi|θk) which is expensive and is a common problem
faced in maximum likelihood estimation and in training of RBF networks. [Omo87] gives a
procedure for speeding up this procedure using the k-d tree data structure by identifying relevant
prototypes (for each x) thereby avoiding unnecessary computation.

7 Experiments

We experimented with the Gaussian mixture model on four real-valued datasets and with the
Bernoulli mixture model on a binary set. As noted in Section 2.2, for the Gaussian mixture model,
an appropriate variance should be chosen to achieve the right tradeoff between regularization
and approximation capability. Also, the value of P (xi|θk) can become very small and lead to
computational difficulties if the variance is chosen to be too small. In the experiments reported
here, we used fixed variance Gaussians and the data was sphered. The variance was selected
by trying a few values ranging between 0.5 and 2 and choosing the variance that maximized
conditional log-likelihood (a part of the training set was used for validation). As with most
iterative optimization methods, the model estimated by the SDR-MM algorithm depends on
parameter initialization. We tried a few different random starts and chose the model which gives
highest conditional log-likelihood on training data (validation was not used).

7.1 Classification results

We give classification results comparing SDR-MM with KDR, MDA and pHd. We modified the
matlab package of Kernel ICA [Bac02] to obtain the KDR results. The variance parameter for
KDR was gradually decreased (between iterations) to two as suggested in [FBJ04]. For the
experiments with MDA and pHd, we used the mda and dr packages in the R language. We used
four data sets from the UCI machine learning repository, viz. Heart disease, Ionosphere, Breast
cancer and waveform data sets (summarized in Table 1).

Table 2 shows classification results obtained by first projecting data using the various methods
and then using SVM to classify the projected data. For MDA and SDR-MM, we also give results
using the inherent classifier that is obtained using the probability densities estimated in the
process of finding the lower dimensional space. The classification rates shown in the table are
averaged 10-fold cross validation results. The t-values of the paired significance tests comparing
SDR-MM, MDA and KDR are given in Table 3. We found that SDR-MM performs significantly
better than KDR on all of the data sets except one - the Ionosphere data. SDR-MM also did
better than MDA consistently, but the significance t-values were not (on an average) as high as
the comparison with KDR.
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Table 1: Description of data sets for the classification problem.

Data set dim. of X training sample test sample

Heart disease 13 149 148

Ionosphere 34 151 200

Breast cancer - Wisconsin 30 200 369

Waveform 21 300 500

Table 2: Accuracies for classifiers associated with projection onto various lower dimensions.

Data set L pHd KDR MDA SDR-MM

SVM SVM SVM Inherent SVM Inherent

Heart 1 52.37 80.68 77.84 78.31 80.81 81.28

3 68.92 77.43 77.97 79.12 80.95 82.50

5 73.31 76.82 80.74 77.97 81.49 82.03

Ionosphere 1 68.80 90.28 75.75 76.60 87.14 86.86

3 82.75 95.28 86.9 85.55 89.71 87.71

5 87.65 94.88 88.85 85.90 91.14 89.43

Breast cancer 1 73.88 93.82 92.55 93.31 95.50 95.80

3 84.23 90.92 93.36 94.2 95.83 95.88

5 90.41 88.59 93.88 94.39 95.85 96.02

Waveform 1 - 59.32 60.58 61.00 60.98 61.58

2 - 82.80 84.40 84.86 85.16 85.56

4 61.6 79.08 83.78 83.10 84.36 84.88

Table 3: Calculated t-values for comparison between various dimension reduction methods fol-
lowed by SVM classifier. Paired samples test of significance for 10-fold cross validation is sig-
nificant with probability 0.05/0.01/0.001 if t-value is higher than 2.23/3.17/4.59, respectively.
Positive/negative t-value means that the first/second classifier, respectively, is better than the
other.

Data set L SDR-MM vs KDR SDR-MM vs MDA KDR vs MDA

Heart 1 0.13 0.90 0.70

3 2.16 0.94 -0.17

5 4.60 0.91 -2.82

Ionosphere 1 -1.62 3.44 6.06

3 -3.34 1.94 7.37

5 -2.78 1.18 7.06

Breast cancer 1 2.50 4.52 1.69

3 4.12 4.00 -1.68

5 5.23 2.44 -3.67

Waveform 1 2.11 0.47 -1.40

2 3.58 1.69 -4.18

4 6.53 1.08 -6.06

7.2 Visualization - Gaussian case

For the visualization experiment we used the Waveform data set. We trained a model with
30 Gaussian components (10 for each class) and with mean parameters constrained to a four-
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(a) Projection onto directions 1 and 2 - SDR-MM
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(b) Projection onto directions 3 and 4 - SDR-MM
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(c) Projection onto directions 1 and 2 - KDR
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(d) Projection onto directions 3 and 4 - KDR
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(e) Projection onto directions 1 and 2 - MDA
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(f) Projection onto directions 3 and 4 - MDA

