Type-Directed Weaving of Aspects for Higher-order Functional

Languages
Meng Wang Kung Chen Siau-Cheng Khoo
National University of Singapore, National Chengchi University, Taiwan National University of Singapore,
Singapore chenk@cs.nccu.edu.tw Singapore
wangmeng®@comp.nus.edu.sg khoosc@comp.nus.edu.sg
Abstract the aspects. This is callageavingin AOP. Weaving results in the

Aspect-oriented programming (AOP) has been shown to be a useful2€haviour of those functional modules impacted by aspects being
model for software development. Special care must be taken Whenmc’g'_fIecj accordingly. AOP has b osely i ated mainl
we try to adapt AOP to strongly typed functional languages which . >INCe Its inception, AOP has been closely investigated mainly
come with features like a type inference mechanism, polymorphic "N the contexts of object-oriented programming languages such as
types, higher-order functions amgpe-scopegbointcuts. Our main Java [12, 10, 2] and C++ [17]. Recently, rgsea_rchers in funcponal
contribution lies in a seamless integration of these two paradigms l2nguages have also started to study various issues of adding as-
through a static weaving process which deals ittundadvices pects to functional Ianguages, ranging from foundational calculi
with type-scoped pointcuts in the presence of higher-order func- [%. 20] to pg)tcl)txpﬁjmglemdeng\atlons [5|' é6]. ':'wloeno:‘able worcli<s
tions. We give a source-level type inference system for a higher- ! this area, Poly [5] and Aspectual Caml [16], have made
order, polymorphic language coupled with type-scoped pointcuts. Many significant results on supporting polymorphic pointcuts and
The type system ensures that base programs are oblivious to thedVices in strongly typed functional languages such as ML. Each
type of around advices. We present a type-directed translation Of these works has its own approach to preserving type safety under
scheme which resolves all advice applications at static time. The thevl\—/|;]r_1|dka)]/-M|Iner itylﬁ type;)system. iluminating for understand
translation removes advice declarations from source programs and. le these works nave been very liuminating for understana-

produces translated code which is typable in the Hindley-Milner Ing the.problems.involved, thgy have not fully explored some of the
system. subtle issues which are crucial for a full-fledged support of aspects

in higher-order functional languages. For examples, PolyAML does
Categories and Subject DescriptorsD.3.3 [Language Constructs not supportaround advicesand calls for dynamic type checking
and Featurep Polymorphism,functions,Control structures; D.3.2 to handle matching of type-scoped pointcuts. The syntax-directed
[Language Classificatiofis Applicative (functional) languages; weaving strategy of Aspectual Caml cannot handle higher-order
F.3.2 [Semantics of Programming Languape&3perational seman- functions properly. Essentially, strong-typing property of func-
tics tional languages, in the presence of parametric polymorphism and
higher-order functions, may be compromised when aspect weaving
may be constrained by types. Indeed, it is a challenging task to
Keywords Aspect Oriented, Higher-Order, Type Inference, Weav- Properly reconcile all these features under a coherent framework.
ing, Functional Language To demonstrate the complexity of the matter, consider the fol-
lowing aspect-oriented functional program:

General Terms Languages,Theory

1. Introduction

Aspect-oriented programming (AOP) aims at modularizing con-
cerns such as profiling and security that crosscut the components o
a software system [13]. In AOP, a program consists of many func-
tional modules and somespectshat encapsulate the crosscutting
concerns. An aspect provides two specificationgiofntcut com-
prising a set of functions, designate when and where to crosscutn4@advice around {f} (arg) = el in
other modules; and aadvice which is a piece of code, that will n50advice around an (arg' Int) = €2 in
be executed when a pointcut is reached. The complete program be'ne@advice around {fyx} (i' . Tat) = e3
haviour is derived by some novel ways of composing functional g

. e in let h x = x in
modules and aspects according to the specifications given within let fgy=g (by in

(fhi, £fh [2.5], h)

Example 1
fnl@advice around {h} (arg::Int)
= proceed (arg+l) in
n2@advice around {h} (arg::[al)
= proceed (tail arg) in
n3Qadvice around {h} arg = proceed arg in

This piece of code defines six advices named fiomto n6; it
Permission to make digital or hard copies of all or part of this work for personal or glso defines a main program consisting of declarationgs ahd

classroom use is granted without fee provided that copies are not made or distributedh and a main expression returning a triplet The first two advices
for profit or commercial advantage and that copies bear this notice and the full citation . !

on the first page. To copy otherwise, to republish, to post on servers or to redistribute ni andn2, deS|gnate calls ta as pointcuts. They differ in the type

to lists, requires prior specific permission and/or a fee. constraints, which are callégpe scopeof their first argument1
PEPM 06 January 9-10, Charleston, South Carolina, USA. is only triggered whem is called with an/nt¢ argument, whereas
Copyright(©) 2006 ACM 1-59593-196-1/06/0001. ... $5.00. n2 is triggered whem is called with a list as argument. Due to the

78

differing type scopes, at most one of these advices will be triggered
at a call toh. However, the only physical application afin the
main program appears in the RHS ©6 definition, and under a
polymorphic type context. It will be an error to allow either or

n2 to intercept the call ta at this point. Instead, the actual calling
context ofh will only be revealed in the first two components of the
triplet expression, where also appears as higher-order argument
of the two calls taf. In order to correctly chain the advieg to the
occurrence oh in ((f h) 1), andn2tothatin((f h) [2.5]),

argument, the translatetds advised byr4 andn6?, and is supplied

with the translated to instantiate its advice parameter. Then, the
partially appliedf is advised byn5 before applying to thent
argument. Note that in this case, both the indirect and direct calls
of h trigger the same set of advices. But this may not be the case in
general. The second component of the triplet, in contrast, is woven
in some other set of advices, as the the actual argument feéd to

is of type[Float], and the curried pointcut does not match. Note
that here and throughout the paper, we assume advices are triggered

we need a type inference system that deals with advice declarationsaccording to the textual order in which they are declared.

in the presence of higher-order functions.

The third advicen3 also designates calls tobut without any
type constraint orh’s argument. Certainly, such advice should
crosscut both the indirect calls &f via the two invocations of
£; in addition, it should also crosscut any future call to the third
component of the triplet, the isolatadunction. This demonstrates
the intricacy of defining weaving decision for a variable, such.as

The fourth advicen4 designates calls té with no specified
type scope as its pointcut. The fifth one uses amny pointcut
which suggests that it be triggered at any function calls — including
partial applications — witint argument. The last one has a curried
pointcuts. It matches the second partial applicationfdo an
argument of typelnt. All these variants of pointcuts have to be
managed systematically for advices to be triggered at appropriate
points.

