Knowing When to Put Your Foot Down

Leslie Ikemoto*
University of California, Berkeley

Okan Arikan®
University of Texas, Austin

David Forsyth*
University of California, Berkeley
University of Illinois, Urbana-Champaign

Foot plant
detection

Footskate
removal

Figure 1: Motion editing can produce significant footskate (Section 1). On the left is an edited motion capture sequence. We superimpose
partially translucent renderings of frames spaced evenly in time. As a result, a slowly moving part of the body — like the skating foot plant
in this image — shows up as a dark region with blurry outlines. We introduce a robust oracle for detecting foot plants. When coupled with
an off-the-shelf footskate remover, our system behaves like a black box (center) that cleans up motion at interactive rates (right). The foot
is now planted firmly, as one can see from the sharp outline around the toe. Notice that the mild blur at the heel on the right results from the

way the heel and then the toes are planted.

Abstract

Footskate, where a character’s foot slides on the ground when it
should be planted firmly, is a common artifact resulting from al-
most any attempt to modify motion capture data. We describe an
online method for fixing footskate that requires no manual clean-up.
An important part of fixing footskate is determining when the feet
should be planted. We introduce an oracle that can automatically
detect when foot plants should occur. Our method is more accurate
than baseline methods that check the height or speed of the feet.
These baseline methods perform especially poorly on noisy or im-
perfect data, requiring manual fixing. Once trained, our oracle is
robust and can be used without manual clean-up, making it suitable
for large databases of motion. After the foot plants are detected,
we use an off-the-shelf inverse kinematics based method to main-
tain ground contact during each foot plant. Our foot plant detection
mechanism coupled with an IK based fixer can be treated as a black
box that produces natural-looking motion of the feet, making it suit-
able for interactive systems. We demonstrate several applications
which would produce unrealistic motion without our method.

Keywords: Footskate, foot plant detection, motion synthesis

*e-mail: lesliei@cs.berkeley.edu
fe-mail: okan@cs.utexas.edu
*e-mail: daf@cs.uiuc.edu

49

1 Introduction

Many interactive applications require realistic, high-quality charac-
ter animation. This demand for realistic motion will almost cer-
tainly increase. However, motion usually competes for memory
and other resources. Thus, heightened realism in motion cannot
simply come from more data. Motion will probably need to be gen-
erated from a small dataset and modified to enrich variability. Mo-
tion blending ([Kovar and Gleicher 2004], [Rose et al. 1998]) and
motion warping ([Witkin and Popovi¢ 1995]) are commonly used
motion editing techniques. Another commonly used method rear-
ranges motion frames to produce novel motion sequences. Motion
graphs ([Kovar et al. 2002a], [Lee et al. 2002], [Arikan and Forsyth
2002]) encode which rearrangements are legal.

Algorithms that modify motion are undoubtedly useful, but they
sometimes introduce undesirable artifacts that reduce believability.
One such artifact is known as footskate, in which a character’s foot
slides on the ground after the character plants it instead of remain-
ing firmly in place. Maintaining ground contact is an important as-
pect of realistic motion, so footskate is particularly objectionable.

Many authors have previously noted this problem and introduced
successful techniques for fixing footskate (Section 2). However,
none of these methods is completely automatic. To our knowledge,
all require knowing a priori when feet should be planted. Typically,
a simple test, such as checking the height and speed of the foot, is
used to mark the frames. However, as far as we know, none of these

Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

13D 2006, Redwood City, California, 14-17 March 2006.

