

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006. Article 3B.

Learning Through Game Modding

MAGY SEIF EL-NASR AND BRIAN K SMITH

The Pennsylvania State University

__

There has been a recent increase in the number of game environments or engines that allow users to customize
their gaming experiences by building and expanding game behavior. This article describes the use of modifying,
or modding, existing games as a means to learn computer science, mathematics, physics, and aesthetic
principles. We describe two exploratory case studies of game modding in classroom settings to illustrate skills
learned by students as a result of modding existing games. We also discuss the benefits of learning computer
sciences skills (e.g., 3D graphics/mathematics, event-based programming, software engineering, etc.) through
large design projects and how game design motivates students to acquire and apply these skills. We describe our
use of multiple game modding environments in our classes. In addition, we describe how different engines can
be used to focus students on the acquisition of particular skills and concepts.

Categories and Subject Descriptors: K3 [Computing Milieux]: Computers and Education; I.6 [Computing
Methodologies]: Simulation and Modeling; D.m. [Software]:Miscellaneous
General Terms: Experimentation, Design
Additional Key Words and Phrases: Games and education, game engines and classrooms, learning and design
__

INTRODUCTION
In the late 1990s, game developers began to separate gaming experiences (e.g., rules,
behaviors, characters) from the underlying engines that power them. These game engines
allow designers to create new game behaviors and graphics by plugging into reusable
architectures that handle polygon rendering, camera control, lighting, and so on. Many
popular game engines come with scripting languages that allow users to modify their
behaviors, create new worlds for exploration, or even modify existing games into
completely new ones. This process, often referred to as modding, still requires designers
to understand how to communicate with game engines, but the overhead of creating a
working product is significantly less than working without the functionality that these
engines provide.

Modding offers a number of advantages over designing games from scratch
[Emmerson 2004]. The time and costs related to video game development are enormous,
preventing most individuals from being able to create games that resemble those built by
corporate designers. However, modifying existing games is within the reach of many
game players, as companies provide tools to allow designers to tweak their games. Since
modding begins with popular, proven game concepts, the resulting variations are more
likely to resemble games that players/modders are accustomed to than if they had to build
entire game infrastructures on their own.

__

Authors’ address: Magy Seif El-Nasr, School of Information Science and Technology, The PennsylvaniaState
University; Brian K Smith, School of Information Science and Technology & College of Education, The
Pennsylvania State University; email: [magy, bsmith]@ist.psu.edu
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 1515 Broadway,
New York, NY 10036, USA, fax:+1(212) 869-0481, permissions@acm.org
© 2006 ACM 1544-3574/06/001-ART3B $5.00

2 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

In this article, we discuss the use of game modding as a pedagogical activity.
Although much of the complexity of creating games can be eliminated by modifying
existing games, there are still opportunities for designers to learn about concepts such as
3D graphics, vector geometry, event-driven and object-oriented programming, artificial
intelligence, and computational and aesthetics principles that are tied to game
development. In fact, modders may be able to focus on learning these fundamental design
skills because game engines and their tools eliminate much of the overhead associated
with building convincing products. We begin by discussing the benefits of learning by
designing computational artifacts. We then describe the computer science skills and
concepts required to mod games through two case studies of students working with game
engines in classroom settings. Specifically, we report observations of high school and
college students enrolled in game design courses at The Pennsylvania State University
and present examples of their games and the skills they acquired to create them. Through
these examples, we will suggest how different game modding environments can be used
to help students develop particular skills and concepts.

LEARNING BY DESIGN
Modifying existing games to create new ones is a design activity that we believe may
have educational benefits. There are several reasons why design tasks are useful for
learning content, skills, and strategies [Puntambekar and Kolodner 2005]. Design
activities provide meaningful, engaging contexts for students to explore skills and
concepts and understand how they can be applied in the real world. During the design
process, skills such as analysis, synthesis, evaluation, and revision must be used,
providing opportunities for learning content and metacognitive skills such as planning
and monitoring. Students can receive ongoing feedback from peers and experts when
constructing working artifacts. Feedback also comes during the process of construction as
students work to understand how and why their designs fail, can be optimized, and so on.
Finally, real design problems have multiple solutions, allowing students to see and
evaluate alternatives. This leads to iterative activities where students incrementally build,
evaluate, discuss, and revise their constructions.

Design, and learning from the process, can occur in many domains with different
types of construction activities, but we will focus on the design and development of game
software. Since the development of the Logo language in the 1960s, educational
researchers have investigated ways that programming computers can facilitate learning
about mathematics, computation, and more general planning skills [Lehrer 1986; Papert
1980; Pea et al. 1987; Resnick and Ocko 1993)]. Seymour Papert, the father of Logo and
perhaps the strongest advocate of programming as a pedagogical pursuit, used
programming as one example of a larger theory of learning called constructionism.

Constructionism involves two activities [Papert 1980]. The first is the mental
construction of knowledge that occurs with world experiences, a view borrowed from
Jean Piaget’s constructivist theories of learning and development. The second is a more
controversial belief that new knowledge can be constructed with particular effectiveness
when people engage in constructing products that are personally meaningful. Those
products could be dollhouses, Logo programs, or particle accelerators. The important
issue is that the design and implementation of products are meaningful to those creating
them and that learning becomes active and self-directed through the construction of
artifacts.

