
Automatically Generating Refactorings to Support API
Evolution

Jeff H. Perkins
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge MA USA

jhp@csail.mit.edu

Abstract
When library APIs change, client code should change in response,
in order to avoid erroneous behavior, compilation failures, or warn-
ings. Previous research has introduced techniques for generating
such client refactorings. This paper improves on the previous work
by proposing a novel, lightweight technique that takes advantage
of information that programmers can insert in the code rather than
forcing them to use a different tool to re-express it. The key idea is
to replace calls to deprecated methods by their bodies, where those
bodies consist of the appropriate replacement code. This approach
has several benefits. It requires no change in library development
practice, since programmers already adjust method bodies and/or
write example code, and there are no new tools or languages to
learn. It does not require distribution of new artifacts, and a tool to
apply it can be lightweight. We evaluated the applicability of our
approach on a number of libraries and found it to to be applicable
in more than 75% of the cases.

1. Introduction
In software, change is a constant. Between 60% and 90% of soft-

ware development consists of “maintenance”, or modifying exist-
ing software [12, 1, 2]. Ideally, changes to one part of a system can
be isolated behind interfaces; but often, a redesign in one part of
the code — particularly in widely-used libraries — forces changes
elsewhere, in a cascading effect. This is not necessarily undesir-
able, as such changes can improve overall code organization and
quality.

This paper discusses changes in libraries: how to adjust client
code to such changes without inconveniencing either library writ-
ers or clients, and by doing so encouraging desirable changes in
libraries. These library improvements might otherwise have been
avoided because of the inconvenience they would have presented
to clients. This paper makes two primary contributions. The first
contribution is a technique that permits refactorings to be automati-
cally generated for the most common types of library API changes,
without any extra work on the part of the library writer. The second
contribution is a methodology that requires minimal work on the
part of the library writer (and no special tools or changes in devel-
opment practice) but which enables additional changes and permits
testing before the change is performed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

Libraries are changed for a variety of reasons. In some cases,
the change results from errors in a previous implementation. The
errors might be corrected, or they might be left in place to preserve
backward compatibility, with a corrected version of the code added
in parallel to the flawed one; the result is to change the library in-
terface. In other cases, the change is a result of discovering a better
way to perform a task; in this case, the old version is likely to be
retained, though its use is discouraged.

When a library’s interface is changed, client code that used the
old interface should be updated to use the new interface instead.
Typically, the library maintainer suggests specific changes to client
code that makes the clients conform to the library’s new conven-
tions or intended use. These suggestions are traditionally commu-
nicated in plain text documentation. It is crucial to have a human-
understandable explanation of the change and how a client should
accommodate it, but the plain text format has the disadvantages
that it is easy to ignore the recommendations and difficult to apply
them.

If a client program is not updated as suggested by the library
writer, a variety of negative consequences may result.

• The client code may behave incorrectly, if the change is not
backwards compatible. This situation is undesirable, but it
occurs in practice [4].

• The client code may behave incorrectly, if the original be-
havior was incorrect but was retained for backward compat-
ibility, with a new more correct method added.

• The client code may fail to run and to compile, if old ele-
ments of the interface were removed.

• Compilation may issue a warning that the library uses dep-
recated methods. This indicates that a failure of the second
type is already present, and/or a failure of the third type is
imminent. Typically, library writers use this approach in ad-
vance of behavioral changes to the code.

Java supports the latter option with its@Deprecated annota-
tion (and with the@deprecated Javadoc tag), and Eiffel supports
it with its obsolete keyword. This is the usual mechanism for
informing clients of a library change, and the compiler warnings
encourage conscientious developers to update their code according
to the library writer’s desires.

It is desirable to automate the changes to client code that are
required when library APIs change. They are tedious and error-
prone to perform. Interface changes are relatively uncommon, but
they affect large numbers of users. Client code maintainers may not
deeply understand the library, the modifications to it, or the legacy
code that uses it — and they should not have to, when tool support
(as we propose in this paper) is available.

1

2. Goals
We propose the following three goals for a refactoring tool that

updates client code in response to library API changes.

1. The library maintainer does not need to change his or her de-
velopment practice. There are no new tools or languages to
learn (much less to purchase or develop) and no new specifi-
cations to write.

2. There are no additional artifacts to distribute; the library writer
packages exactly the code or binaries that would otherwise
have been distributed.

3. The client code maintainer runs a simple, lightweight, auto-
mated tool that is capable of accommodating a variety of user
interfaces, or none at all.

