
Linking Messages and Form Requests
Anthony Tomasic

Institute for Software Research
International

Carnegie Mellon University

tomasic+@cs.cmu.edu

John Zimmerman
Human-Computer Interaction

Institute
Carnegie Mellon University

johnz@cs.cmu.edu

Isaac Simmons
Institute for Software Research

International
Carnegie Mellon University

ids@cs.cmu.edu
ABSTRACT
Large organizations with sophisticated infrastructures have large
form-based systems that manage the interaction between the user
community and the infrastructure. In many cases, when a user
needs to complete a form to accomplish a task, the user e-mails a
description of the task to the appropriate form expert. In many
cases this description is incomplete and the expert engages in a
clarification dialog to determine the details of the task. Since
many tasks and descriptions are routine, this e-mail dialog can be
replaced with an intelligent user interface. The interface
proactively reads e-mail (or IM) messages and assists the user in
completing the associated task without involving the expert. To
ground our vision in a specific application, we have built an agent
that functions as a webmaster assistant. For example, a user
emails the request: “Change John Doe’s home phone number to
800-555-1212” to the agent. The webmaster agent then replies
with the biographical data form displaying information about
John Doe with the new phone number pre-filled in the form. The
user then simply approves the change.

In this paper we describe a prototype website maintenance agent
that (i) allows users to express the updates they want to make in
human terms (free text input expression of intent), and (ii) allows
users to quickly repair any inference errors the agent makes. In
addition, we present the results of a proof of concept study that
details how interacting with a webmaster agent that makes
inference errors is both more efficient (faster) and more effective
(errors made to site) than sending a request to a human
webmaster. We conclude the paper with a discussion of the
application of our work to any form-based system.

Categories and Subject Descriptors: H.5.2 User Interfaces:
Interaction Styles

General Terms: Algorithms, Design, Human Factors

Keywords: natural language analysis, machine learning, forms,
virtual information officer, VIO, microforms, information
extraction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

IUI'06, January 26–February 1, 2006, Sydney, Australia.
Copyright 2006 ACM 1-59593-287-9/06/0001...$5.00.

1. INTRODUCTION
Today, large organizations devote resources to allow their
employees to update information in company databases. These
organizations provide internal web sites with FAQs, printed
documentation, and administrative support help desks accessible
via email or phone in order to allow their employees to keep
information up-to-date. The following two scenarios provide
examples.

Scenario 1: Consider an employee who wishes to modify the
automatic deposits to her pension plan. Because she makes this
modification rarely, she most likely does not know the
appropriate procedure or where to find the appropriate form. In a
large organization she can take one of several actions: (i) search
the intranet web site for a FAQ that describes the procedure and
provides the URL of the form; (ii) call the Human Resources
department for help; (iii) delegate this task to an assistant, if she
has one; or (iv) ask another employee if they know. Regardless of
the approach she chooses, considerable hunt time (time to find the
correct form) will be spent by her or other employees. To reduce
employee effort on this kind of task, organizations devote large
amounts of resources to preparing print and web documentation
and to maintaining support staff.

Scenario 2: Consider a manager that issues a request to a
webmaster support staff member: “Add a new employee, John
Doe <John.Doe@company.com>, to the website.” In the best
case, the webmaster understands the request and has all the
information needed to complete the task and notifies the manager
of the result. (In this case, the support person’s interaction reduces
to Scenario 1 above). More often, confusion, ambiguity, missing
information, and mistakes abound that result in an “email ping-
pong” involving clarification requests. For example, if every
person on the website must be associated with a project, the
webmaster will reply to the manager’s request with a clarification
request for additional information.
Our Virtual Information Officer (VIO) is an agent, implemented
using two machine-learning (ML) algorithms (described in detail
in Section 3) that processes update requests. With the system,
users email their update requests to the VIO. The VIO then selects
a form, fills it out, and returns it to the user for approval.
This approach offers four advantages: (i) users can state their
update intent in free text instead of navigating to a form named by
a developer; (ii) replying to an update request with a form reduces
ambiguity; (iii) replying with a form makes identification and
repair of agent errors easier, and (iv) the VIO agent is available
24-hours a day, seven days a week to make immediate updates.
The VIO assists users in making “point” modifications (expressed
in a single form) to websites. Since form developers implement

