
A Hierarchical Model of Data Locality

Chengliang Zhang, Yutao Zhong, Mitsunori Ogihara and Chen Ding

Computer Science Department, University of Rochester

{zhangchl,ytzhong,ogihara,cding}@cs.rochester.edu

Abstract

To study data placement on memory hierarchy, we present a model called reference affinity.
Given a program trace, the model divides program data into hierarchical partitions (called
affinity groups) based on a parameter k, which specifies the number of distinct data elements
between accesses to members of each affinity group. Trivial solutions exist for the two ends of
the hierarchy. At the top, when k is no less than the data size, all program data belong to one
affinity group. At the bottom, when k is 0, each element is an affinity group.

We present two theoretical results. The first is the complexity. We show that finding
and checking affinity groups are in P when k = 1 and k = 2. When k = 3, the checking
problem is NP-complete, and the finding problem is NP-hard. The second is the uses. We show
that reference affinity captures the hierarchical data locality from the trace of a hierarchical
computation. As additional evidence, we cite empirical results for general-purpose programs.

1 Introduction

While program data are defined in a uniform address space, they are stored in a memory hierarchy
that often includes registers, on-chip and off-chip cache, virtual memory, disk, and network buffers.
Different memory levels come with different sizes and configurations. A programmer may not know
the exact parameters or even the existence of some hardware cache. Furthermore, a mobile program
can migrate in a distributed system and hence needs to run well on machines with different memory
configurations. As programming for specific memory hierarchies becomes increasingly untenable,
it arises the need for hierarchical data locality, where the program data are recursively decomposed
into smaller groups based on the inherent locality in computation. By blocking data at all levels,
the hierarchical locality subsumes the layout schemes designed for specific memory hierarchies.

The past locality models are not general or not hierarchical. The general models are based
on the frequency of data access for data elements (as early as [10]), pairs (for example in [8]), or
streams [5]. The frequency models use pre-determined thresholds and are not naturally hierarchical.
Hierarchical data placement has been successfully used but only for specific problems including
matrix multiplication, factorization, wavelet transform [4], N-body simulation [13], and search
trees [2]. In the last work, Bender et al. coined the term cache-oblivious data layout. In this paper,
we study a general and hierarchical model that is based on program traces.

The locality model is called reference affinity, which measures how close a group of data is
accessed together in a reference trace. The closeness is parameterized by k, which is the volume
distance between adjacent accesses to group members. The volume distance between two points on
a trace is defined as the amount of data accessed from the first point to the second. Changing k,
reference affinity gives a hierarchical partition of program data. When k is equal to or greater than
the data size, all data belong to one affinity group. When k is 0, each data element is an affinity
group.

1

We present two theoretical results. First, we characterize the complexity of reference affinity, in
particular, the problems of linking two data elements, and checking and finding affinity groups. We
give polynomial-time algorithms for cases k = 1 and k = 2. We prove that the problems are either
NPC or NP-hard when k ≥ 3. Second, we show that reference affinity automatically captures the
hierarchical locality in divide-and-conquer algorithms. In addition, we cite empirical evidence that
good approximation analysis exists for reference affinity in general programs.

The concept of volume distance was first defined by Mattson et al. [12] (named LRU stack
distance) in 1970. It forms the foundation for virtual memory management [6] and cache design [18],
because it efficiently measures the performance of fully associative cache of all sizes that uses the
least-recent-used (LRU) replacement policy. Sleator and Tarjan [16] and Aggarwal et al. [1] showed
that LRU policy is within a constant factor of the optimal cache management. An increasing
number of studies in the past four years show that the volume distance allows accurate modeling
of the memory behavior of complex programs (for example [3, 7, 11]).

The volume distance has been difficult for theoretical analysis because data may appear in
different orders with different frequencies while still yielding the same volume distance. It raises
interesting problems different from those in traditional graph and streaming domains. In this work,
we solve these problems and make the volume distance the basic link between the patterns in
computation and the locality in data.

The organization of computation, the modeling of memory hierarchy, and data layout schemes
for specific problems have been extensively studied by the algorithm community [20]. Our model is
limited to finding the data locality, but it is general because it is defined on program traces. Given
a computation trace, our model helps a programmer to select and fine-tune the data layout or to
guide a compiler or a virtual machine in automatic data placement. Many techniques exist for
static, profiling-based, or dynamic exploitation of data locality. In this work, we study in theory
how much we can characterize the inherent data locality.

2 Reference Affinity Model

An address trace or reference string is a sequence of accesses to a set of data elements. If we assign a
logical time to each access, the address trace is a vector indexed by the logical time. We use letters
such as x, y, z to represent data elements, subscripted symbols such as ax, a′x to represent accesses
to a particular data element x, and the array index T [ax] to represent the logical time of the access
ax on a trace T . In the latter part of this paper, we use sequence and trace interchangeably.

Definition 1 Volume distance. The volume distance between two accesses, ax and ay (T [ax]
< T [ay]), in a trace T is the number of distinct data elements accessed in times T [ax], T [ax] +
1, . . . , T [ay] − 1. We write it as dis(ax, ay). If T [ax] > T [ay], we define dis(ax, ay) = dis(ay, ax).
If T [ax] = T [ay], we define dis(ax, ay) = 0.

For example, the volume distance between the accesses to a and c in the trace abbbc is 2. The
volume distance is Euclidean. Given any three accesses in the time order, ax, ay, and az, we have
dis(ax, az) ≤ dis(ax, ay) + dis(ay, az), because the cardinality of the union of two sets is no greater
than the sum of the cardinality of each set. Next we define the condition that a group of data
elements are accessed together.

