
Type-Directed Weaving of Aspects for Higher-order Functional
Languages

Meng Wang
National University of Singapore,

Singapore
wangmeng@comp.nus.edu.sg

Kung Chen
National Chengchi University, Taiwan

chenk@cs.nccu.edu.tw

Siau-Cheng Khoo
National University of Singapore,

Singapore
khoosc@comp.nus.edu.sg

Abstract
Aspect-oriented programming (AOP) has been shown to be a useful
model for software development. Special care must be taken when
we try to adapt AOP to strongly typed functional languages which
come with features like a type inference mechanism, polymorphic
types, higher-order functions andtype-scopedpointcuts. Our main
contribution lies in a seamless integration of these two paradigms
through a static weaving process which deals witharoundadvices
with type-scoped pointcuts in the presence of higher-order func-
tions. We give a source-level type inference system for a higher-
order, polymorphic language coupled with type-scoped pointcuts.
The type system ensures that base programs are oblivious to the
type of around advices. We present a type-directed translation
scheme which resolves all advice applications at static time. The
translation removes advice declarations from source programs and
produces translated code which is typable in the Hindley-Milner
system.

Categories and Subject DescriptorsD.3.3 [Language Constructs
and Features]: Polymorphism,functions,Control structures; D.3.2
[Language Classifications]: Applicative (functional) languages;
F.3.2 [Semantics of Programming Languages]: Operational seman-
tics

General Terms Languages,Theory

Keywords Aspect Oriented, Higher-Order, Type Inference, Weav-
ing, Functional Language

1. Introduction
Aspect-oriented programming (AOP) aims at modularizing con-
cerns such as profiling and security that crosscut the components of
a software system [13]. In AOP, a program consists of many func-
tional modules and someaspectsthat encapsulate the crosscutting
concerns. An aspect provides two specifications: Apointcut, com-
prising a set of functions, designate when and where to crosscut
other modules; and anadvice, which is a piece of code, that will
be executed when a pointcut is reached. The complete program be-
haviour is derived by some novel ways of composing functional
modules and aspects according to the specifications given within

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM ’06 January 9–10, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

the aspects. This is calledweavingin AOP. Weaving results in the
behaviour of those functional modules impacted by aspects being
modified accordingly.

Since its inception, AOP has been closely investigated mainly
in the contexts of object-oriented programming languages such as
Java [12, 10, 2] and C++ [17]. Recently, researchers in functional
languages have also started to study various issues of adding as-
pects to functional languages, ranging from foundational calculi
[3, 9, 20] to prototype implementations [5, 16]. Two notable works
in this area, PolyAML [5] and Aspectual Caml [16], have made
many significant results on supporting polymorphic pointcuts and
advices in strongly typed functional languages such as ML. Each
of these works has its own approach to preserving type safety under
the Hindley-Milner style type system.

While these works have been very illuminating for understand-
ing the problems involved, they have not fully explored some of the
subtle issues which are crucial for a full-fledged support of aspects
in higher-order functional languages. For examples, PolyAML does
not supportaround advicesand calls for dynamic type checking
to handle matching of type-scoped pointcuts. The syntax-directed
weaving strategy of Aspectual Caml cannot handle higher-order
functions properly. Essentially, strong-typing property of func-
tional languages, in the presence of parametric polymorphism and
higher-order functions, may be compromised when aspect weaving
may be constrained by types. Indeed, it is a challenging task to
properly reconcile all these features under a coherent framework.

To demonstrate the complexity of the matter, consider the fol-
lowing aspect-oriented functional program:

Example 1
n1@advice around {h} (arg::Int)

= proceed (arg+1) in
n2@advice around {h} (arg::[a])

= proceed (tail arg) in
n3@advice around {h} arg = proceed arg in
n4@advice around {f} (arg) = e1 in
n5@advice around any (arg::Int) = e2 in
n6@advice around {f x} (arg::Int) = e3
in let h x = x in

let f g y = g (h y) in
(f h 1, f h [2.5], h)

This piece of code defines six advices named fromn1 to n6; it
also defines a main program consisting of declarations off and
h and a main expression returning a triplet. The first two advices,
n1 andn2, designate calls toh as pointcuts. They differ in the type
constraints, which are calledtype scopes, of their first argument.n1
is only triggered whenh is called with anInt argument, whereas
n2 is triggered whenh is called with a list as argument. Due to the

78

differing type scopes, at most one of these advices will be triggered
at a call toh. However, the only physical application ofh in the
main program appears in the RHS off’s definition, and under a
polymorphic type context. It will be an error to allow eithern1 or
n2 to intercept the call toh at this point. Instead, the actual calling
context ofh will only be revealed in the first two components of the
triplet expression, whereh also appears as higher-order argument
of the two calls tof. In order to correctly chain the advicen1 to the
occurrence ofh in ((f h) 1), andn2 to that in((f h) [2.5]),
we need a type inference system that deals with advice declarations
in the presence of higher-order functions.

The third advicen3 also designates calls toh but without any
type constraint onh’s argument. Certainly, such advice should
crosscut both the indirect calls ofh via the two invocations of
f; in addition, it should also crosscut any future call to the third
component of the triplet, the isolatedh function. This demonstrates
the intricacy of defining weaving decision for a variable, such ash.

The fourth advicen4 designates calls tof with no specified
type scope as its pointcut. The fifth onen5 uses anany pointcut
which suggests that it be triggered at any function calls – including
partial applications – withInt argument. The last one has a curried
pointcuts. It matches the second partial application off to an
argument of typeInt. All these variants of pointcuts have to be
managed systematically for advices to be triggered at appropriate
points.

In this paper, we present a novel approach to type-safe weav-
ing of aspects for higher-order functional languages. Inspired by
the predicated types of type classes [19], we introduce the notion
of advised typesto guard against unsafe weaving. The central idea
is to make full advantage of type information, both from the base
program and the type-scoped pointcuts, to guide the weaving of
aspects. Specifically, we give a source-level type inference system
for a higher-order, polymorphic language coupled with type-scoped
pointcuts. A type-directed translation scheme is then devised to re-
solve all advice applications, thus eliminating any future need for
dynamic type checking. The translation removes advice declara-
tions from source programs and produces translated codes which
are typable in Hindley-Milner system. We show that our type in-
ference system is a conservative extension of the Hindley-Milner
system, and the translated program remains well-typed.