complex transactions as application code associated with a form,
users are effectively executing complex transactions on the
underlying database when they approve a form that has been
generated through simple free text input.
The prototype demonstrates a novel form of natural language
analysis by applying information extraction technology [7, 8, 16].
Every natural language system has as its core a lexicon, a
grammar, and semantic rules. Roughly speaking, the
implementation lexicon is composed of dictionaries, a log of past
user input, and database strings. The grammar is composed of a
set of text extraction models (one model per field per form). The
semantic rules consist of a classifier and the business logic that
implements the forms.
The prototype presents a completed form in response to a request.
The user can then correct the form and thus correct any analysis
errors that the agent made. While form-based correction of natural
language analysis is not new [17], the prototype implements a
novel feedback loop that uses the interaction to improve the
machine learning algorithms that form the basis of the analysis.
Thus, the prototype learns over repeated use many variations in
expression.
The prototype implements micro-forms. Micro-forms are forms
specifically designed to satisfy particular information intent. For
example, in a standard form-based system, a form that updates
personal information contains form fields for changing the
business address, business phone, home phone, cell phone, home
address, etc. Given the information intent “Change John Doe’s
home phone number to 800 555 1212”, the micro-form is a
reduced version of the standard form containing the field to
change the home phone number, but not other form fields. (Of
course, the user must be given a way to access the standard form.)
The novel aspects of the prototype design are driven by two
underlying goals. First, the performance of natural language
analysis is improved by passive (or minimally invasive)
observation of the user experience. This implies that our machine
learning algorithms are on-line and use “live” data instead of
using a carefully constructed training corpus. Second, the
prototype is designed to be domain independent. Currently the
only domain dependant part of the prototype is the site design and
the database schema. All other aspects are automatically handled
– in particular there is no domain specific grammar in the
prototype.
The evaluation of the prototype, conducted using behavioral
experimental methodology, demonstrates the improved efficiency
and effectiveness of a human-VIO method of update as compared
to a human-human (webmaster) update. Our research has broad
implications since the results apply to any form system.
The remainder of the paper is organized as follows. Section 2
describes the prototype and human-VIO interaction. Section 3
details the method of understanding intent expressed in the user
request. Section 4 describes the machine learning performance.
Section 5 details the experimental design. Section 6 shares the
results of the behavioral study. Section 7 offers a discussion of
our findings. Section 8 provides an overview of related research.
Finally, Section 9 contains conclusions about this proof of
concept prototype and a discussion.

2. PROTOTYPE
Figure 1 details the functional flow of information and control in
the prototype. The user initiates the process by sending an email
request (Figure 2), which gets routed to the analysis module of the
VIO. The component replies with a pre-filled micro-form (Figure
3). The user reviews the form and adds any additional information
or repairs inference errors made by the VIO. If the agent selects
the wrong form, the user can override by selecting the correct
form from a pull-down menu, which returns a new form pre-filled
with extracted data. When the form is complete, the user can
either preview the changes to the web site or she can approve the
change, causing the execution module to update the database. The
results are then forwarded to the learning module that analyzes
the entire interaction and improves the analysis module.

Figure 1: Functional Architecture

The following is a walkthrough example of a transaction with the
system. The transaction begins when the user sends the VIO an
email request (Figure 2).
The VIO’s analysis module matches the request to an “Add
employee request” and extracts data for the employee name,
email, and telephone. It then replies with an email containing a
link to a web form (Figure 3). The user selects the link, launching
a browser window that shows the best-guess micro-form
completed with the results of analysis (Figure 3). Note that the
analysis module has correctly chosen the micro-form and
correctly completed 2 of 5 fields that could be completed from the
request. The last field, the project of the staff member, cannot be
determined from the input. The prototype simply selects a default
value in this case. If the VIO had selected the wrong form, the
user could override this selection by using the pull-down menu
labeled “Change Form…”. In addition, before approving this
change, the user can follow links at the bottom of the web form to
view the web page (or pages) that will be modified and to preview
what this page will look like once the update has been made.
We refer to this web form as a micro-form, because it only
displays the fields related to the user’s request. Instead of showing

Figure 2: Example Email Request

an entire biographical information form found in most HR
databases, the micro-form only reveals the minimum of
information for this transaction and thus reduces the amount of
navigation time to verify an update. Micro-forms do have a
disadvantage. Unlike traditional forms, micro-forms do not elicit
additional information not specified in the user’s intent (request).
We handled this problem by using micro-forms for all tasks
except the addition of an entire new entity instance – adding a
staff member or adding an event.