3. Technique: method inlining
We present a technique that automatically refactors client pro-

grams to use a new version of a library based on the established
practice of marking methods as deprecated or obsolete. The idea is
a simple one: replace calls to a deprecated method by the method’s
body. Most deprecated methods are intended to be replaced by new
code with a similar purpose and equivalent or superior function-
ality. Library maintainers write, in the documentation, a descrip-
tion and often an example of substituting calls to the deprecated
method by calls to the replacements. It is straightforward, and of-
ten desirable, for the library maintainer to replace the body of the
deprecated method by exactly that new code, so that the deprecated
method delegates to its replacement. When that coding practice is
followed, then inlining the deprecated method body is exactly the
desired refactoring for the client. This allows the library maintainer
to define in code precisely the best replacement for the original call.

This transformation does not require access to source code for
the library; it can be performed on a library distributed as byte-
code (.class) files. A tool can easily read the deprecated method’s
bytecode body and convert it to Java code. Since the recommended
replacement code is usually just one or a few method calls, reverse-
engineering is easy (and Java decompilation tools are extremely ef-
fective in any event [8]). The result is likely to be comprehensible,
with few or no variables to name.

Because a tool based on this technique can be simple and au-
tomated, it is easy for the client maintainer to run, and it can be
integrated with a user interface or integrated development environ-
ment for displaying the changes or querying the user about them.

3.1 Class rename
Another possible library API change is to rename a class or move

a class to a different package. In this case, the library developer can
indicate this in the deprecated class by modifying it to extend the
new class. For example consider the classOldClass :

class OldClass {
public void m1() { ... }
public viod m2() { ... }
...

}

In the new release,OldClass is replaced byNewClass . The
new release would contain the following class definitions:

class NewClass {
public void m1() { ... }
public viod m2() { ... }
...

}
@Deprecated class OldClass extends NewClass {
}

If all of the methods are the same, the above is complete. If some
methods have changed as well, they can be included in the depre-
cated class and delegate to their replacement as described previ-
ously.

3.2 Limitations of the technique
The method inlining approach is simple, but novel and effective,

and it satisfies the three goals of section 2. However, it has impor-
tant limitations. (Section 6 compares it to related work.)

The technique is applicable only to classes, methods and static fi-
nal fields that are explicitly marked as deprecated; it cannot handle
all possible modifications to the API of a library. However, changes
to an API that result in deprecated methods with straightforward
replacements are common and previous work [7] found them to be
significant.

More importantly, the technique is applicable only to methods
whose body can consist of calls to the replacement(s) for the method.
Whereas this is a reasonable practice that makes the code smaller,
easier to read, and easier to reason about, it is not universal.

The body might not call a replacement method because there is
none; for example, Java’sThread.suspend() method is inher-
ently unsafe, and there is no safe method that satisfies its contract.
Automatic refactoring of client code in such cases is far beyond the
state of the art, because code that uses such methods requires deep
re-design.

A more important reason that it may be undesirable for the body
to call the replacement method is that the replacement behaves
differently in certain circumstances than the deprecated method.
In this case, the library maintainer has indicated, by leaving the
method body alone, that the recommended change isnota refactor-
ing: it does not preserve behavior, or at least the library maintainer
is not positive that it does.

4. Non-behavior-preserving changes
A library maintainer who is particularly concerned with back-

ward compatibility (such as the Java JDK maintainers) may leave
deprecated methods as is, even when a clearly superior replace-
ment exists whose behavior differs only little from the deprecated
version.

In this case, we propose a slight change in the programming
methodology. The library maintainer changes the body of the method
to select at run time between two versions: the backward compati-
ble version and the new version.

@Deprecated
int old_method(Object x) {

if (complete_backwards_compatibility) {
// old code

} else {
return new_method(x);

}
}

The backwards compatible version provides as much backwards
compatibility as possible (given other changes to the class). The
new version is the recommended replacement for the deprecated
method. Essentially it is a concrete implementation of the plain
text suggestion for updating client code. The refactoring tool would
recognize this idiom and use the new version when inlining.

Equally importantly, library clients would have a way of testing
whether the refactoring would change their behavior. The client
programmers could run tests (or perform production runs) with the
backwards compatibility flag turned off, then make a reasoned de-
cision about whether to accept the refactoring. By contrast, today,

2

clients are forced to refactor first and test later. If testing indicates
that the change is undesirable, the refactoring must be undone.

Run-time overhead of the checks is negligible, and should not be
a concern in deprecated methods that are not intended to be used
frequently.

A refactoring tool could even permit removal of methods, some-
thing that is effectively impossible today because of desire for back-
ward compatibility. Removed methods could be left in the code but
marked with a@Removedannotation that is an even stronger ver-
sion of@Deprecated . These methods could be removed from the
Javadoc (or moved to the end), and the compiler could refuse to
compile code that used them. But since they still appear in the
.class file, compiled programs continue to work properly, and
code that uses them can still be refactored easily by a lightweight
tool.

It is also easy to imagine an annotation that indicates that uses of
a particular Java method should not be refactored, even though the
method is deprecated.

