
SID: A Graphical Browser

Tami L. Crawford
Computer Science Department

Canisius College

Buffalo, NY 14208

tami@canisius.edu

Abstract

Humans have powerful image processing systems which can
assist in managing large amount of information. Program

visualization can be used to exploit this capability to make

complex systems manageable. In addition to being a tool for

managing complexity, program visualization can support the

maintenance of conceptual integrity, by providing a framework
for viewing the program as a whole.

This paper presents SID, a program visualization tool.

The program view is determined by a control panel, which is
accessed by the user and a knowledge based assistant called the

Gue. SID is a prototype system for viweing C++ programs.

1. INTRODUCTION

As hardware becomes increasingly more powerful and
simultaneously less expensive, the types of tasks we choose to

solve become increasingly larger and more complex.

Unfortunately, advances in software technology have not kept

pace with the gains in hardware. The reason for this, according
to Brooks, is that software has several inherent properties,

such as complexity, the need for constant change, and the
inability of visualizing software[4].

Another of Brooks’ observations is that “conceptual

integrity is the most important consideration in system
design” [3]. Conceptual integrity occurs when all parts of the
system follow from the same set of underlying principles.
Because conceptual integrity refers to the system as a whole, it
cannot be achieved by considering parts of the system in

isolation. A sense of the system as a whole is required.

Program visualization is a way of addressing both of
these issues: that of the inherent complexity of software and

the issues of conceptual integrity. Program visualization is

concerned with using graphical techniques to display

programs. Unlike visual programming, which deals with the

Specification and creation of programs using graphical
techniques, program visualization is concerned with the using
graphical techniques to display programs written in traditional
languages (such as Pascal or C). [1O] The tool proposed in this

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that the
copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

@ 1991 ACM 089791-396-5/91/0006/0062 $1.50

paper is concerned with program visualization.
Program visualization can be used as a way of managing

complexity. Software is complex because there are so many
different types of interconnections to manage. Humans have
very limited processing capabilities, i.e., Miller’s “magic

number seven” representing the number of items an individual

can remember at any given time has been confirmed over and

over again[9].
One possibility for overcoming this limitation lies in

the area of visual processing. Linguistic memory differs from
pictorial memory [7, 13]; humans can remember more from a
picture than they might be able to remember from strictly

verbal memory. It is not uncommon to hear “I never forget a
face”, but it is rare indeed to find someone who never forg&s a
name. By exploiting our powerful image processing
capabilities, the amount of complexity which can be mastered
by an individual may be increased.

Program visualization can support conceptual integrity
by making it possible for the programmer to view the system

as a whole. Abstraction is typically used whenever there are
too many details to be considered all at once; the problem with
software is that it is difficult to know which details are

important and what are not. SID is a program visualization
tool which copes with this problem by allowing the user to

adjust a control panel which determines which features should

be displayed. A knowledge based assistant, the Guru, also is
used to determine which features should be displayed and which
should be abstracted aw av.

J

SID is designed to enable the programmer to get a sense
of the system as whole, and to enable the programmer to view

the different types of relationships present in software systems
within a single framework.

2. OVERVIEW OF THE SYSTEM

The system consists of several components, as shown in
Figure 1. Program specific information is gathered by the
compiler and stored in a database (Program Element Database),
This includes information about program objects such as
functions and variables and relationships between these
objects. program independent information is stored in the
Program Independent Knowledge Base. This includes
knowledge about programs and program components which is
independent of any particular program. This consists primarily
of knowledge about the semantics of particular objects which

may be used by many different programs. This allows more

62

http://crossmark.crossref.org/dialog/?doi=10.1145%2F111048.111056&domain=pdf&date_stamp=1991-05-01

@i!=!-l I

& I

G

a-+-l
Figure 1. System Overview

detailed information to be stored about the effects of common
objects, such as system calls or those found in frequently used

libraries. The View Generator produces the image seen by the

user.
There are four active entities (processes) : the Compiler,

the Guru, the View Generator and the User. Each of these are

described below:

Compiler: The Compiler gathers surface level program
information and deposits it in the Program Element

Database. This guarantees that the view will be as up-to-date

as the current executable and eliminates the overhead

associated with generating the information each time the
viewer is invoked.

