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ABSTRACT 
Large organizations with sophisticated infrastructures have large 
form-based systems that manage the interaction between the user 
community and the infrastructure. In many cases, when a user 
needs to complete a form to accomplish a task, the user e-mails a 
description of the task to the appropriate form expert.  In many 
cases this description is incomplete and the expert engages in a 
clarification dialog to determine the details of the task. Since 
many tasks and descriptions are routine, this e-mail dialog can be 
replaced with an intelligent user interface. The interface 
proactively reads e-mail (or IM) messages and assists the user in 
completing the associated task without involving the expert. To 
ground our vision in a specific application, we have built an agent 
that functions as a webmaster assistant. For example, a user 
emails the request: “Change John Doe’s home phone number to 
800-555-1212” to the agent. The webmaster agent then replies 
with the biographical data form displaying information about 
John Doe with the new phone number pre-filled in the form. The 
user then simply approves the change. 

In this paper we describe a prototype website maintenance agent 
that (i) allows users to express the updates they want to make in 
human terms (free text input expression of intent), and (ii) allows 
users to quickly repair any inference errors the agent makes. In 
addition, we present the results of a proof of concept study that 
details how interacting with a webmaster agent that makes 
inference errors is both more efficient (faster) and more effective 
(errors made to site) than sending a request to a human 
webmaster. We conclude the paper with a discussion of the 
application of our work to any form-based system. 

Categories and Subject Descriptors: H.5.2 User Interfaces: 
Interaction Styles 

General Terms: Algorithms, Design, Human Factors 

Keywords: natural language analysis, machine learning, forms, 
virtual information officer, VIO, microforms, information 
extraction 
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1. INTRODUCTION 
Today, large organizations devote resources to allow their 
employees to update information in company databases. These 
organizations provide internal web sites with FAQs, printed 
documentation, and administrative support help desks accessible 
via email or phone in order to allow their employees to keep 
information up-to-date. The following two scenarios provide 
examples. 

Scenario 1: Consider an employee who wishes to modify the 
automatic deposits to her pension plan. Because she makes this 
modification rarely, she most likely does not know the 
appropriate procedure or where to find the appropriate form. In a 
large organization she can take one of several actions: (i) search 
the intranet web site for a FAQ that describes the procedure and 
provides the URL of the form; (ii) call the Human Resources 
department for help; (iii) delegate this task to an assistant, if she 
has one; or (iv) ask another employee if they know. Regardless of 
the approach she chooses, considerable hunt time (time to find the 
correct form) will be spent by her or other employees. To reduce 
employee effort on this kind of task, organizations devote large 
amounts of resources to preparing print and web documentation 
and to maintaining support staff.  

Scenario 2: Consider a manager that issues a request to a 
webmaster support staff member: “Add a new employee, John 
Doe <John.Doe@company.com>, to the website.” In the best 
case, the webmaster understands the request and has all the 
information needed to complete the task and notifies the manager 
of the result. (In this case, the support person’s interaction reduces 
to Scenario 1 above). More often, confusion, ambiguity, missing 
information, and mistakes abound that result in an “email ping-
pong” involving clarification requests. For example, if every 
person on the website must be associated with a project, the 
webmaster will reply to the manager’s request with a clarification 
request for additional information.  
Our Virtual Information Officer (VIO) is an agent, implemented 
using two machine-learning (ML) algorithms (described in detail 
in Section 3) that processes update requests. With the system, 
users email their update requests to the VIO. The VIO then selects 
a form, fills it out, and returns it to the user for approval. 
This approach offers four advantages: (i) users can state their 
update intent in free text instead of navigating to a form named by 
a developer; (ii) replying to an update request with a form reduces 
ambiguity; (iii) replying with a form makes identification and 
repair of agent errors easier, and (iv) the VIO agent is available 
24-hours a day, seven days a week to make immediate updates. 
The VIO assists users in making “point” modifications (expressed 
in a single form) to websites. Since form developers implement 