© 2006 ACM 1-59593-295-X/06/0003 $5.00

=L hoet
NI Lot bal
1 ILef toe

Figure 2: Speed and height cannot reliably discriminate foot
plants. Left: A graph plotting the height of the joints in the left
foot during 4 foot plants of walking motion in our original data set.
There are actually double peaks when the foot is not planted, which
may lead to mislabeling. Right: Despite what one might expect,
foot plants are not perfectly stationary even in good motion capture
data. For example, we show a left foot plant from our motion cap-
ture database. As in Figure 1, we overlay partially translucent ren-
derings of frames spaced evenly in time. The foot is not stationary,
so it appears with a blurry outline. If the foot was planted firmly, it
would appear sharper (like the right-hand image in Figure 1).

simple tests works reliably (Figure 2). One reason they do not work
all the time is that motion capture data is usually noisy. In addition,
a character’s skeleton is not an accurate representation of a human
skeleton. Because these tests do not work reliably, all frames must
be later checked by hand.

Clearly, checking frames by hand is not feasible for large
datasets, which may contain many hundreds of thousands of frames.
‘We present an automatic method for foot plant detection that is scal-
able and efficient (Section 3). By labeling a small set of frames,
a user trains a classifier to detect when the foot should be planted.
The classifier then automatically labels the remainder of the frames.
Training time is short (our oracle required less than 3 minutes of la-
beled examples), and the classifier is accurate and efficient. We
compare our results to results obtained using the simple tests com-
monly used to detect foot plants (Section 7). Once foot plants are
detected, we can fix motion sequences containing footskate using
an off-the-shelf real-time inverse kinematics solution. We use [Ko-
var et al. 2002b], but other techniques could be used instead.

We show that the combination of our foot plant detector and an
off-the-shelf footskate remover can be treated as a black box that
cleans up motion in real-time (Section 7). As we demonstrate, this
black box can produce plausible results from motion modifications
that change the original motion drastically. In interactive applica-
tions, one cannot check the frames produced by an algorithm before
they are displayed. Our method is robust, making it suitable for in-
teractive systems.

2 Previous Work

Synthesized motion must often meet constraints that define how it
should look. The problem of fixing footskate can be viewed as the
problem of computing positional and temporal constraints such that
the feet stay planted when they should be.

Much previous work on footskate clean-up successfully attacks
the problem of finding and enforcing positional constraints. Posi-
tional constraints can come from the original data, as in ([Boden-
heimer et al. 1997], [Shin et al. 2001]). Commercial motion pro-
cessing packages often have the user set a parameter that specifies
how well the end effectors should track the original data. Other pa-
pers describe techniques for computing positional constraints. [Ko-

50

Tnput Mation Edit

*| Output Motion

,I 1K I_..I Clean Motion

toe:

:
g

%

TR
Pt
P
3

Figure 3: Overview. At run-time, an application edits an input mo-
tion in the motion database (e.g., using motion blending or warp-
ing). After editing, the output motion may contain footskate. To
produce clean motion, an inverse kinematics solver needs to know
in which frames the feet should be planted. Using such a labeling,
the IK solver can modify the output motion to produce clean mo-
tion. This paper describes a method for obtaining such a labeling
automatically. During pre-processing, an oracle labels each frame
as to whether the left heel, left toes, right heel, or right toes are
planted. This labeling can be stored efficiently (requiring only 4
bits per frame). At run-time, we simply look up the labels.

var et al. 2002b] solves for the target position that results in mini-
mum error over the window of frames in the foot plant.

Once positional constraints are determined, they can be enforced
using a variant of inverse kinematics. [Kovar et al. 2002b] adjusts
the joint angles in the legs, the root position, and the lengths of
bones to satisfy foot plant constraints at each frame. [Lee and Shin
1999] use analytical IK solutions to reduce the number of parame-
ters in their numerical IK computation. Applying IK separately at
every frame ([Rose et al. 1998], [Kovar et al. 2002b]) may produce
visual discontinuities in the motion. [Kovar et al. 2002b] proposes
blending the IK adjustments into surrounding frames. Other tech-
niques optimize for the smoothest motion that meets all of the con-
straints ([Lee and Shin 1999], [Gleicher 1997], [Gleicher 1998]).