Figure 3: Pre-Filled Form

3. ML METHOD
In this section we describe the details of the method used to
analyze requests and select a best-guess form. First, we analyzed,
for the set of k forms understood by the system, the set of fields
that appear in the form. We then developed an extractor for each
field based on a sequentialized version of Collins Perception
Learner algorithm [2,16]. This off-line learning process was
trained on data gathered and hand-labeled from pilot experiments
described in the Section 5. The result of the algorithm is a learned
model for each field in each form. To select the correct form, we
trained a k-way boosted decision tree classifier. This classifier
chooses between the k forms given a modified version of the
input.

3.1 Extractor Features
For all extractions, tokens are any sequence of digits, any
sequence of alphabetic characters or any single punctuation
symbol. Depending on the field, we used a different set of
features. For example, for learning names, we used four
dictionaries (first names and last names from a white-pages
dictionary containing a general list of names and first names and
last names from names already in the database), the character type
pattern of every current token, plus the patterns of the two tokens
to the left and the two tokens to the right of the current token. The
character type pattern consists of collapsed sequences of upper
and lower case. For example, “jane” collapses to “x+”, “John”
collapses to “X+x+”, “McDonald” collapses to “X+x+X+x+” and
“412” collapses to “9+”. For learning phone numbers, we used the
character pattern for the current token plus the character pattern
for 4 tokens to the left and right. The character pattern includes
length, so “jane” collapses to “xxxx”, “John” collapses to “Xxxx”,
“McDonald” collapses to “XxXxxxxx” and “412” collapses to
“999”.
Once a model is trained, it is deployed into the prototype. When a
new request input is accepted, it is passed to each model. The
model accepts as input the string and returns as output the list of
substrings recognized by the model. The first extracted substring
is interpreted as the “value” of the field. Thus, for the input string
“Delete Jane Doe, listed next to John Doe”, the model would
extract “Jane Doe” and “John Doe”, and “Jane Doe” would be the
extracted name in the case. This heuristic works well in this case,
but not others, since “After the listing of John Doe, delete Jane
Doe” would chose the wrong name. Further work on context is
needed here, perhaps with the help of a parser.

3.2 Form Selection Model
The base form classification algorithm uses boosted decision
trees. Boosting is a method by which the performance of a base
learner is improved by calling the base learner again and again on
different variants of a dataset, in which examples are assigned
different weights in each variant dataset: each new dataset is
formed by weighting an example e more heavily if e was given an
incorrect label in previous iterations.
In the prototype uses the “confidence-rated” variant of AdaBoost
[4, 10] and a simple decision tree learner that does no pruning, but
is limited to binary trees of depth at most five. The decision tree
learner uses as a splitting metric the formula suggested by
Schapire and Singer as an optimization criteria for weak learners:
i.e., split on a predicate P(x) which minimizes the function

−+WW2 , where W+ (respectively W-) is the fraction of examples

x for which the predicate P(x) is true (respectively false). This
classifier is converted into a k-way classifier by choosing the
class with the highest posterior probability.
The input to the k-way classifier is the set of names of the
extractors (i.e, metadata): all extractors that returned at least one
value and the classes determined by the classifiers, the names of
additional ad hoc classifiers (if they detected something), and
additional atoms indicating a successful probe into the database.
Hand-coded extractors are used to detect the action (add, delete,
replace) of the input and various other references (day of week,
month, day, rooms, locations, quoted strings, etc.). This code
helps the classifier recognize cases where a user references an
attribute without providing an actual value. For example, “Delete
the phone number of John Doe” refers to the phone number
attribute without providing a phone number.
Another set of analysis uses the output of extractors to generate
more features. Each extractor output is used as a lookup into the
database (across all attributes). If the value is found in the
database for extractor X, the analysis generates an “oldX” feature.
Otherwise the analysis generates a “newX” feature. For example,
if the name extractor extracted a string S, the analysis issues a
query against the database to match S with names of people in the
database. If the name is found, the analysis generates a
“newname” feature, otherwise it generates an “oldname” feature.
As a separate step the analysis system resolves references in the
input e-mail to database instances. The end effect is an
appropriate form that is populated with the correct reference. Note
that these “probes” into the database, in the prototype, use exact
matching. Soft matching [1] would probably produce better
performance.