Figure 3: Some two dimensional views of waveform dataset projected onto the four basis vectors
obtained using various methods

dimensional subspace. The estimated matrix V was processed using the Gram-Schmidt procedure
to obtain orthogonal basis for the lower dimensional subspace and the training data was projected
onto this subspace. Figures 3(a) and 3(b) show two views of this four-dimensional projected
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set. The first two coordinates were sufficient to discriminate between the three classes since the
two-dimensional model achieves an error rate close to the minimum possible (Bayes) error (see
Table 2). However, we see that the third coordinate distinguishes one class from the other
two, indicating that maximum mutual information based methods may be able to discover more
discriminating information than what is needed for classification. KDR projection gave similar
lower dimensional views, but with greater overlap among the three classes (Figures 3(c) and
3(d)). In the corresponding projections obtained using MDA, shown in Figures 3(e) and 3(f),
the third and fourth discriminants do not significantly discriminate between the classes.

7.3 Visualization - Binary case

We demonstrate the binary data visualization capability of SDR-MM with Bernoulli conditional
distribution. While performing the experiments we found that the algorithm was much more
likely to get stuck in local minima when the Bernoulli mixture components are used than in
the Gaussian case. The visualization shown in this section was obtained by running the SDR-
MM algorithm several times and picking the best view. For this purpose, we use the ICU data
set [LTAP88] which consists of a sample of 200 subjects who were part of a study on survival
of patients following admission to an adult intensive care unit (ICU). We picked 190 patients
(we only considered Caucasian and African-American patients) and 16 binary features from this
data-set.

The goal is to extract features that predict whether a patient will leave the ICU alive. The
features considered include presence or absence of coma, cancer, fracture and infection, the pa-
tient’s gender and race and whether the admission to ICU was elective or due to an emergency.
The two dimensional projection obtained using MCL estimation of constrained Bernoulli mixture
model is shown in Fig. 4(a). We examined the basis vectors of the lower-dimensional parameter
space obtained using SDR-MM, and found that the features that change most significantly along
the horizontal direction are the type of admission (elective versus emergency) and whether a
fracture was involved. Along the vertical direction, the feature with maximum change is presence
of cancer.
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(a) Projected data
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(b) Five different regions can be detected visually

Figure 4: Two dimensional representation of binary data from the ICU data set : patients who
left the ICU alive are shown by ‘+’ while the patients who died are shown by ‘◦’.

The projected data can be visually divided into five clusters 4(b). Four of the clusters, num-
bered 1, 2, 4 and 5, were relatively ‘pure’, i.e., consist of either people who left the ICU alive
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or those who did not, while cluster 3 consists of both types of people. To further understand
the factors distinguishing the two groups, we compared the mean value of feature vectors corre-
sponding to various pairs of these clusters. We found that the two ’+’ clusters (1 and 4) were
distinguished mainly by presence of fracture, the type of admission and whether the patient was
in coma. The two ’◦’ clusters (2 and 5) were distinguished by infection, coma, whether CPR
was administered prior to admission and cancer. The most interesting comparison was between
the clusters 3 and 4 which were distinguished mainly by whether the admission was elective or
emergency and whether the service provided at admission was medical or surgical. Some con-
clusions that can be readily drawn from this are that people who elected to join ICU to receive
medical attention survived with high probability. Among those who joined the ICU because of
an emergency, those who joined because of a fracture survived with high probability (cluster 1),
though some of these (presumably with severe damage) did not survive. The type of service at
admission and type of admission are highly correlated for this cluster.

8 Conclusion

Semi-parametric PCA is a recently proposed probabilistic alternative to principal component
analysis based on maximum likelihood estimation of latent variable models. In this paper, we
argued that use of maximum conditional likelihood estimation is a natural way to extend this
method to supervised problems. Experiments demonstrate the potential of this method to learn
discriminating transformations and for supervised visualization of high dimensional data.

There are many promising directions for future work. Typically, supervised multi-class di-
mension reduction experiments involve learning directions which discriminate among all classes
simultaneously. Finding projections suitable for separating pairs (or more generally subsets)
of classes can give better discriminative directions. Outputs from these low-complexity classi-
fiers can then be combined to obtain full classifiers with good performance. Another interesting
extension would be to use mixture modelling approach with a suitable objective function for
semi-supervised dimensionality reduction.
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