complex transactions as application code associated with a form, 
users are effectively executing complex transactions on the 
underlying database when they approve a form that has been 
generated through simple free text input. 
The prototype demonstrates a novel form of natural language 
analysis by applying information extraction technology [7, 8, 16]. 
Every natural language system has as its core a lexicon, a 
grammar, and semantic rules. Roughly speaking, the 
implementation lexicon is composed of dictionaries, a log of past 
user input, and database strings. The grammar is composed of a 
set of text extraction models (one model per field per form). The 
semantic rules consist of a classifier and the business logic that 
implements the forms.  
The prototype presents a completed form in response to a request. 
The user can then correct the form and thus correct any analysis 
errors that the agent made. While form-based correction of natural 
language analysis is not new [17], the prototype implements a 
novel feedback loop that uses the interaction to improve the 
machine learning algorithms that form the basis of the analysis. 
Thus, the prototype learns over repeated use many variations in 
expression. 
The prototype implements micro-forms. Micro-forms are forms 
specifically designed to satisfy particular information intent. For 
example, in a standard form-based system, a form that updates 
personal information contains form fields for changing the 
business address, business phone, home phone, cell phone, home 
address, etc. Given the information intent “Change John Doe’s 
home phone number to 800 555 1212”, the micro-form is a 
reduced version of the standard form containing the field to 
change the home phone number, but not other form fields. (Of 
course, the user must be given a way to access the standard form.)  
The novel aspects of the prototype design are driven by two 
underlying goals. First, the performance of natural language 
analysis is improved by passive (or minimally invasive) 
observation of the user experience. This implies that our machine 
learning algorithms are on-line and use “live” data instead of 
using a carefully constructed training corpus. Second, the 
prototype is designed to be domain independent. Currently the 
only domain dependant part of the prototype is the site design and 
the database schema. All other aspects are automatically handled 
– in particular there is no domain specific grammar in the 
prototype. 
The evaluation of the prototype, conducted using behavioral 
experimental methodology, demonstrates the improved efficiency 
and effectiveness of a human-VIO method of update as compared 
to a human-human (webmaster) update. Our research has broad 
implications since the results apply to any form system. 
The remainder of the paper is organized as follows. Section 2 
describes the prototype and human-VIO interaction. Section 3 
details the method of understanding intent expressed in the user 
request. Section 4 describes the machine learning performance. 
Section 5 details the experimental design. Section 6 shares the 
results of the behavioral study. Section 7 offers a discussion of 
our findings. Section 8 provides an overview of related research. 
Finally, Section 9 contains conclusions about this proof of 
concept prototype and a discussion. 

2. PROTOTYPE 
Figure 1 details the functional flow of information and control in 
the prototype. The user initiates the process by sending an email 
request (Figure 2), which gets routed to the analysis module of the 
VIO. The component replies with a pre-filled micro-form (Figure 
3). The user reviews the form and adds any additional information 
or repairs inference errors made by the VIO. If the agent selects 
the wrong form, the user can override by selecting the correct 
form from a pull-down menu, which returns a new form pre-filled 
with extracted data. When the form is complete, the user can 
either preview the changes to the web site or she can approve the 
change, causing the execution module to update the database. The 
results are then forwarded to the learning module that analyzes 
the entire interaction and improves the analysis module. 

 

 
Figure 1: Functional Architecture 

The following is a walkthrough example of a transaction with the 
system. The transaction begins when the user sends the VIO an 
email request (Figure 2).  
The VIO’s analysis module matches the request to an “Add 
employee request” and extracts data for the employee name, 
email, and telephone. It then replies with an email containing a 
link to a web form (Figure 3). The user selects the link, launching 
a browser window that shows the best-guess micro-form 
completed with the results of analysis (Figure 3). Note that the 
analysis module has correctly chosen the micro-form and 
correctly completed 2 of 5 fields that could be completed from the 
request. The last field, the project of the staff member, cannot be 
determined from the input. The prototype simply selects a default 
value in this case. If the VIO had selected the wrong form, the 
user could override this selection by using the pull-down menu 
labeled “Change Form…”. In addition, before approving this 
change, the user can follow links at the bottom of the web form to 
view the web page (or pages) that will be modified and to preview 
what this page will look like once the update has been made. 
We refer to this web form as a micro-form, because it only 
displays the fields related to the user’s request. Instead of showing 



 
Figure 2: Example Email Request 

an entire biographical information form found in most HR 
databases, the micro-form only reveals the minimum of 
information for this transaction and thus reduces the amount of 
navigation time to verify an update. Micro-forms do have a 
disadvantage. Unlike traditional forms, micro-forms do not elicit 
additional information not specified in the user’s intent (request). 
We handled this problem by using micro-forms for all tasks 
except the addition of an entire new entity instance – adding a 
staff member or adding an event.  