Table 1: Sample Extractor Training Data

Task Example

1 Add: 2nd phone Add second phone number: 412
281 4506 for Allen Green

2 Delete: employee Delete entry for Caldwell
McLinn

3 Modify: employee
name

Change the name Tim to
Timothy

4 Add: employee Add employee Carl Reese with
info reese@ardra.com Rm 6018
412 281 6450

5 Delete: event Delete the event "Automated
Weigh Stations"

6 Modify: sponsor
name

Change "Federal Transit
Administration" to "Federal
Transportation Administration"

7 Delete: 2nd phone Delete second phone number for
Sheu Ng

8 Modify: email Change "info@roads.ardra.com"
to "roads@ardra.com"

9 Add: event Add an event, "Subcommittee 2.2
Findings" on March 29 at
Walters Auditorium

3.3 Training Data
Table 1 displays one example input for each of the nine tasks we
tested. Notice that participants almost always use ungrammatical
phrases and assume a significant amount of context. The example
for Task 3 lists only first names for the task of changing a
person’s name. The low quality of input is a significant problem
for the learning algorithms, however the prototype design
compensates for this problem by allowing the user to easily
correct any mistakes made in extraction.

4. ML PERFORMANCE
4.1 Extractor Performance
Table 2 lists the performance of name extraction using 5 fold
cross validation. The Features column lists two cases, learning
with patterns only (“Patterns”) verses learning with patterns and
the four dictionaries (“+Dict”). Token precision measures the
ratio of tokens correctly labeled as part of a name to all tokens
labeled as part of a name. Token recall measures the ratio of
tokens correctly labeled as part of a name to all name tokens.
Span precision and recall are analogous to token precision and
recall. F1 is defined as 2pr/(p+r) where p is precision and r is
recall. The table results show that the learner does a fairly good
job of learning names with its dictionaries. The results also show
that the learner is biased towards precision vs. recall. Related
work [19] describes some additional analysis.

Table 2: Name Extraction Performance

Features Token
Precision

Token
Recall

Token
F1

Span
Precision

Span
Recall

Span
F1

Patterns 0.72 0.23 0.34 0.72 0.22 0.33

+Dict 0.93 0.84 0.89 0.90 0.78 0.84

4.2 Form Selection Performance
Form selection performance relies on the feature set given to the
classifier. The features indicate that a particular extractor
generated a result (e.g., feature “time” indicates that the time
extractor generated a result). The features “insert”, “remove” and
“replace” mean that an associated keyword was detected. The
feature “keyname” means that the name extractor extracted a
name that was found in the database.
The percentage error rate of the form classifier to select the
correct form was 20.8% during the actual experiment. Thus,
almost 80% of the time the participant is presented with the
correct form for her request. While this rate may seem low by
machine learning classification standards, it is very high by
information retrieval standards (how many times does Google list
the page you want in the number 1 spot?). In addition, given that
participants in the VIO group outperformed the webmaster group,
this result indicates that participants could quickly and
successfully use the micro-form to make repairs to agent form
selection errors.

5. EXPERIMENTAL DESIGN
This section describes the experimental framework used to
measure the human performance tasks using the prototype. The
experiment compares a user interacting with the VIO (condition
VIO) against a user interacting with a human webmaster
(condition webmaster). The experiment measures the time spent
to complete the tasks and the accuracy of changes made to the

web site. In addition we wanted to see (i) if the webmaster
condition resulted in ambiguous requests that produced email
“ping-ponging”, (ii) how accurate the agent was at selecting
forms, and (iii) how successful users were at correcting agent
form selection errors with the micro-form.
Twenty (20) undergraduate student participants were randomly
assigned to play one of two roles: requestor or webmaster. For
condition VIO, participants emailed nine website update requests
to the VIO and then confirmed and approved the updates using
the micro-form. For the webmaster condition, participants playing
the requestor emailed nine website update requests to a
webmaster participant who made updates to a static page website
using Macromedia’s Dreamweaver (a WYSIWYG web page
editing software package). After making the change, the
webmaster emailed the requestor a link to a preview of the
change. Then the requestor sent a confirmation back to the
webmaster to make the change. All participants taking on the role
of the webmaster had extensive experience with either
Dreamweaver, another WYSIWYG web page editor, or with
directly editing HTML.
One of the challenges in this experiment came from instructing
the participants about the tasks they needed to complete. The
experiment represents nine tasks as a series of web page print outs
with hand written edits on the page (Figure 4). This method of
task presentation is a common way to communicate change
requests [6, 11]. In addition, this method reduces suggestions to
the participant for phrases to express the request. Note that the
mark up carefully does not use any word (such as “insert” or
“add”) to indicate the action required. The use of such a word
would bias the input phrases generated by a participant. Any such
bias has a critical impact on the performance of the extractors and
classifiers. However, even this pictorial method introduces some
bias. Figure 4 uses “rm” instead of the word “room”. In almost
every case, participants used this abbreviated form in place of the
word “room.”

