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ABSTRACT

Logical formulas called invariants are a staple of formal methods
for program analysis. Persistent-state variables appear in these for-
mulas playing their proper intuitive role, which is somewhere be-
tween inputs and internal variables. In software testing theory, on
the contrary, state is not usually accorded explicit treatment. Com-
paring the viewpoints of formal methods and testing theory sug-
gests new roles that formal methods can play in testing. This ex-
amination is motivated by recent systems such as Daikon, which
use both tests and invariants.

1. PROVING AND TESTING

It is a truism that program proving (‘formal methods’) and soft-
ware testing are at opposite ends of a spectrum of software analysis
techniques. One is static, the other dynamic. One can be sound
and complete, the other cannot be. One has the reputation that
it requires a doctorate to use, the other is routinely employed by
untrained technicians. Sometimes the methods are said to comple-
ment each other, but this usually means only that they are unrelated,
not that one aids the other. Apart from one promising early paper
[3] that used test results in proofs, there have been few suggestions
about how one technique can benefit the other.

This paper utilizes the disparate viewpoints of testing and for-
mal methods to discuss and illuminate two concepts of conven-
tional imperative-language programming: persistent state and pro-
gram invariants. These ideas are connected in that persistent-state
variables appear in invariants, where they play a role somewhere
between input variables and internal program variables.

It is helpful to describe testing and proving theory in the sim-
plest terms, to focus attention on fundamental issues rather than
the extensive details of practice. To this end a program is taken as
having an input domain D, an output range R, and a state space H.
Programs are imagined to read from D, write to R, and read/write
from/to H. D and R can be thought of as the “standard input”
and “standard output” of UNIX systems. H can be thought of as
a permanent disk file whose contents are carried from one execu-
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tion to another. If we ignore the details of what occurs while a
program is in execution, the semantics of a program is a mapping
D x H — H x R. The reader who would like to think in terms
of program variables and their data types can imagine that the sets
D, R, H have some particular type (say “integer”) and each corre-
sponds to a single variable. Then the semantics of a program maps
a pair of integers into another pair.

The state space H is an anomalous entity in the theory of pro-
grams. On the one hand, it acts like a kind of input space (or in-
dependent variable) in that program behavior depends on the state
value when execution begins. But unlike the input domain D, val-
ues in H do not really vary independently—the program itself cre-
ates them. Understanding this anomaly is crucial for the theory of
testing programs with persistent state. The tester can supply state
values and the program will use them, but to do so can be mis-
leading. An arbitrary state value not created by the program may
have no significance. The anomalous nature of state also arises in
formal specification. It seems very difficult to describe what a pro-
gram is required to do without describing its use of persistent data;
yet, such a description seems too prescriptive. Is there not a better
specification using only input-output values? Should state not be
left to the program designer as other data-structure decisions often
are?

Within this simplified context, let us describe the testing and
proof viewpoints.

1.1 Testing Theory

Testing theory began in a paper by Goodenough and Gerhart [4]
by treating a program under test as a black box with pure functional
behavior mapping D — R. Test points are samples from D. A
specification function F' with the same domain and range as the
program function is the arbiter of what the program should do. A
test input « € D fails if the program output at = disagrees with

It was not immediately recognized that the quality of a test in-
volves the operational profile of the program being tested—a prob-
ability distribution on D describing its use. To have significance,
samples (test points) must be selected from this distribution®. It is
sampling from an arbitrary operational profile that gives testing its
unique character.

To account for persistent state in testing theory, D must be re-
placed by the set of all its sequences: D> = U, D*, and the
program function and specification (still pure functions) map se-
quences from D (that is, individual values from D°°) to outputs.
The operational profile for a program with persistent state must
thus give relative weights to values in D, sequences of inputs.

1Goodenough and Gerhart, and other theorists who followed them, instead
concentrated on defining test collections that are sufficient to prove the pro-
gram correct, with the unsurprising result that such collections exist but
cannot be effectively found.