 
Figure 3: Pre-Filled Form 

3. ML METHOD 
In this section we describe the details of the method used to 
analyze requests and select a best-guess form. First, we analyzed, 
for the set of k forms understood by the system, the set of fields 
that appear in the form. We then developed an extractor for each 
field based on a sequentialized version of Collins Perception 
Learner algorithm [2,16]. This off-line learning process was 
trained on data gathered and hand-labeled from pilot experiments 
described in the Section 5. The result of the algorithm is a learned 
model for each field in each form. To select the correct form, we 
trained a k-way boosted decision tree classifier. This classifier 
chooses between the k forms given a modified version of the 
input.  

3.1 Extractor Features 
For all extractions, tokens are any sequence of digits, any 
sequence of alphabetic characters or any single punctuation 
symbol. Depending on the field, we used a different set of 
features. For example, for learning names, we used four 
dictionaries (first names and last names from a white-pages 
dictionary containing a general list of names and first names and 
last names from names already in the database), the character type 
pattern of every current token, plus the patterns of the two tokens 
to the left and the two tokens to the right of the current token. The 
character type pattern consists of collapsed sequences of upper 
and lower case. For example, “jane” collapses to “x+”, “John” 
collapses to “X+x+”, “McDonald” collapses to “X+x+X+x+” and 
“412” collapses to “9+”. For learning phone numbers, we used the 
character pattern for the current token plus the character pattern 
for 4 tokens to the left and right. The character pattern includes 
length, so “jane” collapses to “xxxx”, “John” collapses to “Xxxx”, 
“McDonald” collapses to “XxXxxxxx” and “412” collapses to 
“999”.   
Once a model is trained, it is deployed into the prototype. When a 
new request input is accepted, it is passed to each model. The 
model accepts as input the string and returns as output the list of 
substrings recognized by the model. The first extracted substring 
is interpreted as the “value” of the field. Thus, for the input string 
“Delete Jane Doe, listed next to John Doe”, the model would 
extract “Jane Doe” and “John Doe”, and “Jane Doe” would be the 
extracted name in the case. This heuristic works well in this case, 
but not others, since “After the listing of John Doe, delete Jane 
Doe” would chose the wrong name. Further work on context is 
needed here, perhaps with the help of a parser. 

3.2 Form Selection Model 
The base form classification algorithm uses boosted decision 
trees. Boosting is a method by which the performance of a base 
learner is improved by calling the base learner again and again on 
different variants of a dataset, in which examples are assigned 
different weights in each variant dataset: each new dataset is 
formed by weighting an example e more heavily if e was given an 
incorrect label in previous iterations. 
In the prototype uses the “confidence-rated” variant of AdaBoost 
[4, 10] and a simple decision tree learner that does no pruning, but 
is limited to binary trees of depth at most five. The decision tree 
learner uses as a splitting metric the formula suggested by 
Schapire and Singer as an optimization criteria for weak learners: 
i.e., split on a predicate P(x) which minimizes the function 