Fewer techniques have addressed finding the proper temporal
constraints for fixing footskate. A commonly used technique is to
check the height of the foot, where it is assumed a foot plant occurs
when the foot is close to the ground. However, this technique is
easily fooled. For example, the test will probably return false re-
sults if the character skids to a stop. Another often used method
is to check the speed of the foot. This technique is also unreliable.
‘When motion capture data is taken, markers are placed on top of the
feet, not on the bottom. Therefore, the markers usually have some
speed even during foot plants. Furthermore, marker data is noisy,
and skeletal fitting introduces further error. Therefore, joint speed
is not a reliable indicator.

[Liu and Popovié¢ 2002] detect frames in which the feet are sta-
tionary. [Bindiganavale and Badler 1998] detect zero-crossings in
acceleration space of end effectors. Like the height and speed tests
discussed previously, both methods work well for non-noisy data.
However, motion capture data is usually noisy, so the results from
both of these tests can be unreliable on motion capture data.

Our method uses a classifier to detect when foot plants should
occur. Hence, this paper continues a recent thread of using clas-
sifiers for motion synthesis problems. ([Ren et al. 2005], [Arikan
et al. 2005], [Ikemoto and Forsyth 2004]) use classifiers to deter-
mine whether synthesized motion looks natural or not.

3 Overview

Given a frame of motion, we would like an oracle to detect auto-
matically if the feet are planted. Our system detects two types of
foot plants — heel plants and toe plants. (However, it is easy to have
the system detect other types of foot plants as well.)

We can formulate this as a classification problem. Given a fea-
ture vector describing the motion of the feet over a short period
of time about a frame (Figure 4), we seek a labeling of the frame.

Pi—10

Oracle

- | [—>

O -0

P10

Pi—10

Pr Prvio

Figure 4: The oracle. In order to classify a frame, we compute
the positions of the knees, ankles, and toes in a 21-frame window
centered about the frame (left). (In the figure, p; is the knee, an-
kle, and toe positions at time equals z.) We then stack these po-
sitions (p;—10,---,Ps,- - - Pr+10) into a feature vector (center). The
oracle accepts these feature vectors and outputs a 4-bit labeling cor-
responding to which parts of which feet are supposed to be planted
in that frame (right). (For clarity, we show only the left foot in this
figure, but positions from both feet are used in the feature vector.)

We describe the feature set we use in Section 4. To build the ora-
cle, we train a k nearest-neighbors classifier interactively in a semi-
supervised process. The training procedure is described in Sec-
tion 5, and the classifier is described in Section 6.

We use our foot plant oracle to label the frames in the motion
database during pre-processing. At run-time, an application may
edit the motions in the database, potentially introducing footskate.
To clean up an edited motion, we look up the foot plant labels on the
original frame. The edited motion and the labels are then given to
the inverse kinematics solver, which outputs clean motion. Figure 3
illustrates our system.

Each frame requires only a 4-bit label (left heel, left toe, right
heel, and right toe), so the labels can be stored efficiently. In addi-
tion, the oracle is fast and accurate, so pre-processing the database
can be done rapidly and reliably, or the oracle can be used on-the-
fly.

4 Features

The goal of the oracle is to decide whether a frame of motion con-
tains a foot plant or not. The oracle makes its decision based on the
skeletal configuration at the frame and a description of the dynam-
ics. To encode the dynamics, we use the skeletal configurations in a
window of nearby frames. (We use a 21 frame window.) The oracle
is a function F such that:

Licft_heel

Ly, ft_toe
. 10) =
Pret 0) Lright _heel

Ly; ght _toe

F(pt—l()w"?pt"'

where p; is the position of the joints in the skeleton at time 7. L, is 1
if the oracle thinks that part of the foot is planted, and O otherwise.
Figure 4 contains a schematic of the oracle.