Definition 2 Linked path. A linked path in a trace is parameterized by a distance bound k.
There is a linked path from ax to ay (x 6= y) if and only if there exist t accesses, ax1

, ax2
, . . ., axt

,
such that (1) dis(ax, ax1

) ≤ k∧ dis(ax1
, ax2

) ≤ k ∧ . . . ∧ dis(axt
, ay) ≤ k and (2) x1, x2, . . . , xt, x

and y are different (pairwise distinct) data elements.

2

In other words, a linked path is a sequence of accesses to different data elements, and each link
(between two consecutive members of the sequence) has a volume distance no greater than k. We
call k the link length. We will later restrict x1, x2, . . . , xt to be members of some set S. If so, we
say that there is a k-linked path from ax to ay with respect to set S.

Sequence (1) shows an example sequence. Each ′′ . . .′′ section represents a sequence of data
elements other than a, b, and c. While a, b, and c are always accessed together in the trace, they
are accessed in different sequences and frequencies, and their accesses are intermixed with other
data accesses. Still, in each occurrence, there is a linked path connecting three elements with a link
length 3. Next, we define them as a group that we call a reference affinity group.

. . . abebc . . . bffaac . . . ccccbga . . . (1)

Definition 3 Reference affinity. Given an address trace, a set G of data elements is a reference
affinity group (i.e. they have the reference affinity) with the link length k if and only if

1. for any x ∈ G, all its accesses ax must have a linked path from ax to some ay for each
other member y ∈ G, that is, there exist different elements x1, x2, . . . , xt ∈ G such that
dis(ax, ax1

) ≤ k ∧ dis(ax1
, ax2

) ≤ k ∧ . . . ∧ dis(axt
, ay) ≤ k

2. adding any other element to G will make Condition (1) impossible to hold

Reference affinity groups give a unique and hierarchical partition of data, as proved by Zhong
et al. in the form of the following three properties [21].

1. Uniqueness Given an address trace and a fixed link length k, the affinity groups form a
unique partition of program data.

2. Hierarchical structure Given an address trace and two distances k and k′ (k < k′), the
affinity groups at k form a finer partition of the affinity groups at k′.

3. Bounded access range Given an address trace with an affinity group G at the link length k,
any time an element x of G is accessed at ax, there exists a section of the trace that includes
ax and at least one access to all other members of G. The volume distance between the two
sides of the section is no greater than 2k|G| + 1, where |G| is the number of elements in the
affinity group.

Having the definition of reference affinity, the problems of checking and finding reference affinity
groups can be formulated as the following respectively:

Definition 4 Checking reference affinity groups Given an address trace and reuse distance
k, check if a given group of data elements belongs to the same reference affinity group with link
length k.

Definition 5 Finding reference affinity groups Given an address trace and reuse distance k,
find the reference affinity groups with link length k.

A related decision problem with checking reference affinity groups is to test if two accesses is
k-linked with each other:

Definition 6 Given an address trace, a reuse distance k ≥ 0 and two data accesses ax and ay, the
Point-wise k-Linked Affinity Problem (Pw-k-Aff, for short) is the problem of testing whether ax

and ay are k-linked in the trace.

3

3 Hardness of Finding and Checking Reference Affinity Groups

The following theorems give the complexity of the linking, checking, and finding problems for
different k. We include the basic ideas of the proofs and leave the full version in the appendix.

Theorem 1 For each k ≥ 3, Pw-k-Aff is NP-complete.

We prove it by making a polynomial-time many-one reduction from a variant of 3-SAT problem,
where every variable appears at most three times (an NP-complete problem) to our linking problem.
The proof constructs a three-part reference trace. The first part forces a linked path to go through
a set of elements we call “separators”, whose later access cannot be used as links in the next two
parts. The second part of the trace prepares a set of element triples, where they can model the truth
values of 3-SAT expressions. It ensures that two data representing the opposite values of a truth
variable cannot both be included in any possible linked path. The third part of the sequence models
a given 3-SAT expression. A linked path exists if and only if there is a truth value assignment to
satisfy the expression. The basic ideas behind the proof are to use logical variables to represent
accesses rather than data and to use specially designed traces to enforce the logical consistency.
The full proof is two-page long and given in the appendix. From Theorem 1, we can easily prove
two corollaries.

Corollary 1 For k ≥ 3, the problem of checking reference affinity groups is NP-complete.

Corollary 2 For k ≥ 3, the problem of finding reference affinity groups is NP-hard.

Theorem 2 Pw-2 -Aff is NL-complete.

Using the same polynomial-time reduction from Theorem 1, we can show that 2 -CNF-SAT can
be reduced to Pw-2 -Aff. The exact proof is in the appendix. This theorem shows that a polynomial
algorithm exists for Pw-2 -Aff. Then we have the following result, proved by the algorithm that
follows.

Theorem 3 For k = 2, the problem of finding reference affinity groups is in P .

Algorithm 1 Finding reference affinity groups when k=2
procedure FindReferenceAffinityGroup 2(T)

1: {T is the trace, reuse distance k = 2}
2: initialize, no group is identified
3: while there exist ungrouped elements do

4: put all such elements into a set G and pick one x randomly from this set;
5: repeat

6: if there is an element z not 2-linked to x with respect to G then

7: remove z from G;
8: else

9: if there exist two elements y, z ∈ G such that an access of y is not 2-linked to any access
of z with respect to G then

10: remove z from group G.
11: end if

12: end if

13: until G is unchanged
14: output reference affinity group G.

4

15: end while

endFindReferenceAffinityGroup 2

Algorithm 1 is polynomial-time. From Theorem 2, the linking problem, that is, testing whether
a 2-linked path exists between two data accesses, can be solved in polynomial time. This algorithm
needs a polynomial number of such tests. The algorithm gives correct reference affinity groups.
First, it is easy to see that the groups found by this algorithm satisfy the first condition of reference
affinity. To show every group is the largest possible, we show that the algorithm removes z correctly,
so that G still includes only the reference affinity group that x belongs to. Removing z at step 7
is straightforward. The correctness of the removal of z at step 10 can be proved by contradiction.
Suppose z belongs to the same group as x and should not be removed, we can construct a 2-linked
path from every access of y to an access of z. This contradicts with the test at line 9. The detail
of the proof is given in the appendix. From Theorem 3, we can get the following corollary.