−+WW2 , where W+ (respectively W- ) is the fraction of examples 



x for which the predicate P(x) is true (respectively false). This 
classifier is converted into a k-way classifier by choosing the 
class with the highest posterior probability. 
The input to the k-way classifier is the set of names of the 
extractors (i.e, metadata): all extractors that returned at least one 
value and the classes determined by the classifiers, the names of 
additional ad hoc classifiers (if they detected something), and 
additional atoms indicating a successful probe into the database. 
Hand-coded extractors are used to detect the action (add, delete, 
replace) of the input and various other references (day of week, 
month, day, rooms, locations, quoted strings, etc.). This code 
helps the classifier recognize cases where a user references an 
attribute without providing an actual value. For example, “Delete 
the phone number of John Doe” refers to the phone number 
attribute without providing a phone number.  
Another set of analysis uses the output of extractors to generate 
more features. Each extractor output is used as a lookup into the 
database (across all attributes). If the value is found in the 
database for extractor X, the analysis generates an “oldX” feature. 
Otherwise the analysis generates a “newX” feature.  For example, 
if the name extractor extracted a string S, the analysis issues a 
query against the database to match S with names of people in the 
database. If the name is found, the analysis generates a 
“newname” feature, otherwise it generates an “oldname” feature. 
As a separate step the analysis system resolves references in the 
input e-mail to database instances. The end effect is an 
appropriate form that is populated with the correct reference. Note 
that these “probes” into the database, in the prototype, use exact 
matching. Soft matching [1] would probably produce better 
performance. 

Table 1: Sample Extractor Training Data 

# Task Example 

1 Add: 2nd phone  Add second phone number: 412 
281 4506 for Allen Green  

2 Delete: employee Delete entry for Caldwell 
McLinn  

3 Modify: employee 
name 

Change the name Tim to 
Timothy  

4 Add: employee  Add employee Carl Reese with 
info  reese@ardra.com  Rm 6018  
412 281 6450  

5 Delete: event Delete the event "Automated 
Weigh Stations"  

6 Modify: sponsor 
name 

Change "Federal Transit 
Administration" to "Federal 
Transportation Administration" 

7 Delete: 2nd phone Delete second phone number for 
Sheu Ng  

8 Modify: email Change "info@roads.ardra.com" 
to "roads@ardra.com"  

9 Add: event Add an event, "Subcommittee 2.2 
Findings" on March 29 at 
Walters  Auditorium  

 

3.3 Training Data 
Table 1 displays one example input for each of the nine tasks we 
tested. Notice that participants almost always use ungrammatical 
phrases and assume a significant amount of context. The example 
for Task 3 lists only first names for the task of changing a 
person’s name. The low quality of input is a significant problem 
for the learning algorithms, however the prototype design 
compensates for this problem by allowing the user to easily 
correct any mistakes made in extraction. 

4. ML PERFORMANCE 
4.1 Extractor Performance 
Table 2 lists the performance of name extraction using 5 fold 
cross validation. The Features column lists two cases, learning 
with patterns only (“Patterns”) verses learning with patterns and 
the four dictionaries (“+Dict”).  Token precision measures the 
ratio of tokens correctly labeled as part of a name to all tokens 
labeled as part of a name. Token recall measures the ratio of 
tokens correctly labeled as part of a name to all name tokens. 
Span precision and recall are analogous to token precision and 
recall. F1 is defined as 2pr/(p+r) where p is precision and r is 
recall. The table results show that the learner does a fairly good 
job of learning names with its dictionaries. The results also show 
that the learner is biased towards precision vs. recall. Related 
work [19] describes some additional analysis. 

Table 2: Name Extraction Performance 

Features Token 
Precision

Token 
Recall

Token 
F1 

Span 
Precision

Span 
Recall

Span 
F1 

Patterns 0.72 0.23 0.34 0.72 0.22 0.33 

+Dict 0.93 0.84 0.89 0.90 0.78 0.84 

4.2 Form Selection Performance 
Form selection performance relies on the feature set given to the 
classifier. The features indicate that a particular extractor 
generated a result (e.g., feature “time” indicates that the time 
extractor generated a result). The features “insert”, “remove” and 
“replace” mean that an associated keyword was detected. The 
feature “keyname” means that the name extractor extracted a 
name that was found in the database.  
The percentage error rate of the form classifier to select the 
correct form was 20.8% during the actual experiment.  Thus, 
almost 80% of the time the participant is presented with the 
correct form for her request. While this rate may seem low by 
machine learning classification standards, it is very high by 
information retrieval standards (how many times does Google list 
the page you want in the number 1 spot?). In addition, given that 
participants in the VIO group outperformed the webmaster group, 
this result indicates that participants could quickly and 
successfully use the micro-form to make repairs to agent form 
selection errors. 