Figure 4: Example Task
After completing a warm-up task, each participant in the
requestor role completed each of the nine tasks listed below in
Table 3. This table also lists the field information the VIO is able
to extract. Participants often provided information that was not
used by the VIO. For example, participants often mentioned the

name of the web page for the modification. However, the VIO
never uses page name in its analysis.

Table 3. Task and Fields Extracted

Task Fields

1 Add: 2nd phone name, phone

2 Delete:
employee

name

3 Modify:
employee name

old name, new name

4 Add: employee name, email, room number, phone
number

5 Delete: event month, day, title

6 Modify: sponsor
name

old sponsor, new sponsor

7 Delete: 2nd
phone

name

8 Modify: email old email, new email

9 Add: event month, day, title, location

Requestor participants in both groups issued an email for each
task. Because of the time needed for both the VIO and the
webmaster to complete the task and then send a reply, requestors
typically sent several email requests before viewing the first reply
and completing a single task. In order to compare the performance
of the two groups, we tracked the total time to complete all of the
tasks, errors made by the VIO, and the errors made by participants
in updates to the final web site. In addition, software recorded the
screen activity of every participant.
During pilot testing of the experiment we discovered that paying a
flat rate to participants lead to an unacceptably high rate of errors
made by participants in the VIO group. (No such error was
observed in the webmaster condition.) Therefore, we used a bonus
for completion of all tasks without any errors as an incentive to
check the details of each task transaction.

6. EXPERIMENTAL RESULTS
Table 4 summarizes the results of the experiment. The table lists
the experimental condition (Condition), the number of requestors
(Re), the percentage of errors that appear on the website due to
participant’s activity (Site Error), the ratio of emails sent to the
optimal number of emails (Email Ratio—only relevant for the
webmaster condition), and the average of the times taken for each
participant to complete the tasks (Task Time). Under Task Time
we also report the ratio of the task time to the webmaster group
task time. This ratio computes the performance increase of the
VIO condition compared to the webmaster condition.

Table 4. Time and Error Performance Comparison

Condition Re Site Error Email
Ratio

Task Time

Webmaster
Condition

12 5.5% 1.22 33.0 min
(1.0 x)

VIO
Condition

8 2.9% n/a 22.6 min
(1.46 x)

Note that the number of participants is too small to make reliable
statistical statements. However, the table does reveal several
trends we believe reflect true differences as opposed to illusion
from random effects.
The Task Time column indicates that the human-VIO condition
outperforms the human-webmaster condition with respect to
average time. This result occurs for two reasons: (i) ambiguity in
the human-agent communication is reduced through the use of the
form that clearly communicates the required information for an
update without a back and forth email exchange; and (ii) an agent
can select the form and fill it in with extracted data faster than the
webmaster can make the point change to the website using a tool.
Also, the webmaster condition requires two people to accomplish
a task compared to a single individual on the VIO group, so the
benefits of reduced task time should be doubled when converting
this benefit to a cost reduction calculation. In this case, the VIO
shows a 66% reduction in employee-time (32% reduction for
requestor and 100% reduction for webmaster).
More surprising is the fact that the site errors for the webmaster
group condition were slightly higher than the VIO group. We
expected the opposite result for two reasons. First, in the
webmaster condition, every task had two people examining the
changes, thus raising the likelihood that errors are caught. (This
diligence from both participants in checking the details of each
change may also have contributed to the longer time taken for this
condition.) Second, a completed correct form is difficult to
distinguish from a completed incorrect form in some cases. In
subsequent work, we have found no difference in the error rate of
users between agent-based and non-agent. The difference here
may be related to a slightly different incentive structure in the two
conditions.
The email ratio column of Table 4 provides some insight into the
problem of communication between participants in the webmaster
condition. Participants generated many emails above the optimal
in this condition. The optimal number of emails is 3 per task: task
request from requestor, webmaster reply with preview link, and
confirmation from the requestor.
To further understand this communication overhead, Table 5 lists
the results of an analysis of the messages in the webmaster
condition. The table lists the participant (Part), the task number
(Task), the number of emails (Emails), and a classification of the
interaction for all non-optimal interactions between participants
(Classification). The classification codes are as follows:

Incomplete Request: Requestor did not send enough information
for the webmaster to complete the task in the initial email. (5 of
108 transactions)