Guru: The Guru has access to program independent

knowledge. The guru uses this knowledge when interacting

with the view generator. The *wing controls and current
location of the view are used to guide the guru in determining

additional display parameters.

View Generator: The View Generator produces the display

using both syntactic and semantic information. The type
and amount of information displayed is determined by the

control settings (Control Panel). These settings determine
which items to display and what attributes should be used to

display the items. The View Generator uses the information
contained in the Program Element Database and determines
which subset to display depending upon user-specified

controls. It also may consult with the Guru about additional

control information.

User: The User sets the controls and adjusts the viewing area
by scrolling to select the viewing window, and zooming to
select the magnification level.

There are three sources of information: the Program Element

Database, the Program Independent Knowledge Base, and ~he

Control Panel.

s

.

.

Program Element Database: This contains information on
variables, types, functions, and files. Interdependencies
between the different components are stored. For instance,
each function is defined in a file; it defines zero or more

local variables; has zero or more parameters; uses zero or

more global variables; calls other functions; and is called by
other functions. The Program Element Database contains

only global information.

Program Independent Knowledge Base: The Program

Information Knowledge Base captures the aspects of the

system which are general and program independent.
This knowledge repository is intended to contain

knowledge an experienced programmer has about frequently

used programming elements. For example, any seasoned C
programmer has knowledge of standard system and library
calls that goes beyond the number and type of arguments.

An experienced C programmer would know, for instance,
that files are accessed through a system file table which has
a limited size, and that functions such as open and c rea t

allocate a file descriptor, whereas the close function frees a
file descriptor. Likewise, a X Windows programmer using
the Xt Toolkit [1] knows quite a bit about Widgets which

cannot be extracted automatically by the parser.
Nevertheless, such information is crucial to the successful
development of applications which use the Xt toolkit.

A knowledge base of information about every object in
the system would not be practical because of the effort of

entering the information would be too great. However,, it

makes sense to encode this knowledge for parts of lhe
system which are used over and over again, such as system

calls and standard libraries.

Control Panel: The control panel allows the user to adjust

the view by specifying- items to remove fl:orn

consideration(filter), items which should stand out
(enhance), and areas of interest. Controls can bc adjusted by

the user. The guru may inspect the controls and set

additional controls based upon the settings and the con tents

of the Program Independent Knowledge Base.

3. THE DISPLAY

The display contains a program view, status information, and
user controls. The program view consists of a group of objects
with arcs representing relationships between objects. ‘The
objects consist of files, types, variables, and functions. There
are a number of relationships between objects which can be
displayed, such as uses and defines. The particular objects and

relationships which are displayed are determined by the user’s
actions.

63

Displaying the program as a graph is only the first step.

For any but the smallest programs, a graph contains so much
information that is becomes difficult to isolate the information

of interest. To address this problem, SID allows viewing

parameters to be set to control which information is displayed
and how that information is displayed.

Shape is used to indicate the type of object displayed.

Functions are rectangles; variables are ovals; files are ellipses;

and types are rounded rectangles. Color is used to distinguish
arcs which represent different types of relationships.

Relationships between objects can be displayed in graph

form or in tree form. In tree-form, hierarchical structure is
enforced. Nodes are duplicated if necesary to keep the structure

hierarchical. Conceptually the graph displays the
interconnections between the components more compactly,

but visually this results in a cluttered display.

4. CONTROL PANEL

,.,

““:.”-....... ..
‘“’”’L“”42?E2ED~!’.”.::::”W:::,:.............<,,..,.,,. ““;’’’”633..S.., ,.., .,

: ,,

..../..;.............................