5. EXPERIMENTAL DESIGN 
This section describes the experimental framework used to 
measure the human performance tasks using the prototype. The 
experiment compares a user interacting with the VIO (condition 
VIO) against a user interacting with a human webmaster 
(condition webmaster). The experiment measures the time spent 
to complete the tasks and the accuracy of changes made to the 



web site. In addition we wanted to see (i) if the webmaster 
condition resulted in ambiguous requests that produced email 
“ping-ponging”, (ii) how accurate the agent was at selecting 
forms, and (iii) how successful users were at correcting agent 
form selection errors with the micro-form.    
Twenty (20) undergraduate student participants were randomly 
assigned to play one of two roles: requestor or webmaster. For 
condition VIO, participants emailed nine website update requests 
to the VIO and then confirmed and approved the updates using 
the micro-form. For the webmaster condition, participants playing 
the requestor emailed nine website update requests to a 
webmaster participant who made updates to a static page website 
using Macromedia’s Dreamweaver (a WYSIWYG web page 
editing software package). After making the change, the 
webmaster emailed the requestor a link to a preview of the 
change. Then the requestor sent a confirmation back to the 
webmaster to make the change. All participants taking on the role 
of the webmaster had extensive experience with either 
Dreamweaver, another WYSIWYG web page editor, or with 
directly editing HTML. 
One of the challenges in this experiment came from instructing 
the participants about the tasks they needed to complete. The 
experiment represents nine tasks as a series of web page print outs 
with hand written edits on the page (Figure 4).  This method of 
task presentation is a common way to communicate change 
requests [6, 11]. In addition, this method reduces suggestions to 
the participant for phrases to express the request. Note that the 
mark up carefully does not use any word (such as “insert” or 
“add”) to indicate the action required. The use of such a word 
would bias the input phrases generated by a participant. Any such 
bias has a critical impact on the performance of the extractors and 
classifiers. However, even this pictorial method introduces some 
bias. Figure 4 uses “rm” instead of the word “room”.  In almost 
every case, participants used this abbreviated form in place of the 
word “room.” 

Figure 4: Example Task 
After completing a warm-up task, each participant in the 
requestor role completed each of the nine tasks listed below in 
Table 3. This table also lists the field information the VIO is able 
to extract. Participants often provided information that was not 
used by the VIO. For example, participants often mentioned the 

name of the web page for the modification. However, the VIO 
never uses page name in its analysis.  

Table 3. Task and Fields Extracted 

# Task Fields 

1 Add: 2nd phone  name, phone 

2 Delete: 
employee 

name 

3 Modify: 
employee name 

old name, new name 

4 Add: employee  name, email, room number, phone 
number 

5 Delete: event month, day, title 

6 Modify: sponsor 
name 

old sponsor, new sponsor 

7 Delete: 2nd 
phone 

name 

8 Modify: email old email, new email 

9 Add: event month, day, title, location 

 
Requestor participants in both groups issued an email for each 
task. Because of the time needed for both the VIO and the 
webmaster to complete the task and then send a reply, requestors 
typically sent several email requests before viewing the first reply 
and completing a single task. In order to compare the performance 
of the two groups, we tracked the total time to complete all of the 
tasks, errors made by the VIO, and the errors made by participants 
in updates to the final web site. In addition, software recorded the 
screen activity of every participant. 
During pilot testing of the experiment we discovered that paying a 
flat rate to participants lead to an unacceptably high rate of errors 
made by participants in the VIO group. (No such error was 
observed in the webmaster condition.) Therefore, we used a bonus 
for completion of all tasks without any errors as an incentive to 
check the details of each task transaction.  

6. EXPERIMENTAL RESULTS 
Table 4 summarizes the results of the experiment. The table lists 
the experimental condition (Condition), the number of requestors 
(Re), the percentage of errors that appear on the website due to 
participant’s activity (Site Error), the ratio of emails sent to the 
optimal number of emails (Email Ratio—only relevant for the 
webmaster condition), and the average of the times taken for each 
participant to complete the tasks (Task Time). Under Task Time 
we also report the ratio of the task time to the webmaster group 
task time. This ratio computes the performance increase of the 
VIO condition compared to the webmaster condition.  