For the above example code, our translation produces the fol-
lowing code:

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (tail arg) in
let n3 = \arg -> proceed arg in
let n4 = \arg -> e1 in
let n5 = \arg -> e2 in
let n6 = \x.\arg -> let proceed = proceed x in e3 in
let h x = x in
let f dh g y = g (dh y) in
(<<f,{n4,n6}> <h,{n1,n3,n5}> <h,{n1,n3,n5}>,{n5}> 1,
<f,{n4}> <h,{n2,n3}> <h,{n2,n3}> [2.5],
<h,{n3}>)

Note that all advice declarations are translated into functions and
are woven in. We use a combinator〈 , {. . .}〉 to chain advices
and advised functions. For instance,〈f , {n4, n6}〉 denotes the
chaining of advicesn4 andn6 to advised functionf. It is important
to note that the direct call toh in f’s definition above is not advised.
Instead, it is abstracted into an advice parameter waiting to be
instantiated. The purpose of this postponed decision is to ensure
a coherent weaving. In the main program, those calls tof and
h in the first two components of the triplet will trigger different
sets of advices, as determined by their argument types. In the first
component, before receiving the translated counterpart ofh as first

argument, the translatedf is advised byn4 andn61, and is supplied
with the translatedh to instantiate its advice parameter. Then, the
partially appliedf is advised byn5 before applying to theInt
argument. Note that in this case, both the indirect and direct calls
of h trigger the same set of advices. But this may not be the case in
general. The second component of the triplet, in contrast, is woven
in some other set of advices, as the the actual argument fed tof
is of type [Float], and the curried pointcut does not match. Note
that here and throughout the paper, we assume advices are triggered
according to the textual order in which they are declared.

Our approach mimics the translation scheme used in handling
type classes [19]. However, there are significant differences be-
tween the two. This is especially noticeably in the handling of over-
lapping type-scoped advices to ensure a coherent translation. We
shall explain this in Section 4.

The main contributions of this paper are as follows.

• We formally specify a type inference system for a strongly-
typed aspect-oriented functional language featuring polymor-
phism, higher-order functions andaround advices with type-
scoped pointcuts. Our type system ensures that well-typed pro-
grams areobliviousto the types of their around advices.

• We propose a novel technique fortype-directed weavingof as-
pects. This is accomplished by means of a type-directed trans-
lation scheme which implements weaving statically. The trans-
lated program is typeable in the Hindley-Milner system. The
technique performs weaving in the presence of higher-order
functions and type-scoped curried pointcuts; it also ensures co-
herent advices are given to functions in the presence of overlap-
ping type-scoped advices.

The outline of the paper is as follows: Section 2 acquaints
the reader with the essence of aspect-oriented programs, and sets
the background for our discussion. Section 3 outlines individual
challenges faced in static weaving of strongly-typed higher-order
polymorphic functional language. Our main technical contribution
is described in Section 4, and its further extension is discussed in
Section 5. We discuss related works in Section 6 before concluding
in Section 7.

2. Preliminaries
An aspect-oriented program is generally divided into two parts: A
baseprogram and a number ofaspects. The aspects can be viewed
as observers of the base program, taking actions whenever certain
events occur in the latter’s execution. Actions taken by aspects are
calledcrosscutting. A piece of aspect code that describes an inter-
vening action is called anadvice. In functional language setting,
aspect code will usually be treated like global declarations in a pro-
gram. We shall use the following syntax and conventions for de-
scribing our work:

Expressions e ::= c | x | λx.e | e e | let f = e in e
n@advice around pc = e in e

Arguments arg ::= x | x :: t
Pointcuts pc ::= {f x̄} (arg) | any (arg)
Types t ::= a | t → t | T t̄
Type Schemes σ ::= ∀ā.ρ
Advised Types ρ ::= (x : t).ρ | t

We writeō as an abbreviation for a sequence of objectso1, ..., on

(e.g. expressions, types etc). The term[o/a]o′ denotes simultane-
ous substitution ofoi for variablesai in o′, for i = 1, . . . , n.
We write t1 ∼ t2 to specify equality between two typest1 andt2

1 Astute readers may notice thatn6 is chained withf instead of the partial
application of it. The reason for this is explained in 4.1.3.

79

(a.k.a, unification) to avoid confusing with assignment=. We write
fv(o) to denote the free variables in some objecto.

For simplicity, we leave out type annotations, recursive func-
tion definitions and patterns but may make use of them in exam-
ples. We assume thatc refers to constructors of user-defined data
typesT ā. Basic types such as booleans, integers, tuples and lists
are predefined and their constructors are recorded in some initial
environmentΓinit.

In our language, an aspect is an advice declaration which in-
cludes a piece of advice and its targetpointcut. Pointcuts are rep-
resented by{f x̄} (arg). An advice will be triggered when a call
is made to any function from the set of pointcuts associated with
this advice.. We say a function is being advised when it appears in
the pointcut of an aspect. The syntax here allows curried pointcuts
which only match partially applied functions to their argumentsx̄.
The argument variablearg will be bound to the actual argument of
the function call and it may contain an annotated type. Only func-
tion calls with arguments of types not more general than the type
scope is matched by the pointcut. When the type scope is absent,
all calls to the functions from the set is matched. This design is
very different from the polymorphic approach in [16] where type
inference result of advices will affect the matching of the targeted
pointcuts.

Advice is a function-like expression that executesbefore, after,
or arounda pointcut. Note thataroundadvice is executed in place
of the indicated pointcut, allowing a function to be replaced. A
special functionproceed may be called inside the body of an
around advice. It is bound to a function that represents the rest of
the computation at the advised pointcut. It is easy to see that both
beforeadvice andafter advice can be simulated byaroundadvice
that always proceeds. Therefore, in this paper, onlyaroundadvice
is considered. Furthermore, since anaroundadvice may replace its
advised function, its type must be unifiable with the type of the
advised function. This is guaranteed by our type inference system.
Hence, in this sense, programs in our system areoblivious [7] to
the types of their around advices and type safety is preserved for
advice execution. To capture all functions in a pointcut, we useany
as a call to any function.

The intervening action of aspects is achieved by aweaving
process. A weaver either dynamically or statically searches for
matching pointcut of a function call; andchainsthe function with
corresponding advices. In the syntax, we also introduce the notion
of advised typesto facilitate our translation. It will be formally
introduced in Section 4. Reader can safely ignore it for the time
being.