Constructionist approaches to using video games in education involve students
designing and developing their own games. For instance, Harel’s work in elementary

Learning Through Game Modding • 3

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

schools demonstrated children working for prolonged periods on the creation of
educational games using the Logo programming language [Harel 1991]. Kafai [1994]
noted similar engagement as students developed their own games, and she also tracked
their abilities to incrementally create, evaluate, and revise their designs over time.
Hooper’s longitudinal study of software development in schools showed students
expressing notions of cultural identity in their programs—ideas that were not likely to
find expression if students had just played existing games [Hooper 1998].

These studies used Logo as the primary programming language, but a number of
programming environments have been created to help novices learn by designing and
implementing working computer programs [Conway et al. 2000; Ingalls et al. 1997;
Repenning and Ambach 1997; Resnick 1994; Smith et al. 1994; 2000]. Toolkits like
these have been used to help novices turn design ideas into working prototypes as well as
to learn computational fundamentals.

Numerous universities have adopted game design into their curricula in hopes of
increasing undergraduate enrollment in computer science programs [Angiolillo 2005].
The belief is that students’ familiarity with games can be used to motivate computer
science learning and attract and retain future generations of computer scientists. Students
enrolled in experimental computer science classes that used game design averaged higher
grades than control classrooms. Additionally, 88% of the game students continued in the
major compared to 47% for the control groups [Moskal et al. 2004]. Combining
constructionist pedagogy with game design seems to help some students dig deeper into
computer science fundamentals.

The case studies described in this article can be considered another example of using
games to teach computer science skills. Time, cost, and expertise are significant barriers
to experimenting with video game design in educational settings, but customizing
existing games may reduce the difficulty and make it possible for learners to create
credible prototypes. Therefore, we have focused on understanding if and how game
modding can lead to the same types of personal learning experiences described by Papert
and others, and what types of skills can be acquired using different game engines.

MODDING IN CLASSROOMS
Since the release of Doom in the late 90s, game enthusiasts have been eager to customize
their maps and modify their gaming experience by modifying the game through
programming or scripting. Lately, the modding community has increased tremendously,
with more gamers eagerly building and sharing their customized game experiences
[Hyman 2004]. For example, Will Wright reported receiving over 74,000 character and
object models built by people for the Sims [Wright 2004]. Another example is Counter
Strike, a game mod built using the Half Life game engine. This mod was so popular that
it is now included with the Half Life 2 game release.

Providing engines or editors with games is becoming more popular. Many games
have released engines or tools that allow users to modify game maps, mechanics, events,
and behavior. Examples include War Craft III, Unreal Tournament 2003 and 2004, Half
Life, Half Life 2, and Morewind. Game modding has also become a good source of game
industry recruiting and game prototyping.

In this section we describe two classroom sessions where game modding played a
major role in helping learners work with computer science concepts. Our evaluations of
these sessions are formative, relying on our observations of students performing game
design for extended periods. Although these observations are exploratory, we believe that

4 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

the descriptive results we present may be helpful to others looking to implement game
design in introductory and advanced computing curricula.

Game engines differ in their flexibility and the skills needed to use them. Discussing
the differences between all engines in the market today is beyond the scope of this article.
Instead, we describe three different engines—WarCraft III, Web Driver, and Unreal 2.5
Engine—and how they were used in our case studies.

FIRST SETTING – GAME DESIGN WORKSHOP

Classroom Setting
Our first case study describes a class on game design and programming for high school
students as part of the Pennsylvania Governors School for Information Technology
(PGSIT). Twenty high school students interested in IT enrolled in this summer class. The
course was held on three consecutive days for three hours a day. The main aim of the
course was to engage students in teams of two to build a game in three days.

Process
Since this was a short class, we needed an easy-to-learn, rapid prototyping engine. We
chose the WarCraft III engine because it provides simple visual methods for customizing
game templates and requires little or no programming skills to create interesting designs.
The game engine is composed of several editors: the world or map editor, trigger editor,
character editor, etc. The editors are implemented as visual programming tools that allow
designers or users to visually customize game behavior, including character behavior,
game map, and game play. The map editor (shown in Figure 1) is specifically used to
create or customize maps for the game. As illustrated in the figure, the editor is composed
of several visual tools that allow users to place different types of terrains, objects, and
characters within the scene. Users can also create or identify special regions for triggering
specific game behaviors. The trigger editor (shown in Figure 2) allows users to modify
game behavior when a specific event or condition occurs. For example, one can include a
trigger to start a specific song once the player enters a specific region in the map. A
typical trigger consists of an event or a condition and an action. The event and condition
part of the trigger specify when the trigger will become active. When the trigger is
activated, the actions specified in the action part of the trigger will be executed.
Therefore, creating several triggers can develop a different game. The game engine

Fig. 1. Warcraft III’s world editor.

Learning Through Game Modding • 5

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Fig. 2. WarCraft III’s trigger editor.