In this paper, we present a novel approach to type-safe weav-
ing of aspects for higher-order functional languages. Inspired by
the predicated types of type classes [19], we introduce the notion
of advised typeo guard against unsafe weaving. The central idea
is to make full advantage of type information, both from the base
program and the type-scoped pointcuts, to guide the weaving of
aspects. Specifically, we give a source-level type inference system
for a higher-order, polymorphic language coupled with type-scoped
pointcuts. A type-directed translation scheme is then devised to re-
solve all advice applications, thus eliminating any future need for

Our approach mimics the translation scheme used in handling
type classes [19]. However, there are significant differences be-
tween the two. This is especially noticeably in the handling of over-
lapping type-scoped advices to ensure a coherent translation. We
shall explain this in Section 4.

The main contributions of this paper are as follows.

e We formally specify a type inference system for a strongly-
typed aspect-oriented functional language featuring polymor-
phism, higher-order functions aratound advices with type-
scoped pointcuts. Our type system ensures that well-typed pro-
grams arebliviousto the types of their around advices.

e \We propose a novel technique fiype-directed weavingf as-
pects. This is accomplished by means of a type-directed trans-
lation scheme which implements weaving statically. The trans-
lated program is typeable in the Hindley-Milner system. The
technique performs weaving in the presence of higher-order
functions and type-scoped curried pointcuts; it also ensures co-
herent advices are given to functions in the presence of overlap-
ping type-scoped advices.

The outline of the paper is as follows: Section 2 acquaints
the reader with the essence of aspect-oriented programs, and sets
the background for our discussion. Section 3 outlines individual
challenges faced in static weaving of strongly-typed higher-order
polymorphic functional language. Our main technical contribution

dynamic type checking. The translation removes advice declara-is jescribed in Section 4, and its further extension is discussed in

tions from source programs and produces translated codes whichg

are typable in Hindley-Milner system. We show that our type in-
ference system is a conservative extension of the Hindley-Milner
system, and the translated program remains well-typed.

For the above example code, our translation produces the fol-
lowing code:

let nl = \arg -> proceed (arg+l) in

let n2 = \arg -> proceed (tail arg) in

let n3 = \arg -> proceed arg in

let n4 = \arg -> el in

let n5 = \arg -> e2 in

let n6 = \x.\arg -> let proceed = proceed x in e3 in
let h x = x in

let f dh gy =g (dh y) in

(<<f,{n4,n6}> <h,{n1,n3,n5}> <h,{n1,n3,n5}>,{n5}> 1,
<f,{n4}> <h,{n2,n3}> <h,{n2,n3}> [2.5],

<h,{n3}>)

Note that all advice declarations are translated into functions and
are woven in. We use a combinatér ,{...}) to chain advices
and advised functions. For instancg, ,{n4,n6}) denotes the
chaining of advicea4 andn6 to advised functiod. It is important

to note that the direct call toin £’s definition above is not advised.
Instead, it is abstracted into an advice parameter waiting to be

ection 5. We discuss related works in Section 6 before concluding
in Section 7.

2. Preliminaries

An aspect-oriented program is generally divided into two parts: A
baseprogram and a number akpectsThe aspects can be viewed

as observers of the base program, taking actions whenever certain
events occur in the latter’'s execution. Actions taken by aspects are
calledcrosscutting A piece of aspect code that describes an inter-
vening action is called aadvice In functional language setting,
aspect code will usually be treated like global declarations in a pro-
gram. We shall use the following syntax and conventions for de-
scribing our work:

Expressions e = clz|Aveleel|letf = eine
n@advice around pc = eine

Arguments arg == x|zt

Pointcuts pe = {fz} (arg) | any (arg)

Types t = al|t—t|Tt

Type Schemes o = Va.p

Advised Types p = (z:t).p]t

We writeo as an abbreviation for a sequence of objegts.., o,
(e.g. expressions, types etc). The tdia]o’ denotes simultane-

instantiated. The purpose of this postponed decision is to ensuregys substitution ob; for variablesa; in o/, fori = 1,...,n.

a coherent weavingln the main program, those calls foand

h in the first two components of the triplet will trigger different
sets of advices, as determined by their argument types. In the first
component, before receiving the translated counterpartastfirst

79

We writet; ~ t» to specify equality between two typesandt,

1 Astute readers may notice thsa is chained withf instead of the partial
application of it. The reason for this is explained in 4.1.3.

(a.k.a unification) to avoid confusing with assignmentWe write
fv(o) to denote the free variables in some object
For simplicity, we leave out type annotations, recursive func-

tion definitions and patterns but may make use of them in exam-

ples. We assume thatrefers to constructors of user-defined data

Bothn1 andn2 are examples of type-scoped advices. Different ad-
vices will be required for different applications of the function

As such, it is no longer sufficient to determine the applicability of
an advice by matching the function names in the pointcut alone. In-
stead, type inference is required to decide on the choice of advices.

typesT a. Basic types such as booleans, integers, tuples and listsIn the above casé,should be advised hy1, but notn2, during the
are predefined and their constructors are recorded in some initialapplication of(h 1). Similarly, it should be advised 2, but not

environmentl; ;.

In our language, an aspect is an advice declaration which in-

cludes a piece of advice and its targetntcut. Pointcuts are rep-
resented by{ f z} (arg). An advice will be triggered when a call

is made to any function from the set of pointcuts associated with

n1, during the(h [2.5]) application.

Thus, the introduction of type-scoped advices complicates static
weaving of aspects, particularly in the case of advising polymor-
phic functions.