Corollary 3 For k = 2, the problem of checking reference affinity groups is in P .

The complexity for k = 1 is as follows.

Theorem 4 Pw-1 -Aff can be solved in linear time.

Theorem 5 For k = 1, there is a polynomial-time solution for finding reference affinity groups.

Here we give a naive method. Since k = 1, all of the groups appear in the sequence continuously,
and two groups do not overlap. We sort the data elements according to their order of appearance
in the trace. Then for every t (from the number of data elements to 1) consecutive data elements
starting from the first data element, we check if it is a reference affinity group. Similarly, we find
other affinity groups. The algorithm is given in the appendix. Finally, from Theorem 5, we have

Corollary 4 For k = 1, the problem of checking reference affinity groups can be solved in polyno-
mial time.

4 Use in Divide-and-Conquer Programs

The divide-and-conquer type of computations we consider are blocked and recursive algorithms for
dense matrix operations, N-body and mesh simulation, and wavelet transform. The general form
is given in Figure 1. The procedure takes a set of data such as matrices. It then divides the input
data into smaller blocks and processes all or subsets of their combinations. For each subset, if the
blocks are still large, it makes a recursive call to itself. The computation is hierarchical, so is its
locality.

We show that reference affinity can reconstruct the hierarchical data locality from an execution
trace, if the following two requirements are met by the hierarchical computation. First, once a
block of Datai is accessed, all its sub-blocks are accessed before moving to the next block of Datai.
Second, the access order of sub-blocks is the same for the same block. For example, consider the
multiplication of two matrices A and B. The computation, if starting from the left-matrix of A,
must access all elements of the left sub-matrix of A at least once before accessing any element from
the right sub-matrix of A. Still, it is free to access B or other data at the same time. The traversal
order within A is the same, for example, Morton order. The traversal order in B can be different,
for example, Hilbert order. In fact, non-nesting blocks in the same matrix have this freedom—the
left sub-matrix can use a different order than the right sub-matrix.

5

Compute(D1, D2, ..., Dn) begin

if the input data is above a threshold size
divide D1, D2, ..., Dn into sub-blocks
for some set of sub-block combinations

Compute(subblocki(D1), subblockj(D2), ..., subblockk(Dn))
end for

end if

end

Figure 1: The general form of the divide-and-conquer algorithm

 (1,1) (1,2) (2,1) (2,2)

 (1,3) (1,4) (2,3) (2,4)

 (3,1) (3,2) (4,1) (4,2)

 (3,3) (3,4) (4,3) (4,4)

(a)

1

2

3

4

 1 2 5 6

 3 4 7 8

 9 10 13 14

11 12 15 16

1 2 3 4

(b)

Figure 2: Trace of N-body simulation when n = 4

We use N-body simulation as an example, which calculates how particles interact and move
in space. Most computation is spent on computing the direct interaction between each particle
and its neighbors within a specific radius. The typical implementation divides the space into basic
units. For ease of presentation, we assume each unit contains the same number of particles, and the
program computes the interaction between all unit pairs. Our main result, Theorem 7, holds when
units contain a different number of particles, and when interactions are limited within a radius.

In the following analysis, we assume a one-dimensional space. Higher dimensions can be lin-
earized by using a space-fitting curve [13]. For simplicity, we assume that the space has n = 2t

units, where integer t is non-negative. The N-body simulation trace is then of size 22t+1. As an
example, we give the trace when n = 4 in Figure 2. The trace follows the Morton space filling
curve, which is shown at the right part of Figure 2.

We define the division of units into sections. We call the set of units i ∗ m + 1 to i ∗ m + m an
m-section of data, where m is a power of 2 and i is a non-negative integer.

The N-body simulation trace can be expressed as a matrix, as shown in Figure 2 (b). The rows
and columns are units, and the Morton space filling curve corresponds to the execution order. The
interaction between a m-section and another m-section is computed at their product in the graph,
which is a block of size m by m. We call it an m-block of computation. In a divide-and-conquer
computation, each m-block contains a contiguous sequence of the computation trace.

Now we prove that reference affinity gives the hierarchical locality in divide-and-conquer al-
gorithms, again using N-body simulation with n units as an example. The main theorem of the
section will show the exact structure of the reference affinity hierarchy. As a shorter exercise, we
first show that the reference-affinity hierarchy has more than a constant number of levels when n
can be arbitrarily large.

6

Theorem 6 For one-dimensional N-body simulation in the Morton order, the reference affinity
has more than a constant number of levels when n is arbitrarily large.

Proof Given a k that is a power of 2, we show that (a) every k
2
-section of data belongs to a k-affinity

group but (b) some m-section of data does not all belong to a k-affinity group. We prove Part
(a) first. Every use of a k

2
-section data is contained in a k

2
-block of computation, which contains k

distinct data. It is obvious that a k-linked path exists from any access to any other access in the
k
2
-block, therefore a k

2
-section belongs to a k-affinity group.

We prove Part(b) by contradiction. Suppose for any m, a m-section of data belongs to a k-
affinity group. We denote the first and the last data elements of the m-section as d1 and dm.
According to the definition of reference affinity, there must be a k-linked path from the first access
of d1 to some access of dm, the path has at most m − 1 links, and the volume distance of each
link is no more than k. The trace from the first access of d1 to the first access of dm includes at
least a m

2
-block, which has a length m2

4
. Hence the path of m − 1 links spans at least m2

4
data

accesses, and there must exist a link that spans at least m
4

accesses. However, when m is large
enough, it is impossible to bound the number of distinct data in m

4
contiguous accesses on the

trace. The volume distance of the link must be greater than k. A contradiction. Therefore, the
reference-affinity hierarchy has more than a constant number of levels when n can be arbitrarily
large.