Any such input sequence gives rise to a sequence of state values
from H, but the tester need not be concerned with these since the
program creates them. Unfortunately, in practice, input sequences
may be difficult to generate and sample, and a profile for sequences
may be unknown, forcing the tester to resort to sampling H explic-
itly. (This will require that the specification function be given in
terms of H as well?) Using H in this way is technically incorrect,
because values chosen may be ones that never arise from any in-
put sequence. In Section 2.2 the question of sampling H will be
considered in detail.

1.2 Floyd/Hoare Proof Theory

Proof methods that originated with Floyd [2] and were developed
by Hoare [7] have always taken persistent state into account. In the
simple context considered here, a program would have only three
variables, each taking values from D, H, and R, which we will call
the input-, state-, and output variable respectively; we will use the
usual notation of a corresponding lower-case variable name. Thus
“d” is the input variable and/or its value. The first-order assertions
that express what should be true at a given point in a program are
written in terms of the values of program variables there; the state
variable A is treated like any other. A precondition in first-order
logic is written in terms of 4 and k values before the code is en-
tered. A postcondition is written in terms of r,d, and h (values
after execution) and d’ and k' (before). A program is correct if its
precondition implies its postcondition.

The special role played by state enters Floyd/Hoare theory in the
form of invariants. Invariants are also first-order formulas, which if
assumed to hold before code is executed must be proved to hold af-
terward. A proof obligation for a loop invariant, for example, is that
if it holds before the loop body is executed, then it must hold after
body execution. In principle, proofs of correctness do not require
invariants. But an invariant may be essential to the proof, partic-
ularly for a mechanical theorem prover. Intuitively, an invariant
restricts variable values and so eliminates cases that cannot occur
yet would have to be considered in a proof without the invariant.
As a simple example, an invariant establishing for a program that
state k& has a single fixed value ko simplifies any assertion about
that program from universal quantification over k to the single case
of ho.

The name ‘invariant’ can introduce confusion because the log-
ical formulae that are to be proved invariant are sometimes given
that name a priori, giving rise to peculiar statements like, “The
invariant is not preserved.” (l.e., it isn’t invariant!) The nomencla-
ture problem is particularly noticeable in recent work where tests
are used in conjunction with logical formulas. In Daikon [1], for
example, a particular formula @ is checked against test data and
some test point may “falsify the invariant @.” (Such naming prob-
lems are not new, and “equation” itself, applied to an unsatisfiable
formula like z = = + 1 that happens to contain an “=" sign, is an
example.) Systems like Daikon bring together the concepts of test-
ing and formal methods, and they are a major motivation for this
paper.

Model-checking technology has brought another formal view of
state to further complicate the picture. Formal properties of a state-
based model are expressed in a temporal logic, in which ‘time’ rep-
resents the passage of a program from state to state as it executes.
By demarking the “state” variables and particular points where exe-
cutions begin and end, a temporal formula can be made to describe

2|t illuminates the intuitive deficiency of specifications that explicitly pre-
scribe state to consider the case of a program that gives correct output values
for all input sequences, but fails to give state values that meet the specifica-
tion. The intuition is that the state was over-specified, and the implementor
properly ignored it.

execution sequences. The difficulty of describing sequences for-
mally is reflected in temporal-logic usage by the scarcity of com-
plete specifications: usually temporal formulas describe only nar-
row special properties. This paper largely ignores temporal-logic
formalism, concentrating on the more fundamental Floyd/Hoare
theory.

2. TESTING WITH FORMAL METHODS

The difference in viewpoint between testing theory and formal
methods has limited the application of formalism in testing, but
systems like TestEra [8] and Daikon [1] incorporate logical formu-
las. These systems have been presented from the formal viewpoint
that testing approximates formal proof. Here we consider instead
the testing viewpoint.

The archetype situation to consider is a post-condition formula
L that is written using the original value of an input variable d’,
and a persistent-state variable (original value k' and final value h).
If L is taken as a specification that code must satisfy, then a cor-
rectness proof must demonstrate that L is true following an arbi-
trary execution of the code. (For simplicity, assume that there is no
pre-condition other than ‘true’.) Execution of the code establishes
two relationships: (1) among the input and output variables, and
(2) between the original and final values of state variables. These
relationships are the substance of a correctness proof. In testing,
however, the program meaning takes care of itself. For any given
values of the input and the state, the code can be executed and L
checked.