Request Incorrect: Requestor asked the webmaster to complete
the wrong task. Correction made after confirmation sent to
requestor. (1 of 108 transactions)

Acknowledge: Webmaster emailed acknowledgement after
receiving confirmation that the task had been completed correctly
from the requestor. (4 of 108 transactions)

Webmaster Incorrect: Webmaster made an error completing the
task and it was caught by the requestor and fixed by the
webmaster. (1 of 108 transactions)

Inter-task: Webmaster and requestor confused two tasks and
resolved this confusion through multiple email exchanges. This is

due to the fact that the requestor sends several requests before
getting the first reply from the webmaster. (1 of 108 transactions)

Ambiguity: Initial request is ambiguous (not just incomplete) and
requires a clarification dialog. (2 of 108 transactions)

Table 5. Email Iterations (14 of 108 transactions)

Part Task # Emails Classification
P1.1 Add: 2nd phone 8 Incomplete Request
P1.2 Add: 2nd phone 7 Incomplete Request
P2.2 Add: 2nd phone 5 Incomplete Request
P1.5 Add: 2nd phone 5 Incomplete Request
P1.5 Add: event 5 Ambiguity
P1.2 Delete: employee 5 Webmaster Incorrect
P2.1 Delete: employee 4 Acknowledge
P1.1 Delete: 2nd phone 6 Request Incorrect
P2.1 Delete: 2nd phone 5 Acknowledge
P2.1 Delete: event 5 Acknowledge
P2.2 Delete: event 5 Incomplete Request
P1.2 Delete: event 4 Acknowledge
P1.5 Modify: email 10 Ambiguity
P3.2 Modify: sponsor

name
11 Inter-Task

7. DISCUSSION
The prototype implements a form of the information intent vision
defined in the introduction. Clearly for the task at hand, using the
agent is more efficient and more effective than using another
human to accomplish the same tasks, even when the agent makes
errors. While restricted to website updates, our work indicates at
least the potential for good results in other web-based
applications.

The prototype and experimental framework implement and test
only a limited set of all possible updates to a website. Clearly
there is an engineering trade-off between the effort put into
capturing a particular class of changes as a form and leaving the
changes to an engineer. The set of updates the prototype
implements are representative of typical website changes.

The performance of the prototype depends in part on the quality
of the extraction. We use a sequential learning algorithm that
relies on the local context around the target to extract. So
extraction works well when the local context provides strong
evidence for the extraction: names, phone numbers, room
numbers, etc. have a good chance of correct extraction because
the local context of a few tokens proves strong evidence. For
example, learning a phone number is helped by features such as:
the current token is a number, the previous token is a parenthesis,
the next token is a parenthesis, etc. Longer strings such as event
titles are more difficult to extract if the user does not use
quotation marks around the event title. We have not yet attempted
to extract paragraph length fields. Very large inputs are generally
communicated in the form of email attachments (such as adding a
new publication to the website), files in a shared repository, or
through a web site URL. In these cases, the file both is classified
into a particular type of document (publication, resume, agenda,

minutes, talk abstract, etc.) and extraction is done on the
document (extract publication authors, etc.) as an extension to the
extraction and classification done on the request itself.

The prototype only deals with a few forms, but large-scale form-
based web systems involve hundreds if not thousands of forms.
This type of large-scale classification is an open research
problem. However, we believe that classifiers may perform well
because (a) information intent by users is very precise and (b)
forms differ radically in structure and content.

Finally, the prototype is completely handcrafted for the particular
application in mind. Each extractor and classifier is labor
intensive to construct because pilot training data must be
generated and considerable experimental work must be performed
to optimize precision and recall. The quality of the generated
model depends entirely on the amount of training data, the
features used, and the learning algorithm. What is the cost of
development of a large number of extractors and classifiers for a
new application? Can this cost be significantly reduced? What
algorithms best achieve a lower cost? How can these models
adjust to changes in the underlying (database) application? How
can these models adjust to changes in user behavior?

8. RELATED WORK
Information intent touches on many areas of research. In the
natural language processing for database question answering area
has a long history [15]. The ASK system [14] provides a natural
language interface to updates (at the data and metadata level) and
provides a form-based data entry system. However, the system
does not appear to fill in forms based on natural language, nor
does it provide navigation to a form – the user must know the
name of the form of interest. Also, this paper does not discuss
errors of any type. Recent work [3, 12] has demonstrated new
approaches to this problem that may apply to information intent.