Next we prove the exact structure of the reference affinity hierarchy. First, we give a key lemma
needed by the final theorem. We call it the insertion lemma. It shows that the insertion of a new
data access converts a link of length k into two shorter links.

Lemma 1 Given two different data elements u and v; their accesses au and av where the volume
distance from au to av is exactly k; and a third access ax, which happens between au and av in the
trace; then there exists an access a′

x between au and av such that the volume distance from au to
a′x is less than k, and the volume distance from a′

x to av is less than k.

The insertion lemma states that a link from au to av of length k can be divided into two shorter
links. In particular, for any data element x accessed along the path, there exists an access, ax, such
that it breaks the link into two shorter links. Not all accesses to x can be the breaking point. The
proof considers all possible configurations of u, v, x, au, av and shows the placement of ax in each
case. The proof is quite long and mechanical, and a sketch is included in the appendix.

Next, the final theorem gives the exact structure of the reference-affinity hierarchy. It is the
most important theoretical result, finishing the link between the linear, flexible concept of linked
paths in a computation trace and the hierarchical, complex structure of locality in space.

Theorem 7 Given N-body simulation of 2s particles implemented using the divide-and-conquer
technique or a space-fitting curve, the reference affinity hierarchy contains s + 1 levels, where each
2i-section belongs to a i-level affinity group.

The proof is straightforward after proving the following lemma.

Lemma 2 For any m-section, there exists a k, such that the m-section is a k-affinity group, but
the 2m-section does not all belong to the k-affinity group.

Proof Let k be the smallest reuse distance such that the m-section belongs to an affinity group.
Without loss of generality, we assume the m-section and 2m-section are the first such sections in
the data space, as shown in Figure 3(a). Suppose the 2m-section also belongs to the k-affinity

7

m 2m 3m 4m1

m

2m

1 1

m+1

ui

1 u1 u2 ... us m

vj

1 v1 v2 ... vt m

1

mm

(a)

ui-1 vj ui ui+1 vj+1 ui+2

If the top 3 are exactly k-linked

Then the bottom 2 are exactly k-linked

(b)

Figure 3: Illustrations for proofs of Lemma 1 (the insertion lemma) and Theorem 7

group, we derive a contradiction by showing that the m-section belongs to a k − 1-affinity group.
It suffices to show that there is a k − 1-linked path from the first access of 1 to the first access of
m.

Because the 2m-section are in a k-affinity group, there is a k-linked path from the first access
of element 1 to some access of element m + 1, as shown in Figure 3(a). The path is linked by at
most one access of elements 2 to m. Now consider the two m-blocks of computation in the figure
marked with ui and vj . They divide the path into two parts. By adding an ending point at the
first access of m in the ui block, and a starting point at the first access of 1 in the vj block, we cut
the k-linked path from 1 to m + 1 into two k-linked paths from an access of 1 to an access of m.
The two paths are shown at the bottom of Figure 3(a). The intermediate links in the two paths
are u1, . . . , us and v1, . . . , vt. We map the vi path in the vj block to the ui block. We now have
two k-linked paths from the first access of 1 to the first accesses of m. The links are accesses to
different data elements.

We construct a k − 1 linked path from the first access of 1 to the first access of m in ui block
in Figure 3(a). Consider each link on the ui path, say from ui to ui+1. If the link length is not
exactly k, then we are done. If the length is k, and some vj happens in between, the from the
insertion lemma, the k-link can be divided into two shorter links by moving vj . If no vj happens
between ui and ui+1, there must exist vj and vj+1 that include ui and ui+1 in between. Since the
volume distance from ui to ui+1 is k, vj and vj+1 must appear between ui−1 and ui+2, forming the
sequence shown in Figure 3(c). If the volume distance from ui−1 to vj is smaller than k, then using
the insertion lemma, the link from vj to ui+1 can be divided into two smaller links by moving ui, and
the link from ui+1 to ui+2 can be divided into two smaller links by moving vj+1. Similarly we can
construct smaller links when the volume distance between vj+1 and ui+2 is less than k. Otherwise,
ui−1, ui, ui+1, ui+2, are exactly k-linked. We continue to consider elements of vj−1, vj−2, . . . , v1 and
vj+2, vj+3, . . . , vt through similar steps. If we can not get a k − 1 linked path after examining all
elements, it means that the path 1, u1, · · · , us,m are exactly k-linked. This is impossible, since the
original linked path goes from the first access of 1 to an access of m + 1. The last link connecting
to the access of m + 1 must have a length greater than k. A contradiction.

We make two observations. First, the proofs do not assume what, when, and whether a section
of data is used. It requires only that a section is used together as a block. In N-body simulation,
the interactions are calculated within a radius. In this case, an affinity group cannot cross the
boundary of a radius. The proofs assume the Morton order for the convenience of illustration, but

8

it suffices that all data are traversed in some order. The order may change when the same block
is accessed at a different time. Hence the theorems can be extended to general divide-and-conquer
algorithms. Second, the proofs are for the existence of k. The variable size of data sections changes
the value of k but not the existence of k. Therefore, the affinity hierarchy exists when data sections
have an arbitrary size.

Given Theorem 1, a natural question is whether the reference affinity groups in divide-and-
conquer algorithms can be efficiently discovered. While the answer requires a systematic study
that is beyond the scope of this paper, we note that our initial experiments show good results from
recursive matrix multiplication. One reason is that in divide-and-conquer algorithms, the elements
of the same affinity group are accessed in a similar order, while the reduction in the NP-complete
proof requires data be possibly accessed in all possible orders.