2.1 Invariants and Post-conditions in Proofs

A way to look at formal-methods ideas from the testing perspec-
tive is to imagine that a post-condition formula L is itself being
tested. If there were no persistent-state variable in L, then a proof
of correctness would be obtained by demonstrating that L, univer-
sally quantified over its input variable d’, holds at the end of execu-
tion. The testing approximation to this would be to sample D, run
the program, and evaluate L.

With persistent state things are more complicated. It would prove
correctness to demonstrate L universally quantified over d’ and the
original value of the persistent-state variable »’. The correspond-
ing testing approximation would be to sample D and H, run the
program, and check L. But quantification over H yields too strong
a proof obligation because it ignores the relationship the program
establishes between k' and h. If a state value cannot be reached
no matter what sequence of inputs from D is supplied, the proof
need not consider it. It is precisely the role of an invariant to elimi-
nate such spurious states. Suppose then that in addition to the post-
condition I we have a formula 7 (in variables d and k) expressing a
necessary property of persistent-state data. If / is indeed an invari-
ant, that is, if assuming it as precondition it can be demonstrated to
hold as postcondition, then instead of demonstrating L universally
quantified over state variables, it is enough to demonstrate 7 = L.
There is a ‘strongest possible invariant’ that implies all others, but it
may not be necessary to find and use it; the proof might go through
with a weaker 7.

2.2 Invariants in Testing

Invariants and post-conditions name the state variable h, so if
testing is to be thought of as probing these formulas, the tester will
be making choices from H as well as from the input domain D.

First, I itself can be tested, by sampling D x H. For one test
point (d,h) € D x H, if I holds, the program is executed and
I must remain true. If 7 does not hold for (d, k), no execution is
needed. Testing an invariant is quite unlike testing a postcondition
because initial failure of an invariant demonstrates nothing except



the invariant’s strength. Furthermore, checking invariance—that is,
that the formula is preserved over a test execution—is not usual in
testing. When invariance fails, it detects a special kind of program
failure in which an assumption about data is violated. Testing can-
not of course determine the quality of a potential invariant—one
never knows if a given formula would continue invariant on test
points untried or whether some stronger formula might be invari-
ant.

Second, once 7 holds for an input, the post-condition . can be
checked after execution.

Thus a choice of invariant can drive the testing process. Insofar
as I eliminates testing of cases that cannot in fact occur, it con-
centrates testing of L. on real cases. If, for an extreme example,
the state space H is the integer interval [1,100] and an invariant
is h € {1,2}, then only 2% of test points chosen fairly from H
have any meaning and the invariant filters out the irrelevant 98%. It
should be much easier to deduce weak invariants from an informal
specification than to come up with the stronger post-conditions.

There is an conceptual parallel between an invariant and an op-
erational profile. A profile for a program with state is a probability
density over sequences of inputs. In these sequences, any actual
data invariant I holds between each execution and the next. When
instead choices for input and state values are made without the pro-
file, in effect the tests constitute probes into the sequence space. So
long as the state k in a test-point choice (d, k) satisfies the strongest
possible 7, the test point might occur in some sequence. The invari-
ant seems to be acting like a kind of formal profile to weight test
selection, but it lacks the arbitrary character of an operational pro-
file. A test profile does not specify what a program should or does
do; it describes only how some human user intends to use the pro-
gram.

Given the difficulty of exploring the sequence space, the tester
is likely to directly sample the state space. Let f be an opera-
tional profile, that is, a probability density function on D giving
the chance that any particular sequence will occur in use. f in-
duces a projection fz into the state space. Intuitively, fz(h) is
the frequency with which ~ € H occurs in operational sequences,
which may be obtained by counting the occurrences of A in a se-
quence d, € D, weighting by f(d.), then normalizing over all
sequences. Using this projection, the tester can make weighted in-
dependent choices for state values, and know that the values chosen
occur often in operational sequences. A great deal of information
about f is lost in the projection fz, however.

In the common case that a sequence profile f is not available,
making a guess for fx allows a test engineer to work systemati-
cally. In particular, a data invariant 7 can be used to define a state
profile like fz asa uniform sampling of all states for which 7 holds.
A strong invariant will avoid more impossible states, but can be ar-
bitrarily different from any actual operational profile.