Information intent also touches upon research in Computer
Support for Cooperative Work. Grudin [13] discusses difficulties
in the successful user adoption of CSCW applications. The paper
states that a CSCW system must provide benefit to all users that
participate in the system. In applying the prototype to the CSCW
case, we have several choices based on the routing of messages.
In the current single user prototype, the information intent
message, the clarification dialog, and the final approved form are
all done by the same user. Instead, in the case of a busy executive,
the clarification dialog can be handled by an office assistant and
then forwarded to a webmaster. (The office assistant typically has
access to the additional information needed to complete a
request.) Or, the executive can execute the clarification dialog
herself and forward the final approval form to a webmaster. In
each of these cases, the benefit and costs of using the system are
shifted between users. The best organization is an open question.

The MANGROVE project [5] is targeted at bridging the chasm
between the document unstructured world and the database
structured world. This project implements a direct manipulation
interaction style markup tool for documents. Our prototype may
be applicable to the same scenario.

Lockerd, et. al. [9] describe a user study of e-mail based requests
to a web master for changes to a web site. We borrowed the
before image / after image technique from this paper. The paper
reports that detecting delete and update requests exhibited a

“semantic pattern” 85% of the time. The data from the reported
experiment was used to implement a hand-built parser that
understood requests fully 65% of the time.

Interface design where forms are a response to free text input has
a history in human-computer interaction, e.g. [17], but these
systems do not apply machine learning techniques and thus do not
improve with continued use.

Meng [18] reports experimental results on removing the
ambiguity between field values and the use of the values in filling
out a form. The method involves mapping field references to
potential field values and then weighing the reference via a
weighted n-gram vector cosine function. This method deserves
further investigation, in particular its application to new values
that do not appear in the database.

VIO operates with free text as input. In some scenarios, VIO may
operate in an environment where the generation of the input
document occurs in a controlled way. In this case, user interface
techniques (e.g. [20]) may improve analysis of the input.

9. CONCLUSION
We examined the problem of issuing a request to update a
website. We used text extraction machine-learning algorithms,
classification algorithms, database retrieval and user interfaces to
provide a solution. We developed a prototype agent that, using
these algorithms, processes commands. We then measured the
performance of the agent with users in a controlled experimental
environment and showed that the agent helps the user complete
tasks faster and with fewer errors when compared to a pair of
users accomplishing the same task. These preliminary results
indicate that information intent is a real problem, information
intent requests can be effectively processed, and that machine
learning can help with solutions to this problem.
Information intent requests differ from questions in information
retrieval or question answering systems. In these classes of
systems, users describe an information need for a question that the
user cannot answer. Users expend additional effort to verify the
answer. In information intent, users describe a desired result or
command. Users can examine the results of the information intent
prototype and readily determine if they are correct or not, with
little additional effort or information.
Information intent is not limited to the point changes listed above.
In response to a broad request, a VIO can provide all of the
information, tools, and resources needed to complete standard
tasks. For example, a user might tell the VIO that they need to
organize a conference, and the VIO can return all of the forms,
procedures, and related information needed to complete this task.
Thus, information intent is a broad research area.
The prototype uses a novel application of text extraction
technology to process information intent commands – essentially
applying text extraction to the natural language understanding
problem.
The prototype also demonstrates a novel form of user interface
interaction design where an information intent request generates a
micro-form as an answer to the request. The use of information
intent allows the prototype to generate a “micro-form” that
focuses precisely on the needs of a particular command. Micro-
forms allow more rapid correction of agent errors.

Experimental results show that one person interacting with the
VIO completes tasks significantly faster than two people working
together. Performance comes from a reduction in ambiguity in the
dialog, in the speed with which the VIO analyzes the request, and
even though the VIO made form selection errors, the speed with
which the user corrects VIO errors. In addition, users could
successfully use the micro-form interface to rapidly repair agent
form selection errors.
In addition, human errors in updates to databases appear roughly
the same for both the person to VIO case and the two people
working together case. This area needs more research as we
expect some agent errors may be harder to perceive since they
may be buried in a pre-filled out form.

9.1 Future Work
We plan to apply the techniques of this paper to other domains to
test if the algorithms generalize in a domain independent way.
This process will provide some insights into the best architecture
and engineering method for the creation of a new information
intent system. Integration of other natural language techniques,
such as parsing, must also be addressed in this process.
A central functionality for this generalized system is the ability to
semi-automatically generate micro-forms. In addition, we would
like to formalize the ad-hoc code we now use for augmentation of
extracted results. In addition, we use a variety of ad-hoc code for
the translation of results into specific presentation style of a form.
For example, if the extracted field is associated with a database
attribute that (a) is an enumerated type, (b) does not allow
updates, (c) the type has a few possibilities, then a pull-down
menu is a more appropriate presentation style than a text field.
For example, employees may be only full-time or part-time.
Selecting this option via a pull-down menu is far better than a text
field. Semi-automatic generation of this kind of form presentation
style would simplify form construction.