4.1 Use in General-Purpose Programs

The use in general-purpose programs has given strong empirical evidence on the validity of the
affinity model. Programs often have a large number of homogeneous data objects such as molecules
in a simulated space or nodes in a search tree. Each object has a set of attributes. In Fortran 77
programs, attributes of an object are stored separately in arrays. In C programs, the attributes are
stored together in a structure. Neither scheme is sensitive to the locality of the program. A better
way is to group attributes based on their reference affinity. The results in this section come from
our earlier study [21] unless otherwise noted.

rtwt inum rt
0

55

k

19

693

69

lftaddr

Figure 4: Dendrogram for Cheetah

One example is a splay tree [17] used in a widely distributed cache simulator, Cheetah. A tree
search consists of a top-down tree search and a bottom-up splay. In a set of executions, the majority
of the searches targeted the right-end of the tree, so the program more often follows the right child
pointer and uses left rotations. Reference affinity can be efficiently approximated by checking a set
of necessary (but not sufficient) conditions. The result is shown by a dendrogram in Figure 4. The
fields lft and rtwt have the closest affinity because of left rotations. The fields inum and rt have the
next closest affinity because of searches to the right. The fifth field, addr has the weakest affinity
because it is referenced only at the end of a tree search. The number marked at each non-leaf node
is the link length of the affinity group. For example, lft and rtwt are accessed mostly within 19 data
elements. The affinity groups have a hierarchical structure.

We improve the object layout through array regrouping in Fortran and structure splitting in
C. We tested a range of programs including structural and molecular dynamics simulation, cache
simulation and integer sorting. We compared with the layout given by 8 other methods including the
programmer, frequency-based models, clustering methods x-means and k-means, and an incomplete
affinity model where the linked-path condition was dropped. On average, the affinity-based method
improves performance by 5% on an IBM machine and 12% on an Intel PC. What is remarkable is

9

the consistency. When competing against all 8 other methods for all 9 programs and 2 machines,
it ties or wins in 97% of all contests. When measured by the average speed on the two machines,
it never loses to the 72 alternative layouts.

Finding the best layout is difficult because the number of choices is exponential to the number
of attributes in a object. A program with 14 arrays has a choice of 6 million different layouts.
The empirical fact that reference affinity always picks the best layout among all methods shows
that it is the most accurate locality model known. The empirical data also shows that the linked-
path condition of the affinity definition is critical, even though it is unintuitive. As shown in the
complexity proof, it is the main cause of the NP-hardness. However, the study also shows that
reference affinity can be efficiently analyzed in large, real programs through approximation.

5 Related Work

Chatterjee et al. demonstrated the performance advantage of the hierarchical data layout for matrix
multiplication, Cholesky factorization, and wavelet transform [4]. Mellor-Crummey et al. studied
the blocked sparse data layout for irregular programs such as N-body and mesh simulation [13]. We
show that reference affinity captures the hierarchical data locality in these and other divide-and-
conquer programs. One remaining implementation issue is the placement order of the sub-groups
within a group. Previous results suggest that the best order is the one with the least overhead [13].

Thabit showed that data packing for a given block size is NP-hard [19]. Kennedy and Kremer
gave a general model that includes run-time data transformation (among other techniques) and
showed that the problem is NP-hard [9]. Petrank and Rawitz showed that if P 6= NP , no polynomial
time method can guarantee a data layout whose number of cache misses is within O(n1−ε) of that
of the optimal data layout, where n is the data size. They showed that using only pair-wise
information, no algorithm can guarantee a data layout whose number of cache misses is within
O(k− 3) of that of the optimal data layout, where k is the size of cache [15]. The reference affinity
is a constructive model attempting to characterize opportunities in commonly used programs.
Numerous results in the literature show that such opportunities exist.

Bender et al. used the recursive van Emde Boas layout for dynamic search trees and proved the
optimality for random searches [2]. For random searches, the reference affinity gives a flat hierarchy
for any constant k. Therefore, it cannot give the recursive layout they gave. The extension for
variable-distance affinity groups is a subject of an on-going study. Still, reference affinity is more
general because it does not require specific input. It can exploit locality in the type of tree searches
that exhibit strong reference affinity, for example, a group of tree nodes are always searched together.

In 1970, Mattson et al. defined the volume distance (named LRU-stack distance) and gave an
algorithm that measures a volume distance in O(M) time and O(M) space, where M is the data size
of the trace. Over the last thirty years, researchers gradually improved the asymptotic complexity
to O(logM) time and O(M) space. In 2003, we gave an approximation algorithm that guarantees
any given accuracy (e.g. 99.9%) but takes only O(loglogM) time and O(logM) space [7].

6 Summary

In this paper we have presented till now the most general model of hierarchical data locality. The
reference affinity is defined based on the volume distance and parameterized by the link length
k. We have characterized the complexity of the linking, checking, and finding problems. When
k is 1 and 2, we show that all three problems are in P and give a polynomial-time algorithm for
finding affinity groups. When k is 3, we show that the linking and checking problems are NP-
complete, and the finding problem is NP-hard. Reference affinity has many uses. We prove that it
finds the hierarchical locality from the trace of hierarchical computations such as recursive matrix

10

multiplication, factorization, wavelet transform, N-body and mesh simulation. We cite empirical
results showing the reference affinity can be efficiently approximated. The theorems and proofs
have established new links between the path-based affinity model, the structure of computation,
and the hierarchical locality of data. These results strengthen our understanding of the theoretical
relation between computation and data and open the door for research in more effective and efficient
programming methods for general-purpose programs on modern computer systems.

Acknowledgments

This material is based upon work supported by a grant from The National Science Foundation grant numbers
E1A-0080124 and EIA-0205061 (subcontract , Keck Graduate Institute), and Department of Energy award
#DE-FG02-02ER25525. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of above named organizations.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical memory. In Proceedings of
the ACM Conference on Theory of Computing, New York, NY, 1987.