Another important property of aspect-oriented languages which

this advice.. We say a function is being advised when it appears in may be impacted by type-scoped advicesoldiviousness[7].
the pointcut of an aspect. The syntax here allows curried pointcuts Oblivious means programmers can add advices to a program “after-

which only match partially applied functions to their arguments
The argument variablerg will be bound to the actual argument of
the function call and it may contain an annotated type. Only func-

tion calls with arguments of types not more general than the type

the-fact” in the typical aspect-oriented style. In the context of typ-
ing, the type inference of advices should not affect the typing of
the original program. Consider this example.

scope is matched by the pointcut. When the type scope is absentExample 3

all calls to the functions from the set is matched. This design is
very different from the polymorphic approach in [16] where type
inference result of advices will affect the matching of the targeted
pointcuts.
Advice is a function-like expression that execubesdore after,

or arounda pointcut. Note thaaroundadvice is executed in place
of the indicated pointcut, allowing a function to be replaced. A
special functionproceed may be called inside the body of an

nl@advice around {h} (arg) = proceed (arg+l) in
n2@advice around {h} (arg::Int) = proceed (arg +1)
in let h x = x in

(h True)

The advicen1 is potentially unsafe. Note that the definition
of h is of typeVa.a — a. In the base program without advices,
it is called with argumentTrue. This application, if advised by

around advice. It is bound to a function that represents the rest ofn1, will result in erroneous computation @frue + 1. A correct
the computation at the advised pointcut. It is easy to see that bothtype inference of AOP should not restrict the typehdb suit the

beforeadvice andafter advice can be simulated youndadvice
that always proceeds. Therefore, in this paper, anbyundadvice

is considered. Furthermore, sinceanundadvice may replace its
advised function, its type must be unifiable with the type of the

advices. Instead, advicel should be rightfully rejected. On the
contrary, the second adviee is safe since it is only triggered by
calls with Int arguments.

advised function. This is guaranteed by our type inference system.3-1 Coherent Advices

Hence, in this sense, programs in our systemadn@ious([7] to

Whereas advising on polymorphic functions can be intricate, the

the types of their around advices and type safety is preserved forpresence ofpolymorphic type-scopeddvices brings forth even

advice execution. To capture all functions in a pointcut, wearse
as a call to any function.
The intervening action of aspects is achieved bweaving

process. A weaver either dynamically or statically searches for

matching pointcut of a function call; arghainsthe function with

greater challenge to the determination of a static weaving. This is
because different advices to a pointcut may hawerlappingtype
scopes.

Consider the following advices:

corresponding advices. In the syntax, we also introduce the notion Example 4

of advised typedo facilitate our translation. It will be formally
introduced in Section 4. Reader can safely ignore it for the time
being.

3. Challenges in Static Weaving

nl@advice
n2@advice

around {h} (arg::Int) = proceed (arg+l) in
around {h} (arg) = proceed (arg) in

Here,n2 is not constrained by type, and we can infer that it has
the typeVa.a — a. Consequently, the type scopesmf andn2
overlap in that the former is subsumed by the latter. In general, it

In a strongly-typed language, it is always desirable to be able to js not possible to determine locally if a particular advice should be

perform type erasure to programs without incurring additional run-

time error during program execution. From the aspect-oriented per-

spective, it is therefore imperative to question if pointcuts con-
strained by types will affect the strong-typing property of the lan-
guage.

Specifically, we allow type constraints to be imposed on the ar-
guments of those functions occurring in pointcuts. We call such
pointcutstype-scoped pointcut@\dvices with type-scoped point-
cuts are henceforth calleégpe-scoped advices

Consider the following code declaring two type-scoped advices:

Example 2
nl@advice around {h} (arg::Int) =
n2@advice around {h} (arg::[a]l) =
in let h x = x in

(b 1,h [2.5])

proceed (arg+l) in
proceed (tail arg)

80

triggered. For example, consider the following main program for
the above advices:

let h x = x in
let £ x = h x in
(f 1)

From syntactic viewpoint, function will be called in the body
of £. Since the argumentto functionh in the RHS off’s definition
is of polymorphic type, we would be tempted to conclude that (1)
advicen2 should be triggered at the call, and (2) adwdeshould
not be called as its type scope is less general thaa — a. As a
result,n2 will be statically chained to the call to. Apparently, this
syntactic approach to static weaving is adopted by Aspectual Caml
[16].

Unfortunately, this approach will cause incoherent behaviour
of h at run-time. Specifically, in the subsequent context, the main

4. Type Directed Weaving

Inspired by the concept gbredicated type [19] used in type
classes, we introducedvised type denoted ap to capture func-

tion names and their types that may be required for advice resolu-
tion. For instance, in the main program given in Example 4, func-
)) tion £ possesses the advised type.(h : (a — a)).a — a, in

3.2 Higher-Order Functions which (h : a — a) is called anadvice predicatelt signifies that
The presence of higher-order functions further complicates the the execution of any application #fmay require advices af ap-
problem of static weaving because the physical separation of func- plied with a type which should be less general thar- a.

tions and their calls make it impossible to statically allocate advices ~ Note that advised types are used to indicate the existence of
to a call in a local context. Nevertheless, as we shall illustrate in someindeterminate advicedf a function contains only applica-
Section 4, it is still possible to translate the original program into tions whose advices are completely determined, then the function
one in which while advice-wrapped functions are passed as argu-Will not be associated with an advised type; it will be associated
ments dynamically, dispatching of advices has been totally com- with a normal (and possibly polymorphic) type. As an example,

expression(f 1) will actually pass integer argumentoh. There,
advice fromn1 will be missed out since the weaver has mistakenly
committed its choice (of chaining onhR) in the application oh.
The only coherent behaviour of a weaver in this case is to have
being advised by both1 andn2.

piled away.
Consider a variant of Example 2.

Example 5
nl@advice around {h} (arg::Int)
n2@advice around {h} (arg::[al)
in let h x = x in

let f gy=gyin

(f h 1,f h [2.5])

proceed (arg+l) in
proceed (tail arg)

In the main program, there are two indirect callshtevhich,
due to higher-orderness, are not explicitly shown in the program
text. A correct static weaving entails making decision about the
appropriate advices for each calliat each of the corresponding
application oft.

3.3 Curried Pointcuts

Higher-orderness naturally brings forth the notion of partial appli-
cation of curried functions. In typical applications of AOP such as
tracing or profiling, it is important to be able to advise on not only
full applications of functions, but also partial applications of curried
functions to their arguments other than the first one. In our system,
we allow type-scoped advices with curried-function pointcuts, as
shown below:

Example 6
nl@advice around {f x} (arg::Int) = el in
n2@advice around {f} (arg::Int) = e2 in

n3Qadvice around {f x} (arg) = e3
in let £ xy=x+ 1 in
£f12

the type of the advised functianin Example 4 isva.a — a since
it does not contain any applications of advised functions in its def-
inition.