Table 4. Time and Error Performance Comparison 

Condition Re Site Error Email 
Ratio 

Task Time 

Webmaster 
Condition 

12 5.5% 1.22 33.0 min  
(1.0 x) 

VIO 
Condition 

8 2.9%  n/a 22.6 min  
(1.46 x) 



Note that the number of participants is too small to make reliable 
statistical statements. However, the table does reveal several 
trends we believe reflect true differences as opposed to illusion 
from random effects.  
The Task Time column indicates that the human-VIO condition 
outperforms the human-webmaster condition with respect to 
average time. This result occurs for two reasons: (i) ambiguity in 
the human-agent communication is reduced through the use of the 
form that clearly communicates the required information for an 
update without a back and forth email exchange; and (ii) an agent 
can select the form and fill it in with extracted data faster than the 
webmaster can make the point change to the website using a tool. 
Also, the webmaster condition requires two people to accomplish 
a task compared to a single individual on the VIO group, so the 
benefits of reduced task time should be doubled when converting 
this benefit to a cost reduction calculation. In this case, the VIO 
shows a 66% reduction in employee-time (32% reduction for 
requestor and 100% reduction for webmaster). 
More surprising is the fact that the site errors for the webmaster 
group condition were slightly higher than the VIO group. We 
expected the opposite result for two reasons. First, in the 
webmaster condition, every task had two people examining the 
changes, thus raising the likelihood that errors are caught. (This 
diligence from both participants in checking the details of each 
change may also have contributed to the longer time taken for this 
condition.) Second, a completed correct form is difficult to 
distinguish from a completed incorrect form in some cases. In 
subsequent work, we have found no difference in the error rate of 
users between agent-based and non-agent. The difference here 
may be related to a slightly different incentive structure in the two 
conditions.  
The email ratio column of Table 4 provides some insight into the 
problem of communication between participants in the webmaster 
condition. Participants generated many emails above the optimal 
in this condition. The optimal number of emails is 3 per task: task 
request from requestor, webmaster reply with preview link, and 
confirmation from the requestor. 
To further understand this communication overhead, Table 5 lists 
the results of an analysis of the messages in the webmaster 
condition. The table lists the participant (Part), the task number 
(Task), the number of emails (Emails), and a classification of the 
interaction for all non-optimal interactions between participants 
(Classification). The classification codes are as follows:  

Incomplete Request: Requestor did not send enough information 
for the webmaster to complete the task in the initial email. (5 of 
108 transactions) 

Request Incorrect: Requestor asked the webmaster to complete 
the wrong task. Correction made after confirmation sent to 
requestor. (1 of 108 transactions) 

Acknowledge: Webmaster emailed acknowledgement after 
receiving confirmation that the task had been completed correctly 
from the requestor. (4 of 108 transactions) 

Webmaster Incorrect: Webmaster made an error completing the 
task and it was caught by the requestor and fixed by the 
webmaster. (1 of 108 transactions) 

Inter-task: Webmaster and requestor confused two tasks and 
resolved this confusion through multiple email exchanges. This is 

due to the fact that the requestor sends several requests before 
getting the first reply from the webmaster. (1 of 108 transactions) 

Ambiguity: Initial request is ambiguous (not just incomplete) and 
requires a clarification dialog. (2 of 108 transactions) 

Table 5. Email Iterations (14 of 108 transactions) 

Part Task # Emails Classification 
P1.1 Add: 2nd phone 8 Incomplete Request 
P1.2 Add: 2nd phone 7 Incomplete Request 
P2.2 Add: 2nd phone 5 Incomplete Request 
P1.5 Add: 2nd phone 5 Incomplete Request 
P1.5 Add: event 5 Ambiguity 
P1.2 Delete: employee 5 Webmaster Incorrect 
P2.1 Delete: employee 4 Acknowledge 
P1.1 Delete: 2nd phone 6 Request Incorrect 
P2.1 Delete: 2nd phone 5 Acknowledge 
P2.1 Delete: event 5 Acknowledge 
P2.2 Delete: event 5 Incomplete Request 
P1.2 Delete: event 4 Acknowledge 
P1.5 Modify: email 10 Ambiguity 
P3.2 Modify: sponsor 

name 
11 Inter-Task 

 

7. DISCUSSION 
The prototype implements a form of the information intent vision 
defined in the introduction. Clearly for the task at hand, using the 
agent is more efficient and more effective than using another 
human to accomplish the same tasks, even when the agent makes 
errors. While restricted to website updates, our work indicates at 
least the potential for good results in other web-based 
applications.  