[2] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious b-trees. In Proceedings of
Symposium on Foundations of Computer Science, November 2000.

[3] K. Beyls and E. D’Hollander. Reuse distance-based cache hint selection. In Proceedings of the 8th
International Euro-Par Conference, Paderborn, Germany, August 2002.

[4] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layouts for
hierarchical memory systems. In Proceedings of International Conference on Supercomputing, 1999.

[5] T. M. Chilimbi. Efficient representations and abstractions for quantifying and exploiting data refer-
ence locality. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, Snowbird, Utah, June 2001.

[6] P. Denning. Working sets past and present. IEEE Transactions on Software Engineering, SE-6(1),
January 1980.

[7] C. Ding and Y. Zhong. Predicting whole-program locality with reuse distance analysis. In Proceedings
of ACM SIGPLAN Conference on Programming Language Design and Implementation, San Diego, CA,
June 2003.

[8] G. Hunt and M. Scott. The Coign automatic distributed partitioning system. In Proceedings of the
Third Symposium on Operating System Design and Implementation (OSDI ’99), Orleans, Lousiana,
February 1999.

[9] K. Kennedy and U. Kremer. Automatic data layout for distributed memory machines. ACM Transac-
tions on Programming Languages and Systems, 20(4), 1998.

[10] D. Knuth. An empirical study of FORTRAN programs. Software—Practice and Experience, 1:105–133,
1971.

[11] G. Marin and J. Mellor-Crummey. Cross architecture performance predictions for scientific applications
using parameterized models. In Proceedings of Joint International Conference on Measurement and
Modeling of Computer Systems, New York City, NY, June 2004.

[12] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques for storage hierarchies.
IBM System Journal, 9(2):78–117, 1970.

[13] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory hierarchy performance for irreg-
ular applications. International Journal of Parallel Programming, 29(3), June 2001.

[14] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

11

[15] E. Petrank and D. Rawitz. The hardness of cache conscious data placement. In Proceedings of ACM
Symposium on Principles of Programming Languages, Portland, Oregon, January 2002.

[16] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28(2), 1985.

[17] D. D. Sleator and R. E. Tarjan. Self adjusting binary search trees. Journal of the ACM, 32(3), 1985.

[18] A. J. Smith. Cache Memories. Computing Surveys, 14(3), September 1982.

[19] K. O. Thabit. Cache Management by the Compiler. PhD thesis, Dept. of Computer Science, Rice
University, 1981.

[20] J. S. Vitter. External memory algorithms and data structures: dealing with massive data. ACM
Computing Surveys, 33(2), 2001.

[21] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and structure splitting using whole-
program reference affinity. In Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2004.

A Proofs

Theorem 1 For each k ≥ 3, Pw-k-Aff is NP-complete.

Proof It is obvious that the problem is in NP. We will prove its NP-hardness by constructing a polynomial-
time many-one reduction to Pw-k -Aff from 3-SAT, which is the problem of testing, given a formula of
conjunctive normal form in which each clause has at most 3 literals, whether the formula is satisfiable. We
consider the variant of this problem in which each variable appears as a literal (positively or negatively) at
most three times. This problem is also known to be NP-complete (see, e.g., [14]). Without loss of generality,
we can assume that all variables appear both positively and negatively in the formula. If a variable appears
only positively (respectively, negatively) then we can create a simpler, equivalent formula by setting the
value of the variable to true (respectively, false).

Let ϕ be a CNF formula of N variables and M clauses in which each clause has at most 3 literals and
each variable appears at most three times. Let x1, . . . , xN be the variables of ϕ and C1, . . . , CM be the
clauses of ϕ.

Let λin and λout be two distinct labels. We will define a sequence T whose first label is λin and whose
last label is λout. λout appears nowhere else in the sequence. We will consider the problem of creating a
k-linked path between the two. The sequence is of the form

λinΣΓ1 · · ·ΓNΘ1 · · ·ΘMλout,

.
The sequence Σ is the k repetitions of ν1 · · · νk separated by k − 1 λin’s. where ν1, . . . , νk are k pairwise

distinct labels. Recall that for a pair of positions to be k-linked there must be a set of intermediate points
with pairwise distinct labels in which the reuse distance between each neighboring intermediate points is at
most k. To create such a path between our two end points, the subsequence Σ must be traversed without
visiting a same label more than once so that the distance between the two neighboring visited points have
reuse distance at most k. The only way to construct such a path is to visit every (k + 1)st element of Σ
besides the first λin, exiting at the first element after Σ. This path visits ν1, . . . , νk exactly once. This means
that any k-link path between our two endpoints should not visit any one of ν1, . . . , νk+1 again.

For each xi appeared in the formula, 1 ≤ i ≤ N , Γi if of form

αi,1γi,1γi,2γi,3ν1 · · · νk−2γi,1αi,2ν1 · · · νk−1.

The α’s here appear nowhere else in the sequence. Each γ appears at most once elsewhere. If it does indeed,
it appears in one of the Θ’s. Suppose that a k-linked path between the two endpoints lands on αi,1. Then
the path can only be threaded in Γi using one of the following paths:

1. [γi,3, αi,2],

12

2. [γi,3, γi,1, αi,2],

3. [γi,2, γi,3, αi,2],

4. [γi,2, γi,3, γi,1, αi,2],

5. [γi,2, γi,1, αi,2],

6. [γi,1, γi,2, γi,3, αi,2], and

7. [γi,1, γi,3, αi,2].