2.3 ‘Test-based’ Logical Formulas

Any logical formula R concerning a program’s behavior—an
invariant, post-condition, etc.—has a dual character. On the one
hand, R may describe what is true of the program in all possible
cases; this could be called a ‘proof-based’ view of R. But a con-
trasting ‘test-based’ view of R comes from an operational profile
f: when test sequences are selected according to f, there is a high
probability that R will be true®. Test quality should be judged by
how R is covered. The proof-based view would be that a good
test makes a wide-ranging probe into R—the test approximates the
universal quantification of proof. The test-based view is quite dif-
ferent: a good test is one that hits more of the states an operational

SErnst calls these ‘proof-true’ and ‘testing-true’ formulas.

profile singles out. The accurate test-based view is that these states
must occur in order, in sequences given by a profile f defined on
sequences. The more practical view is that there is a projected or
guessed state-space profile fz, and good tests agree with the fzr
weighting. When f itself is defined by an invariant I arising from
the specification as in Section 2.2, I itself might be called a ‘test
invariant’ or a ‘proof invariant’.

The proof-based and test-based views may be very different be-
cause a profile defining the test-based view is arbitrary. It may
choose to neglect most of the space over which R is defined. Our
first intuition (clearly ‘proof-based!) is that a test that does not ex-
plore much of R is a poor one. But someone holding the test-based
view would counter that if cases do not occur in use, they are irrel-
evant.

2.4 An Invariant Example

Consider a program that manages cooperative work on a collec-
tion of files, sometimes called a source-code control system (SCCS).
Its inputs are commands to check-out (CO) and check-in (Cl) files,
and part of its persistent state keeps track of file status. In the al-
gorithm used in the CVS SCCS there is no file locking, so the state
records versions and lists of their users along with possible con-
flicts created by multiple updates of the same version. A typical
state might include: “file F checked-outas version 7 by user X then
checked-in as version 8; file F checked-out as version 7 by user Y,
no conflicts with version 8”. In this state, user Y should be allowed
to check-in F, from which the SCCS would create version 9 merg-
ing user Y’s changes with those made by user X in version 8. If
we ignore race conditions, use of this SCCS is a sequence of CO
and CI inputs from multiple users for multiple files. In possible se-
guences, some state values should never appear. For example: no
checked-out version number of a file should be larger than the last
checked-in version; there should not be a file checked-in by a user
who never checked it out; etc. A data invariant can capture such
dependenciesand drive testing of the SCCS as described in Section
2.2.

A sequence profile f for the SCCS captures the frequencies of
usage. For example, in one environment most sequences might
involve a single file, many users, and no conflicts. From this infor-
mation a tester can restrict state sampling to common cases that are
much narrower than those induced from even the best data invari-
ant. The projection fz of a given sequence profile f goes beyond
intuitive state sampling, since it supplies relative weights for how
often states appear. But even f falls short of testing using f—only
f itself captures information like the way in which users’ requests
are distributed in a sequence.

2.5 Test-case-driven ‘Specifications’

Systems that use tests to generate specification-like entities mo-
tivated this examination of state and invariants. We now examine
Daikon’s “invariants™. Daikon uses test data to probe behavior of
a program and tries to produce a description of what is observed
in proof-based terms. The formulas generated hold for the data
that has been tried, but might be falsified by additional tests. The
question considered above was: “How can we test using given for-
mulas?” In Daikon it is turned around into: “When we have tested,
what formulas can we say are likely to hold?”

In Daikon, terminology is a problem because its ‘invariants’ may
not only be falsified, but are really candidates for post-conditions
or pre-conditions within the program. Even the term assertion is
too loaded for Daikon. Assertion use in testing and debugging

4Henkel [6] has devised a system with a similar purpose, but using the for-
malism of algebraic equations. The different formalism matches somewhat
differently with testing theory, but space limitations preclude its discussion.



of imperative programs is important and well established [9], but
Daikon’s use of logical formulas is different. Normally, an asser-
tion arises from a given external specification, and is placed in an
implementation to check that the specification is being observed.
Should the assertion fail for some test execution, it flags an incon-
sistency between program and specification. Daikon’s formulas, on
the other hand, are generated from a fixed list of logical patterns; a
generated formula is discarded if it is falsified by test data supplied
to the program. In this discussion we will stick with the awkward
term, ‘Daikon logical formula, ®DLF for short.