3. Challenges in Static Weaving
In a strongly-typed language, it is always desirable to be able to
perform type erasure to programs without incurring additional run-
time error during program execution. From the aspect-oriented per-
spective, it is therefore imperative to question if pointcuts con-
strained by types will affect the strong-typing property of the lan-
guage.

Specifically, we allow type constraints to be imposed on the ar-
guments of those functions occurring in pointcuts. We call such
pointcutstype-scoped pointcuts. Advices with type-scoped point-
cuts are henceforth calledtype-scoped advices.

Consider the following code declaring two type-scoped advices:

Example 2
n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg::[a]) = proceed (tail arg)
in let h x = x in

(h 1,h [2.5])

Bothn1 andn2 are examples of type-scoped advices. Different ad-
vices will be required for different applications of the functionh.
As such, it is no longer sufficient to determine the applicability of
an advice by matching the function names in the pointcut alone. In-
stead, type inference is required to decide on the choice of advices.
In the above case,h should be advised byn1, but notn2, during the
application of(h 1). Similarly, it should be advised byn2, but not
n1, during the(h [2.5]) application.

Thus, the introduction of type-scoped advices complicates static
weaving of aspects, particularly in the case of advising polymor-
phic functions.

Another important property of aspect-oriented languages which
may be impacted by type-scoped advices isobliviousness[7].
Oblivious means programmers can add advices to a program “after-
the-fact” in the typical aspect-oriented style. In the context of typ-
ing, the type inference of advices should not affect the typing of
the original program. Consider this example.

Example 3
n1@advice around {h} (arg) = proceed (arg+1) in
n2@advice around {h} (arg::Int) = proceed (arg +1)
in let h x = x in

(h True)

The advicen1 is potentially unsafe. Note that the definition
of h is of type∀a.a → a. In the base program without advices,
it is called with argumentTrue. This application, if advised by
n1, will result in erroneous computation ofTrue + 1. A correct
type inference of AOP should not restrict the type ofh to suit the
advices. Instead, advicen1 should be rightfully rejected. On the
contrary, the second advicen2 is safe since it is only triggered by
calls withInt arguments.

3.1 Coherent Advices

Whereas advising on polymorphic functions can be intricate, the
presence ofpolymorphic type-scopedadvices brings forth even
greater challenge to the determination of a static weaving. This is
because different advices to a pointcut may haveoverlappingtype
scopes.

Consider the following advices:

Example 4
n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed (arg) in

Here,n2 is not constrained by type, and we can infer that it has
the type∀a.a → a. Consequently, the type scopes ofn1 andn2
overlap in that the former is subsumed by the latter. In general, it
is not possible to determine locally if a particular advice should be
triggered. For example, consider the following main program for
the above advices:

let h x = x in
let f x = h x in
(f 1)

From syntactic viewpoint, functionh will be called in the body
of f. Since the argumentx to functionh in the RHS off’s definition
is of polymorphic type, we would be tempted to conclude that (1)
advicen2 should be triggered at the call, and (2) advicen1 should
not be called as its type scope is less general than∀a.a → a. As a
result,n2 will be statically chained to the call toh. Apparently, this
syntactic approach to static weaving is adopted by Aspectual Caml
[16].

Unfortunately, this approach will cause incoherent behaviour
of h at run-time. Specifically, in the subsequent context, the main

80

expression(f 1) will actually pass integer argument1 to h. There,
advice fromn1 will be missed out since the weaver has mistakenly
committed its choice (of chaining onlyn2) in the application ofh.
The only coherent behaviour of a weaver in this case is to haveh
being advised by bothn1 andn2.

3.2 Higher-Order Functions

The presence of higher-order functions further complicates the
problem of static weaving because the physical separation of func-
tions and their calls make it impossible to statically allocate advices
to a call in a local context. Nevertheless, as we shall illustrate in
Section 4, it is still possible to translate the original program into
one in which while advice-wrapped functions are passed as argu-
ments dynamically, dispatching of advices has been totally com-
piled away.

Consider a variant of Example 2.

Example 5
n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg::[a]) = proceed (tail arg)
in let h x = x in

let f g y = g y in
(f h 1,f h [2.5])

In the main program, there are two indirect calls toh which,
due to higher-orderness, are not explicitly shown in the program
text. A correct static weaving entails making decision about the
appropriate advices for each call toh at each of the corresponding
application off.

3.3 Curried Pointcuts

Higher-orderness naturally brings forth the notion of partial appli-
cation of curried functions. In typical applications of AOP such as
tracing or profiling, it is important to be able to advise on not only
full applications of functions, but also partial applications of curried
functions to their arguments other than the first one. In our system,
we allow type-scoped advices with curried-function pointcuts, as
shown below:

Example 6
n1@advice around {f x} (arg::Int) = e1 in
n2@advice around {f} (arg::Int) = e2 in
n3@advice around {f x} (arg) = e3
in let f x y = x + 1 in

f 1 2

Note that because of well-typedness, we insist that the advice body
of n2, e2, to be of a function type· → ·, while the advice bodies
e1 ande3 are of non-function types.

There is not yet any unambiguous agreement on the operational
semantics of aspect-oriented programs for higher-order functions
and partial function applications, although one such recommen-
dation has been presented lately [18]. In this work, we adopt the
viewpoint that functions are identified by names at pointcuts, and
advices are triggered whenever their partial applications matches
that of the pointcuts [16]. This differs from the recommendation
by [18] which triggers advices based on matching of run-time clo-
sures.

Back to the above example, we stipulates that advicen2 will be
triggered at the application(f 1). Furthermore, advicen1 andn3
will be triggered when the application of(f 1) to 2 is encountered
at run-time.

4. Type Directed Weaving
Inspired by the concept ofpredicated type [19] used in type
classes, we introduceadvised type denoted asρ to capture func-
tion names and their types that may be required for advice resolu-
tion. For instance, in the main program given in Example 4, func-
tion f possesses the advised type∀a.(h : (a → a)).a → a, in
which (h : a → a) is called anadvice predicate. It signifies that
the execution of any application off may require advices ofh ap-
plied with a type which should be less general thana → a.

Note that advised types are used to indicate the existence of
someindeterminate advices. If a function contains only applica-
tions whose advices are completely determined, then the function
will not be associated with an advised type; it will be associated
with a normal (and possibly polymorphic) type. As an example,
the type of the advised functionh in Example 4 is∀a.a → a since
it does not contain any applications of advised functions in its def-
inition.