In practice, we do not need to put all of the joints into the feature
vector. The configuration of the upper body and upper parts of the
legs are largely irrelevant. We use the positions of the knees, ankles,
and toes, since these joints seem most useful for discriminating foot
plants. The position and orientation of the figure on the plane is also
irrelevant, so we transform the window of frames so that the central
frame is at the origin with a zero orientation about the y-axis.

5 Training

We approximate the oracle F with a k nearest neighbors classifier
(where k is 10). Other classifiers (such as SVM) would probably
also work well.

51

Figure 5: Oracle training. The oracle is approximated by a k near-
est neighbors classifier which uses a small example pool. Imagine
that the feature space is 2-dimensional. If we plot the feature vec-
tor for every frame in the motion database, it would look similar to
the figure on the left. The solid circles denote frames which have
already been hand-labeled, and form our example pool. Dotted cir-
cles denote the other still unlabeled frames. The system picks a
frame which is maximally different from the already labeled frames
(i.e., it picks the dotted circle which is most distant from the solid
circles). The oracle labels the 200-frame sequence containing this
frame and displays its results to the user (center). The user checks
whether this labeling is correct. If it is not, the user corrects the
labels, and the oracle puts the 200 labeled frames into the example
pool (right). If it is correct and the user believes the oracle can
correctly discriminate foot plants, the training can stop.

The classifier is trained from a set of hand-labeled examples.
The system displays a motion, and the user annotates each frame
with a combination of the labels 1left heel plant, left toe
plant, right heel plant, and right toe plant.

The classifier is trained interactively (as in [Arikan et al. 2003]).
The system chooses a 200-frame motion sequence at random,
which the user annotates. The system then trains the classifier on
the annotated examples, and picks another sequence. The classifier
labels this sequence and presents its results to the user. The user can
check whether this labeling is correct. Errors typically show up as
incorrectly localized foot plant boundaries. If the labeling is wrong,
the user can correct the labels, and have the system retrain the clas-
sifier. Using on-line learning exposes the state of the classifier. The
user can stop training whenever she or he thinks the classifier can
discriminate correctly. The training procedure is illustrated in in
Figure 5.

We use importance sampling to select examples for classifica-
tion. Once the oracle has seen an example frame annotated by the
user, frames that are similar to that example are likely to be labeled
correctly. However, dissimilar frames may be classified incorrectly.
Therefore, the system chooses examples which are maximally dif-
ferent from those previously chosen and user annotated.

The importance sampling function assigns high importance to
frames that are far away from the example frames in the feature
space. Nearby frames get low importance. The motion database
is first split into non-overlapping 200-frame sequences. The im-
portance function assigns a value to each sequence based on the
distance to the previously annotated examples. Let d;;in(g) be the
minimum Euclidean distance between the feature vector of a query
frame ¢ to the example frames in the oracle’s training set. The im-
portance sampling chooses the 200-frame sequence which contains
the frame with the highest d,,;,.

We have found our sampling scheme effective. In particular, our
example pool should contain examples from different types of mo-
tion (e.g., running, dancing, skipping). The dynamics of different
types of motion are fairly distinct from each other. Therefore, we
expect our sampling scheme to pick frames from each of the dif-
ferent types of motions in our database, and this occurs in practice.
However, there are many other good schemes for selecting classifi-
cation examples.

OO 8 o 9] c:'ODO o] 0OOO
O~ O 8 8
o) o (e} (e}
O o o O o
% OOODO % OOOOO
o [ele) o0 o [eNe) o0
o0 O o} 00 © e}

Figure 6: Classifying a frame. During training, we populate a
k nearest neighbors classifier with examples of frames containing
and not containing foot plants (left). Each example is labeled with
whether it contains a left heel plant, left toe plant, right heel plant,
and/or right toe plant. To classify a query frame, we locate its k
nearest neighbors (center). Determining whether the query con-
tains a left heel plant entails looking at the left heel plant labels on
its neighbors (right), and averaging.

We double the size of the example pool by mirroring the example
sequences and their labels, such that left foot plants become right
foot plants and vice versa. The training set can include motions
from multiple actors, provided that all the motions were fit onto the
same skeleton.