(AERASE) Va.(z : t).p] = [Va.p] [Va.(z:t).t'] = Va.t'
[{/&]tl ~ tg
(GEN) Va.t, > Vb.ts
(GENF) gen(T',0) = Va.c wherea = fv(o)\ fv(T)
(CARD) |o1,...,0k] =k (CARDy) |Va.p.t|prea = |D|

Figure 1. Auxiliary Definitions

Figure 1 defines a set of auxiliary functions/relations that assists
type inference. The lettérranges over unification (type-)variables
which are distinct from quantified rigid type variakbleRule (GEN)
defines a relatiof> between two type schemes using a unification
relation~. Specifically,c1 > o5 if and only if o1 is more general
than o2, and can be instantiated to a more specific typevia
variable substitution. RUIBAERASE) defines a functiorf-] which
removes all advice predicates from an advised type scheme. We
also define, in ruléGENF), a generalization procedure which turns
a type into a type scheme by quantifying type variables that do not
appear free in the type environment. Tl@aRD) function, denoted
by |-|, returns the cardinality of a sequence of objects. (GrrD,)
function returns the number of advice predicates in a type scheme.

The main set of type inference rules, as described in Figure 2,
is an extension to the Hindley-Milner system. We introduce a judg-
mentl’ ., e: o ~ ¢’ to denote that expressierhas types un-
der type environmerit and it is translated te’. We writeI' - ¢ : &
to denote a Hindley-Milner inference of a program without advices
where we do not make use of rul@gar-A), (LET-A), (ADV),
(ADV-AN), (PRED) and(REL). We assume the base program with-

Note that because of well-typedness, we insist that the advice bodyout advice declaration is type correct; and the type information of

of n2, e2, to be of a function type — -, while the advice bodies
el ande3 are of non-function types.

There is not yet any unambiguous agreement on the operationalings (of the formzx :

all the functions are stored in an initial environme&nt, ...
The type environmenrif' contains not only the usual type bind-
o) but alsoadvice bindingsof the form

semantics of aspect-oriented programs for higher-order functionsn :, o < z. This states that an advice with names defined

and partial function applications, although one such recommen-
dation has been presented lately [18]. In this work, we adopt the
viewpoint that functions are identified by names at pointcuts, and

on x. For the sake of convenience, we calthe type of the advice
even though advices are not first class citizens in our system. This
type o is inferred from the body and the type scope of the advice

advices are triggered whenever their partial applications matchesdescribed in rule§Abpv) and (ADv-AN); and it is used to guard

that of the pointcuts [16]. This differs from the recommendation
by [18] which triggers advices based on matching of run-time clo-
sures.

Back to the above example, we stipulates that adwiceill be
triggered at the applicatiotf 1). Furthermore, advicel andn3
will be triggered when the application ¢f 1) to 2 is encountered
at run-time.

81

advice application in ruléVAR-A). We also introduceadvised-
function bindingsof the formz :. o to bind advised functions to
their inferred types. Such a binding is introduced by iWeT-A).

We store all advised functions names in a global stérby
extracting them from all the pointcuts. In the presence ofian
advice, all named functions are included ih Note that while
it is possible to present the typing rules without the translation

zno el ¢

(VAR) z:0~ecl (Var-A) Hiwod(zVany) €l {n;|o; > [o']}
k. z:0~e |g| = |0 |prea 7 is fresh
Do a0’ ~ Mgz y,{n})
(YELIM) 't e:Va.o~ ¢ (YINTRO) 't e:owe agl

I e:ft/alo~¢€ It e:Vao~ €

. /
D,z ity ~x b ety ~ € Pheeriome fgd

(ABS) N P s P (LET) T, f:o~ f o eait~eh
- Ane 2 ‘ Dk letf=ejinex:t~let f=c¢elineh
Ik e1:t; —ta~ e} k. ertowey feA
(APP) I ex:ty ~ e (LET-A) I, fwo~ flo ex:t~eh
'k e1ea:ta~ (€] €5) Th.letf=ecrinex:t~let f=¢c)ine
Fhoe:t(z:t)p~e
Tzt Fo.oe: o) A
(Prep) P il AT €ipe TE (REL) T h. z:twe zcA

ke e (x:t).p~ Axg.e} TFe e pmde
Dpase, proceed : t1 — t,x i t1 - eq it Thase F fi 1 o’

(ADV) o Aty —t Tinuonafho et we o=gen(l,t1 —t)

I' k.. n@advice around {f} (z) = eqine:t' ~ letn = Az.eq ine€

Dhasesproceed ity — t, o ite - eq it Tpase F fi i ti — t]
(ADV-AN) t, Qt; (ti = t) ~(te —t) Tonoxaflbo e:t' e o=gen(T,t, —t)
I' .. n@advice around {f} (z :: ty) = eqine: t’ ~ letn = Az.eq in e

Figure 2. Type-directed Weaving by translation

detail by simply deleting the~~ ¢’ portion, it is not possible to advice predicate from a type. Its translation generates a function
present the translation rules independently since typing controls theapplication with an advised expression as argument.

translation. There are two type-inference rules for handling advices. Rule
There are two rules for variable lookups. RiMAR) is stan- (Apv) handles non-type-scoped advices, whereas(Ailz/-AN)
dard. In the case that the variablds advised, rul§VAR-A) will handles type-scoped advices. In r@hepv), we first infer the type

check all advices defined onto see whether any of them has a of e, under the initial type environment extended wijthoceed
more specific type tham’s. This is to ensure that chaining of ad- and variablex. The use of judgment here indicates that we
vices is only done in a sufficiently specific context. We call this do not translate the body of advices. Thus, function calls in the
checksufficiently specific context che@nd it is expressed in the body of advices should not be advised. We will come back to the
rule by the guarda € [o']). If the check failsi(e., no advice has a issue of having advised function calls occurring within an advice’s
more specific type tham), x will be chained with all those advices body in Section 5. After type inference of advice body, we ensure
defined on it, including those with pointcaty, having the same that all functions in the pointcut have type schemes that are not
or more general types thanhas. Note that the final translated ex- more general tha; — ¢. Then, this advice is added to the
pression isyormalizedby bringing all the advice abstractions of environment. It does not appear in the translated program, however,
outside(). This is to ensure type compatibility between an advised as itis translated into a function awaiting for participation in advice
call and its advices. Section 4.3 gives more detailed discussion onchaining.

this issue. In rule (ADV-AN), variablexz can only be bound to a value of
On the other hand, if there exists an advicesfavith more spe- typet, such that, is no more general than the input type of those
cific type, thenr € A must hold, and ruléPrReD) will be applied. functions in the pointcut. We also require the type of all functions