(AERASE) [[∀ā.(x : t).ρ]] = [[∀ā.ρ]] [[∀ā.(x : t).t′]] = ∀ā.t′

(GEN)
[t̄/ā]t1 ∼ t2

∀ā.t1 D ∀b̄.t2
(GENF) gen(Γ, σ) = ∀ā.σ whereā = fv(σ)\fv(Γ)

(CARD) |o1, ..., ok| = k (CARDp) |∀ā.p̄.t|pred = |p̄|

Figure 1. Auxiliary Definitions

Figure 1 defines a set of auxiliary functions/relations that assists
type inference. The lettert ranges over unification (type-)variables
which are distinct from quantified rigid type variablea. Rule(GEN)
defines a relationD between two type schemes using a unification
relation∼. Specifically,σ1 D σ2 if and only if σ1 is more general
than σ2, and can be instantiated to a more specific typeσ2 via
variable substitution. Rule(AERASE) defines a function[[·]] which
removes all advice predicates from an advised type scheme. We
also define, in rule(GENF), a generalization procedure which turns
a type into a type scheme by quantifying type variables that do not
appear free in the type environment. The(CARD) function, denoted
by |·|, returns the cardinality of a sequence of objects. The(CARDp)
function returns the number of advice predicates in a type scheme.

The main set of type inference rules, as described in Figure 2,
is an extension to the Hindley-Milner system. We introduce a judg-
mentΓ `Ã e : σ Ã e′ to denote that expressione has typeσ un-
der type environmentΓ and it is translated toe′. We writeΓ ` e : σ
to denote a Hindley-Milner inference of a program without advices
where we do not make use of rules(VAR-A), (LET-A), (ADV),
(ADV-AN), (PRED) and(REL). We assume the base program with-
out advice declaration is type correct; and the type information of
all the functions are stored in an initial environmentΓbase.

The type environmentΓ contains not only the usual type bind-
ings (of the formx : σ) but alsoadvice bindingsof the form
n :a σ ./ x. This states that an advice with namen is defined
onx. For the sake of convenience, we callσ the type of the advice
even though advices are not first class citizens in our system. This
typeσ is inferred from the body and the type scope of the advice
described in rules(ADV) and (ADV-AN); and it is used to guard
advice application in rule(VAR-A). We also introduceadvised-
function bindingsof the formx :∗ σ to bind advised functions to
their inferred types. Such a binding is introduced by rule(LET-A).

We store all advised functions names in a global storeA by
extracting them from all the pointcuts. In the presence of anany
advice, all named functions are included inA. Note that while
it is possible to present the typing rules without the translation

81

(VAR)
x : σ Ã e ∈ Γ

Γ `Ã x : σ Ã e
(VAR-A)

x :∗ σ′ ∈ Γ σ̄ 5 [[σ′]]
n̄ :a σ ./ (x ∨ any) ∈ Γ {ni | σi D [[σ′]]}

|ȳ| = |σ′|pred ȳ is fresh

Γ `Ã x : σ′ Ã λȳ.〈x ȳ , {ni}〉

(∀ELIM)
Γ `Ã e : ∀a.σ Ã e′

Γ `Ã e : [t/a]σ Ã e′
(∀INTRO)

Γ `Ã e : σ Ã e′ a 6∈ Γ

Γ `Ã e : ∀a.σ Ã e′

(ABS)
Γ, x : t1 Ã x `Ã e : t2 Ã e′

Γ `Ã λx.e : t1 → t2 Ã λx.e′
(LET)

Γ `Ã e1 : σ Ã e′1 f 6∈ A

Γ, f : σ Ã f `Ã e2 : t Ã e′2
Γ `Ã let f = e1 in e2 : t Ã let f = e′1 in e′2

(APP)
Γ `Ã e1 : t1 → t2 Ã e′1

Γ `Ã e2 : t1 Ã e′2
Γ `Ã e1 e2 : t2 Ã (e′1 e′2)

(LET-A)
Γ `Ã e1 : σ Ã e′1 f ∈ A

Γ, f :∗ σ Ã f `Ã e2 : t Ã e′2
Γ `Ã let f = e1 in e2 : t Ã let f = e′1 in e′2

(PRED)
Γ, x : t Ã xt `Ã e : ρ Ã e′t x ∈ A

Γ `Ã e : (x : t).ρ Ã λxt.e
′
t

(REL)
Γ `Ã e : (x : t).ρ Ã e′

Γ `Ã x : t Ã e′′ x ∈ A

Γ `Ã e : ρ Ã e′ e′′

(ADV)
Γbase, proceed : t1 → t, x : t1 ` ea : t Γbase ` fi : σ′

σ′ E t1 → t Γ, n :a σ ./ f̄ `Ã e : t′ Ã e′ σ = gen(Γ, t1 → t)

Γ `Ã n@advice around {f̄} (x) = eain e : t′ Ã let n = λx.ea in e′

(ADV-AN)
Γbase, proceed : tx → t, x : tx ` ea : t Γbase ` fi : ti → t′i

tx E ti (ti → t′i) ∼ (tx → t) Γ, n :a σ ./ f̄ `Ã e : t′ Ã e′ σ = gen(Γ, tx → t)

Γ `Ã n@advice around {f̄} (x :: tx) = eain e : t′ Ã let n = λx.ea in e′

Figure 2. Type-directed Weaving by translation

detail by simply deleting the ‘Ã e’ portion, it is not possible to
present the translation rules independently since typing controls the
translation.

There are two rules for variable lookups. Rule(VAR) is stan-
dard. In the case that the variablex is advised, rule(VAR-A) will
check all advices defined onx to see whether any of them has a
more specific type thanx’s. This is to ensure that chaining of ad-
vices is only done in a sufficiently specific context. We call this
checksufficiently specific context check, and it is expressed in the
rule by the guard(σ̄ 5 [[σ′]]). If the check fails (i.e., no advice has a
more specific type thanx), x will be chained with all those advices
defined on it, including those with pointcutany, having the same
or more general types thanx has. Note that the final translated ex-
pression isnormalizedby bringing all the advice abstractions ofx
outside〈〉. This is to ensure type compatibility between an advised
call and its advices. Section 4.3 gives more detailed discussion on
this issue.

On the other hand, if there exists an advice forx with more spe-
cific type, thenx ∈ A must hold, and rule(PRED) will be applied.
This rule introduces anadvice parameterto the program (through
the corresponding translation scheme). This advice parameter en-
ables concreteadvise-chained functionsto be passed in at a later
stage through application of rule(REL).