These mechanisms could reduce the reluctance of developers to
remove methods, and our technique in general could encourage
users to make code-improving refactorings, as has been previously
noted [7].

5. Applicability
We examined the deprecated methods and fields in the Java 1.5

java.awt (AWT) package and the Apache Byte Code Engineering
Library (BCEL) version 5.1 and categorized them as to the type of
change. We found the following types of changes.

• Rename method.The method has been renamed but is oth-
erwise unchanged. This includes cases where the method has
been moved to a superclass.

• Method arguments changedThe method is replaced by a
new method with different arguments, but the new arguments
can be determined from the original call. For exampleenable()
is replaced bysetEnable(true)

• Method semantics changed.The method is replaced by a
similar method with different semantics. This includes bug
fixes, throwing new exceptions, etc.

• Rename static final field. The field has been moved to a
different class. The deprecated field is initialized to the new
field value. For example:public static final int
CURSOR = Cursor.CURSOR.

• Replace constructor with factory. A constructor has been
replaced with a factory method or a static final constant.

• Redesign required.There is no simple replacement for the
call. For example in the AWT package, theEvent class
was replaced by a number of more specificEvent classes
(AwtEvent , MouseEvent , etc). Users of methods that ac-
ceptEvent parameters require a more complex change.

Figure 1 shows the number of methods or fields in each of the
categories and whether or not our technique can handle the type of
change.

In the “Rename method” and “Method arguments changed” cases,
the deprecated method can delegate directly to its replacement and
simple inlining of that body will refactor the client code correctly.
In these cases the replacement code will be a single function call.
In the “Method semantics changed” case, the idiom from Section 4
would need to be used. In this case the code to be inlined may be
more complex (for example, it may handle new exceptions). In the
“Rename static final field” case, the initializer for the deprecated
variable can be substituted directly for any use of that variable.

Inline
AWT BCEL works

Rename method 73 0 Yes
Method arguments changed 9 0 Yes
Method semantics changed 1 4 Yes
Rename static final field 13 0 Yes
Replace constructor with factory 0 1 No
Redesign required 26 0 No
Total deprecated methods/fields 122 5

Figure 1: Categories of deprecated methods and fields in the
java.awt package from the Java standard library and the Byte Code
Engineering Library. The AWT and BCEL columns represent the
number of methods or fields that fall into each category. The ‘In-
line works’ column represents whether or not the inlining technique
will work on that category

The technique does not work in the “Replace constructor with
factory” case because a constructor cannot return a different ob-
ject. There is a standard client refactoring (replacenew X() with
X.factory()), but there is no straightforward way to express it in
Java. It also does not work in the “Redesign required” case because
the replacement code must be client specific.

It is important to note that our technique would not work on
the libraries as they are. The libraries would have to be changed
as indicated above. Interestingly, in AWT, the developers call the
deprecated method from the new method rather than the other way
around. If these changes were made, however, our technique could
handle 79% of the changes to AWT and 80% of the changes to
BCEL.

6. Related work
Chow and Notkin [4] propose a methodology for changing li-

brary clients in response to library changes: “a library maintainer
annotates changed functions with rules that are used to generate
tools that will update the applications that use the updated libraries.”
The rules appear in.h files, so no separate files are required, and
are written by hand in the language of Sorcerer [11], permitting
arbitrary refactorings. The tool supports 8 different refactorings.
This technique supports the second goal of Section 2 (no additional
artifacts), but not the first or the third.

Chow and Notkin [4] note previous industrial projects with more
limited goals (for instance, they are not user-extensible): Borland’s
ObjectWindows Library converter and Microsoft’s migrate tool.

Recently, there has been a resurgence of interest in client conver-
sion via refactoring, a technique for performing behavior-preserving
code transformations [6, 10, 5, 9]. Borland demonstrated a “team
refactoring” tool at the 2004 JavaOne conference [3]; it permits
any developer to replay a refactoring that another developer had
stored in a configuration management system. A team at Lund Uni-
versity is attempting to implement similar functionality in Eclipse
(http://www.lucas.lth.se/cm/cmeclipse.shtml). Henkel
and Diwan [7] propose a similar approach, which differs in that
it stores the refactorings not in a version control system but in an
XML file that can be edited by hand.

The refactoring-based approach has several disadvantages.

1. The changes are limited to those supported by the refactor-
ing tool, rather than arbitrary ones that can be expressed by
writing code.

2. The approach introduces a new language or file format to ex-
press the changes, and a separate file (whether XML or part

3

of a version control system) must be shipped to clients. Com-
pared to including the the suggested change in the source file,
these choices make it both more difficult for library develop-
ers to produce/review their changes and for users to evaluate
the changes.