This rule introduces aadvice parameteto the program (through in the pointcut to be unifiable to the advice type, so that any bogus
the corresponding translation scheme). This advice parameter en-advices which can never be safely triggered will be rejected by our
ables concretadvise-chained function® be passed in at a later type system.

stage through application of ru(&®EeL). Note that we do not allow the annotated typeto be more
Rules(ABs),(LET), (APP), (VINTRO) and (VELIM) are stan- general than the input type of any function in the pointcut, as this

dard. Similar to(LET), rule (LET-A) binds advised functions. will be contrary to the intention of type-scoped advices.
Rules(PRED) and(REL) respectively introduces and eliminates Finally, the rules for advices with pointcuiny is not shown.

advice predicates just a&/INTRO) and (VELIM) do to bound Nevetheless, it is essentially the same(A®V) and (ADV-AN)

type variables. RuléPRED) adds an advice predicate to a type. respectively except that we replace the type judgement of advised
Correspondingly, its translation yields a lambda abstraction with functions byl" - any : Vab.a — b.

an advice parameter. On the other hand, (iReL) removes an

82

4.1 Challenges Reuvisited

We revisit the challenges that were laid down in Section 3, and ex-
amine how the type inference system defined in Figure 2 ensures
that proper advices are chained at each function calls, thus achiev-

ing type-directed weaving.
Let’s begin by examining how type-scoped advices defined in
Example 2 are being handled. The example is reproduced below:

nl@advice around {h} (arg::Int)
n2@advice around {h} (arg::[al)
in let h x = x in

(b 1,h [2.5])

proceed (arg+l) in
proceed (tail arg)

Sinceh is an advised function, its type is kept in the type envi-
ronment as an advised-function binding through application of rule
(LeT-A). Consequently, at each applicationinf(VAR-A) is ap-
plied to chain advices ta. Only advices that ensure type oblivi-
ousness will be extracted for chaining, resulting in each call to
having a distinct set of advices being triggered.

The example is translated to

let nl = \arg -> proceed (arg+l) in
let n2 = \arg -> proceed (tail arg)
in let h x x in

(<h,{n1}> 1, <h,{n2}> [2.5])

In Example 3, the unsafe adviee is correctly rejected by our

This approach of avoiding early commitment to specific advices

can be too conservative, and may fail to commit to any concrete
advices when necessary. Consider a slight variant of the above
example,

nl@advice around {h} (arg::Int) = proceed (arg+l) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let £ x = h x in

(f undefined)

Here, we conveniently use the Haskell's unique expression
undefined to represent a value of tyefor the purpose of demon-
stration? Our type-directed weaving will produce the following
translated code:

let nl = \arg -> proceed (arg+l) in
let n2 = \arg -> proceed (arg)
in let h x = x in

let £ dh x = dh x in

\dh -> f dh undefined

Note that in the main expression of the translated code,
(\dh -> £ dh undefined), advice application is still being ab-
stracted even though we ought to committbhere as there will
not be any further instantiation.

To circumvent this problem, we propose that during the transla-

type system (and no code is produced) since the inferred type oftion of the main expression, we employ a variant of ril@r-A)

the advice which idnt — Int fails to be at least as generalids
typeVa.a — a.

4.1.1 Coherent Advices

When type-scoped advices overlaps, our inference rules ensure thaﬁ
advices triggered are coherent to the expected run-time behaviour..

Example 4 is reproduced below:

nl@advice around {h} (arg::Int) = proceed (arg+l) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let £ x = h x in

(f 1

As mentioned in Section 3.1, in order to provide coherent advices,
the call (b x) should not be chained with concrete advices during
the examination of’s definition. This assurance is enforced by the
sufficiently specific context check.

Sincent1 is of typeInt — Int, which is more specific thal's
instantiated type — «a in the current context, rulévVar-A) fails
to apply. Insteads is inferred to have an advised tyge : a —
a).a — a through the application of rulPRED). This means that
decision for chaining advices will be deferred, andill carry an
advice parameter in the translated code.

In the main expressior{f 1), f's type is instantiated from
the polymorphic type tdnt — Int. Rule (REL) is thus applied
to release the advices. In the premise(BEL), we try to derive
the judgmentt" ~.. h : Int — Int ~ €”. In this case, the
guard in rule(VAR-A) is satisfied and is chained tm1 andn2.

which drops the sufficiently specific context check (the guard
& ¢ [o']) from the premise. As a result, we obtain the following
translated code:

et nl =
et n2

\arg -> proceed (arg+l) in
\arg -> proceed (arg)
in let h x = x in

let £ dh x = dh x in

f <h,{n2}> undefined

Note that only advica?2 is used in the translated main expres-
sion, as that is the only applicable advice in the current type context.

4.1.2 Higher-Order Functions

We handle higher-order named advised functions by replacing them
with correspondingadvise-chained functionsThis is warranted
when the function occurs in a sufficiently specific type context, and
it is described by the rulevAr-A). Thus, in the following code:

nl@advice around {h} (arg::Int)
n2@advice around {h} (arg::[al)
in let h x = x in

let f gy=gyin

(f h 1,f h [2.5])

proceed (arg+l) in
proceed (tail arg)

Functionh appears in two call contexts, one with integer input and
the other with float-list input. Application of type-directed weaving
rules, and particularly the rul®/ARrR-A) to these occurrences bf
results in the generation of the following code:

Consequently, the chained expression is passed as an argument to

£ through the rulg REL). The translated code is displayed below
(detailed typing/translation derivation of this program is shown in
Appendix A):

let nl
let n2

\arg -> proceed (arg+l) in
\arg -> proceed (arg)
in let h x = x in

let £ dh x = dh x in

(f <h,{n1,n2}> 1)

83

let nl = \arg -> proceed (arg+l) in
let n2 = \arg -> proceed (tail arg)
in let h x = x in

let f gy=gyin

(f <h,{n1}> 1,f <h,{n2}> [2.5])

2The call (£ undefined) will execute properly under call-by-need se-
mantics. However, it should be understood that this does not restrict our
proposed soluton to only handle programs with such semantics.