Figure2. SID Display

4.1 Types of Controls

The control panel provides a mechanism to adjust the display.
Viewing parameters may be set by the user and the guru. The

controls determine what information to display and the

attributes which should be used to display the information.
Controls are associated with obiects.

.

.

A group of objects can be ~pecified as

Regular Expression: A regular expression can be specified
which represents the names of the objects to be affected.
For example, all functions which begin with Xt.

Named Group: A name which has been associated with a set
of objects previously can be specified. For example, the

SystemCalls, which represents all system calls. SID knows
about the contents of standard libraries such as X and Xt, and

has the ability to create name lists for any library.

.

.

Interest Area: An interest area can be specified to indicate
an interest tothe Guru. For example, an interest area might

be Terminal 110. The Guru consults the Program Independent
Knowledge Base to determine which objects are affected by

this interest.

Program Relationships. The user can define a view over the

Pro~ram Element Database, such as all functions which
modify a particular global variable or all functions which
have a McCabe’s complexity measure [8] greater than 20.

Once a set of objects has been selected, the set may be
filtered, enhanced, or used to apply a fisheye view.

4.2 Filters

One type of viewing control is the filter, Filters

eliminate from the view all objects which meet a certain
criteria. For instance, the user might view the call graph,
which displays the calling relationships between functions.

This will give the user an overall view of the structure of the
program. For a small program, the call graph may provide
meaningful data, but for a large program the call graph is more

likely to resemble a ball of twine than anything else. One
problem with the call graph is that not all functions contribute

equally to program structure. For instance, a call of the

function strcmp, which compares two strings and returns a
result, contributes little to the overall structure of the program.

Including such a function in the call graph obscures
relationships between other functions which are more relevant
to the program structure,

For this reason, the user could specify a filter which
eliminates standard library functions (such as strcmp) from the
display by selecting the StandardLibrary Calls list as a filter.

4.3 Enhancers

Another type of viewing control is the enhancer, which

augments the display of items which meet certain criteria. For
example, the user may specify that all functions which access a

particular global variable are displayed in light blue; or that all
functions which have a complexity greater than 20 be
displayed in purple. The user may select the attributes used to

enhance the display. Typical attributes are background and
foreground colors.

4.4 Fisheye View

The fisheye view is a technique for showing local

information in detail and displaying related information in a

level of detail depending upon its importance and distance from
the current focal point[5]. Other details are shown depending

upon their a priori importance and distance from the focal

point. The system defines a threshold degree of interest for
displaying items. The degree of interest is defined as:

y = current focal point
x = item
DegreeOfInterest(x)= A Priori Important(x) - Distance(x,y)

Items further away will not be shown unless the items has some

a priori importance. Areas of interest can be specified from the

control panel. The areas of interest are used to compute the a
priori importance of items.

64

4.5 User Control Adjustments

The user has several different ways of controlling the display.
First, the user is responsible for deciding which parts of the

program to view. The user can selectively expand different
nodes of the graph or expand all nodes of the graph. The user
can zoom in or out and scroll the graph if it is too large to fit

on the screen all at once.
Second, the user determines the type of information

represented by the graph. When nodes in the graph are

expanded, the relationship displayed depends on the current

relationship. For a function, the current relationship can be
one of calls, is called by, global variables used, and defined in.

The user decides whether the display will be a graph or
hierarchical display. If the user chooses a hierarchical display,
nodes which are referenced more than one place are duplicated.

The display initially contains a single object. The user

specifies the relationship of interest and expands nodes by
clicking on nodes of interest. All nodes in the display may be
selected to be expanded or the user may select nodes one by

one. When the user clicks on a node, the node is expanded to
contain information on the current node using the current

relationship.