The prototype and experimental framework implement and test 
only a limited set of all possible updates to a website. Clearly 
there is an engineering trade-off between the effort put into 
capturing a particular class of changes as a form and leaving the 
changes to an engineer. The set of updates the prototype 
implements are representative of typical website changes. 

The performance of the prototype depends in part on the quality 
of the extraction. We use a sequential learning algorithm that 
relies on the local context around the target to extract. So 
extraction works well when the local context provides strong 
evidence for the extraction: names, phone numbers, room 
numbers, etc. have a good chance of correct extraction because 
the local context of a few tokens proves strong evidence. For 
example, learning a phone number is helped by features such as: 
the current token is a number, the previous token is a parenthesis, 
the next token is a parenthesis, etc. Longer strings such as event 
titles are more difficult to extract if the user does not use 
quotation marks around the event title. We have not yet attempted 
to extract paragraph length fields. Very large inputs are generally 
communicated in the form of email attachments (such as adding a 
new publication to the website), files in a shared repository, or 
through a web site URL. In these cases, the file both is classified 
into a particular type of document (publication, resume, agenda, 



minutes, talk abstract, etc.) and extraction is done on the 
document (extract publication authors, etc.) as an extension to the 
extraction and classification done on the request itself. 

The prototype only deals with a few forms, but large-scale form-
based web systems involve hundreds if not thousands of forms.  
This type of large-scale classification is an open research 
problem. However, we believe that classifiers may perform well 
because (a) information intent by users is very precise and (b) 
forms differ radically in structure and content. 

Finally, the prototype is completely handcrafted for the particular 
application in mind. Each extractor and classifier is labor 
intensive to construct because pilot training data must be 
generated and considerable experimental work must be performed 
to optimize precision and recall. The quality of the generated 
model depends entirely on the amount of training data, the 
features used, and the learning algorithm. What is the cost of 
development of a large number of extractors and classifiers for a 
new application? Can this cost be significantly reduced? What 
algorithms best achieve a lower cost? How can these models 
adjust to changes in the underlying (database) application? How 
can these models adjust to changes in user behavior? 

8. RELATED WORK 
Information intent touches on many areas of research. In the 
natural language processing for database question answering area 
has a long history [15]. The ASK system [14] provides a natural 
language interface to updates (at the data and metadata level) and 
provides a form-based data entry system. However, the system 
does not appear to fill in forms based on natural language, nor 
does it provide navigation to a form – the user must know the 
name of the form of interest. Also, this paper does not discuss 
errors of any type. Recent work [3, 12] has demonstrated new 
approaches to this problem that may apply to information intent. 

Information intent also touches upon research in Computer 
Support for Cooperative Work. Grudin [13] discusses difficulties 
in the successful user adoption of CSCW applications. The paper 
states that a CSCW system must provide benefit to all users that 
participate in the system. In applying the prototype to the CSCW 
case, we have several choices based on the routing of messages. 
In the current single user prototype, the information intent 
message, the clarification dialog, and the final approved form are 
all done by the same user. Instead, in the case of a busy executive, 
the clarification dialog can be handled by an office assistant and 
then forwarded to a webmaster. (The office assistant typically has 
access to the additional information needed to complete a 
request.) Or, the executive can execute the clarification dialog 
herself and forward the final approval form to a webmaster. In 
each of these cases, the benefit and costs of using the system are 
shifted between users. The best organization is an open question. 

The MANGROVE project [5] is targeted at bridging the chasm 
between the document unstructured world and the database 
structured world. This project implements a direct manipulation 
interaction style markup tool for documents. Our prototype may 
be applicable to the same scenario.  