Consider the set of all γ’s that has not been visited yet. The set is

1. {γi,1, γi,2},

2. {γi,2},

3. {γi,1},

4. ∅,

5. {γi,3},

6. ∅,

7. {γi,2},

Two crucial observations here are that (a) there is no set that contains γi,3 and one extra element and (b)
that the first set has both γi,1 and γi,2. Suppose that xi appears three times in the formula, twice as xi and
once as xi. Then we use γi,1 to denote the first occurrence of xi, γi,2 to denote the second occurrence of xi,
and γi,3 to denote xi. In the case when xi appears twice and xi appears once, we use γi,1 to denote the first
occurrence of xi, γi,2 to denote the second occurrence of xi, and γi,3 to denote xi. In the case when both
xi and xi appear only once, we use γi,1 to denote the unique occurrence of xi and γi,3 to denote the unique
occurrence of xi. Note that all of these possible paths must land the first element after Γi.

For each i, 1 ≤ i ≤ M , such that Ci has exactly two literals, Θi is of the form

βi,1θi,1θi,2ν3 · · · νk.βi,2ν2 · · · νk,

and for each i, 1 ≤ i ≤ M , such that Ci has exactly three literals, we construct Θi as

βi,1θi,1θi,2θi,3ν4 · · · νk.βi,2ν2 · · · νk,

where θi,l is the lth literal of Ci. Note here that the literals in the clause are replaced using γ’s in the
sequence according to the rules in the construction of Γ’s. Suppose that the k-linked path between our two
endpoints land on βi,1. Since there are k labels between βi,1 and βi,2 and none of the ν’s can be visited
again, the k-linked path can only be extended if one of the θ literals is visited. The segment after βi,2 forces
the path to land on the element right after Θi.

we can see that Σ is of length k(k + 1) − 1, for each i, 1 ≤ i ≤ N , Γi has length 2k + 3, and for each i,
1 ≤ i ≤ M , Θi has length 2k + 1. So, the total length of the sequence, including the two endpoints, is

2 + k(k + 1) − 1 + N(2k + 3) + M(2k + 1),

which is equal to k(2N + 2M + k + 1) + 3N + M + 1, which is polynomial of the size of the CNF formula.
So the construction can be done in polynomial time.

We view the literals that are visited in Θi as those satisfied by the assignment represented by the path.
For such a path to be valid, the selections in the Θ sections have to be made so that the literals satisfying
the clauses are still available. Suppose that ϕ is satisfiable. Let A be a satisfying assignment of ϕ. Construct
the path within Θ’s so that the those that are visited are precisely those that are satisfied by A. Then it is
possible to select the paths in Γ so that none of those visited in Θ are visited in Γ. So, the two endpoints
are k-lined.

On the other hand, suppose that ϕ is not satisfiable. Take any potentially k-linked path π in the Θ’s.
There exist at least one variable, xi for which both one occurrence of xi and one occurrence of xi is selected.

13

Then it is not possible to construct a k-linked path within Γi, so there is no k-linked path between the two
endpoints.

We note here that the set of labels, Λ, which is the part of the instance is the set of all labels that we’ve
defined. By now, we have constructed a polynomial-time many-one reduction from 3-SAT to Pw-k -Aff.
Since Pw-k -Aff apparently belongs to NP, we prove that Pw-k -Aff is a NP-complete problem.

Corollary 1 For k ≥ 3, the problem of checking reference affinity groups is NP-complete.

Proof Suppose the group of data elements is G. First, let’s show that this problem belongs to NP. This
can be done by first guessing the possible supersets of G, say G′. For every two different data elements
x, y ∈ G′, for every ax, we guess it can be connected to the nearest ay located left-side or right-side, and
then we guess a link-path between them and then verify if this is a link path of link-length k. If it is, then
continue to check other ax’s and then other pairs of data elements. But if not, it will just refuse to accept.
We can check for all of the pairs and all accesses of x in a sequential way. If every pairs and every accesses
are checked to be linked successfully, then accept.

By the definition of reference affinity group, for any x, y ∈ G, for all ax, we need to check if there exists
an ay, such that ax and ay are k-linked. The only way is to check if there is a k-linked path from ax to
the left-side or right-side nearest ay. So we can see that if there is a polynomial-time algorithm for checking
reference affinity problem, then there is a polynomial-time algorithm for Pw-k -Aff problem. Thus we have
proved that for k ≥ 3,checking reference affinity group problem is NP-complete problem.

Corollary 2 For k ≥ 3, the problem of finding reference affinity groups is NP-hard.

Proof The proof is quite straightforward. If there is a polynomial-time solution that can find out the
reference affinity groups, then we can solve the problem of checking reference affinity groups in polynomial
time. This contradicts with Corollary 1.

Theorem 2 For k = 2, Pw-k-Aff is NL-complete.

Proof 2 -CNF-SAT is the problem of testing whether a given conjunctive normal form formula with two
literals per clause is satisfiable. This problem is the standard NL-complete problem. By following the proof
of Theorem 1 with k = 2, we can show that the 2 -CNF-SAT is reducible to Pw-k -Aff for k = 2.

To prove that PWkAff belongs to NL for k = 2, suppose that a set of labels Λ, a sequence Σ = {σi}
M
i≥1

over Λ, an integer k ≥ 0, and two integers I and J , 1 ≤ I ≤ J ≤ M are given as an instance to the problem.
We wish to test whether I and J are k-linked.

Since the elements before the I th entry and those after the J th are irrelevant to the problem at hand, we
may assume, Without loss of generality, that I = 1 and J = M . Also, if the ith entry and the (i + 1)st entry
are the same, at most one of the two can be visited, and if one is visited at all which one doesn’t matter.
So, one of them can be safely removed. This means that, for all i, 2 ≤ i ≤ M − 2, σi 6= σi+1.

For each i, 2 ≤ i ≤ M − 1, let yi be the variable that represents whether the ith element is visited. We
construct a formula ϕ by joining the following size-two clauses:

• for each i, 2 ≤ i ≤ M − 2, (yi ∨ yi+1), and

• for all ρ ∈ Σ and for all i and j such that 2 ≤ i < j ≤ M − 1 and σi = σj = ρ, (yi ∨ yj).