Rules(ABS),(LET), (APP), (∀INTRO) and (∀ELIM) are stan-
dard. Similar to(LET), rule (LET-A) binds advised functions.

Rules(PRED) and(REL) respectively introduces and eliminates
advice predicates just as(∀INTRO) and (∀ELIM) do to bound
type variables. Rule(PRED) adds an advice predicate to a type.
Correspondingly, its translation yields a lambda abstraction with
an advice parameter. On the other hand, rule(REL) removes an

advice predicate from a type. Its translation generates a function
application with an advised expression as argument.

There are two type-inference rules for handling advices. Rule
(ADV) handles non-type-scoped advices, whereas rule(ADV-AN)
handles type-scoped advices. In rule(ADV), we first infer the type
of ea under the initial type environment extended withproceed
and variablex. The use of judgment̀ here indicates that we
do not translate the body of advices. Thus, function calls in the
body of advices should not be advised. We will come back to the
issue of having advised function calls occurring within an advice’s
body in Section 5. After type inference of advice body, we ensure
that all functions in the pointcut have type schemes that are not
more general thant1 → t. Then, this advice is added to the
environment. It does not appear in the translated program, however,
as it is translated into a function awaiting for participation in advice
chaining.

In rule (ADV-AN), variablex can only be bound to a value of
typetx such thattx is no more general than the input type of those
functions in the pointcut. We also require the type of all functions
in the pointcut to be unifiable to the advice type, so that any bogus
advices which can never be safely triggered will be rejected by our
type system.

Note that we do not allow the annotated typetx to be more
general than the input type of any function in the pointcut, as this
will be contrary to the intention of type-scoped advices.

Finally, the rules for advices with pointcutany is not shown.
Nevetheless, it is essentially the same as(ADV) and (ADV-AN)
respectively except that we replace the type judgement of advised
functions byΓ ` any : ∀ab.a → b.

82

4.1 Challenges Revisited

We revisit the challenges that were laid down in Section 3, and ex-
amine how the type inference system defined in Figure 2 ensures
that proper advices are chained at each function calls, thus achiev-
ing type-directed weaving.

Let’s begin by examining how type-scoped advices defined in
Example 2 are being handled. The example is reproduced below:

n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg::[a]) = proceed (tail arg)
in let h x = x in

(h 1,h [2.5])

Sinceh is an advised function, its type is kept in the type envi-
ronment as an advised-function binding through application of rule
(LET-A). Consequently, at each application ofh, (VAR-A) is ap-
plied to chain advices toh. Only advices that ensure type oblivi-
ousness will be extracted for chaining, resulting in each call toh
having a distinct set of advices being triggered.

The example is translated to

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (tail arg)
in let h x = x in

(<h,{n1}> 1, <h,{n2}> [2.5])

In Example 3, the unsafe advicen1 is correctly rejected by our
type system (and no code is produced) since the inferred type of
the advice which isInt → Int fails to be at least as general ash’s
type∀a.a → a.

4.1.1 Coherent Advices

When type-scoped advices overlaps, our inference rules ensure that
advices triggered are coherent to the expected run-time behaviour.
Example 4 is reproduced below:

n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let f x = h x in
(f 1)

As mentioned in Section 3.1, in order to provide coherent advices,
the call(h x) should not be chained with concrete advices during
the examination off’s definition. This assurance is enforced by the
sufficiently specific context check.

Sincen1 is of typeInt → Int, which is more specific thanh’s
instantiated typea → a in the current context, rule(VAR-A) fails
to apply. Instead,f is inferred to have an advised type(h : a →
a).a → a through the application of rule(PRED). This means that
decision for chaining advices will be deferred, andf will carry an
advice parameter in the translated code.

In the main expression(f 1), f’s type is instantiated from
the polymorphic type toInt → Int. Rule (REL) is thus applied
to release the advices. In the premise of(REL), we try to derive
the judgmentΓ `Ã h : Int → Int Ã e′′. In this case, the
guard in rule(VAR-A) is satisfied andh is chained ton1 andn2.
Consequently, the chained expression is passed as an argument to
f through the rule(REL). The translated code is displayed below
(detailed typing/translation derivation of this program is shown in
Appendix A):

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (arg)
in let h x = x in

let f dh x = dh x in
(f <h,{n1,n2}> 1)

This approach of avoiding early commitment to specific advices
can be too conservative, and may fail to commit to any concrete
advices when necessary. Consider a slight variant of the above
example,

n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let f x = h x in
(f undefined)

Here, we conveniently use the Haskell’s unique expression
undefined to represent a value of typea for the purpose of demon-
stration.2 Our type-directed weaving will produce the following
translated code:

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (arg)
in let h x = x in

let f dh x = dh x in
\dh -> f dh undefined

Note that in the main expression of the translated code,
(\dh -> f dh undefined), advice application is still being ab-
stracted even though we ought to commit ton2 here as there will
not be any further instantiation.

To circumvent this problem, we propose that during the transla-
tion of the main expression, we employ a variant of rule(VAR-A)
which drops the sufficiently specific context check (i.e., the guard
σ̄ 5 [[σ′]]) from the premise. As a result, we obtain the following
translated code:

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (arg)
in let h x = x in

let f dh x = dh x in
f <h,{n2}> undefined

Note that only advicen2 is used in the translated main expres-
sion, as that is the only applicable advice in the current type context.

4.1.2 Higher-Order Functions

We handle higher-order named advised functions by replacing them
with correspondingadvise-chained functions. This is warranted
when the function occurs in a sufficiently specific type context, and
it is described by the rule(VAR-A). Thus, in the following code:

n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg::[a]) = proceed (tail arg)
in let h x = x in

let f g y = g y in
(f h 1,f h [2.5])

Functionh appears in two call contexts, one with integer input and
the other with float-list input. Application of type-directed weaving
rules, and particularly the rule(VAR-A) to these occurrences ofh,
results in the generation of the following code:

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (tail arg)
in let h x = x in

let f g y = g y in
(f <h,{n1}> 1,f <h,{n2}> [2.5])

2 The call (f undefined) will execute properly under call-by-need se-
mantics. However, it should be understood that this does not restrict our
proposed soluton to only handle programs with such semantics.

83

4.1.3 Curried Pointcuts

In [16], Masuharaet al.proposed a technique to simplify a curried
pointcut by iteratively removing the last parameter in it. Unfortu-
nately, their weaving strategy does not support type-scoped curried
pointcuts.