Fig. 3. Students created these graphical levels for their football game.

typically checks all user-specified triggers in parallel. The engine checks if the trigger
condition and event are met: if they are, the game engine will then run the trigger
actions.The students were asked to each find a partner and work together to develop a
game concept on the first day. On the second and third days, they developed prototypes

6 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Fig. 4. The scoring trigger created by the students for the football game.

of their game using the WarCraft III engine. The games and ideas were critiqued during
team meetings with the instructor and a graduate student with experience in game design.
These critiques occurred informally as the instructors observed student progress.

The best way to illustrate the concepts that students learned is to look at the games
they created. For instance, one group created a football game. Transforming the original
WarCraft III game from a military strategy game to a sports scenario involved extensive
modifications to the engine’s rules. The students borrowed the team rules from the
original game but developed their own graphical map and football characters (Figure 3).
They repurposed an existing item, a treasure chest icon, to be the ball.

The students had to create new rules to implement scoring actions while removing
those that allowed characters to use weapons. Figure 4 shows an example rule that they
created to implement a touchdown in WarCraft III’s visual trigger editor. WarCraft III is
an ideal game engine for novice programmers. It also provides a good and quick engine
to work with, considering the short duration of the class. Although modding takes place
with highly structured visual tools, students have to develop some notions of game design
and computation in order to create working products. In this example, students were able
to create a simple graphical map and characters to create the setting for a football game.
They also had to develop some understanding of production rules and Boolean logic in
order to create the game’s scoring rules. Building the scoring system also required them
to understand how WarCraft III’s rule system works. For instance, they had to be explicit
about marking map regions where events could occur, recognize if the ball is in one of
these locations, and specify which player is carrying the ball. Accomplishing these three
tasks requires conceptual knowledge of unique identifiers (variables) and their use in

Learning Through Game Modding • 7

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

identifying regions and positions on the map. They also had to understand conditional
tests when comparing the position of the ball to these specific map regions.

The football game went through three different iterations with instructors providing
feedback to enhance the students’ work. This allowed the students to develop their
understandings of user interface and game design issues. For instance, in the first
iteration, the students created a map that was visually complex, but it detracted from the
goal of the game. They corrected this in their second version after receiving tips on how
to strike a balance between aesthetics and game play.

Another student team modified WarCraft III to create a Tetris-like game. This
introduced more complexity, as the students had to develop mathematical functions to
rotate and translate puzzle objects. Tetris also involves more modifications to the original
WarCraft III game than the earlier football example. The level design was simple, a large
room to mimic the Tetris playing field (Figure 5). Several triggers and functions were
added to rotate and translate puzzle units depending on user inputs. Figure 6 shows one of
their functions that captures keyboard events in order to move the puzzle pieces. The
figure shows several triggers on the left. We have expanded the rotate trigger in order to
show an example trigger. This trigger in particular registers another trigger that sets
rotations on keyboard events. Students were able to successfully create these triggers
through consulting instructors and web resources, including message boards and tutorials
on setting functions and triggers within the WarCraft trigger editor.

OBSERVATIONS
Game design, like software design, often involves many iterations to get the game
concept and mechanics right. In the class, we first introduced different theories of game

Fig. 5. The level design for the WarCraft III version of Tetris.

8 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Fig. 6. Functions created by students for the Tetris game.

design, including Marc LeBlanc’s MDA (Mechanics, Dynamics, and Aesthetics) theory
[Hunicke et al. 2004]. We then discussed the game design process. Students were warned
about the time needed for refining the design, and they took this consideration into
account in their plan. Our critiquing sessions extended over two days, which allowed
some groups to go over three to four iterations of their designs. Through this process, we
believe they learned, on a small scale, the design and development cycle and the benefits
of iterative design. We also observed that they were able to use and apply the MDA
framework. Even though we didn’t ask them to critique each other’s games, they
volunteered to do so.

Students were able to use the tools and quickly construct games in three days. They
iteratively revised their games based on critiques and were able to understand the
relationships between game mechanics and aesthetics. Since this was a group project,
they also learned how to work in a group and divide the work evenly among group
members, taking skills and the different tasks into account. They also learned several
programming constructs, including threading, event-based programming, and rule-based
programming. The Tetris group went a step further, writing their own functions to
compute graphical rotations and translations.

The project encouraged them to work in groups of two. They were asked to develop a
concept design, conceptualize the tasks involved, and divide them among team members.
They were asked to fit their schedules within two, six-hour class periods. Such deadlines
are unrealistic by professional game development standards where projects often take
months or years to complete. We were surprised to see that students were able to keep
their schedules and submitted their prototypes for review in the time allotted. We were

Learning Through Game Modding • 9

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

also pleased to see that the teams worked outside of class and used instant messaging and
e-mail to communicate about their progress. Although this was a small project with a
very small team size, we believe that they were able to engage in teamwork and were
successful in developing a good project plan.