Lockerd, et. al. [9] describe a user study of e-mail based requests 
to a web master for changes to a web site. We borrowed the 
before image / after image technique from this paper. The paper 
reports that detecting delete and update requests exhibited a 

“semantic pattern” 85% of the time. The data from the reported 
experiment was used to implement a hand-built parser that 
understood requests fully 65% of the time. 

Interface design where forms are a response to free text input has 
a history in human-computer interaction, e.g. [17], but these 
systems do not apply machine learning techniques and thus do not 
improve with continued use. 

Meng [18] reports experimental results on removing the 
ambiguity between field values and the use of the values in filling 
out a form. The method involves mapping field references to 
potential field values and then weighing the reference via a 
weighted n-gram vector cosine function. This method deserves 
further investigation, in particular its application to new values 
that do not appear in the database. 

VIO operates with free text as input. In some scenarios, VIO may 
operate in an environment where the generation of the input 
document occurs in a controlled way. In this case, user interface 
techniques (e.g. [20]) may improve analysis of the input.  

9. CONCLUSION 
We examined the problem of issuing a request to update a 
website. We used text extraction machine-learning algorithms, 
classification algorithms, database retrieval and user interfaces to 
provide a solution. We developed a prototype agent that, using 
these algorithms, processes commands. We then measured the 
performance of the agent with users in a controlled experimental 
environment and showed that the agent helps the user complete 
tasks faster and with fewer errors when compared to a pair of 
users accomplishing the same task. These preliminary results 
indicate that information intent is a real problem, information 
intent requests can be effectively processed, and that machine 
learning can help with solutions to this problem. 
Information intent requests differ from questions in information 
retrieval or question answering systems. In these classes of 
systems, users describe an information need for a question that the 
user cannot answer. Users expend additional effort to verify the 
answer. In information intent, users describe a desired result or 
command. Users can examine the results of the information intent 
prototype and readily determine if they are correct or not, with 
little additional effort or information.  
Information intent is not limited to the point changes listed above. 
In response to a broad request, a VIO can provide all of the 
information, tools, and resources needed to complete standard 
tasks. For example, a user might tell the VIO that they need to 
organize a conference, and the VIO can return all of the forms, 
procedures, and related information needed to complete this task. 
Thus, information intent is a broad research area. 
The prototype uses a novel application of text extraction 
technology to process information intent commands – essentially 
applying text extraction to the natural language understanding 
problem. 
The prototype also demonstrates a novel form of user interface 
interaction design where an information intent request generates a 
micro-form as an answer to the request. The use of information 
intent allows the prototype to generate a “micro-form” that 
focuses precisely on the needs of a particular command. Micro-
forms allow more rapid correction of agent errors. 



Experimental results show that one person interacting with the 
VIO completes tasks significantly faster than two people working 
together. Performance comes from a reduction in ambiguity in the 
dialog, in the speed with which the VIO analyzes the request, and 
even though the VIO made form selection errors, the speed with 
which the user corrects VIO errors. In addition, users could 
successfully use the micro-form interface to rapidly repair agent 
form selection errors. 
In addition, human errors in updates to databases appear roughly 
the same for both the person to VIO case and the two people 
working together case. This area needs more research as we 
expect some agent errors may be harder to perceive since they 
may be buried in a pre-filled out form. 

9.1 Future Work 
We plan to apply the techniques of this paper to other domains to 
test if the algorithms generalize in a domain independent way. 
This process will provide some insights into the best architecture 
and engineering method for the creation of a new information 
intent system. Integration of other natural language techniques, 
such as parsing, must also be addressed in this process. 
A central functionality for this generalized system is the ability to 
semi-automatically generate micro-forms. In addition, we would 
like to formalize the ad-hoc code we now use for augmentation of 
extracted results. In addition, we use a variety of ad-hoc code for 
the translation of results into specific presentation style of a form. 
For example, if the extracted field is associated with a database 
attribute that (a) is an enumerated type, (b) does not allow 
updates, (c) the type has a few possibilities, then a pull-down 
menu is a more appropriate presentation style than a text field. 
For example, employees may be only full-time or part-time. 
Selecting this option via a pull-down menu is far better than a text 
field. Semi-automatic generation of this kind of form presentation 
style would simplify form construction. 
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