When a collection of test cases has been run and a DLF holds
for them all, then Daikon’s usage parallels the normal use of asser-
tions, with the crucial difference that the DLF has no specification
source—it arises from Daikon’s list and the program alone. A DLF
that is bolstered by test data, whatever its source, is not of course
proved, because it may fail for additional tests that have not been
tried. But Daikon calls its so-far-unfalsified DLFs ‘invariants.’

As implemented, Daikon leans toward proof-based DLFs. Some
formulas are not reported despite agreement with all the test data,
because few test cases justify the formula. This happens in two
ways: (1) The DLF is seldom encountered under test; and (2) The
DLF is frequently encountered, but not with a wide range of values
for its variables. If a test-based criterion were being used, the deci-
sion (2) would be reversed: repeatedly encountering the same val-
ues would justify the DLF as a test-based ‘invariant.” Daikon does
not generate test data, and insofar as the data that a user supplies
is drawn from a profile of some kind, it emphasizes the test-based
validity of making the opposite choice for (2).

Daikon does not deal in formulas that play the role of data in-
variants, precisely because these cannot be generated and then win-
nowed by falsification under test. Daikon generates pre-condition
DLFs observed to be true before test execution begins, but these are
not true invariants. Data invariants are inherently prescriptive, aris-
ing only outside a program. So long as the tester avoids any direct
sampling of persistent state, the preconditions Daikon derives are
data invariants the program has observed; but if state is sampled
directly, only an outside assertion can filter out cases that are not
meant to occur, cases which if used might falsify post-conditions
meant to hold. A strong post-condition may be true for execu-
tions satisfying a given data invariant, but fail when the invariant
fails. To add specification-derived data invariants to Daikon might
significantly improve the test-based character of its generated post-
conditions. Although such a change would be large in principle, its
implementation probably would not be difficult.

For example, a program might use a persistent array and slice
bounds within it to store a more restricted structure. A data invari-
ant can describe the meaningful relationship between the bounds
and the properties of array elements between them. This will pre-
clude test data in which the bounds and properties do not match,
so that a post-condition can specify that the properties are univer-
sal. Should the program fail to keep the array in proper format for
some input, the data invariant will hold prior to that execution and
fail after it.

Daikon is being used to investigate a number of testing issues,
notably the relationship between DLFs and traditional structural
coverage criteria (see [10] for a bibliography). Gupta and Hiede-
priem [5] find test data to ‘cover’ a DLF obtained from structural-
coverage tests, using def-use dependencies of the variables in the
DLF. None of the recent work considers persistent state or true
specification-based invariants.

3. SUMMARY

5Tao Xie [10] uses the accurate “operational abstraction.”

Testing theory has not explicitly included the ideas of persistent
state and data invariants limiting values of state. Instead the theory
has considered sequences of inputs and only implicitly the state
values that arise in these sequences. In practice, however, a tester
usually sample states directly. Unfortunately, arbitrary choices of
state can create spurious executions that are not part of any input
sequence. The machinery of Floyd/Hoare-based formal methods
can be used to drive better state-space sampling. In testing using a
specification-based invariant 7: (1) 7 eliminates spurious tests; (2)
If 1 is not invariant for the program, it signals a new kind of failure
to meet specifications, one that is not currently tested.

Invariants to guide testing should be easier to derive from infor-
mal specifications than the full pre- and post-conditions required
for formal methods.

If user-profile information is available, it can define ‘usage in-
variants,” formulas that are frequently preserved in use.

Systems like Daikon and TestEra can be extended to use these
ideas in two ways: (1) They can use tests generated from a pro-
file, and adjust their algorithms to generate ‘invariants’ that may
lack generality but do describe usage; (2) They can be given data
invariants derived from an external specification, which they then
assume for their further operation. Stronger post-conditions can be
validated when impossible state values are precluded.
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