Suppose that this formula is satisfiable. Let A be a satisfying assignment of the formula. Then A clearly
defines a k-linked path, since only those belonging to Σ are visited, no element in Σ is visited more than
once, and there is at most one entry between any two neighbors on the path. Similarly, if there is a k-linked
path, then by setting the truth value of each variable according to whether the node is included in the path,
we can satisfy the formula. So, the satisfiability of the formula is equivalent to the existence of a k-linked
path.

Theorem 3 For k = 2, the problem of finding reference affinity groups is in P .

Algorithm 1 can be found in Section 3. Here we present the detailed proof.
Proof First let us show this is a polynomial-time algorithm. By Theorem 2, we need polynomial time to
test whether two data accesses are 2-linked. Hence, testing if two data elements is 2-linked with respect to
a given group can be done in polynomial time. Constructing the graph G needs only polynomial time. For
the reference affinity group that x belongs to, we remove at most m data elements from the group, where m

14

is the number of data elements in the trace. There are at most m reference affinity groups. Therefore, the
algorithm takes polynomial time.

Next we prove the correctness. First, it is easy to see that the groups found by this algorithm satisfy
the first condition of reference affinity. Second, let us show every group is the maximal size possible. We
show that the algorithm removes z correctly. Removing z at step 7 is straightforward. The correctness of
the removal of z at step 10 can be proved by contradiction. Suppose z and x belong to the same group G1.
We have y /∈ G1. From the algorithm, an access ay cannot be 2-linked to any access of z. Since x and y
are 2-linked, there are some accesses of x that is 2-linked to ay. We pick the nearest one as ax. Without
loss of generality, we assume ax appears at the right side of ay. Similarly, we choose az, which is 2-linked to
and nearest to the ax. This az can not appear on the left side of ax. Otherwise, we have two cases. First,
if az appears between ay and ax, then the path from ay to ax must pass the very data element at the right
side of az, since k = 2. Then the ay can be 2-linked to this az by replacing the very data element with az,
which is a contradiction. Second, if az appears on the left side of ay, since x and z are in the same group,
a path exists from ax to az without passing ay. This path must land on the very data element at the right
side of ay, since k = 2. Then we can replace the very data element with ay and get a new path from ay to
az, which is also a contradiction.

Now let’s select the leftmost data element in G1 that appears on the section of trace between the ay and
az. Suppose it is al. This is shown in Sequence (2).

...y...l...x...z... (2)

We first show that a path exists from ay to al with respect to (G − G1)
⋃
{l}. Since ay is 2-linked to ax

with respect to group G, there is a path π connecting them. If π does not pass al, it must pass the very data
element at the left side of al, since k = 2. A new path π1can be generated from ay to al by first reaching
the very data element and then one step further to al. If π passes al, then we pick the segment from ay to
al as π1. All of the data elements on the path π1 is in G − G1 except for l.

Since l is in the same group with z, there is a path π2 from al to az with respect to G1. We get a new
path π′ by merging paths π1 and π2. Now π′ is a 2-linked path without duplicated data elements from ay

to az, which is a contradiction with step 9.

Theorem 5 For k = 1, there is a polynomial-time solution for finding reference affinity groups.

Algorithm 2 Finding reference affinity groups when k=1
procedure FindReferenceAffinityGroup 1(T)

1: {T is the trace, k = 1}
2: encode the data elements according to the order of appearance in the trace. Suppose there are m distinct

data elements.
3: while there exist ungrouped codes do

4: pick the smallest ungrouped datum as s.
5: for t=m to s step −1 do

6: if IsAGroup(T,s,t) then

7: break;
8: end if

9: end for

10: output elements in {s, . . . , t} as a group.
11: end while

endFindReferenceAffinityGroup 1
procedure IsAGroup(T,s,t)

1: for i varies from 1 to |T | do

2: if T[i] is within s and t then

3: if The elements T[i] can be 1-linked to with respect to {s, . . . , t} can not cover set {s, . . . , t} then

4: return false;
5: end if

15

(au) au

(av) av

case 1

case 2

case 3

case 4

case 5

case 6

ax

a‘xa‘’x

a‘x
a‘x a‘’x

a‘x

{ a‘x

a‘x

(a)

au

av

case 1

case 2

case 3
ax

a‘x

{
(b)

Figure 5: Cases in proving the insertion lemma

6: end if

7: end for

8: return true;

endIsAGroup

It is straightforward to show that the algorithm is polynomial time and can output the correct reference
affinity groups.

Lemma 1 Given two different data elements u and v; their accesses au and av where the

volume distance from au to av is exactly k; and a third access ax, which happens between au

and av in the trace; then there exists an access a′
x between au and av such that the volume

distance from au to a′
x is less than k, and the volume distance from a′

x to av is less than k.

Proof The element u is either earlier or later than v in the data space. Because a link and a path are not
directed, the two cases are symmetrical. Without loss of generality, we assume u is before v. Consider the
smallest m-block that contains u, v, au, av. The element x must be in the data section of the block; otherwise
the path from au to av does not go through x. There are two cases shown by the two graphs in Figure 5,
each has six sub-cases. The location of ax is given for each sub-case in the figure. In most cases, ax splits
the k-link from au to av into two shorter links of less than k. The first case is when au and av are in upper
and lower half blocks. In the first sub-case of the first case, we need to use one of the two locations, marked
by a′

x and a′′
x. Then we use the au to break the link from the access of x to av and treat the access to x as

au. The last sub-case of the first case is similar. The second case happens when au and av are both in the
upper or lower half block. Figure 5 shows the three out of the six sub-cases when both accesses are in the
upper half block. The other three sub-cases are symmetrical. In sub-case 1 and 3, we pick a′

x to be in the
middle on the same side of ax. In sub-case 2, we use one of the two middle points depending on the position
of ax.

16