4.1.3 Curried Pointcuts

In [16], Masuharaet al. proposed a technique to simplify a curried
pointcut by iteratively removing the last parameter in it. Unfortu-

4.3 Operational Semantics of Chaining

In the translated program, we chain all applicable advices with an
advised function using a special syntax,{...}). In the same

nately, their weaving strategy does not support type-scoped curriedspirit as function composition, this operator sequentially chains a

pointcuts.
In our approach, we also simplify curried pointcuts into uncur-

sequence of functions that have unifiable types; and the advice-
chained function produced can be given the same type as the orig-

ried pointcuts, but we maintain the type constraints of type-scoped inal function’s. However, the chaining participants may not always

curried advices in the environment. Furthermore, the special func-
tion proceed is redefined locally to effect the currying of func-

tion arguments. Because function calls are not handled syntacti-

cally (i.e., they are not handled according to their textual appear-

ances), our approach can deal with type-scoped curried pointcuts

straightforwardly: What we need is to introduce a slight variant of
the (ADV-AN) rule. For the sake of simplicity, this variant rule only
deals with curried functions with two parameters. It can be straight-
forwardly extended to handle curried functions with arbitrary num-
ber of parameters.

(ADv-C)

Tbase,proceed : t —ty — to,x :theq:ta
Thase b fiits = ta =tz (t1 —=ta —t3) ~ (t =1y —ta)
ty <t Toniqod< f e e:t ~ ¢
o=gen(T,t =ty — ta)

I' k.. n@Qadvice around {f z} (y :: ty) = eqine: t’
~ let n = Ax.\y.let proceed = proceed x in e, in €

Given the following code example:

el in
e2 in

nl@advice around {f x} (arg::Int)

n2@advice around {f} (arg::Int)

n3@advice around {f x} (arg)

in let f xy=x+1in
f12

e3

Using this rule, our type-directed translation will produce the fol-
lowing code:

let nl = \x.\arg -> let proceed = proceed x
in el
in let n2 = \arg -> e2
in let n3 = \x.\arg -> let proceed = proceed x
in e3

in let f xy=x+11in
<f,{n1,n2,n3}> 1 2

Note thate2 is expected to be a function type as ensured by the
typing rules. Thus, the types of the three functiaisn2 andn3
are unifiable witht’s.

4.2 Advising Anonymous Functions

So far, advices are only chained with named functions at the time
of name lookup, as described in r/#AR-A). Rule (ANY), on

the other hand, deals with anonymous functions and partial appli-
cations. This rule looks for non-variable expressions of function
types and chains applicabiey advice with them.

(ANY)
Aigtdany €l {ni|ti>t} Tho eitwe
eisnotvar t~t; —ta ti,t2 fresh
I'he et~ (e, {n:})

Different from the rule (VAR-A), (ANY) does not check

whether the current context is sufficiently specific because an un-

named expression cannot be subsequently instantiated.

84

have unifiable types due to the abstraction of advice parameters.
A normalization step is required to reconcile the compatibility of
types. Consider this example:

nl@advice around {h} (arg) = el in
n2@advice around {f} (arg) = e2 in
let h x = x in

let f x = h x in

f1

The translation chainsg with n2 whose types are not unifiable
since the translatetitakes one extra advice parameter.

nl = \arg -> el in
n2 = \arg -> e2 in
let h x = x in

let £ dh x = dh x in
<f,{n2}> <h,{n1}> 1

The normalization in Rul¢VAR-A) moves advice parameters
out of (). As aresult, the main expression becortieg. <f y,{n2}>)
<h,{n1}> 1.The chaining participants y andn2 now have unifi-
able types.

We briefly describe the operational semantics of the translated
language. In addition to the standard grammar of the base language,
we introduce chaining as an expression and chaining of values as a

value.
von= | (o (o))
e u= .. |{efe})
The set of5 reductions are defined as follow:
(Mrev) g (efo/a])
(Ietx:v/lne) —g (e[v//x})
(ADv) s () /
(v, {v1,0}) V') +——p (v1[(v,{D})/proceed] v')

These rules specify a call-by-value evaluation strategy. This
choice of evaluation strategy is orthogonal to the language design.
The first two rules are standa@irules for lambda calculus. In the
third rule, when the advice sequence is empty, the chained value
(v, {}) evaluates to the original functian Otherwise, in the fourth
rule, the chained valuév, {v1,v}) replaces theproceed in the
body of the first advice); by a chained value which chains the
functionv with the remainder of the advice sequence.

4.4 Post-Translation of Advice Body

Our translation changes definitions of those functions having ad-
vised types by lambda-abstracting them with additional advice pa-
rameters. When these functions are called inside the body of some
advices, the advices become ill typed since the calls still refer to
the old function definitions. For this reason, we use the following
post translation to guarantee type preservation.

f:Va(z:p)t~pr fZT
Note that in the above typing of, we do not distinguish the

: and :. binding. Essentially, this post translation goes through
typed advice bodies and replaces each function with advised type
by an application of that function to the functions associated with
its advice predicates. Contrary to the main translation defined in
Figure 2, functions produced here are not chained with advices as
we do not allow advice body to be advised.

4.5 Correctness of Translation

One of the desirable properties of our type-directed weaving algo-
rithm is its reliance on a type-inference system that is a conserva-
tive extension of the Hindley-Milner Type System. (Note that the
notation[-] is defined in Figure 1.)

Theorem 1 (Conservative Extension)Given a programP con-
sisting of a set of advices and a closed base prograth

Fo. P:o~ P,
then
Fe:[o].

Our main theorem is to ensure that our translated program pre-
serves the type of the original program. When the original program

is of an advised type, the translated scheme will concretize the ad-

vice predicates into advice parameters, which constitute part of the
translated program. To this end, we define a functjahat trans-
lates advised type to normal polymorphic type.

n(Va.p) = Va.n(p)
n((@:t).p) = t—mnlp)
nt) =t

This main theorem ensures that the type-directed weaving is type-

safe.

Theorem 2 (Type Preservation)Given a programP consisting of
a set of advices and a closed base program. If

Fe P:o~ P,
and P’ ~ pr P" during post-translation, then
F P :n(o)

5. Handling Advices within Advice

In many AOP languages, an advice is just like a function, calls
to other functions may occur in its body, including functions that
are advised. We call thisested adviceAdmittedly, this might be

a powerful tool for meta or reflective programming, yet we are
conservative about it, for it is very likely to create more confusion
than it is worth. Consider the following example code:

n@advice around {f} (arg) = f arg

A program having such an advice will go into infinite loop when
£ is called. For this reason, we do not include nested advices in

the only advice defined og, is no more specific thavia.a — a.
Thus,n3 is chained to the application gf

If there were nat-call in the body ofa3, this choice would be
correct. Even for the main expressidan ¢) where the call tg is
restricted talnt — Int,n3 will still be the only applicable advice.