Unfortunately, errors in training data are unavoidable. It is very
difficult for a user to precisely localize the frame in which a foot
plant begins and the frame in which a foot plant ends. This means
that nearly identical frames occurring at the boundaries of foot
plants are liable to have contradictory labels. We will address this
problem later when we conduct queries (Section 6).

6 Classification

Once the oracle is trained, labeling a motion dataset is an automatic
process. To get a labeling for a frame ¢, we examine the labels on
each of the k closest samples. Let us first determine whether there
is a left heel plant. Each of the k£ samples carries a binary label of
1 if it contains a left heel plant or a O if it does not. We add these
labels together and divide by k to get the left heel plant label for
q. This gives us a real-valued label between O (if the classifier is
certain g does not contain a left heel plant) and 1 (if the classifier is
certain g does). We do the same for the left toe, right heel, and right
toe. See Figure 6 for a schematic diagram.

We would now like to obtain a binary labeling for g. Unfortu-
nately, we cannot simply threshold the real-valued label. As dis-
cussed in Section 5, some of the training data of frames towards the
beginnings and ends of foot plants will probably be contradictory.
Therefore, the real-valued query labels tend to fluctuate rapidly to-
wards the beginnings and ends of foot plants. The fluctuations may
occur around a threshold value, so we cannot threshold the labels.

A key observation is that if a frame contains a foot plant, its
neighboring frames are likely to contain foot plants as well. There-
fore, if the threshold value in a frame is high indicating a foot plant,
we can lower the threshold we use in the next frame.

We use two thresholds, 7y, (0.6) and 15, (0.4). If a query value
is greater than #;e,, it is automatically labeled as a foot plant. If it
is below 1y, it is labeled as not a foot plant. If a query value is
between the two thresholds and the previous frame was classified
as a foot plant, this frame is also classified as a foot plant. This
technique successfully fixes the fluctuations at the boundaries of
foot plants. It is commonly known as hysteresis ([Canny 1986]).

Note that our method is robust to noise in the motion data. As
long as the user classifies the example set consistently, the classi-
fier will label frames in the database consistently. Therefore, our
method is sensitive to user-noise, but not to data noise.

52

7 Results

Our oracle was trained on 9,410 user-labeled example frames (un-
der 3 minutes of motion data sampled at 60 Hz), so training our
classifier took little time. We double the number of examples by
mirroring the example sequences and annotations (Section 5).

The oracle is efficient. It takes about 22.5 ms on a 3.2 GHz
Pentium 4 to classify a single frame (i.e., compute the feature vec-
tor, locate the nearest neighbors, and determine the frame’s labels).
While the nearest neighbor search dominates the running time, it is
unlikely that the user will annotate many example frames. There-
fore, we used a brute-force k-nearest neighbors classifier, where the
query frame is compared against every other frame. However, the
time required to find the nearest neighbors will increase linearly
with the number of examples in the training set. If a large example
pool is available, an approximate nearest-neighbors algorithm such
as locality sensitive hashing [Indyk and Motwani 1998] could speed
up the search.

We compare our detection algorithm to two baseline algorithms
that check the speed and height of the feet. These algorithms are
commonly used to detect foot plants. During a foot plant, the foot
should be stationary and touching the ground. Thus, these baseline
algorithms threshold the speed and height of the feet. We fit these
thresholds by trial-and-error. The video that accompanies this paper
contains several examples of our results. We compare our results
visually with results from our baseline algorithms.

We hand labeled 2000 frames of data against which to test the
oracles. Each frame carries 4 labels (left heel/toe plant and right
heel/toe plant), so there are a total of 8000 labels in our test set.

The speed-based classifier determines 57.45% of them correctly
(4596 out of 8000). The height-based classifier determines 57.00%
of them correctly (4560 out of 8000). Our classifier determines
90.78% of them correctly (7262 out of 8000).