SECOND SETTING – GAME DESIGN CLASS

Classroom Setting
This second case study took place in a game design/programming class taught at The
Pennsylvania State University. It was an advanced undergraduate class where 35 students
from the Department of Computer Science and Engineering and School of Information
Sciences and Technology worked together to design and develop a game of their choice.
Since these students were more familiar with programming, we were able to introduce
more complex game engines into the curriculum.

Process
The first part of the course introduced two engines: Wildtangent’s Web Driver and
Unreal Tournament 2003. For their first assignment, students were asked to build a small
prototype to move characters around using the Web Driver library and C# as the
programming language. For their second assignment, they were asked to make up a
simple game modification to Unreal Tournament’s DeathMatch game using Unreal Edit
(map editor) and Unreal Script (scripting language, similar to java). These assignments
were designed to help students become familiar with the engines before starting the
process of creating their own games through their final projects.

During the second half of the course, students worked in groups of five to develop a
game of their choice using any of the engines they learned in class. Note that the Web
Driver is an engine that allows students to build their own games from scratch, thus it
gives them flexibility and most of the functionality they need. On the other hand, Unreal
is a game modding environment, where students implement their games by modifying
existing game types, and thus they can reuse many of the functionalities already
implemented in the Unreal games.

Web Driver Exercise. The Web Driver engine is a library composed of several classes

that students can use to add 3D objects, maneuver them in 3D space, change camera
view, etc. In their first assignment, we wanted to expose students to the main Web Driver
functionality, such as animation, adding and maneuvering objects and characters, without
overwhelming them with a very complex assignment. Therefore, we asked them to build
a 3D environment with a character that receives stage directions, in the form of button
clicks, dictating how it should behave.

To complete this assignment, students need to accomplish the following:

• Build a 3D environment using the Web Driver level editor, WTStudio. This
entails understanding 3D coordinates. It requires them to place walls, objects,
make textures and apply them on walls and objects, setup lights in terms of
placement, angle and direction, and finally export that level into code.

• Add a character model (provided by the teaching staff) to the 3D environment
using the Web Driver classes (specifically understand and use the WTActor
class from the Web Driver Library).

• Given a destination position, figure out the forward orientation vector of the
character, which requires applying dot and cross product.

10 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Fig. 7. An example Web Driver student assignment.

• Given a destination position and a forward vector, animate the character to
move to the destination in a natural way, which requires knowledge of
threading and event based programming.

We use a student project to demonstrate the complexity of the assignment and the content
learned as a result. This example includes 865 lines of code written in C#, the code uses
the Web Driver libraries. Figure 7 shows two screenshots of the example assignment. The
opening scene is on the left, showing the environment created by the student with the
correct textures and an aesthetically pleasing light setup. The screenshot on the right
shows the scene after executing the command asking the character to move to “upstage
left”. The camera was programmed to move with the character, locking it in the center of
view at all times (using the WTCamera class from the Web Driver Library). To get from
the screenshot on the left to the one on the right, the character was programmed to rotate
towards the destination (upstage left) then to move using a walk cycle animation. Using
Web Driver classes, the student plays the walk cycle animation and moves the character a
specific distance on a time interval. Manipulation of position and direction requires 3D
math and simple vector geometry. The process of fixing the animation, distance, and
timing to appear natural requires careful synchronization, threading, and event-based
programming.

Learning Through Game Modding • 11

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

The following snippet of code was used to determine turning direction and to turn the
actor:
IWTVector3D tempActorPosition = actor.getPosition();
WildVector ActorPosition = new WildVector(tempActorPosition.getX(),
tempActorPosition.getY(), tempActorPosition.getZ());

IWTVector3D tempOrientation = actor.getOrientationVector();
WildVector Orientation = new WildVector(tempOrientation.getX()*-
1,tempOrientation.getY(),tempOrientation.getZ()*-1);

WildVector GoalOrientation = new WildVector(GoalLocation.X -
ActorPosition.X, GoalLocation.Y - ActorPosition.Y, GoalLocation.Z -
ActorPosition.Z);

Orientation.Normalize();
GoalOrientation.Normalize();

float angle = GoalOrientation.TurnAngleXZ(Orientation);

actor.setRotation(0,1,0,angle,1);

All students wrote similar code, and only one of the 35 students was unable to
complete the exercise. Many students attempted the extra credit part of the assignment,
which required handling mouse events and adding collision detection using math and
vector geometry techniques.

As we talked to students during this exercise, we noticed that many of them were
unfamiliar with Pythagorean theorem or its relevance to game programming. The
theorem is important because it is used to calculate the distance between two points in
space. Since students were required to have a character move from one point to another,
they needed to calculate the distance that the character had to travel. We also found that
students had little knowledge of basic geometry and vectors. The instructor provided a
lecture to help them understand these concepts. After the lecture, students reported that
they understood the content and could display their knowledge when solving simple math
equations provided in class exercises. However, they still had difficulties moving from
solving equations to applying these concepts to 3D game programming.

Working with the Web Driver allowed them to apply and gain a better understanding
of 3D geometry and vector mathematics. In particular, they applied the Pythagorean
theorem and were able to calculate and use tangents, vector geometry (dot product), 3D
transformations, and 3D rotations. These were difficult concepts to understand. We
believe that by applying them in visual 3D space, students were able to visualize and
assimilate their use and application.