3. The approach forces library developers to use a special tool
to record refactorings, rather than using their usual develop-
ment environment to edit code, a process with which they are
already familiar and facile. We speculate that this technique
requires developers to do their work twice: once in the usual
way, then a second time to be recorded. Duplication of work
is both annoying and error-prone, especially when performed
in an unfamiliar environment.

4. The result of making the changes can only be testedafter
performing the refactoring, making it difficult to determine
whether the change is appropriate and unnecessarily difficult
to back out of it if necessary.

The refactoring-based approach satisfies the third goal of Section 2
in part, but neither of the first two goals.

Our work is inspired by that of Henkel and Diwan, and it aims
to solve the same problem, but without its limitations. Henkel and
Diwan’s tool fully supports 3 different library refactorings: renam-
ing a class, moving a class to a different package, and changing a
method signature. Each of these is supported by our approach as
well. Thus, a tool built on our (theoretically less general) technique
would be able to perform as many refactorings as theirs, in addition
to other benefits of our approach.

7. Conclusion
We have proposed a technique for refactoring client code in re-

sponse to API changes in libraries. While inspired by previous
work addressing the same problem, our technique is simpler and
avoids the limitations of earlier approaches. The key idea is to
refactor client code via method inlining in order to eliminate calls
to deprecated or obsolete methods. The technique satisfies three
key goals. First, no change in development practice (including new
tools, languages, or specifications) is required. Second, there are no
additional artifacts to distribute or understand. Third, and partly as
a result of the first two goals, the system is simple and lightweight
to implement and to understand. Despite its simplicity, it is capable
of performing all the refactorings of some previous work, and the
most important refactorings of other previous work.

We have additionally proposed a programming methodology that
retains both old and new versions of a method in the codebase. This
methodology has two key benefits. First, it permits testing of com-
patibility with new versions of the code before refactoring, via easy
selection of a version of the code on a class-by-class basis. Second,
it enables the library programmer to specify (via code) the sug-
gested replacement for methods for which there is no completely
back compatible replacement, and enables a user to apply them af-
ter testing or analysis has increased confidence in their safety.

Our proposals are novel but very simple, and that simplicity is
the reason they are attractive. Using a straightforward and easy-to-
understand code-based approach avoids the complexities of other
tools and languages. It is familiar to software engineers and can be
manipulated using arbitrary programming tools and environments.
Our approach is applicable to most or all of the important situations
that arise when refactoring library clients.

More generally, this research is part of a broader program that
advocates re-use of existing artifacts when possible. The most im-
portant such artifacts are code and tests. Programmers invest great
effort in constructing these artifacts, and they are the final author-

ity about programmer intention and program behavior. As a result,
programs and tests contain a wealth of implicit information, and we
advocate mining that information for a variety of tasks, from veri-
fication to debugging. This research demonstrates that refactoring
in response to library API changes can equally take advantage of
existing code artifacts rather than relying on new ones that require
additional effort to construct and are potentially inconsistent with
the code.

Acknowledgments
Danny Dig and Adam Kiezun provided very useful comments and
feedback on the paper. Comments from the anonymous referees
also helped us to improve the presentation of this paper.

8. References
[1] R. Balzer, J. T. E. Cheatham, and C. Green. Software

technology in the 1990’s: Using a new paradigm.Computer,
16(11):39–45, Nov. 1983.

[2] B. W. Boehm. Industrial software metrics top 10 list.IEEE
Software, 4(5):84–85, Sept. 1987.

[3] Borland. Making development a team sport. demo at
JavaOne, June 29, 2004.

[4] K. Chow and D. Notkin. Semi-automatic update of
applications in response to library changes. InICSM, pages
259–368, Nov. 1996.

[5] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 2000.

[6] W. G. Griswold. Program restructuring to aid software
maintenance. Technical Report 91-08-04, U. Wash. Dept. of
Comp. Sci. & Eng., Seattle, WA, USA, Aug. 1991. PhD
dissertation.

[7] J. Henkel and A. Diwan. Catchup! capturing and replaying
refactorings to support API evolution. InICSE, May 2005.

[8] A. Kalinovsky.Covert Java: Techniques for Decompiling,
Patching and Reverse Engineering. Sams, Indianapolis,
Indiana, 2004.

[9] T. Mens and T. Tourẃe. A survey of software refactoring.
IEEE TSE, 30(2):126–139, Feb. 2004.

[10] W. F. Opdyke. Refactoring: A program restructuring aid in
designing object-oriented applications frameworks.
Technical Report 1759, University of Illinois at
Urbana-Champaign, Dept. of Computer Science, 1992. PhD
dissertation.

[11] T. J. Parr. An overview of SORCERER: A simple tree-parser
generator. InCompiler Construction ’94, Apr. 1994.

[12] L. H. Putnam. A general empirical solution to the macro
software sizing and estimating problem.IEEE TSE,
4(4):345–361, July 1978.

4