Acknowledgements
Ellen Ayoob, William Cohen, Jason Cornwell, Kyle Cunningham,
Susan Fussell, Robert McGuire, Ken Mohnkern and Aaron
Spaulding have contributed to various aspects of VIO.
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. NBCHD030010. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA), or the
Department of Interior-National Business Center (DOI-NBC).

10. REFERENCES
[1] William W. Cohen, Data Integration using Similarity Joins

and a Word-based Information Representation Language,
ACM Transactions on Information Systems (18)3:288—
321, 2000.

[2] Michael Collins and Yoram Singer, Unsupervised Models
for Named Entity Classification, Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora
(EMNLP99), College Park, MD, 1999.

[3] Oren Etzioni, Alon Halevy, Henry Levy, and Luke
McDowell. Semantic Email: Adding Lightweight Data

Manipulation Capabilities to the Email Habitat.
International Workshop on the Web and Databases
(WebDB), June 12-13, 2003, San Diego, California.

[4] Yoav Freund and Robert E. Schapire Experiments with a
New Boosting Algorithm, International Conference on
Machine Learning, pp 148-156, 1996.

[5] Alon Halevy, Oren Etzioni, AnHai Doan, Zachary Ives,
Jayant Madhavan, Luke McDowell and Igor Tatarinov,
Crossing the Structure Chasm. Conference on Innovative
Directions in Research (CIDR 2003)

[6] Nathan Halstead. Personal Communication, 2003.
[7] Subbarao Kambhampati and Craig A. Knoblock, editors,

Proceedings of the 2003 Workshop on Information
Integration on the Web (IIWeb-03), Acapulco, Mexico,
August, 2003.

[8] John Lafferty, Andrew McCallum and Fernando Pereira,
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data, Proceedings of
the International Conference on Machine Learning (ICML-
2001, Williams, MA, 2001.

[9] Andrea Lockerd, Huy Pham, Taly Sharon, and Ted Selker,
Mr. Web: An Automated Interactive Webmaster. CHI 2003.

[10] Robert E. Schapire and Yoram Singer, Improved boosting
algorithms using confidence-rated predictions. Machine
Learning, 37(3):297-336, 1999.

[11] Aaron Spaulding. Personal Communication, 2003.
[12] Tessa Lau and Daniel Weld, Programming by

Demonstration: An Inductive Learning Formulation.
Proceedings of the 1999 ACM International Conference on
Intelligent User Interfaces, 1999. (IUI’99)

[13] Jonathan Grudin, Why CSCW Applications Fail: Problems
in the Design and Evaluation of Organizational Interfaces.
Proceedings of the 1988 ACM Conference on Computer-
Supported Cooperative Work, Portland, Oregon , 1988

[14] Bozena Thompson, and Frederick Thompson, Introducing
ASK, A Simple Knowledgeable System. Proceedings of the
First Conference on Applied Natural Language Processing,
Santa Monica, California, 1983.

[15] Elaine Rich, Natural-Language Interfaces. IEEE Computer
Magazine, September, 1984.

[16] MinorThird. http://minorthird.sourceforge.net
[17] Philip Cohen, et. al., Synergistic Use of Direct

Manipulation and Natural Language. CHI 1989
[18] Frank Meng, A Natural Language Interface for Information

Retrieval from Forms on the World Wide Web. Proceedings
of the 20th International Conference on Information
Systems, Charlotte, North Carolina, 1999.

[19] William Cohen, Einat Minkov and Anthony Tomasic,
Learning to Understand Web Site Update Requests, IJCAI,
2005

[20] Richard Power and Roger Evans. WYSIWYM with wider
coverage. ACL-04, 2004.

http://minorthird.sourceforge.net/

	INTRODUCTION
	PROTOTYPE
	ML METHOD
	Extractor Features
	Form Selection Model
	Training Data

	ML PERFORMANCE
	Extractor Performance
	Form Selection Performance

	EXPERIMENTAL DESIGN
	EXPERIMENTAL RESULTS
	DISCUSSION
	RELATED WORK
	CONCLUSION
	Future Work

	REFERENCES