In our approach, we also simplify curried pointcuts into uncur-
ried pointcuts, but we maintain the type constraints of type-scoped
curried advices in the environment. Furthermore, the special func-
tion proceed is redefined locally to effect the currying of func-
tion arguments. Because function calls are not handled syntacti-
cally (i.e., they are not handled according to their textual appear-
ances), our approach can deal with type-scoped curried pointcuts
straightforwardly: What we need is to introduce a slight variant of
the(ADV-AN) rule. For the sake of simplicity, this variant rule only
deals with curried functions with two parameters. It can be straight-
forwardly extended to handle curried functions with arbitrary num-
ber of parameters.

(ADV-C)
Γbase, proceed : t → ty → ta, x : t ` ea : ta

Γbase ` fi : t1 → t2 → t3 (t1 → t2 → t3) ∼ (t → ty → ta)

ty E t2 Γ, n :a σ ./ f̄ `Ã e : t′ Ã e′

σ = gen(Γ, t → ty → ta)

Γ `Ã n@advice around {f̄ x} (y :: ty) = eain e : t′

Ã let n = λx.λy.let proceed = proceed x in ea in e′

Given the following code example:

n1@advice around {f x} (arg::Int) = e1 in
n2@advice around {f} (arg::Int) = e2 in
n3@advice around {f x} (arg) = e3
in let f x y = x + 1 in

f 1 2

Using this rule, our type-directed translation will produce the fol-
lowing code:

let n1 = \x.\arg -> let proceed = proceed x
in e1

in let n2 = \arg -> e2
in let n3 = \x.\arg -> let proceed = proceed x

in e3
in let f x y = x + 1 in

<f,{n1,n2,n3}> 1 2

Note thate2 is expected to be a function type as ensured by the
typing rules. Thus, the types of the three functionsn1, n2 andn3
are unifiable withf’s.

4.2 Advising Anonymous Functions

So far, advices are only chained with named functions at the time
of name lookup, as described in rule(VAR-A). Rule (ANY), on
the other hand, deals with anonymous functions and partial appli-
cations. This rule looks for non-variable expressions of function
types and chains applicableany advice with them.

(ANY)
n̄ :a t ./ any ∈ Γ {ni | ti D t} Γ `Ã e : t Ã e′

e is not var t ∼ t1 → t2 t1, t2 fresh

Γ `Ã e : t Ã 〈e′ , {ni}〉
Different from the rule (VAR-A), (ANY) does not check

whether the current context is sufficiently specific because an un-
named expression cannot be subsequently instantiated.

4.3 Operational Semantics of Chaining

In the translated program, we chain all applicable advices with an
advised function using a special syntax〈 , {. . .}〉. In the same
spirit as function composition, this operator sequentially chains a
sequence of functions that have unifiable types; and the advice-
chained function produced can be given the same type as the orig-
inal function’s. However, the chaining participants may not always
have unifiable types due to the abstraction of advice parameters.
A normalization step is required to reconcile the compatibility of
types. Consider this example:

n1@advice around {h} (arg) = e1 in
n2@advice around {f} (arg) = e2 in
let h x = x in
let f x = h x in
f 1

The translation chainsf with n2 whose types are not unifiable
since the translatedf takes one extra advice parameter.

n1 = \arg -> e1 in
n2 = \arg -> e2 in
let h x = x in
let f dh x = dh x in
<f,{n2}> <h,{n1}> 1

The normalization in Rule(VAR-A) moves advice parameters
out of〈〉. As a result, the main expression becomes(\y.<f y,{n2}>)
<h,{n1}> 1. The chaining participantsf y andn2 now have unifi-
able types.

We briefly describe the operational semantics of the translated
language. In addition to the standard grammar of the base language,
we introduce chaining as an expression and chaining of values as a
value.

v ::= ... | 〈v, {v̄}〉
e ::= ... | 〈e, {ē}〉

The set ofβ reductions are defined as follow:

(λx.e v) 7−→β (e[v/x])
(let x = v in e) 7−→β (e[v/x])
(〈v, {}〉 v′) 7−→β (v v′)
(〈v, {v1, v̄}〉 v′) 7−→β (v1[〈v, {v̄}〉/proceed] v′)

These rules specify a call-by-value evaluation strategy. This
choice of evaluation strategy is orthogonal to the language design.
The first two rules are standardβ-rules for lambda calculus. In the
third rule, when the advice sequence is empty, the chained value
〈v, {}〉 evaluates to the original functionv. Otherwise, in the fourth
rule, the chained value〈v, {v1, v̄}〉 replaces theproceed in the
body of the first advicev1 by a chained value which chains the
functionv with the remainder of the advice sequence.

4.4 Post-Translation of Advice Body

Our translation changes definitions of those functions having ad-
vised types by lambda-abstracting them with additional advice pa-
rameters. When these functions are called inside the body of some
advices, the advices become ill typed since the calls still refer to
the old function definitions. For this reason, we use the following
post translation to guarantee type preservation.

f : ∀ā.(x : p).t ÃPT f x̄

Note that in the above typing off , we do not distinguish the
: and :∗ binding. Essentially, this post translation goes through
typed advice bodies and replaces each function with advised type
by an application of that function to the functions associated with
its advice predicates. Contrary to the main translation defined in
Figure 2, functions produced here are not chained with advices as
we do not allow advice body to be advised.

84

4.5 Correctness of Translation

One of the desirable properties of our type-directed weaving algo-
rithm is its reliance on a type-inference system that is a conserva-
tive extension of the Hindley-Milner Type System. (Note that the
notation[[·]] is defined in Figure 1.)

Theorem 1 (Conservative Extension)Given a programP con-
sisting of a set of advices and a closed base programe. If

`Ã P : σ Ã P ′,

then

` e : [[σ]].

Our main theorem is to ensure that our translated program pre-
serves the type of the original program. When the original program
is of an advised type, the translated scheme will concretize the ad-
vice predicates into advice parameters, which constitute part of the
translated program. To this end, we define a functionη that trans-
lates advised type to normal polymorphic type.

η(∀ā.ρ) = ∀ā.η(ρ)
η((x : t).ρ) = t → η(ρ)

η(t) = t

This main theorem ensures that the type-directed weaving is type-
safe.