In addition to learning basic math and geometry, students had to understand the use of
object- oriented programming and component-based development. Most of the students
had only taken a single object-oriented design course before this one, and they explained
that they did not fully understand the advantages of object-oriented programming.
Through this exercise, they were able to apply object-oriented concepts during the Web
Driver exercise, using its libraries and component structure to successfully animate
character movements.

Furthermore, any game development involves threading and event-based
programming. In this particular assignment, students were required to handle mouse,
keyboard, and render events as well as use threading for synchronizing character
animation. Web Driver facilitates the use of event-based programming by supplying

12 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

several methods to trap events, such as keyboard, mouse, and rendering events. Web
Driver functions are then used to handle these events. This concept was hard for students
to understand. We gave them a quick tutorial using an example. Using this tutorial as a
base, they were able to understand and develop their own events and event-handling
mechanisms.

Unreal Tournament Exercise. The second assignment required students to modify the

game behavior of Unreal Tournament by developing their own level and adding some
Heads-Up Display (HUD) features to the Unreal’s Deathmatch game. The assignment
required students to create a level of two or more rooms using the Unreal Edit tool. It also
required them to add a radar texture using the scripting language and display characters
on the radar, depending on their position and orientation relative to the player.

The Unreal engine, unlike the Web Driver engine, requires modders to implement
their modifications by extending functionality of existing engine classes via Class

Fig. 8. An Unreal Assignment created by a student.

Learning Through Game Modding • 13

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Inheritance. This particular assignment requires that they understand (1) how to
modify the code for the game using Object Oriented Design concepts, e.g. inheritance;
(2) how to get positions of all characters in the level using the game classes; (3) how to
calculate positions and orientations of different characters relative to the player; and (4)
how to map this information on the radar. They were also required to color the blips on
the radar depending on how dangerous the character is to the player. This requires that
they access the internal state of each character to calculate danger in terms of the number
of people they killed, their current weapons, etc. In addition, they were also required to
indicate severe danger to the player via auditory or visual alarms. This required them to
research different methods of displaying information through audio and/or the HUD.

All 35 submitted assignments met our requirements and were fully functional. Figure
8 shows screenshots from one of the assignments. The figures show the level design.
Creating this level required them to understand 3D architectural design, texturing,
lighting setup, and character navigation, since they had to lay out navigation points in
their levels for the embedded Unreal navigation system.

 The radar map shown in Figure 8 required students to create a radar texture and
display it on the HUD using Unreal Script. They also needed to figure out how to
reference all characters in the level, get their positions, and map their positions on the
radar. This required them to understand Unreal’s class structure and some simple math. A
piece of the code from the example assignment displayed in Figure 8 is shown below to
suggest the depth of programming knowledge required to complete this task. This
particular piece shows how the student iterated through all characters within the level,
drawing them on the radar based on their distance and orientation in relation to the
player. As can be seen from the code below, this involves understanding the character
class, called Pawn class used in the Unreal engine, as well as some math skills to map the
distance of the character from the player into the radar.

foreach RadiusActors(class'Pawn', testpawn, 1024,PawnOwner.location)
{
 if(testpawn != pawnOwner) //don't check agains the owner
 {
 magnitude = vsize(testpawn.Location-PawnOwner.Location)/8;
 newRotation =rotator(testpawn.Location-PawnOwner.Location);
 correction.yaw = 65535/4;
 newRotation.yaw -= (PawnOwner.Rotation.yaw +correction.yaw);
 newPosition=vector(newRotation)*magnitude;
 //set the draw position & scale it
 c.SetPos(radarscale*(newPosition.x + Radar_Tex.USize/2) +
radarTL_X,radarscale*(newPosition.y + Radar_Tex.VSize/2) + radarTL_Y);
 //place the blip on the radar
 c.DrawIcon(getBlipTexture(c, testpawn),radarScale);
 }
 }

We noticed that students were much more motivated to finish and perfect this assignment
than the Web Driver assignment. They all attempted the extra credit code part of this
assignment, as compared to only around 40% who attempted the extra credit for the Web
Driver assignment.

While the Web Driver assignment stressed 3D geometry and vector math, using the
Unreal Tournament exercise required students to understand architecture design,
texturing, sound design, lighting design, and landscaping, in addition to basic
understanding of 3D geometry in order to use the 3D modeling tools. Additionally,

14 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

students were able to gain a better understanding of event-based programming and
threading than with the Web Driver. This is understandable, due to the fact that the
Unreal engine is much more complex with many threads and events working in parallel.
In order to work in such an environment, students needed to understand the complex
structure of the engine before they completed their assignments. As can be seen from the
code above, students needed to explore character information and to figure out how to
iterate through all characters in a level. These are example problems that require students
to explore the structure of the engine including the classes and methods that can be used
to get the job done.

The engine itself uses an event-based architecture where all systems within the engine
communicate through events. An understanding of this basic structure is important
because only such understanding will enable the students to solve the assignment. We
observed that learning the engine’s event-based structure was hard for them at first, but
many of them struggled through it. Those who collaborated and were persistent enough
found the solution. On work days (lab classes), we observed that students were very
engaged in developing their own modifications to the game. When they hit a problem,
they tried to find a solution themselves. If they couldn’t, they asked each other until they
found an answer.