4.6 Guru Control Adjustments

The Guru can adjust the controls based upon the interest areas
the user has specified. If, for inslance, the user is using the Xt

Toolkit and is interested in color settings, the Guru can use this
to highlight any functions which may set the color. Color can

be set using resource files, by modifying widgets with the
XtSe[Values functions, or by specifying the color on the

command line. A resource file is stored in one of several
different locations and a fallback list of resources may be

specified inside the program if the resource file cannot be
located. Using this knowledge, the Guru examines the program

and the environment to determine which of this applies to the
current situation, and then displays the results accordingly.

5. IMPLEMENTATION

A prototype of SID is implemented in g++ on a Sun Sparc-

Station 1+, using X Windows (Xl 1R4), and the Athena widget
set. The g++ parser was modified to output structural

information to a database during compilation. The Guru is

being implemented using the CLIPS system[14].

6. RELATED WORK

A number of systems have some goals common to SID. CIA++

is a system based upon a relational database[6]. Browsers and

other tools can be easily implemented which use the cia++

database. Another system which uses a program database is the
FIELD environment, which includes a C++ class browser
(cbrowse)[12]. Like SID, both of these system store program
information in a database. The difference between these
systems and SID is that SID is concerned with the interactive

display and how to modify the display using user-settable
controls and a knowledge based assistant which contains

knowledge about common programming elements.
Some work has centered on using typographic attributes

such as fonts and page layout principles to increase the

comprehensibility of prograrns[2, 11]. SID is concerned more

with the “big-picture” view of the program and is designed to

work interactively with a color display.

7. CONCLUSION

In conlusion, SID is a system for program visualization. The

distinguishing characteristics are that it uses a knowledge
based software assistant to assist in determining which
components of the program should be visible and what

attributes should be used to display these components. The

user also can adjust the viewing controls.

An important component of the system is the Program

Independent Knowledge Base, which contains knowledge about
components which are used in many different systems, such as
libraries of code.

Although much work remains to be done, a prototype

which demonstrates the feasibility of the concept has been
implemented.

REFERENCES

1.

2.

3.

4.

5.

6.

7,

8.

9.

Asente, Paul J. and Ralph R, Swick, X Window System

Toolkit: The Complete Programmer’s Guide and

Specijlcation, Digital Press, 1990.

Baecker, Ronald M. and Aaron Marcus, Human Factors and

Typography for More Readable Programs, Add ison -
Wesley, 1990.

Brooks, Fred P., The Mythical Man Month, Addison-
Wesley, 1975.

Brooks, Fred P. “No Silver Bullet: Essense and Accidents
of Software Engineering”, IEEE Computer, April, 1987.
Fumas, George W. “Generalized Fisheye Views”, CHI ’86

Proceedings, 1986.

Grass, Judith E., and Yih-Farn Chen, “The C++

Information Abstracter”, USENIX C++ Conference

Proceedings, 1990.

Haber, Ralph Norman, “How We Remember What Wc
See”, Scientific American, 1970, 222,104-112.

McCabe, T. J. “A Complexity Measure”, IEEE

Transactions on Software Engineering, SE-2,4, Dcccmber
1976, p308-320.

Miller, George, “The Magic Number Seven Plus or Minus

Two: Some- Limits on- Our Capacity for Processing
Information”, Psychological Review, 63,81-97.

10. Myers, Brad, “Visual Programming, Programming by

Example, and Program Visualization: A Taxonomy”, CH1

’86 Proceedings, 1986.

11.Oman, Paul W. and Curtis R. Cook. “Typographic Style is

More than Cosmetic”, Communications of the ACM,

Volume 33, Number 5, May 1990.

12. Reiss, Steven P. and Scott Meyers, “FIELD Support for

C++”, Usenix C-t-t Conference Proceedings, 1990.

13. Shepard, R. N., “Recognition memory for wonis,
sentences, and pictures.”, Journal of Verbal Learning and

Verbal Behavior, 1967, p. 156-163.

14. CLIPS, COSMIC, Athena, Ga.

65