Theorem 2 (Type Preservation)Given a programP consisting of
a set of advices and a closed base program. If

`Ã P : σ Ã P ′,

andP ′ ÃPT P ′′ during post-translation, then

` P ′′ : η(σ).

5. Handling Advices within Advice
In many AOP languages, an advice is just like a function, calls
to other functions may occur in its body, including functions that
are advised. We call thisnested advice. Admittedly, this might be
a powerful tool for meta or reflective programming, yet we are
conservative about it, for it is very likely to create more confusion
than it is worth. Consider the following example code:

n@advice around {f} (arg) = f arg

A program having such an advice will go into infinite loop when
f is called. For this reason, we do not include nested advices in
our main translation rules. Nevertheless, we describe here a simple
extension to our translation scheme to deal with nested advices,
through the translation of the following example:

Example 7
n1@advice around {f} (arg::Int) = e1 in
n2@advice around {f} (arg) = e2 in
n3@advice around {g} (arg) = f arg
in let g x = x in

let f x = x in
let h x = g x in
h 2

Here, advicen3 callsf which is in turn being advised. The goal of
our translation is to chain advices which are applicable to the call
of f inside an advice.

Now we make an attempt to translate this program. The call of
g in the definition ofh is of type∀a.a → a. According to our
(VAR-A) rule that performs sufficiently specific context check,n3,

the only advice defined ong, is no more specific than∀a.a → a.
Thus,n3 is chained to the application ofg.

If there were nof-call in the body ofn3, this choice would be
correct. Even for the main expression (h 2) where the call tog is
restricted toInt → Int, n3 will still be the only applicable advice.

However, the nested nature ofn3 changes the story. At the time
of chainingn3 to g mentioned above, we must also advise the
call to f in n3’s body. But the existing context∀a.a → a is not
sufficiently specific forf sincen1’s type is more specific. Coherent
advice cannot be enforced here.

To circumvent this problem, we suggest placing a stricter suf-
ficiently specific context check in rule(VAR-A). This new check
does not only check advices defined on the current looked up func-
tion, but also traces all the functions which are called by those
advices and checks the current context against advices defined on
these functions.

Using this stricter rule, we check not only the call context ofg
against the type of advicen3, but also those ofn1 andn2. This is
because the call tof in n3 might be advised byn1 and/orn2. Thus,
in the definition ofh where the call context forg is ∀a.a → a,
we know that the call tof in n3 is of type∀a.a → a. The check
fails here becausen1 has a more specific type. Consequently, as
per normal, we resort to applying rule(PRED) and abstracting
the advice to this call. The actual chaining is only performed in
the main expression where the contextInt → Int is sufficiently
specific for all the three advices.

The translated code is

let n1 = \arg -> e1 in
let n2 = \arg -> e2 in
let n3 = \arg -> f arg in
let g x = x in
let f x = x in
let h dg x = dg x in
h <g,{(let n3 = \arg -> <f,{n1,n2}> arg in n3)}> 2

In this program, the call tog is advised byn3 which is in turn
advised byn1 andn2. In the case whenn1 and/orn2 again call
some functions with advised types, these functions also need to be
advised. The sufficiently specific context check introduced above
guarantees the success of this releasing of advices.

6. Related Works
Since the introduction of the aspect-oriented paradigm [13], re-
searchers have been developing semantic foundations for it. Most
of the works in this area were done in object-oriented context in
which type inference, higher-order functions and parametric poly-
morphism are of little concern. Instead, they have been focusing
on modelling the nature of pointcuts and the effects of execut-
ing the associated advices [4, 21, 9]. As a result, the semantics
of aspect weaving is conveniently expressed through some mech-
anisms of dynamic semantics, and there has been either no defini-
tion of static semantics or not a concern for static semantics. Two
recent proposals [16, 5] made pioneering attempts in incorporating
aspect-oriented features into strongly typed functional languages.
Although both emphasize the polymorphic aspect of pointcuts and
advices, none of them is able to offer a complete solution to all
those concerns.

Based on a polymorphic calculus with first-class join points,
PolyAML [5] allows programmers to define polymorphic advices
using type-annotated pointcuts. They designed a conservative ex-
tension to the Hindley-Milner type inference algorithm with a form
of local type inference based on the required annotation of point-
cuts. To support non-parametric polymorphic advice, they also in-
troduced case-advices which are subsumed by our type-scoped ad-

85

vices. Weaving was done by a translation into the typed core calcu-
lus and dynamic type checking is employed to decide on the trig-
gering of case-advices. PolyAML is a first-order language that does
not supportaround advice, so it does not address many of the is-
sues we discussed in this paper.

Aspectual Caml [16], on the other hand, does not require an-
notations on pointcuts. It gives pointcuts the most general types
available in context and ensures that the types of advices hinged
on the pointcut are consistent with the pointcut’s type. Similar to
PolyAML, it also allows a restricted form of type-scoped advices.
Yet, unlike our approach, the types of the functions specified in a
pointcut are not checked against the pointcut’s type during type in-
ference. Type safety of advice application is considered later in the
weaving process. After type inference, their weaver goes through
all type-annotated functions to insert advice calls. For each expres-
sion, it looks for advice definitions which have pointcuts that match
this expression. If the type of the pointcut is more general than
the type of the matched expression, the expression will be replaced
by an application to the advice function. This syntactic approach
makes it easy to advise anonymous functions. However, it relies on
a very strong assumption that there will not be any renaming or
even nested polymorphic calls in the program. This is particularly
impractical in a higher-order language.

In [16], Masuharaet al. propose a convenient way of simplify-
ing curried pointcuts into non-curried ones. We adopt this technique
but in a more expressive manner in our translation, as described in
Section 4.1.3.

Our idea of advice chaining is partly inspired by the chain
expression in [4] and the wrapping of advices in [21]. On the other
hand, these techniques are described in dynamic weaving setting,
which are vastly different from our approach.

Another closely related work is the dictionary translation of
Haskell type classes [19]. Our notion of advised types and type-
directed translation are directly inspired by it. The main technical
difference here is the adaptation of the mechanism to a new context
in a coherent way. In type classes, higher-order functions are not
a concern and overlapping instances are precluded, whereas in
aspect-oriented programming, in which advices with overlapping
pointcuts are predominant, higher-order functions complicate the
translation. Therefore, we must take substantially different typing
and translation approaches to handle overlapping advices, with the
objective of ensuring coherent translation in the presence of higher-
order functions.