Also due to the complexity of the Unreal engine, we observed that students critiqued
the engine code supplied through the scripting language. They made many comments on
the use of global variables and the optimizations used in the engine. This promoted a
better understanding and appreciation for good coding standards.

The Unreal engine also promoted the use of inheritance and object-oriented
programming. Through this assignment, students understood the value of reuse and
inheritance, which was surprising to us since these topics were discussed before in object-
oriented design and software engineering classes. We deduced that students didn’t
understand the implication of these concepts until they applied them in a complex and
relatively large-scale project.

In addition to these concepts, we observed that by building their own 3D architectures
students learned architectural design, lighting, texturing, and limitations of real-time
rendering and effects. By adding characters to the environment, the students learned how
to use the built-in algorithms for navigation and make their characters navigate through
their architectures.

STUDENT PROJECTS
Through their projects the students gained a much greater understanding and assimilation
of the concepts discussed above. In addition, they also learned project management,
scheduling, and iterative development. Additionally, concepts of game design were better
promoted through their projects. Students iteratively built their games through critiques.
This allowed them to reflect on and adapt several game design theories that were
discussed in class.

Movies of some of the student projects can be found at http://courses.ist.psu.edu/
SP05/IST402/ projects.html. We discuss one particular example to suggest the
complexity of these projects. The game was based in 13th century Scotland, the player
character is a 13-year old girl who finds herself imprisoned in a dungeon. She struggles to
get out of the dungeon and avenge her imprisonment. There were no guns in the 13th
century. Since the students used the Unreal engine and the Unreal engine is based on a
first-person shooter game, they had to alter the engine and create their own set of
weapons, weapons that are more appropriate for the era chosen for the game.

Learning Through Game Modding • 15

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Their final project (http://courses.ist.psu.edu/SP05/IST402/Projects/Student
Finals/DungeonGirl. wmv) included over 6020 lines of code, 5 characters, 24 weapon
models, 5 original music files, and 80 sound effects and dialogue files. In addition, three
complete levels were created for the game, including lighting design, textures, and
navigation points. Students had to complete a number of tasks, including the following:

• Create 3D models of skeleton characters, swords, bows, and arrows.
• Create 3D levels; 3 main levels were created for this game.
• Adjust the game code to enable melee-type engagement, this requires:

o adding new weapons and removing the guns;
o creating and working out the animation for bow and arrow movement;
o adding distance measurement for sword impact;
o adding scoring mechanisms for damage and impact behavior; and
o disabling guntype weapons normally used in Unreal.

• Adjust game code to include cut scenes at appropriate moments.
• Create dialogue and script.
• Record voice acting and composing music.
• Add sounds and music.
• Adjust game code to include the voice acting, keeping track of story line,

adding sound effects.
• Adjust game code to calculate winning and losing conditions, transitions

between levels, etc.

Building a game using Unreal and/or Web Driver engaged students at many levels and
provided a good learning environment, where they learned many concepts related to
programming, object-oriented design and development, 3D geometry, 3D vector math,
navigation, and elementary artificial intelligence. They also learned coding standards and
quality, as well as project management, iterative design, 3D modeling, architecture
design, and art content development.

OBSERVATIONS
In this section we discuss the concepts we observed students learn during this class. We
believe that using both the Web Driver and Unreal Tournament engines promoted
understanding and assimilation of different concepts. The Web Driver promoted learning
of programming and 3D math concepts, such as 3D geometry, rotations and translations
in 3D space, object-oriented programming, and component-based design and
implementation. On the other hand, the Unreal engine promoted learning of threading and
event-based programming, architecture design, 3D modeling, and object-oriented
programming and reuse.

Their project work promoted these concepts further, and also an understanding of
other topics including software design, iterative design and prototyping, project
management, team work, and project scheduling.

At the end of the semester, we asked students to describe what they learned from the
coursework. Table I shows some of their responses. The majority of the comments dealt
with general issues of game design, but there were also some discussions of software
engineering and programming concepts.

We also asked student to rate the Web Driver and Unreal exercises in terms of their
interest and difficulty (Tables II and III). The perceived difficulties for the two
assignments are similar (46.5% for Web Driver vs. 53.9% for Unreal Tournament on the

16 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Table I. Student Reports on Concepts In Game Programming Class

Comments on Design Process
1. The role of narrative in game design. Most excellent games tell a story. This

is crucial in building a compelling experience for the user.
2. Gamers do not make designers. It takes thought, reflection, testing, and

imagination; something that many gamers lack: hence game designers.
3. The idea that design is more important than anything else: Without good

structure/gameplay/engines, an idea, no matter how "cool" cannot save a
game.

4. How to make a game more immersive and how to avoid the "pitfalls."
5. The importance of characters and story-telling.
6. That there are many aspects to game design that must be considered. Also

there must be a separation between game design and game programming.
Implementation is an entirely different realm than design concepts.