However, the nested naturexs changes the story. At the time
of chainingn3 to g mentioned above, we must also advise the
call to £ in n3’s body. But the existing contexta.a — a is not
sufficiently specific forf sincen1’s type is more specific. Coherent
advice cannot be enforced here.

To circumvent this problem, we suggest placing a stricter suf-
ficiently specific context check in rul@/ar-A). This new check
does not only check advices defined on the current looked up func-
tion, but also traces all the functions which are called by those
advices and checks the current context against advices defined on
these functions.

Using this stricter rule, we check not only the call contexgof
against the type of adviaes, but also those ofil andn2. This is
because the call toin n3 might be advised by1 and/om2. Thus,
in the definition ofh where the call context fog is Va.a — a,
we know that the call t& in n3 is of typeVa.a — a. The check
fails here because1 has a more specific type. Consequently, as
per normal, we resort to applying rulg®ReED) and abstracting
the advice to this call. The actual chaining is only performed in
the main expression where the contéxtt — Int is sufficiently
specific for all the three advices.

The translated code is

let nl = \arg -> el in
let n2 = \arg -> e2 in
let n3 = \arg -> f arg in
let g x = x in

let £ x = x in

let h dg x = dg x in

h <g,{(let n3 = \arg -> <f,{n1,n2}> arg in n3)}> 2

In this program, the call tg is advised bya3 which is in turn
advised byn1l andn2. In the case when1 and/orn2 again call
some functions with advised types, these functions also need to be
advised. The sufficiently specific context check introduced above
guarantees the success of this releasing of advices.

6. Related Works

Since the introduction of the aspect-oriented paradigm [13], re-
searchers have been developing semantic foundations for it. Most
of the works in this area were done in object-oriented context in

our main translation rules. Nevertheless, we describe here a simplewhich type inference, higher-order functions and parametric poly-

extension to our translation scheme to deal with nested advices,

through the translation of the following example:

Example 7
nl@advice around {f} (arg::Int) = el in
n2@advice around {f} (arg) = e2 in
n3Qadvice around {g} (arg) = f arg
in let g x = x in

let £ x = x in

let h x = g x in

h 2

Here, advicen3 calls £ which is in turn being advised. The goal of
our translation is to chain advices which are applicable to the call
of £ inside an advice.

Now we make an attempt to translate this program. The call of
g in the definition ofh is of typeVa.a — a. According to our
(VAR-A) rule that performs sufficiently specific context cheeg,

85

morphism are of little concern. Instead, they have been focusing
on modelling the nature of pointcuts and the effects of execut-
ing the associated advices [4, 21, 9]. As a result, the semantics
of aspect weaving is conveniently expressed through some mech-
anisms of dynamic semantics, and there has been either no defini-
tion of static semantics or not a concern for static semantics. Two
recent proposals [16, 5] made pioneering attempts in incorporating
aspect-oriented features into strongly typed functional languages.
Although both emphasize the polymorphic aspect of pointcuts and
advices, none of them is able to offer a complete solution to all
those concerns.

Based on a polymorphic calculus with first-class join points,
PolyAML [5] allows programmers to define polymorphic advices
using type-annotated pointcuts. They designed a conservative ex-
tension to the Hindley-Milner type inference algorithm with a form
of local type inference based on the required annotation of point-
cuts. To support non-parametric polymorphic advice, they also in-
troduced case-advices which are subsumed by our type-scoped ad-

vices. Weaving was done by a translation into the typed core calcu- to extend the core language described here to admit other forms of
lus and dynamic type checking is employed to decide on the trig- language constructs. We do not see any technical difficulty in han-
gering of case-advices. PolyAML is a first-order language that does dling aspects with more complicated pointcut designators. On the
not supportaround advice, so it does not address many of the is- other hand, we believe that the combination of overloaded func-
sues we discussed in this paper. tions @.k.a, type classes) and aspects with type-scoped advices
Aspectual Caml [16], on the other hand, does not require an- can be a powerful tool for program construction, even though it
notations on pointcuts. It gives pointcuts the most general types may overwhelm programmers with too many subtle type issues.
available in context and ensures that the types of advices hinged
on the pointcut are consistent with the pointcut’s type. Similar to
PolyAML, it also allows a restricted form of type-scoped advices. Acknowledgments
Yet, unlike our approach, the types of the functions specified in a We would like to thank the anonymous referees for their insightful
pointcut are not checked against the pointcut’s type during type in- comments. We also thank the members of the PLS-II lab for their
ference. Type safety of advice application is considered later in the valuable comments. This research is partially supported by an NUS
weaving process. After type inference, their weaver goes through research grant R-252-000-138-112. The first author would like to
all type-annotated functions to insert advice calls. For each expres-specially thank Dr. Martin Sulzmann for bringing him to the world
sion, it looks for advice definitions which have pointcuts that match of type inference and translation.
this expression. If the type of the pointcut is more general than
the type of the matched expression, the expression will be replacedR ;
by an application to the advice function. This syntactic approach ererences
makes it easy to advise anonymous functions. However, it relies on [1] S. Anand, W.-N. Chin, and S.-C. Khoo. Charting patterns on price

a very strong assumption that there will not be any renaming or history. InICFP '01: Proceedings of the sixth ACM SIGPLAN
even nested polymorphic calls in the program. This is particularly international conference on Functional programmirmgges 134—
impractical in a higher-order language. 145, New York, NY, USA, 2001. ACM Press.

In [16], Masuhareet al. propose a convenient way of simplify- [2] Aspectwerkz project. http://aspectwerkz.codehaus.org.

ing curried pointcuts into non-curried ones. We adopt this technique 3] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Rigbc: A minimal
but in a more expressive manner in our translation, as described in aspect calculus. IRroc. Concur Springer-Verlag, 2004.

Section .4'1'3' . L . . . [4] C. Clifton and G. Leavens. Minimao: Investigating the semantics
Our idea of advice chaining is partly inspired by the chain of proceed. InProceedings of the Foundations of Aspect-Oriented
expression in [4] and the wrapping of advices in [21]. On the other Languages2005.

Cvah?gh 2gsfa;$|Ch;#;rZitafrrir?]esgrrgedréggg namic weaving setting, [5] D. S. Dantas, D. Walkgr, G. Washburn, and S. Weirich. Polyaml: a
Yy _approacn. . polymorphic aspect-oriented functional programmming language. In
Another closely related work is the dictionary translation of Proc. of ICFP'05 ACM Press, September 2005.