7. Conclusion
We propose a novel technique for type inference of aspect-oriented
functional programs, featuring higher-order functions, curried
pointcuts and overlapping type-scoped advices. Our type inference
system also supports static weaving of advices into programs. This
is accomplished by a source-level program translation.

We believe that aspect-oriented programming is a promising
paradigm for constructing functional programs, because it has the
potential to turn some of the program crafting techniques into
systematic program development. For example, type-scoped ad-
vices give a new perspective to the existing work in modifying
part of a function’s definition based on types. Specifically, in [14,
15], the authors describe a Haskell system support to enable type-
preserving change to function definitions. The problem handled
there can be conveniently framed in the aspect-oriented perspec-
tive, where such changes to a function can be defined as a typed-
scoped advice to the function. Looking forward, we envisage the
use of aspects, through the help of type-scoped advices, to model
domain-specific embedded languages [8, 6, 11, 1].

On the technical perspective, implementation of the type-
inference system is current in progress. In addition, we would like

to extend the core language described here to admit other forms of
language constructs. We do not see any technical difficulty in han-
dling aspects with more complicated pointcut designators. On the
other hand, we believe that the combination of overloaded func-
tions (a.k.a., type classes) and aspects with type-scoped advices
can be a powerful tool for program construction, even though it
may overwhelm programmers with too many subtle type issues.

Acknowledgments
We would like to thank the anonymous referees for their insightful
comments. We also thank the members of the PLS-II lab for their
valuable comments. This research is partially supported by an NUS
research grant R-252-000-138-112. The first author would like to
specially thank Dr. Martin Sulzmann for bringing him to the world
of type inference and translation.

References
[1] S. Anand, W.-N. Chin, and S.-C. Khoo. Charting patterns on price

history. In ICFP ’01: Proceedings of the sixth ACM SIGPLAN
international conference on Functional programming, pages 134–
145, New York, NY, USA, 2001. ACM Press.

[2] Aspectwerkz project. http://aspectwerkz.codehaus.org.

[3] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely.µabc: A minimal
aspect calculus. InProc. Concur. Springer-Verlag, 2004.

[4] C. Clifton and G. Leavens. Minimao: Investigating the semantics
of proceed. InProceedings of the Foundations of Aspect-Oriented
Languages, 2005.

[5] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. Polyaml: a
polymorphic aspect-oriented functional programmming language. In
Proc. of ICFP’05. ACM Press, September 2005.

[6] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), volume 32(8), pages 263–273,
1997.

[7] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In R. E. Filman, T. Elrad, S. Clarke,
and M. Aksit, editors,Aspect-Oriented Software Development, pages
21–35. Addison-Wesley, Boston, 2005.

[8] P. Hudak. Building domain-specific embedded languages.ACM
Comput. Surv., 28(4es):196, 1996.

[9] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-
oriented programs. InProceedings of the 2003 European Conference
on Object Oriented Programming, pages 54–73. Springer, 2003.

[10] Jboss aop project. http://www.jboss.org/products/aop.

[11] S. Peyton Jones, J. Eber, and J. Seward. Composing contracts: an
adventure in financial engineering (functional pearl). InICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, pages 280–292, New York, NY, USA,
2000. ACM Press.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. InECOOP ’01: Proceedings
of the 15th European Conference on Object-Oriented Programming,
pages 327–353, London, UK, 2001. Springer-Verlag.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors,Proceedings European
Conference on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[14] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. InTLDI ’03: Proceedings
of the 2003 ACM SIGPLAN international workshop on Types in
languages design and implementation, pages 26–37, New York, NY,
USA, 2003. ACM Press.

86

[15] R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. InICFP ’04: Proceedings of the
ninth ACM SIGPLAN international conference on Functional
programming, pages 244–255, New York, NY, USA, 2004. ACM
Press.

[16] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual caml:
an aspect-oriented functional language. InProc. of ICFP’05. ACM
Press, September 2005.

[17] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. Aspectc++: an
aspect-oriented extension to the c++ programming language. In
CRPITS ’02: Proceedings of the Fortieth International Confernece
on Tools Pacific, pages 53–60, Darlinghurst, Australia, Australia,
2002. Australian Computer Society, Inc.

[18] D. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order
languages. InProceedings of the 2nd International Conference on
Aspect-Oriented Software Development, 2003.

[19] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. InConference Record of the 16th Annual ACM Symposium on
Principles of Programming Languages, pages 60–76. ACM, January
1989.

[20] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
ICFP ’03: Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, pages 127–139, New York,
NY, USA, 2003. ACM Press.

[21] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming.TOPLAS,
26(5):890–910, September 2004.

A. A Sample Derivation
In this section, we present the typing/translation derivation of the
program in Example 4. The code is reproduced below.

n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let f x = h x in
(f 1)

We useI as a short hand forInt to save space. Some obvious de-
tails are also omitted.

The derivation of the definition off is:

Γ = {h :∗ ∀a.a → a Ã h, n2 :a ∀a.a → a ./ h,
n1 :a I → I ./ h}

h : t → t Ã dh ∈ Γ2
(VAR)

Γ2 `Ã h : t → t Ã dh

x : t Ã x ∈ Γ2
(VAR)

Γ2 `Ã x : t Ã x
(APP)

Γ2 = Γ1, x : t Ã x `Ã (h x) : t Ã (dh x)
(ABS)

Γ1 = Γ, h : t → t Ã dh `Ã λx.(h x) : t → t Ã λx.(dh x)
(PRED)

Γ `Ã λx.(h x) : (h : t → t).t → t Ã λdh.λx.(dh x)

The derivation of the main expression is:

Γ3 = {h :∗ ∀a.a → a Ã h, n2 :a ∀a.a → a ./ h,
n1 :a I → I ./ h, f : ∀a.(h : a → a).a → a Ã f}

f : ∀a.(h : a → a).a → a Ã f ∈ Γ3
(VAR)

Γ3 `Ã f : I → I Ã f
a©

(REL)
Γ3 `Ã f : (h : I → I).I Ã (f 〈h , {n1, n2}〉)

...

(APP)
Γ3 `Ã (f 1) : I Ã (f 〈h , {n1, n2}〉 1)

a© =
h :∗ ∀a.a → a Ã h ∈ Γ3 ...

(VAR-A)
Γ3 `Ã h : I → I Ã 〈h , {n1, n2}〉

The translated result is displayed below :

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed (arg)
in let h x = x in

let f dh x = dh x in
(f <h,{n1,n2}> 1)

87