7. Various aspects of game design.
8. Overall game design.
9. High interactivity.
10. Game design concepts in general. It forced me to focus on the design

principles of a game instead of just deciding whether it was "fun" or not. I
definitely have even more appreciation for all the work that goes into
designing a game.

11. Good game aspects. Utilizing what has and hasn't worked in the past will
allow me to make a better game for the future.

12. Making the experience immersive, i.e., sound, light, everything. I also have a
much greater respect for the difficult process of game design/creation.

13. There's a lot of stuff going on in games that you really don't think about while
playing, but were big considerations during the production of the game.

14. Interactive narratives. This seemed to be a big topic for many people when
talking about games in forums and at other times during class.

Comments on Software Engineering-Based Concepts
15. Coding and style of coding because nothing works if you can't code correctly.
16. I learned that tools are very useful and you can find a tool to do anything.
17. How to program and produce something in a group.
18. It's not necessarily a concept, but I learned how to write UTScript. I had very

little experience in OO programming prior to this class, and my work with
UTScript helped me not only understand OO concepts, but also allowed me
to learn a way to customize a game engine.

General Comments
19. Game programming is not for me... Too complicated.
20. Learning to create mods and mutators, because I really felt it helps to

understand the different components of a game. It's also a great experience
to have been able to spend time creating a level and a mod in itself.

21. Unreal Scipt is a pain in the behind.

hard and very hard responses), but the Unreal Tournament exercise was rated more
interesting than the Web Driver assignment (46.2% for Web Driver vs. 88.4% for Unreal
Tournament on the interesting and very interesting responses). Their interest in Unreal

Learning Through Game Modding • 17

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

Table II. Difficulty Ratings for the Web Driver and Unreal Tournament Assignments

Difficulty (N = 26) Very Easy Easy Average Hard Very Hard

Web Driver 0 (0.0%) 4 (15.4%) 10 (38.5%) 9 (34.6%) 3 (11.5%)

Unreal Tournament 1 (3.8%) 0 (0%) 11 (42.3%) 10 (38.5%) 4 (15.4%)

Table III. Interest Ratings for the Web Driver and Unreal Tournament Assignments

Interest (N = 26) Very Boring Boring Average Interesting Very Interesting

Web Driver 1 (3.8%) 3 (11.5%) 10 (38.5%) 4 (15.4%) 8 (30.8%)

Unreal
Tournament

0 (0%) 1 (3.8%) 2 (7.7%) 7 (26.9%) 16 (61.5%)

Tournament was also apparent in the course project: The majority of students chose it
over Web Driver as their game engine for the project. This may be due to the fact that
Unreal is a complex game that is similar to the games that students normally play. It may
also be due to the fact that most students have played Unreal Tournament before, which
provides them with a familiar environment that they can customize and personalize.

DISCUSSION
Through these two classes, we gained better insight on the use of game modding as a tool
to promote learning. We believe that there are several skills and concepts that students
learn by engaging in game design/modification, including the following:

• Software Development and Design
o team work
o building critiques and reflections on other’s work
o project scheduling
o project management
o iterations and refinement
o prototyping

• Programming Concepts
o threading and event-based programming
o Object-oriented programming
o Component-based development
o Software patterns

• Artistic Concepts
o Lighting
o Architecture design
o Character design

• Game Concepts
o Game design
o Game mechanics
o Balancing game aesthetics and game play

All of these concepts could be taught in isolation, but having students apply them in
design tasks will help them develop more holistic views of software engineering

18 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

practices. Game engines provide foundations for design exercises in the form of tools,
libraries, and prebuilt objects. These let students quickly experiment with design concepts
by modifying existing game worlds. This may be important for student motivation.

For instance, students found the Unreal exercise more engaging than Web Driver, and
they seemed to work harder at understanding the engine and acquiring the skills needed
to complete their games. This may be due to that fact that students have come to
appreciate and expect the same aesthetic quality that they see in games today when
working with games in an educational setting. Students told us that they gravitated
towards Unreal because it gave them a complex environment to manipulate while
preserving the aesthetics that they were accustomed to in their own game playing. Prior
experience playing Unreal may also provide some motivation. Since they are familiar
with the game, it may be more interesting to develop projects that resemble it as well as
being able to share a familiar product with friends and peers.

It is not enough to give students arbitrary game engines and expect them to learn
computing skills. We chose the three game engines in our courses because we believed
they could assist in the development of particular skills. For instance, WarCraft III was
used with high school students because they had little programming experience. Its visual
tools allowed students to create working games and to explore computing concepts
without getting wrapped up in the syntax of programming languages. In particular,
WarCraft III promoted learning the following:

• programming basics, including Boolean logic, conditionals, and variables;
• threading and parallel programming;
• simple concepts related to landscaping, modeling, animation, and camera

motion.