Haskell type classes [19]. Our notion of advised types and type-

g!rected transla_tlon are dlreCFIy inspired by it. 'I_'he main technical Proceedings of the ACM SIGPLAN International Conference on
ifference here is the adaptation of the mechanism to a new context Functional Programming (ICFP '97)olume 32(8), pages 263273

in a coherent way. In type classes, higher-order functions are not 1997. ' ' '

a concern and overlapping instances are precluded, whereas in

aspect-oriented programming, in which advices with overlapping o L ;

pointcuts are predominant, higher-order functions complicate the gzgn'\s:fchagls?tn ggi?o?g A\;I;?:gtr-lgsrise-r:tlg g%ﬁ@i?ﬁ%&ﬂ,?ﬁ,@ﬁ?ke‘

translation. Therefore, we must take substantially different typing 21_35. Addiéon-WesIey, Boston, 2005.

and translation approaches to handle overlapping advices, with the

objective of ensuring coherent translation in the presence of higher-

order functions.

[6] C. Elliott and P. Hudak. Functional reactive animation. In

[7] R. Filman and D. Friedman. Aspect-oriented programming is

[8] P. Hudak. Building domain-specific embedded languagt&M
Comput. Sury.28(4es):196, 1996.
[9] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-
: oriented programs. IRroceedings of the 2003 European Conference
7. Conclusion on Object Oriented Programmingages 54—73. Springer, 2003.
We propose a novel technique for type inference of aspect-oriented |1} jn0ss aop project. http:/www.jboss.org/products/aop.
functional programs, featuring higher-order functions, curried
pointcuts and overlapping type-scoped advices. Our type inferenc o : Rl - vy
f - - . . adventure in financial engineering (functional pearl).|@FP '00:
_system als_o supports static weaving of advices mto. programs. This Proceedings of the fifth gCM SlglgLAN interr?atiorzal conference
Is accomp!lshed by a SOUVCG"?"G' program tran§lat|pn. - on Functional programmingpages 280-292, New York, NY, USA,
We believe that aspect-oriented programming is a promising 2000. ACM Press.
paradigm for constructing functional programs, because it has the . . .

k : . . 12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
potential to turn some of the program crafting techniques into [12] Griswold. An overview of asp%ctj. IECOOP '01: Proceedings
systematic program development. For example, type-scoped ad- of the 15th European Conference on Object-Oriented Programming
vices give a new perspective to the existing work in modifying pages 327353, London, UK, 2001. Springer-Verlag.
part of a function’s definition based on types. Specifically, in [14, . .

. 13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
15], the authors describe a Haskell system support to enable type—[] J. Loingtier, and J. ?rw?n. Aspect-oriented programming. pln

e [11] S. Peyton Jones, J. Eber, and J. Seward. Composing contracts: an

preserving change to function definitions. The problem handled Mehmet Aksit and Satoshi Matsuoka, editdPspceedings European
there can be conveniently framed in the aspect-oriented perspec- Conference on Object-Oriented Programminglume 1241, pages
tive, where such changes to a function can be defined as a typed- 220-242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

scoped advice to the function. Looking forward, we envisage the [14] R. Lammel and S. Peyton Jones. Scrap your boilerplate: a practical
use of aspects, through the help of type-scoped advices, to model design pattern for generic programming. ThDI '03: Proceedings

domain-specific embedded languages [8, 6, 11, 1]. of the 2003 ACM SIGPLAN international workshop on Types in
On the technical perspective, implementation of the type- languages design and implementatipages 26-37, New York, NY,
inference system is current in progress. In addition, we would like USA, 2003. ACM Press.

86

[15] R. Lammel and S. Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. I@FP '04: Proceedings of the The translated result is displayed below :
ninth ACM SIGPLAN international conference on Functional
programming pages 244-255, New York, NY, USA, 2004. ACM let nl = \arg -> proceed (arg+l) in
Press. let n2 \arg -> proceed (arg)

[16] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual caml; 1% et b x = X_in]
an aspect-oriented functional language.Phoc. of ICFP’'05 ACM let £ dh x = dh x in
Press, September 2005. (f <h,{n1,n2}> 1)

[17] O. Spinczyk, A. Gal, and W. Schder-Preikschat. Aspectc++: an
aspect-oriented extension to the c++ programming language. In
CRPITS '02: Proceedings of the Fortieth International Confernece
on Tools Pacific pages 53-60, Darlinghurst, Australia, Australia,
2002. Australian Computer Society, Inc.

[18] D. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order
languages. IProceedings of the 2nd International Conference on
Aspect-Oriented Software Developme@i03.

[19] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. InConference Record of the 16th Annual ACM Symposium on
Principles of Programming Languaggsages 60—76. ACM, January
1989.

[20] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
ICFP '03: Proceedings of the eighth ACM SIGPLAN international
conference on Functional programmingages 127-139, New York,
NY, USA, 2003. ACM Press.

[21] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programmif@PLAS
26(5):890-910, September 2004.

A. A Sample Derivation

In this section, we present the typing/translation derivation of the
program in Example 4. The code is reproduced below.

nl@advice around {h} (arg::Int) = proceed (arg+l) in
n2@advice around {h} (arg) = proceed (arg)
in let h x = x in

let £ x = h x in

(£ 1

We usel as a short hand fafnt to save space. Some obvious de-
tails are also omitted.

The derivation of the definition of is:

I'={h:Va.a — a~ h,ns :q Ya.a — ax h,
niie I — Ixh}

h:t—t~ dhels z:t~axz el
(VAR) (VarR) T~ 7
(APB) I's b h:t—t~dh IT'o b 2zt~
(As9) Fo=Ty,z:t~z k. (ha):t~ (dhx)
ABS)

I'i=T,h:t—t~dh k., Ax.(hz):t—t~ Iz.(dhx)
(PRED)

Fbto Xx.(hz): (h:t—t).t =t~ AdhAzx.(dh)

The derivation of the main expression is:
I's = {h . Ya.a — a ~ h,n2 :q Ya.a — a < h,

nial—Iah, f:Va(h:a—a)a—a~ f}

f:Va.(h:a—a)a—a~ feTls
sk fiI—1~f
Is Fe f : (hIHI)IW (f <h’{n17n2}>)
Ly e (f1): I~ (f (b, {n1,n2}) 1)

(VAR)
(REL)
(APP)

h:xVaa—a~ heTls
s b h:I— T~ (h,{ni,n2})

@ = (VARrR-A)

87