While it may seem that our classifier does not score perfectly,
accuracy rates are not a perfect means for assessing error. Some
types of errors are more problematic than others (e.g., labels can
fluctuate during a foot plant, or a foot plant can be too short or too
long).

Our classifier actually detects every foot plant correctly and
makes no problematic errors. Accuracy is not perfect because the
boundaries of the foot plants differ from the hand labeled examples.
It is difficult for a user to precisely localize the boundaries of foot
plants (cf. Section 5), so our hand labeled data may be mislabeled.
Our test set contains about 50 foot plants. The labels on the first
and last 1 to 5 frames of a foot plant appear to be ambiguous, so
we expect 50-250 frames — or 200-1000 labels — to be difficult to
classify. Therefore, the error our oracle makes is within expected
bounds. In fact, we can get a better estimate of the error by seeing
what the oracle thinks and checking if the user agrees. We checked
the 8000 labels our oracle output by hand, and disagreed with only
6 them. This yields an alternative accuracy of 99.93%.

Varying the parameters to our oracle does not change the accu-
racy rates very much (Table 1).

8 Conclusions and Future Work

One of the limitations of our method is that the feature set we use is
tied to a particular skeleton. When motion capture data is taken,
markers are placed at different positions on the body, so skele-
tal joint positions usually vary from dataset to dataset. It would
be interesting to change the feature set to one that was skeleton-
independent, but we have not yet explored this point.

It is natural to try scaling the features. We have tried using our
oracle on another dataset, applying a uniform scaling parameter to
the feature vectors to account for the difference in the sizes of the
legs. Our original data set contained motion of a graduate student.

Varying the number of nearest neighbors
1 5 15 20 30 40
91.00% | 91.10% | 91.06% | 90.90% | 91.03% | 91.10%
Varying the window size
3 11 31 41 61 121
91.03% | 90.90% | 90.79% | 91.05% | 90.76% | 90.51%

Changing the joints in the feature vector
Adding the root’s position | Removing the knee positions
90.70% 90.80%

Table 1: Varying parameters has little effect on accuracy. This
table contains accuracy rates for our classifier on the same test set
used in Section 7. We varied parameters independently. The first
row of each table corresponds to the value of the parameter being
changed, and the second row reports accuracy rates. These rates
vary little between each other, and are very similar to the accuracy
rate of our classifier (90.78%) using 10 nearest neighbors, a 21-
frame window, and using the knee, ankle, and toe positions of each
leg in the feature vector. Therefore, our method does not require
careful parameter tuning.

We used our classifier — without additional training — to label the
foot plants of a professional football player performing specialized
football maneuvers. The two data sets were taken at different stu-
dios and fit onto different skeletons.

Our test set contained 595 hand-labeled frames. Out of the 2380
foot plant labels in the set, our classifier marked 2253 correctly,
giving us 94.66% accuracy. However, even though our accuracy
rate is higher than on our original dataset, our classifier actually
performed worse. Our classifier made some problematic labeling
errors towards the boundaries of foot plants — the labels sometimes
fluctuated, and they sometimes began a few frames too early or
extended a few frames too far. Errors like these are relatively un-
surprising, since the relative scales of the joints between the two
skeletons differ (e.g., the heel joint on the football dataset is sig-
nificantly higher than on the graduate student dataset). It seems
probable that non-uniform scaling would perform better.

Our method has 2 potential sources of latency: classification and
footskate removal. The classifier requires the configuration of the
legs 10 frames beyond the current frame (% of a second at 60 frames
per second), and the footskate removal technique we use ([Kovar
et al. 2002b]) requires 30 frames of look-ahead to locate a target
position for the foot. We fix the first problem by doing classifica-
tion as a preprocessing step. The oracle can label every frame in the
database during pre-processing; at run-time, we simply retrieve the
labels for the current frame. Since each frame only requires a 4-bit
label, the storage cost is low. The second source of latency — foot-
skate removal — is more problematic, and is the second limitation
of our approach. However, we believe that with appropriate regres-
sion techniques we can locate a suitable target position for the foot
without requiring a long lookahead. We plan to explore this point
further.