On the other hand, the Web Driver was chosen to explore its flexibility and its use to
promote 3D vector geometry and other graphics concepts. According to our observations,
we see the Web Driver promoting the following skills and concepts:

• 3D vector geometry and math concepts, including dot and cross product
calculation, tangent calculations, the Pythagorean theorem, and calculating
rotations and translations in 3D space;

• animation and synchronization of different actions for a character, e.g., rotations
and animations

• using libraries and object-oriented programming;
• simple 3D level design, including lighting, creation, and manipulation of

textures;
• event-based programming, triggering and handling of input events (keyboard

and mouse events), as well as engine-based rendering events;
• threading and thread synchronization.

Unreal Tournament was chosen because it is a complex game architecture that has a great
deal of game functionality embedded in its engine. It was also used to target the
following skills and concepts:

• 3D architecture design, including lighting and creating, and manipulating
textures; adding sound effects and music to create the ambience of 3D space;

Learning Through Game Modding • 19

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

• eventbased programming using Unreal’s event;
• threading and synchronization;
• 3D modeling;
• navigation systems;
• objected-oriented programming, specifically inheritance and reuse.

CONCLUSION
In conclusion, in this article we have presented some evidence that encourages the use of
game modding in classes to promote learning of several subjects and concepts. We
discussed the concepts we believe students learned through the cases presented here. Our
preliminary evaluations of learning were based on student performance and our
observation and interactions with them through their assignments and class discussions.
We believe that using game modding motivated students to learn and allowed them to
apply and visualize the utility and application of the concepts. We also observed that
different game engines implicitly stress the use and development of certain skills. This
becomes an important issue when choosing engines for pedagogical purposes.

ACKNOWLEDGMENTS
We would like to acknowledge all the students who participated in the two classes for
making them such a success. We also would like to acknowledge our teaching assistants,
Ibrahim Yucel and Joseph Zupko, who made this class so easy to teach and helped
promote a better learning environment for the students.

REFERENCES
ANGIOLILLO, P. 2005. Gaming making the grade. Technology Review (Sept 27, 2005).
CONWAY, M., AUDIA, S., BURNETTE, T., COSGROVE, D., CHRISTENSEN, K., AND DELINE, R. 2000. Alice:

Lessons learned from building a 3d system for novices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. T. Turner and G. Szwillus (eds.). ACM Press, New York:

EMMERSON, F. 2004. Exploring the video game as a learning tool. ERCIM News 57, 30 (2004).
HAREL, I. 1991. Children Designers: Interdisciplinary Constructions for Learning and Knowing Mathematics

in a Computer-Rich SchoolAblex Publishing, Norwood, NJ.
HOOPER, P. K. 1998. They Have Their Own Thoughts: Children's Learning of Computational Ideas from a

Cultural Constructionist Perspective. Cambridge, MA.
HUNICKE, R., BLANC, M. L., AND ZUBEK, R. 2004. MDA framework for game design. In Proceedings of the

Game AI Workshop (San Jose, CA, 2004). AAAI.
HYMAN, P. 2004. Video game companies encourage "modders". The Hollywood Reporter.
INGALLS, D., KAEHLER, T., MALONEY, J., WALLACE, S., AND KAY, A. 1997. Back to the future: The story of

squeak, a practical smalltalk written in itself. In Proceedings of the 12th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, New York.

KAFAI, Y. 1994. Minds in Play: Computer Game Design as a Context for Children's Learning. Erlbaum.
LEHRER, R. 1986. Logo as a strategy for developing thinking. Educational Psychologist 21, 1/2 (1986), 121-

137.
MOSKAL, B., LURIE, D., AND COOPER, S. 2004. Evaluating the effectiveness of a new instructional approach. In

Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education. D. Joyce and D.
Knox (eds.). ACM Press, New York, 75-79.

PAPERT, S. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York.
PEA, R. D., KURLAND, D. M., AND HAWKINS, J. 1987. Logo and the development of thinking skills. In Mirrors

of Mind: Patterns of Experience in Educational Computing. R. D. Pea and K. Sheingold (eds.), Ablex
Publishing, Norwood, NJ.

PUNTAMBEKAR, S. AND KOLODNER, J. L. 2005. Toward implementing distributed scaffolding: Helping students
learn from design. Journal of Research in Science Teaching 42, 2 (2005), 185-217.

REPENNING, A. AND AMBACH, J. 1997. The agentsheets beahvior exchange: Supporting social beahvior
processing. In Proceedings of the CHI 97 Conference (New York).

RESNICK, M. 1994. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. The
MIT Press, Cambridge, MA.

RESNICK, M AND OCKO, S. 1993. Lego/logo: Learning Through and About Design. Ablex Publishing,
Norwood, NJ.

20 • M.S.El-Nasr and B.K. Smith

ACM Computers in Entertainment, Vol. 4, No. 1, January 2006.

SMITH, D., CYPHER, A., AND SPOHRER, J. 1994. Kidsim: Programming agents without a programming
language. Communications of the ACM (1994), 54-67.

SMITH, D., CYPHER, A., AND TESLER, L. 2000. Novice programming comes of age. Communications of the
ACM 43, 3 (2000), 75-81.

WRIGHT, W. 2004. Triangulation: A schizophrenic approach to game design. In Proceedings of the Game
Developers Conference (San Jose, CA).

Received August 2005; revised October 2005; accepted August 2005