We have described a fast and reliable method for detecting foot
plants. Our technique requires only a small labeled training set and
does not need careful parameter tuning. When combined with an
inverse kinematics solver, it can robustly clean-up footskate arti-
facts in edited motion, making it suitable for interactive applica-
tions. The accompanying video demonstrates our technique.

Acknowledgments

We would like to thank the Berkeley graphics group for their helpful com-
ments and suggestions. This work was generously supported by ONR

53

NO00014-01-1-0890 and by a donation of motion capture data from Sony
Computer Entertainment America.

References

ARIKAN, O., AND FORSYTH, D. 2002. Interactive motion generation from
examples. In Proceedings of ACM SIGGRAPH 02, 2002.

ARIKAN, O., FORSYTH, D., AND O’BRIEN, J. 2003. Motion synthesis
from annotations. SIGGRAPH.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Push-
ing people around. In SCA '05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press,
New York, NY, USA, 59-66.

BINDIGANAVALE, R., AND BADLER, N. I. 1998. Motion abstraction and
mapping with spatial constraints. Lecture Notes in Computer Science
1537.

BODENHEIMER, B., ROSE, C., ROSENTHAL, S., AND PELLA, J. 1997.
The process of motion capture: Dealing with the data. In Computer Ani-
mation and Simulation "97. Proceedings of the Eurographics Workshop.

CANNY, J. 1986. A computational approach to edge detection. /EEE T.
Pattern Analysis and Machine Intelligence 8, 6, 679-698.

GLEICHER, M. 1997. Motion editing with spacetime constraints. In Pro-
ceedings of the 1997 Symposium on Interactive 3D Graphics.

GLEICHER, M. 1998. Retargetting motion to new characters. In Proceed-
ings of SIGGRAPH 1998, 33-42.

IKEMOTO, L., AND FORSYTH, D. A. 2004. Enriching a motion collection
by transplanting limbs. In SCA *04: Proceedings of the 2004 Symposium
on Computer animation, ACM Press, New York, NY, USA, 99-108.

INDYK, P., AND MOTWANI, R. 1998. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proc. of 30th STOC,
604-613.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and pa-
rameterization of motions in large data sets. ACM Trans. Graph. 23, 3,
559-568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In
Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, ACM Press, 473—482.

KOVAR, L., SCHREINER, J., AND GLEICHER, M. 2002. Footskate cleanup
for motion capture editing. In Proceedings of the 2002 ACM Symposium
on Computer Animation (SCA).

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive
motion editing for human-like figures. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 39-48.

LEE, J., CHAL J., REITSMA, P., HODGINS, J., AND POLLARD, N. 2002.
Interactive control of avatars animated with human motion data. In Pro-
ceedings of SIGGRAPH 2002, 491-500.

Liu, C. K., AND PoPoVIC, Z. 2002. Synthesis of complex dynamic char-
acter motion from simple animations. ACM Transactions on Graphics
21,3 (July), 408-416.

REN, L., PATRICK, A., EFROS, A. A., HODGINS, J. K., AND REHG,
J. M. 2005. A data-driven approach to quantifying natural human mo-
tion. ACM Trans. Graph. 24, 3, 1090-1097.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs and ad-
verbs: Multidimensional motion interpolation. I[EEE Computer Graph-
ics and Applications 18, 5, 32-41.

SHIN, H. J., LEE, J., SHIN, S. Y., AND GLEICHER, M. 2001. Computer
puppetry: An importance-based approach. ACM Trans. Graph. 20, 2,
67-94.

WITKIN, A., AND POPOVIC, Z. 1995. Motion warping. In Proceedings of
SIGGRAPH 1995, 105-108.

